Synthesis and X-ray diffraction data of 4-benzyloxy-1-oxaspiro-[4.6]undec-3-en-2-one

Jose H. Quintana,¹ J. A. Henao,¹ Elvis Robles,² and Juan Manuel Urbina²

¹Grupo de Investigación en Química Estructural (GIQUE), Centro de Investigación en Biomoléculas, (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia

²Laboratorio de Química Orgánica y Biomolecular (LQOBio), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia

(Received 13 June 2013; accepted 21 June 2013)

The 4-benzyloxy-1-oxaspiro-[4.6]-undec-3-en-2-one ($C_{17}H_{20}O_3$) was prepared through a domino reaction from benzyl α -hydroxycycloheptanecarboxylate and the cumulated ylide Ph₃P=C=C=O by: (i) addition and (ii) intramolecular Wittig Olefination reaction. The reaction was carried out using anhydrous toluene as solvent under an argon atmosphere in a Schlenk flask. Molecular characterization was performed by Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, (¹H, ¹³C – mono and bidimensional) nuclear magnetic resonance spectroscopy; crystallographic characterization was completed by X-ray diffraction of polycrystalline samples (XRPD). The title compound crystallized in a monoclinical system and unit-cell parameters are reported [a = 13.207(3) Å, b = 5.972(1) Å, c = 19.719(4) Å, $\beta = 105.67(2)^\circ$, unit-cell volume V = 1497.5 (4) Å³, Z = 4]. All of the measured lines were indexed with the P2₁/n (No. 14) space group. © 2013 International Centre for Diffraction Data. [doi:10.1017/S088571561300064X]

Key words: O-Bencyl tetronate, X-ray powder diffraction data, spiro tetronic acid

I. INTRODUCTION

There are many studies related to the synthesis of compounds structurally related to conjugated systems derived from the 4-hydroxyfuran-2[5H]-one core; many of these derivatives have shown several activities in different biological reactions and they are usually employed as precursors of substances of high relevance in the battle against many diseases. Most of the methodologies reported for its preparation are generally limited by the instability of the substances employed and the difficulty of obtaining the desired structure (Tejedor, 2004).

Until now, one of the best methodologies used to obtain butenolides (furan-2[5*H*]-ones) is Wittig Olefination; using the cumulated ylide Ph₃P=C=C=O as a Wittig reagent and different α -hydroxyesters, it is possible to achieve the synthesis of several analogs of substances that have shown biological activity (antitumor and anticancer among the most important); the use of Ph₃P=C=C=O also allows us to obtain molecules with spiroatoms that usually are not easy to access by the conventional reaction methods (Schobert, 2007).

In this work, the preparation of 4-benzyloxy-1-oxaspiro-[4.6]-undec-3-en-2-one (2) using Ph₃P=C=C=O and the corresponding benzyl α -hydroxycycloheptanecarboxylate (1) is presented (Figure 1), reporting molecular characterization [Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry (GC-MS), ¹H, nuclear magnetic resonance spectroscopy on carbons (¹³C NMR), and X-ray powder diffraction (XRPD)] data. Crystallographic information by X-ray diffraction about this type of derivatives has been little explored. This compound has been obtained in

Figure 1. Synthesis of 4-benzyloxy-1-oxaspiro-[4.6]-undec-3-en-2-one (2).

an easy and fast way and owing to its similarity with the analogs already reported is expected to be of biological interest.

II. EXPERIMENTAL

A. Synthesis

In a 250-ml round bottom Schlenk flask, 2.18 g (7.21 mmol) of keteneylidenetriphenylphosphorane (Ph₃P= C=C=O) were loaded under argon atmosphere; 150 ml of anhydrous toluene were added and the mixture was magnetically stirred. Approximately 0.87 g (3.5 mmol) of benzyl 1-hydroxycycloheptanecarboxylate (1) (previously dried under vacuum for 1 h) were added. The reaction mixture was refluxed for 72 h, after completion of the reaction indicated by thin layer chromatography (TLC). Toluene was removed under vacuum using a rotary evaporator. To remove the phosphine oxide formed during the reaction, the residue was initially dissolved in dichlorometane (DCM) and filtered over silica gel (60–120 mesh). Then, the residual crude product was purified by column chromatography using silica gel (60–120 mesh) and hexane–ethyl acetate (5:1) as eluents

Figure 2. X-ray powder diffraction pattern of 4-benzyloxy-1-oxaspiro-[4.6]-undec-3-en-2-one.

