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We compute the limit shape for several classes of restricted integer partitions, where the
restrictions are placed on the part sizes rather than the multiplicities. Our approach utilizes
certain classes of bijections which map limit shapes continuously in the plane. We start with
bijections outlined in [43], and extend them to include limit shapes with different scaling
functions.
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1. Introduction

1.1. Preliminaries

The study of random combinatorial objects is an amazing success story, which grew from
ad hoc problems and simple ideas to a flourishing field of its own, with many astonishing
results, advanced tools and important applications (see e.g. [1]). Since the early work of
Erd6s and collaborators, it has long been known that the ‘typical’ objects often have an
interesting and unexpected structure, worth exploring. Some such random combinatorial
objects, such as various classes of random graphs, are understood to a remarkable degree
(see e.g. [33]), while others, such as random finite groups, remain largely mysterious (see
e.g. [8]). Random integer partitions occupy the middle ground, with a large mix of known
results and open problems (cf- Section 13), and are a subject of this paper.

Partition theory is a classical subject introduced by Euler nearly 300 years ago, which has
strong connections and applications to a variety of areas ranging from number theory to
special functions, from group representation theory to probability and statistical physics.
A partition of n is a positive integer sequence (4y,...,/4,), such that 1y > --- > 1, and
At + -+ A, = n. Much of this paper is concerned with asymptotic analysis of various
classes of partitions, some known and some new.

Let us begin by noting that the number p(n) of integer partitions of n is already a
notoriously difficult sequence; it is not even known if it is equidistributed modulo 2. There
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are several specialized tools, however, which allow detailed information about random
partitions. First, the analytic tools by Hardy—Ramanujan and Rademacher give a precise
asymptotics of p(n): see e.g. [2]. Second, the Boltzmann sampling, in this case invented
earlier by Fristedt [24], allows a uniform sampling of random partitions of n with a high
degree of independence between part sizes. This paper introduces a new combinatorial
tool, which is best used in conjunction with these.

Our main emphasis will not be on enumeration of various classes of partitions, but
on the limit shapes of random such partitions. It is a well-known phenomenon that
random combinatorial objects, e.g. random graphs, tend to have unusually interesting
parameters, of interest in both theory and applications. When represented geometrically,
these random objects illuminate the underlying 0/1 laws of their asymptotic behaviour;
examples included various arctic circle shapes for domino tilings and perfect matchings
(see e.g. [14, 34]), and for alternating sign matrices (see [15]).

Note that there are many different notions of the limit shape, which differ depending
on the context and the geometric representation. First, one needs to be careful in the
choice of the scaling by which combinatorial objects of different sizes are compared to
each other. In this paper we use different scalings for different classes of partitions.

Second, there is more than one notion of convergence to the limit shape, some stronger
than others. Roughly speaking, they describe how close the random objects are to the
limit shape. Here we work with two different notions: convergence in expectation, which
we refer to as the weak notion of the limit shape, and convergence in probability, which
we refer to as the strong notion of the limit shape, which is implied by a stronger large
deviation result as well as a local central limit theorem (see below).

As we mentioned earlier the main result of the paper is the computation of limit shapes
for several well-known classes (ensembles) of random partitions for which this was neither
known nor even conjectured before. Most our results are not obtainable by previously
known techniques. We postpone the precise formulation of our results until the next
subsection; for now let us briefly survey the long history of ideas leading to this work.

1.2. Brief history

Arguably, partition theory began with Euler’s work establishing equality for the number of
partitions in different classes by means of algebraic manipulation of generating functions.
The next crucial step was made by Sylvester and his students, which introduced partition
bijections and used them to prove many results by Euler and others. Roughly speaking, a
partition is represented as a Young diagram and the squares are rearranged accordingly.
We refer to [44] for a detailed survey of this approach.

The study of the number p,(n) of partitions of n with at most r parts goes back
to Cayley, Sylvester and MacMahon. Hardy and Ramanujan obtained a remarkable
asymptotic formula, further refined by others. The first result on limit shapes is the
Erdds—Szekeres theorem, which can be formulated as follows:

E[#i : 4 < an] = B /n(1+0(1)), where e ™™ +e 7 =1andc=

Bl
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Figure 1. The Young diagram for the partition 4,3, 1.