TABLE I. X-ray powder diffraction data of 4-benzyloxy-1-oxaspiro-[4.6]-undec-3-en-2-one. Cu $K\alpha_1$ radiation ($\lambda = 1.540$	6 A).
---	-------

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	(<i>I</i> / <i>I</i> ₀) _{obs}	h	k	l	$2\theta_{\text{calc}}$ (°)	d_{calc} (Å)	Δ2θ (°)
7.243	12.1950	13	-1	0	1	r 7.241	12.1978	-0.002
9.315	9.4865	13	0	0	2	¹ 9.308	9.4932	0.007
			0	0	1	9.350	9.4514	
13.846	6.3907	40	-1	0	3	13.833	6.3966	-0.013
14.505	6.1018	14	-2	0	2	14.512	6.0989	0.007
15.521	5.7046	21	0	1	1	15.543	5.6966	0.022
16.482	5.3740	4	-1	1	1	16.515	5.3635	0.033
17.269	5.1309	38	1	0	3	17.240	5.1393	-0.029
17.534	5.0539	50	0	1	2	{ 17.531	5.0548	-0.003
			1	1	1	17.553	5.0485	
17.903	4.9506	14	-1	1	2	17.913	4.9479	0.010
18.709	4.7391	7	0	0	4	18.679	4.7466	0.030
			-2	1	1	{ 20.051	4.4247	
20.075	4.4196	4	-2	0	4	20.081	4.4196	0.006
20.325	4.3658	33	-1	1	3	20.328	4.3652	0.003
20.762	4.2749	2	-2	1	2	20.801	4.2669	0.039
21.772	4.0788	100	2	1	1	21.756	4.0817	-0.016
21.851	4.0642	76	-3	0	3	21.842	4.0659	-0.009
			-2	1	3	22.532	3.9429	
22.537	3.9420	1	-1	0	5	22.537	3.9421	0.000
22.791	3.8987	3	1	1	3	22.810	3.8954	0.019
23.459	3.7891	15	-1	1	4	23.461	3.7888	0.002
23.961	3.7109	16	0	1	4	{ 23.929	3.7158	-0.032
			2	1	2	23.995	3.7058	
25.130	3.5408	17	-3	1	1	25.130	3.5409	0.000
25.396	3.5044	5	-3	1	2	25.387	3.5056	-0.009
25.750	3.4570	4	3	1	0	25.753	3.4566	0.003
			1	0	5	{ 26.222	3.3958	
26.271	3.3896	1	2	0	4	26.267	3.3901	-0.004
26.514	3.3591	4	-3	1	3	26.499	3.3609	-0.015
			2	1	3	{ 26.898	3.3120	
26.963	3.3041	8	-3	0	5	26.941	3.3067	-0.022
			-2	1	1	20.051	4.4247	

Continued

TABLE I. Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	(I/I ₀) _{obs}	h	k	l	$2\theta_{\text{calc}}$ (°)	d_{calc} (Å)	$\Delta 2 \theta$ (°)
27.180	3.2783	6	3	1	1	27.199	3.2760	0.019
27.808	3.2056	3	0	1	5	27.819	3.2043	0.011
28.128	3.1699	2	-2	1	5	{ 28.162	3.1661	0.034
			0	0	6	28.178	3.1644	
			3	0	3	{ 28.305	3.1505	
28.351	3.1455	7	-3	1	4	28.375	3.1429	0.024
29.306	3.0451	3	-4	0	4	29.263	3.0495	-0.043
			1	1	5	{ 30.253	2.9519	
30.268	2.9505	3	0	2	1	30.277	2,9496	0.009
			2	1	4	30.293	2.9481	
30.802	2 9005	3	-1	2	1	30.805	2 9002	0.003
50.002	2.9005	5	_1	1	6	{ 31.041	2.9002	0.005
31.063	2 8767	7	-4	1	1	31.059	2.8771	-0.004
51.005	2.8707	1	-4	2	2	$\begin{cases} 31.037\\ 31.381 \end{cases}$	2.0771	-0.004
21 402	2 8465	~1	1	2	1	21 204	2.0403	0.008
21.402	2.6403	<1	1	2	1	21.394	2.0472	-0.008
31.734	2.8174	1	-2	1	0	{ 31./11	2.0194	-0.025
31.973	2.7969	1	0	1	6	31.982	2.7961	0.009
			4	0	2	31.986	2.7958	
32.090	2.7870	<1	3	1	3	32.096	2.7865	0.006
32.771	2.7306	2	1	2	2	{ 32.746	2.7326	-0.025
			-1	2	3	33.082	2.7056	
33.115	2.7030	4	2	2	0	33.119	2.7027	0.004
			0	2	3	33.148	2.7004	
			2	1	5	1 34.053	2.6307	
34.072	2.6293	2	-3	0	7	, 34.066	2.6297	-0.006
34.200	2.6197	2	-5	0	3	{ 34.236	2.6170	0.036
			-5	0	1	34.257	2.6155	
34.575	2.5921	<1	-2	2	3	34.529	2,5955	-0.046
34 734	2 5806	1	- 1	2	3	34 718	2 5818	-0.016
34 867	2.5000	2	2	0	6	34 887	2 5697	0.020
51.007	2.5711	-	-4	1	5	34,906	2.5684	0.020
35 102	2 5481	1		2	4	35 165	2.5500	0.027
35 200	2.5401	1	-1	1	4	35 200	2.5300	0.000
33.299	2.5400	1	2	1	4	{ 25.526	2.5407	0.000
25 5(7	2 5221	2	2	2	2	· 55.550	2.3242	0.021
33.307	2.3221	2	-2	1	/	{ 35.388	2.5207	0.021
26.257	0.4601	1	-3	2	1	36.340	2.4702	0.007
36.357	2.4691	<1	0	1	/	36.350	2.4696	-0.007
36.638	2.4508	1	-2	0	8	36.637	2.4508	-0.001
36.869	2.4360	<1	5	0	1	{ 36.872	2.4358	0.003
37.312	2.4080	1	-3	1	7	37.334	2.4067	0.022
			-3	2	3	{ 37.335	2.4066	
			-5	1	3	37.491	2.3970	
37.516	2.3954	<1	-5	1	1	37.510	2.3958	-0.006
37.859	2.3745	<1	3	2	1	1 37.853	2.3749	-0.006
			0	0	8	37.879	2.3733	
			4	0	4	¹ 38.053	2.3629	
38.093	2.3605	<1	2	1	6	38.094	2.3604	0.001
			-5	1	4	{ 38.401	2.3422	
38.437	2.3401	<1	5	1	0	38.440	2.3400	0.003
38.571	2,3323	<1	-2	2	5	38.576	2,3320	0.005
38.761	2.3213	<1	-3	2	4	{ 38,737	2.3227	-0.024
201101	210210	**	1	-	7	38 786	2 3199	0.021
38 877	2 3146	<1	1	1	5	38 871	2.3150	0.006
20.624	2.3140	<1	1	1	9	20.652	2.3130	-0.000
20,000	2.2722	<1	-1	1	0 5	39.032	2.2722	0.018
39.009	2.2362	1	-3	1	3	39.880	2.2364	-0.003
40.268	2.2378	1	2	2	4	40.215	2.2407	-0.053
40.332	2.2344	1	-4	1	/	40.330	2.2345	-0.002
40.765	2.2117	1	-4	2	2	i 40.752	2.2124	-0.013
			-1	2	6	40.802	2.2097	
			4	1	4	{ 41.048	2.1971	
41.087	2.1951	2	-3	1	8	41.089	2.1950	0.002
41.389	2.1798	2	-1	0	9	{ 41.418	2.1783	0.029
41.477	2.1754	3	-4	2	0	41.455	2.1765	-0.022
			0	2	6	41.550	2.1717	
			-5	0	7	41.571	2.1707	