These results were strengthened and extended in a number of papers: see e.g. [18, 24, 55,
57].

There are two prominent types of partition classes considered in the literature, which
are essentially conjugate to each other. The classes are defined by restrictions on parts 4;,
and those with restriction on the number of times m;(4) part i appear in the partition,
with no restrictions relating parts to each other. For example, the set of partitions into
odd numbers fits into the latter class, which corresponds to a restriction of the form
m;(4) = 0 for all i even. Sometimes this is less obvious, for example, for partitions into
distinct parts, the restriction is that each part appears at most once, i.e. m;(4) < 1, rather
than the fact that they are distinct, i.e. 4y > 2y > -+ > ;.

There is an extensive body of research related to limit shapes of integer partitions
for which the restrictions are solely placed on the multiplicities m;(4). In this paper we
consider restrictions on part sizes, such as the convex partitions, which satisfy 1y — A, >
Ay — 23 = --- . These are equinumerous with partitions into triangular parts (’;), that is,
m;(4) = 0 whenever i is not a triangular number, which have a well-understood limit
shape. The bijection between these two classes of partitions is also well known [16, 42],
and we demonstrate how to obtain one limit shape from the other.

The idea of this paper is to use partition bijections to transfer the limit shape results
from one class of partitions onto another. Making this formal is rather subtle. In [43],
the second author introduces a necessary formalism essentially allowing such transfer,
with the aim of proving that there is no natural proof of the classical Rogers—Ramanujan
identities. This paper continues this approach, but can be read independently of [43] and
other earlier work.

1.3. Limit shapes

To understand the notion of the limit shape, we start with a geometric interpretation
of an integer partition. Each integer partition can be visualized as a curve in the first
quadrant of R? with a height function determined by the part sizes: see Figure 1. By
simultaneously plotting all of the Young diagrams of every integer partition of a very
large fixed size n, for each n one observes empirically a curve which is close to most of
the diagram functions, namely,

e VN 4o/ — 1 where x > 0, y>0andc= l.

NG

Normalizing the x- and y-axes by \/ﬁ, a single curve emerges in the limit as n — oo.
This curve is a law of large numbers for the joint distribution of part sizes in a random
integer partition. Our definition of a limit shape, made precise in Section 3.4, is a limit
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in probability as n — oo, of appropriately scaled part sizes of a uniformly random integer
partition of size n.

The main technique for finding and proving the form of the limit shape is via a
probabilistic model. The joint distribution of part sizes in a random integer partition of
size n is approximated by a certain joint distribution of independent random variables,
which produces a random integer partition of random size. A weak notion of a limit shape
is the convergence in expectation of the joint distribution of the independent random
variables. It is easy to calculate the limit shape in this setting, as the calculation simplifies
to a Riemann sum. We show in Section 10 conditions under which the weak notion of a
limit shape agrees with the usual limit shape in the context of integer partitions. This is
also known as the equivalence of ensembles.

We start with two pivotal results in the field of limit shapes of integer partitions: the
classical limit shape, and the limit shape of partitions into distinct parts. There is a long
and rather involved history, which is confounded by the weak and strong notions of
limit shapes; see Section 12.1 for a more detailed account. We denote the limit shape of
unrestricted integer partitions by ®(x).

Theorem 1.1 (cf. Section 12.1). Let y = ®(x) denote the limit shape of integer partitions.
Then

e Y +e V=1, x>0, wherec= l. (1.1)

NG

A similar result is true for the limit shape of integer partitions into distinct parts, which
we denote by W(x).

Theorem 1.2 (cf. Section 12.1). Let y = W(x) denote the limit shape of integer partitions
into distinct parts. Then

—e ¥ =1, x>0, whered= I (1.2)

J2

One can also place certain types of restrictions on the part sizes in an integer partition,
and ask whether or not a limit shape exists. We assume the part sizes are restricted to a
set U = {uy,uy,...}, where u ~ Bk" for some r > 1 and B > 0 (subject to other technical
assumptions: see Section 12.2). Then, analogously as before, most partitions of size n are
close to a certain curve, which satisfies

Y (x /)1 /r=1 o—c (xnr/1+n)

nl/(n) Bl 1 o (en /)

where x >0, y >0,

and ¢ is a constant which makes the area under the curve equal to one. In this case, the
scaling of the x-axis is by n”/+") and the scaling of the y-axis is by n!/(0+7),