Continued

TABLE I. Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	(<i>I</i> / <i>I</i> ₀) _{obs}	h	k	l	$2\theta_{\rm calc}$ (°)	d_{calc} (Å)	$\Delta 2 \theta$ (°)
41.609	2.1688	1	3	2	3	{ 41.641	2.1672	0.032
			5	0	3	41.661	2.1662	
			-6	0	4	41.682	2.1651	
41.881	2.1553	<1	-5	1	6	41.894	2.1547	0.013
			-4	2	4	{ 42.330	2.1335	
42.350	2.1325	1	-3	0	9	42.356	2.1322	0.006
			2	1	7	42.362	2.1319	
			6	0	0	{ 42.624	2.1194	
42.652	2.1181	<1	4	2	1	42.645	2.1184	-0.007
43.336	2.0862	3	1	1	8	43.326	2.0867	-0.010
43.649	2.0720	<1	-4	1	8	43.651	2.0719	0.002
			-6	1	2	{ 43.844	2.0632	
43.879	2.0617	<1	-6	1	3	43.888	2.0613	0.009
			-4	2	5	(43.924	2.0597	
44.151	2.0496	<1	2	0	8	¹ 44.153	2.0495	0.002
			3	0	7	44.201	2.0474	
			-1	2	7	44.207	2.0471	
			-6	1	1	[{] 44.343	2.0412	
			4	2	2	44.351	2.0408	
44.390	2.0391	2	-5	1	7	(44.368	2.0401	-0.022
			4	1	5	[{] 44.445	2.0367	
			5	1	3	44.454	2.0364	
			-6	1	4	44.474	2.0355	
44.501	2.0343	2	-2	2	7	44.488	2.0348	-0.013
			-6	0	6	44.532	2.0330	
			-3	1	9	{ 45.114	2.0081	
45.151	2.0065	1	0	2	7	45.123	2.0077	-0.028
			4	0	6	¹ 45.544	1.9901	
45.575	1.9888	<1	0	1	9	45.567	1.9891	-0.008
			-6	1	5	45.583	1.9885	
46.080	1.9682	1	-5	2	3	{ 46.083	1.9681	0.003
			-5	2	1	46.099	1.9674	
			1	3	0	46.119	1.9666	
46.694	1.9437	1	-1	3	2	46.740	1.9419	0.046
46.950	1.9337	1	6	1	1	46.896	1.9358	-0.054
			-5	1	8	47.254	1.9220	
			3	2	5	47.256	1.9219	
47.287	1.9207	1	-4	1	9	47.296	1.9204	0.009
47.956	1.8955	1	-5	0	9	{ 47.984	1.8944	0.028
			-2	2	8	47.985	1.8944	
			1	1	9	{ 48.022	1.8930	
48.041	1.8923	1	-2	3	2	48.041	1.8923	0.000
			4	1	6	{ 48.157	1.8880	
			5	2	1	48,174	1.8874	
48.213	1.8860	1	-7	0	3	48.200	1.8865	-0.013
			0	2	8	48,989	1.8579	
			-7	0	1	49.027	1.8566	
49.046	1.8559	<1	1	3	3	49.037	1.8562	-0.009
			-3	2	8	49,166	1.8516	
49.242	1.8490	<1	-6	1	7	49.253	1.8586	0.011
.,			-6	0	8	49.266	1.8481	
49.364	1.8447	1	-1	3	4	49.374	1.8443	0.010
			-3	1	10	49.375	1.8443	
			-7	0	5	49.381	1.8441	
50 697	1.7992	<1	-7	1	3	50,709	1.7988	0.012
51.147	1.7845	<1	1	2	8	51.125	1.7852	-0.022
		**	-1	0	11	{ 51.426	1.7755	0.022
			-3	0	11	51.448	1.7747	
			3	3	1	51.449	1.7747	
51.470	1.7740	<1	2	1	9	51.469	1.7741	-0.001
			_7	1	1	51.506	1.7729	5.001
51.566	1.7710	<1	-6	2	2	{ 51.582	1.7704	0.016
			-6	2	-3	51.621	1.7692	5.010
			6	0	4	{ 51.725	1.7659	
51.747	1.7652	<1	-6	1	8	51.738	1.7655	-0.009
	1.1052	N 1	-2	2	9	51.781	1.7641	0.007

Continued

https://doi.org/10.1017/S088571561300064X Published online by Cambridge University Press