Theorem 1.3 (¢f. Section 12.1). Let y = @, g(x) denote the limit shape of integer partitions
with part sizes restricted to uy,uy,..., with uy ~ Bk" for some r > 1 and B > 0. Denote by
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y' the derivative of y with respect to x. Then

1/r—1 —CcX
;X e
V= i e x >0, (1.3)
where ¢ is given by equation (3.1).
A similar generalization holds for partitions into distinct parts from a set uy,uy,.... An

alternative parametrization is by Andrews [2], who defined the restrictions on part sizes
of an integer partition by a sequence (ay,as,...), where the multiplicity of the parts of
size i is restricted to be strictly less than a;. For example, the set of unrestricted partitions
corresponds to the sequence (oo, 00,...), and partitions into distinct parts corresponds to
(2,2,...). When part sizes are restricted to uq,uy,..., this corresponds to the sequence
ay, =0, i>1,and a; =1 for j & {uy,ua,...}.

There are, however, certain restrictions on integer partitions for which a limit shape
does not exist. For example, if we consider the sequence a, =2,i> 1, and a; =0 if j
is not a power of 2, then there is exactly one integer partition for each n; namely, the
base-2 representation of the number n. For another example, let a; = oo for i=1,...,k,
and a; = 1 for i > k for some positive k. This sequence corresponds to partitions of n with
largest part at most k. For k fixed, the number of such partitions only grows polynomially
with n, and there is no limit shape. In contrast, the case k = t\/ﬁ was handled by
Romik [48], as well as Vershik and Yakubovich [57], and the limit shape does indeed
exist.

There are other classes of partitions which cannot be described by Andrews’ para-
metrization. In particular, for the example of convex partitions described above, it is not
immediately clear whether or not a limit shape exists, or if it does, what the proper scaling
is. Nevertheless, we show in Section 2.3 that indeed the limit shape of convex partitions
exists and demonstrate how to compute it.

1.4. New results
The goal of this paper is to obtain new limit shapes for integer partitions with restrictions
which do not fit into the usual framework described above. The form of the restrictions
given by Andrews is a subset of restrictions called multiplicative restrictions by Vershik
[55], owing to the form of the generating function as a product of terms; it also refers to
the fact that under the weak form of the limit shape, part sizes are treated as independent,
and so probabilities factor according to part sizes.

Our first example is an application of the various geometric transformations defined in
[43], which is a specialization of Theorem 7.1.

Corollary 1.4. Let L denote the set of partitions p with consecutive parts p; — pi—1 = 2 for
even part sizes w;, and p; — pi—1 = 4 for all odd part sizes p;, i > 1. Let m(x) denote the
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m(x)/2 nx/4

,and u=e

w+1
w2 —w’

limit shape of L, and let w = e . Then the limit shape satisfies

Consider the set of partitions into distinct parts which are congruent to 0, 1, or 2
modulo 4. We demonstrate in Section 7 how to apply these transformations to obtain the
limit shape of £. Moreover, once we have the limit shape, certain statistics like those in
the two corollaries below immediately follow; see Section 7.3.

Corollary 1.5. Let k, denote the number of parts in a random partition of size n in L. We
have

K . 2log(1 + /2)
\/ﬁ n

where —p denotes convergence in probability.

= 0.561099852... ., (1.4)

The Durfee square of a partition 4 is the number of 4; such that ; > j. It is a well-
known statistic which plays a fundamental role in some of the bijections exploited in this
paper, and is also described as the largest square which can fit entirely inside the Young
diagram of an integer partition.

Corollary 1.6. Let 6, denote the size of the largest Durfee square in a random partition of
size nin L. Let y, = 4171195932 ... denote the real-valued solution to
—142y =9y =7y  —2p* 4y’ =0.

Then we have
ﬁ
\/71

where —p denotes convergence in probability.

4 1
—p log ﬁ(5 — 30y, — 24y> — 9y3 + 4y%) = 0.454611067 . ..., (1.5)

There are, however, certain bijections which are not covered by Pak’s geometric
transformation approach. Recall the example of convex partitions, which are partitions
which satisfy 41 — /4y > A, — A3 > - -+ . Let C, denote the set of convex partitions of size
n. Let 7, denote the set of partitions of size n with parts in the set u; = (kzl), k > 1, with
unrestricted multiplicities.

Theorem 1.7 (Andrews [3]). We have |7,| = |Cy| for all n > 1.

The limit shape of 7 is a special case of Theorem 1.3, using r =2 and B = 1/2. It is
thus natural to ask if it is possible to obtain the limit shape of C from the limit shape of
7. The answer is affirmative, as witnessed in Section 5, due to the form of the bijection.
In fact, Corollary 1.8 below is a special case of a much larger class of partition bijections
which map limit shapes continuously, which we describe in Section 4.1.
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Corollary 1.8. Let T(x) denote the limit shape of T, and let C(x) denote the the limit shape
of C. Then we have

ECTW(eY 1) = 2T x>, (1.6)

where C'=V is the compositional inverse of C.

Romik’s unpublished manuscript [47] contains an example which uses a single geometric
transformation to obtain the limit shape of the set of partitions whose parts differ by at
least 2. It is a specialization of Pak’s geometric transformations, and requires a further
refinement, in that it maps partitions of size n with exactly k parts.

Corollary 1.9 (c¢f. Section 2.1). Let B denote the set of partitions whose parts differ by at
least 2, and denote its limit shape by B(x). For x > 0, let w = ¢*B™ 4 = ¢=¢X
where y = (1 + ﬁ)/2, and c is a normalizing constant. Then, the limit shape satisfies

and v = €7,

v —v
U=—"-.
w2 —w

1.5. Contents of the paper

The rest of the paper is organized as follows. We start with three motivating examples:
partitions with no consecutive parts, self-conjugate partitions and convex partitions. Then
we make precise all of the necessary notions of limit shapes, bijections and asymptotic
stability in Section 3, and state the new limit shape theorems in Section 4.

We then present several examples demonstrating the application of the theorems.
In Section 5, we present a generalization of convex partitions. Section 6 presents
various applications of the theorems to Euler’s classical odd-distinct bijection, including
a generalization due to Stanton. Sections 7 and 8 demonstrate step-by-step how to apply
Pak’s geometric transformations in two important cases. Section 9 contains examples
where the number of summands is restricted.

Section 10 contains the formal probabilistic setting and proofs of the main lemmas,
including a large deviation principle. Section 11 contains the proof of the main results.
Finally, Section 12 contains historical remarks, and Section 13 is a collection of final
remarks.

2. Three motivating examples

2.1. Partitions with no consecutive parts
We first consider Romik’s example, which demonstrates the utility of considering bijections
between classes of partitions.

Theorem 2.1 ([47]). Let A denote the set of partitions such that no parts differ by exactly
1, and there are no parts of size 1. Let a = n/3, and let A(x) denote the limit shape of A.
Then we have

1 149" 1 4 2¢—x — 3¢—2ax
A(x) = —log et VIt jx ¢ , where x > 0.
2a 2(1 — =)
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The existence of the limit shape of 4 in Theorem 2.1 follows by considering the set of
partitions which are conjugate to those in A.

Lemma 2.2. Let A, denote the set of partitions of size n such that no parts differ by exactly
1, and there are no parts of size 1. Let B, denote the set of partitions of size n such that
no part has multiplicity 1. The conjugation map gives a bijection between partitions A € A,
and p € B, for each n > 1.

The limit shape of B, the set of partitions such that no part has multiplicity 1, has a
restriction which is multiplicative, and its form follows in a straightforward manner from
Theorem 3.3.

Lemma 2.3 (c¢f. Sections 12.1, 13). Let B denote the set of partitions such that no part
has multiplicity 1. Let a = n/3. Then

1 1 — eax —2ax
B(x) = - log(e—i_e), where x > 0.
a 1 —eax

As was noted by Romik [47], even though the limit shapes satisfy (4 o B)(x) = x, x > 0,
it is not straightforward to compute the explicit form of A(x) via its inverse B(x) using
algebraic techniques, even with a computer algebra system. Instead, an alternative, direct
approach for finding A(x) was used, from which it was straightforward to verify the
inverse relationship.