TABLE I. Continued

$\Delta 2 \theta$ (°)	d_{calc} (Å)	$2\theta_{\text{calc}}$ (°)		l	k	h	(<i>I</i> / <i>I</i> ₀) _{obs}	$d_{\rm obs}$ (Å)	$2\theta_{\rm obs}$ (°)
-0.021	1.7598	51.918	ſ	9	2	-1	1	1.7591	51.939
	1.7352	52.709	{	9	2	-3			
0.011	1.7341	52.745	ſ	2	3	3	<1	1.7344	52.734
	1.7230	53.113	{	9	2	0			
	1.7227	53.122		6	1	-7			
-0.027	1.7225	53.127		5	2	-6	<1	1.7217	53.127
0.002	1.7131	53.442		9	0	3	<1	1.7132	53.440
0.023	1.6979	53.959	ſ	10	0	2	<1	1.6986	53.936
	1.6886	54.282	í	7	2	3			
-0.005	1.6880	54.304		1	2	6	<1	1.6878	54.309
	1.6872	54.332	ſ	0	3	4			
	1.6788	54.625	í	8	2	-5			
0.009	1.6777	54.663		9	2	-4	<1	1.6780	54.654
	1.6763	54.713		4	2	5			
0.020	1.6539	55.536	ſ	10	0	-6	1	1.6539	55.516
0.026	1.6509	55.653	í	11	0	-5	1	1.6509	55.627
	1.6493	55.686	ſ	6	3	-3			
-0.013	1.6380	56.104	í	2	2	6	<1	1.6376	56.117
	1.6365	56.159		10	2	-1			
0.039	1.6262	56.545		10	2	-3	<1	1.6273	56.506
-0.014	1.6186	56.838		7	3	-2	<1	1.6182	56.852
-0.015	1.6152	56.968	ſ	8	1	-7	<1	1.6148	56.983
	1.6049	57.368	í	6	0	-8			
-0.046	1.6048	57.371	ſ	7	3	0	<1	1.6036	57.417
	1.5996	57.573	í	9	2	-5			
-0.008	1.5992	57.592	ſ	12	0	-4	<1	1.5989	57.600
-0.006	1.5844	58.181	{	3	3	-5	<1	1.5842	58.187
	1.5840	58.195		12	1	-2			
	1.5840	58.195	ſ	1	3	-5			
	1.5822	58.268	í	12	0	0			
-0.001	1.5811	58.312	ſ	3	2	6	1	1.5811	58.313
0.015	1.5775	58.459	í	9	2	2	<1	1.5779	58.444
	1.5766	58.493	ſ	1	2	-7			
-0.013	1.5690	58.808	ι	5	2	-7	<1	1.5686	58.821
	1.5682	58.838		4	3	-5			
	1.5678	58.856		12	1	-1			

to afford the pure *O*-benzyltetronate (2) (yield 70%). $R_{\rm f} = 0.4$ (SiO₂, hexane:ethyl acetate, 5:2).

4-O-(bencyloxy)-1-oxaspiro[4.6]undec-3-en-2-one (2): White solid, m.p. 95 °C. IR [KBr, v (cm⁻¹)] = 3472 (w), 3119 (w), 2924 (m), 2862 (w), 1747 (vs), 1624 (vs), 1460 (w), 1033 (m) [v(C-O)], 812 (m), 736 (w), 700 (m). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.42 (2H, d, J*, H_{ortho}), 7.40 (2H, td, J*, H_{meta}), 7.36 (1H, t, J*, H_{para}), 5.05 (2H, s, φ-CH₂-), 4.95 (1H, s, H-C=), 1.50-2.03 (12H, m, cycloheptane ring) [* J not resolved, appear as broad signal]. ¹³C-NMR (100 Hz, CDCl₃), δ (ppm): 185.99 (C = O), 172.27 (4-C), 134.34 (C_{ipso}), 128.96 (2C, C_{meta}), 128.89 (C_{para}), 127.60 $(2C, C_{\text{ortho}})$, 87.39 $(5-C_{\text{spiro}})$, 87.22 (H-C =), 74.18 $(\phi - C_{\text{spiro}})$ CH₂-), 36.94 (2C, a-C), 29.24 (2C, b-C), 22.67 (2C, c-C). GC-MS (EI) m/z (%): 272 (1, M^+), 254 (2, M^+ –H₂O), 228 $(1, M^+-CO_2), 181 (2, M^+-C_7H_7), 127 (1, M^+-CO-C_8H_5O),$ 91 (100, M^+ -C₁₀H₁₃O₃), 95 (10, M^+ -C₁₀H₉O₃), and 56 (4, M^+ -C₁₃H₁₂O₃). Anal. Calcd for C₁₇H₂₀O₃ (272 g mol⁻¹): C, 74.97; H, 7.40.