2.2. Self-conjugate partitions
A general approach of finding limit shapes via a class of continuous transformations was
developed in [43], where many well-known partition bijections are presented as certain
geometric transformations acting on Young diagrams, which also act continuously on the
corresponding limit shapes.

An example where the limit shape is apparent in a weak sense, but lacks a rigorous
argument, is the set of self-conjugate partitions S, consisting of all partitions 4 such that
A=2.

Theorem 2.4 (cf. Section 12.1). Let S denote the set of partitions which are self-conjugate.
The limit shape of S satisfies equation (1.1).

One can reason heuristically that the limit shape of S should coincide with the limit
shape of unrestricted integer partitions; however, we are unaware of any simple, rigorous
methods to do so. The first difficulty is that the number of self-conjugate partitions of
size n is of an exponentially smaller proportion than the number of unrestricted partitions
of size n. The second difficulty is that we lose the asymptotic independence between part
sizes.

There are several different ways to obtain a rigorous proof of Theorem 2.4, starting
with the following bijection.
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Theorem 2.5 ([43, Proposition 7.1]). Let A, denote the number of partitions of n into odd,

distinct parts. Let S, denote the number of self-conjugate partitions of n. We have | A,| = |Sy|
foralln>1

One construction of the bijection is to break the principal hooks (see [43, Figure 13])
and stretch them out. When the partition A is self-conjugate, each of the principal hooks
must necessarily consist of an odd number of squares, and each principal hook consists
of at least two squares more than the previous principal hook. In this instance, we have
an explicit formula for the map which sends partitions A € S to partitions yu into distinct,
odd parts, namely,

i =24 —i)+1, 1<i<do, (2.1)

where Jy is the size of the largest Durfee square in the partition A.

A formal procedure to obtain Theorem 2.4 from this bijection is as follows; see [43,
Section 7]. For the remainder of this section, ¢ = n/ \ﬁ Let b(t) denote the limit shape
of partitions into odd, distinct parts, which is given by a specialization of Theorem 3.4
using r = 1, B =2, and a = 2. We shall need the explicit form of the limit shape in the
calculations that follow, which is given by

b(t) = \2¥(V20) = élog(l +e¢Y), >0.

Recall also that the limit shape of unrestricted integer partitions is given by the explicit
formula

D(1) = —% log(l1 —e™"), t>0.

Denote by a(t) the limit shape of self-conjugate partitions, which exists by [43,
Proposition 7.1]. After an appropriate scaling by /i, by equation (2.1) we have

1 2 log(2)

%:ut\/ﬁ = %(}q\/ﬁ—l\f 1/, 1<t n< fd Jn.
! !
bl(t) = 2a1 (1) — 1), 0<t< log(Z)'

C

By rearranging and solving for a~!(t), we obtain a~'(t) = ®(t) for 0 < t < log(2)/c. The
value log(2)/c is precisely the value for which ®(t) = ¢, t > 0, which cuts the limit shape in
half via the line y = t. Thus, for t > log(2)/c, we can invoke the symmetry of self-conjugate
partitions about the line y =t and conclude that a(t) = ®(t) for all t > 0.

This solution is uncharacteristically simple, and most bijections are not as obliging
as to allow for elementary algebraic manipulations of their part sizes. Fortunately, this
bijection can also be defined by a natural geometric bijection, and we next demonstrate
each step in the process of mapping the limit shape from one set of partitions to another.
Figure 2(b) demonstrates how a geometric bijection from [43] acts on the Young diagrams,
and Figure 2(a) demonstrates how a geometric bijection acts on the limit shapes.
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Figure 2. The bijection between self-conjugate partitions and partitions into distinct odd parts. (a) Geometric
transformations acting on the limit shape. (b) Geometric transformations acting on Young diagrams rotated
90° anticlockwise.

We summarize the steps of Figure 2(a) by the following set of mappings:

()
— (W%ﬁ)}?(\r/f)) (t>0,6>0)

(1) (-1)
(D) YT L) (e,
2 c
1

V2 c

(=1) (=1) (=1)
H<(\P(t 2)> +t,<<\P(j/\_2/§)) +t) ) <O<t<@,t>@>

— D(1) (0 <t <o0)
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The first map splits the curve into two curves of the same shape but scaled to half the
original area. The next map shifts the coordinates up so that the functions evaluated at
the point xo = In(2)/c are equal to ®(x(). The third map reflects the first coordinate about
the line y = t, so that the curves now lie in complementary regions in the first quadrant.
Finally, the last map pastes together the functions at x.

The mappings defined above are presented in a way which emphasizes how the height
functions are transformed with respect to the axes, whereas they are actually transforming
regions in the plane.

2.3. Convex partitions
Our last example of this section exemplifies another class of bijections, those which can
be realized as a linear transformation of multiplicities of part sizes.

Consider the set C of all convex partitions, that is, partitions whose parts Ay > 1; >
~++ > J, >0 also satisfy the convexity condition: Ay —4; > A — /A3 > -+ > 4, > 0. This
set of partitions does not exclude any particular set of sizes, nor does there appear to be
any simple, a priori transformation, e.g. conjugation, to such a set. Nevertheless, we find
the limit shape of convex partitions.

Theorem 2.6. Let C(x) denote the limit shape of convex partitions C. Then

3

© o %yz 1 2/3
CV(x) = / (y—x)————dy, x>0, wherec=~n'3¢ () . (2.2)
x 1—e <2 2 2

Sketch of proof. Computing this limit shape requires several steps. First, recall The-
orem 1.7, that there is a bijection between partitions into parts of sizes u; = (kzl), k>1
and convex partitions. Simply knowing a bijection exists is not sufficient, however, and it

is in fact the particular form of this bijection which allows us to find the limit shape.

Recall 7 denotes the set of partitions into parts with sizes in uy,u,..., with u, =
(k;rl),k > 1. Let by denote the number of parts of size (k;’l) in a partition 1 € T, k > 1.

The following map ¢ was defined in [3]:

by by be
qov:(§> C) (’“2”) by (1,0,...,0) + b2 (2,1,0,0,...0) (2.3)

ot b (kk—1,k—2,...,2,1).

Lemma 2.7 ([2]). Map ¢, is a bijection between 7, and C, for each n > 1.

Each 1 € 7,, with b; parts of size (izl), corresponds to a p € C, with part sizes given

by
u1=b1+2b2+3b3+"'+kbk
o = by +2b3+ -+ (k—1)b;
13 = by + -+ (k= 2)by

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

198 S. DeSalvo and I. Pak

pi= Y (j—i+1)b;

i

We can immediately write the weak form of the limit shape by appealing to Riemann
sums. In this case, the number of parts of size i, i > 1, is generated from independent
geometric random variables Z; € {0,1,...} with parameter 1 — x, where x = ¢~¢/*"_ The
constant ¢ is given by equation (3.2) with r =2, B = 1/2, and «(n) = n*3. In this case,
however, we set Z; =0 if j ¢ {1,3,6,10,...}. It will also be apparent in the calculation
below that we need two different, but complementary, scaling functions. We have

E[ﬁ(nn) :ux[f(n)} - @ > G—=xpm+ DEZ )]

J=Bn)x
(@‘))
exp (—c
= PO S G xpm ) T
jZBm)x 1— exp (—c 2 )
o(n)
We let y; satisfy
(5D
27 Tafn)

Hence, y; ~ j//a(n), Ay; ~ 1/ /o(n), and

2

LU UNZO R (cx(n) x) e
1

7,“)([301) - yJ_ 1.2
n n n _ ,C3);
() Bn))y;>x pin) e

Ayy

o0 efc%yz 1 3 2/3
—x)———d h >0 =g = .
_>/V (y x)1 o y, where x , C 2n 14 5

The final limit is valid if and only if a(n) = f(n)?, and B(n)’ = n, thus we obtain scaling
factors a(n) = n*/? and B(n) = n'/3.

There is one final step, however, since the calculation above only implies the formula
given in equation (2.2) satisfies the weak notion of a limit shape. We need some form
of concentration result, that is, large deviations, to claim that the above formula is
indeed the limit shape for the set of partitions. As we shall see, however, the same
concentration results valid for the limit shape of 7 also apply immediately to the image
C: see Section 10.2. L]

The bijection ¢, is a special case of a more general example discussed in Section 5.