B. Powder data collection

The title compound was ground and sieved to a grain size $<38 \ \mu\text{m}$. The compound was mounted on a zero-background specimen holder. The diffraction pattern was collected at

room temperature (298 K) in the range from 2 to $70^{\circ} 2\theta$ with a step size of 0.015 $26^{\circ} 2\theta$ and a count time of 0.4 s per step, using an D8 ADVANCE BRUKER with geometry DaVinci diffractometer operating in Bragg–Brentano geometry quipped with a Cu-target X-ray tube (40 kV and 30 mA), a nickel filter and a one-dimensional LynxEye detector. A fixed antiscatter slit of 8 mm, receiving slit of 1 mm, soller slits of 2.5°, and a detector slit of 0.6 mm were used.

PowderX program (Dong, 1999) was used to remove the background (Sonnerveld and Visser, 1975), smoothing (Savitzky and Golay, 1964), to eliminate the $K\alpha_2$ component

 TABLE II.
 Crystal-structure data for 4-benzyloxy-1-oxaspiro-[4.6]undec-3-en-2-one.

Crystal system	Monoclinic
a (Å)	13.207 (3)
<i>b</i> (Å)	5.972 (1)
<i>c</i> (Å)	19.719 (4)
β (°)	105.67 (2)
$V(Å^3)$	1497.5 (4)
Ζ	4
M_{20}	17.6
F ₃₀	33.1 (0.0168, 54)
$D_{\rm m}$	1.211 g cm^{-3}

(Rachinger, 1948) and the second derivative method was used to determine the peak-observed positions and intensities.

III. RESULTS AND DISCUSSION

The experimental XRPD pattern is depicted in Figure 2. XRPD data for the title compound is given in Table I. Indexing of the experimental XRPD pattern was performed using the DICVOL06 program (Boultif and Louër, 2006) with an absolute error of $0.03^{\circ} 2\theta$. The title compound crystallized in a monoclinical system with space group $P2_1/n$ (No. 14) estimated by the CHEKCELL program (Laugier and Bochu, 2002), which was compatible with the systematic absences and with the crystal density (1.211 g cm⁻³). The unit-cell parameters were refined with the NBS*AIDS83 program (Mighell *et al.*, 1981). Unit-cell data, values of M_{20} (de Wolff, 1968) and F_{30} (Smith and Snyder, 1979) are presented in Table II.

ACKNOWLEDGEMENTS

This work was supported by internal grant 5165 (VIE-UIS). The authors express their acknowledgement to Universidad Industrial de Santander-UIS and Parque Tecnológico Guatiguará-PTG (Bucaramanga-Colombia) for data collection. José H. Quintana Mendoza thanks COLCIENCIAS and Universidad Industrial de Santander for his scholarship (Programa Jóvenes Investigadores e Innovadores, año 2012).

- Boultif, A. and Louër, D. (2006). "Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- Dong, C. (1999). "PowderX: Windows-95-based program for poder X-ray diffraction data processing," J. Appl. Crystallogr. 32, 838–838.
- Laugier, J. and Bochu, B. (2002). CHEKCELL. "LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments," ENSP/ Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www. ccp14.ac.uk/tutorial/lmgp/.
- Mighell, A. D., Hubberd, C. R. and Stalick, J. K. (1981). "NBS* AIDS80: A FORTRAN program for crystallographic data evaluation," National Bureau of Standards (USA), Technical Note 1141.
- Rachinger, W. A. (**1948**). "A correction for the $\alpha_1 \alpha_2$ Doublet in the measurement of widths of X-ray diffraction lines," J. Sci. Instrum. **25**, 254.
- Savitzky, A. and Golay, M. J. (1964). "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627–1639.
- Schobert, R. (2007). "Domino syntheses of bioactive tetronic and tetramic acids," Naturwissenschaften 94, 1–11.
- Smith, G. S. and Snyder, R. L. (**1979**). " F_N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing," J. Appl. Crystallogr. **12**, 60–65.
- Sonnerveld, E. J. and Visser, J. W. (1975). "Automatic collection of powder diffraction data from photographs," J. Appl. Crystallogr. 8, 1–7.
- Tejedor, D. and García-Tellado, F. (2004). "Synthesis and chemistry of tetronic acids," Org. Prep. Proced. Int. 36, 35–59.