In addition, this example is typical of a general method to find limit shapes described in
Section 4.1.
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3. Notations and basic results

3.1. Notation
We denote the set of positive real numbers by R, = {x > 0}. The set of all probability
measures absolutely continuous with respect to Lebesgue measure on the positive real
line is denoted by L}r(Rg. Let H denote the set of real-valued operators on the Banach
space of real-valued, countable sequences. We think of transformations in H as infinite-
dimensional, real-valued matrices.

The expression a; ~ b, means

We denote the positive part of x by x; := max(0,x). The ceiling function, or smallest
integer larger or equal to x, is denoted by [x]. Let I'(z) denote the Gamma function, and
{(z) the Riemann zeta function.
Define the family of constants
(1 —a M1+ 1/m0(1 +1/r)]70

d(r,B,a) = B foralla>2,r>1, B>0. (3.1)

We also define
d(r,B) := lim d(r,B,a) forallr>1, B>0. (3.2)

a—ao0

The letter ¢ is not restricted to a single value, but will be defined locally.
Given a sequence yi, k > 1, we denote the forward difference operator by Ay, =
Vi+1 — Vk. We also define the kth difference recursively as

AK()) = Ai ifi=7ork=0,
i(4)= A1) — ARZL(2)  otherwise
i i+1 ’

The row vector m = (my, my,...) has a transpose given by a column vector and is denoted
by mT = (my,m,...)T.

From this point on, we adopt the notation that matrix indices are always integers,
that is,

o(t,y) =v([t],[y]) forall real t >0, y > 0.

For a given limit shape F, we denote its compositional inverse by F{~!, or simply F~!
when the context is clear. In our setting, the domain and range of a limit shape is always
the positive real numbers, and limit shapes are always monotonically decreasing, hence
F&1 is also a function.

3.2. Integer partitions
An integer partition of a positive integer n is an unordered list of non-negative integers
whose sum is n. It is standard notation to list the parts in descending order, 11 > A, > -+ >

T This is to emphasize the secondary role of the constants, and to make the expressions more readable.
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(a) (b) (©)
Figure 3. The partition A = (4,3,1) as a Ferrers diagram (a), and a Young diagram (b).

/s >0, and we denote the number of parts by 7/ = /(1). We say that 1 = (11, 4,,...,4/) is
an integer partition of size n if |A| := )", 2; = n. Each partition A has a unique conjugate
partition A’ that satisfies A, = #{j : 1; > i}, i > 1. We denote by P, the set of partitions
of size n, and P = U, P, denotes the set of partitions of all sizes. A subset of partitions
A = P is defined similarly, with 4, = ANP,.

Each partition 4 € P has a corresponding Ferrers diagram, which is a collection of
points on a two-dimensional lattice corresponding to parts in the partition; see Figure 3
and see also [44] for a further explanation. We note, in particular, that the Ferrers diagram
for A’ is a reflection of the Ferrers diagram for 1 about the line y = x.

Let m;(A) = #{parts of size i in A} denote the multiplicity of parts of size i, where i > 1.
There is a natural one-to-one correspondence between partitions 4 € P, and sequences
m = (my,my,...) with > im; = n. When there are no restrictions on the multiplicities of
parts, we call such a partition unrestricted.

We define

Pa = {1”“2'"2 cestmi<a, i> 1}

to be the set of partitions where parts of size i can occur at most a; — 1 times, where
a=(ap,a,...),a; € [1,00],i > 1. The case a; = 2 for all i > 1 corresponds to distinct part
sizes, and the case a; = oo for all i > 1 corresponds to unrestricted integer partitions. We
use the term Andrews class partitions to refer to sets P,.

3.3. Asymptotic enumeration of integer partitions
We consider sequences

U = {uy,up,...},
where u; > 1 are strictly monotone increasing and are polynomials in k; that is,
we =a,k" +a,_ k"4 4a9, a >0,reN. (3.3)

We can, in fact, consider more general sequences; however, there are added technical
conditions which unnecessarily complicate the statement of our theorems, and since all
of our examples take the simpler form in (3.3), we forego this added generality. See
Section 12.4 for a discussion on the consequences of such generalizations.

When ged(U) = b > 1, then in what follows, by n — co we mean taking n to infinity
through integer multiples of b.

Theorem 3.1 ([12, 32, 51]). Assume the set U satisfies (3.3), for some r € N, and let B = a,
and E = a,_;. Let py(n) denote the number of partitions of n into part sizes in U. Then we
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have

exp[(1 + r)d(r, B) B~1/0+7) gl/(141)]
Pt~ ¢y nBr+E)/Br+1)+1/2 >

(3.4)
where

¢ = d(r’B)H»E/(Br)B1/2+E/(Br)(1 + r71)71/2(2n)7(r+1)/2 Hr(l +p])
j=1

is a constant, and where {,o_,-}j?:1 denotes the negatives of the roots of uy.

Theorem 3.2 ([51]). Assume the set U satisfies (3.3) for some r > 1, and let B = a, and
E = a,_y. Let pd;(n) denote the number of partitions of n into distinct parts from U. Then
we have

n exp[(1 + r)d(r, B,2) B~1/(47) pl/(141)]

d
pu(n) ¢y nBTE) B+ ) (35)

where

= 2—(1+E/(rB))d(r’ B, 2)1+E/(B;<)BI/Z+E/(Br)(1 4 r—l)—1/2n—1/2

is a constant.

Whereas only the leading two coefficients of u; are relevant for Theorem 3.2 above,
the values of the roots of u; are also needed in Theorem 3.1. However, in terms of limit
shapes only the exponent r and leading coefficient B = a, will play a fundamental role. A
set of partitions Py taking parts only from the set U will be called unrestrictedly smooth
with parameters r and B if the multiplicities of parts are unrestricted and U satisfies (3.3)
with u, = Bk"(1 + o(1)). A set of partitions Py taking parts only from the set U will be
called restrictedly smooth with parameters r, B and a if the multiplicity of each part size is
strictly bounded from above by a and U satisfies (3.3) with uy = Bk"(1 + o(1)).

3.4. Diagram functions and limit shapes
For each 4 € P, the diagram function of J is a right-continuous step function D, :
(0,00) — R, defined as

Di(t)=>Y_ m(), with / : D (t)dt = |A.
0

k>t

Define a scaling function to be any positive, monotonically increasing function o : Ry —
R, such that a(n) — o0 as n — co. We define the a-scaled diagram function of 1 as

B;V(t)z%n)Di(oc(n)t), with /wﬁ;v(t)dtzl.
0

Our definition of limit shape is from [59], and is as follows. Let {P,} denote a family of

measures on subsets of partitions A4, = P,, where n > 1. In this paper we consider only
P, = 1/|A,|, the uniform distribution. Suppose there exists a scaling function a(n) and a
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piecewise continuous function @ : Ry — R such that fow ®(t) dt = 1. Suppose further
that for any finite collection 0 < t; < --- < t; of continuity points of ®, and any € > 0,

P,(|Di(t;) — ®(¢;)| < e forall j=1,....k) > 1, asn— oo (3.6)

We say that @ is the limit shape of A under scaling function o(n).
Similarly, define the conjugate diagram function p, : (0,00) — R, such that

() ;L[X] if 0 < x </,
X) =
pa 0 ifx>/

We similarly define the a-scaled conjugate diagram function

N on . .
i) = " atn) with [ puterdr = 1.
0
Suppose there exists a scaling function «(n) and a piecewise continuous function @ :
R; —> R such that foao ®(t)dt = 1. Suppose further that for any finite collection 0 <

t; < -+ <t of continuity points of ®, and any € > 0, we have
Pu(|pi(t;)) — @7 '(tj)l <e forall j=1,....k) > 1, asn— oo

Then we say that ®~! is the conjugate limit shape of A under scaling function o(n).

Remark 1. The scaling function «(n) in the definition of limit shape is not unique, since it
can be replaced with any scaling function f(n) such that ff(n) ~ a(n). One could consider
an equivalence class of scaling functions in order to uniquely specify such a class of
functions, but we do not pursue this further. In either case, when the limit shape of
A < P exists, it is unique since it must integrate to 1.

Following [55], define the space Dy = {(x, %, p)} Of triples g, 0 € Ry, and non-
negative monotonically decreasing functions p € LL(RJF), such that

o + ol +/ p(t)dt = 1.
0

One can think of Dy as the set of measures on R, of the form oydy + 0, do + p(t) dt,
where dg and ., are point masses at 0 and co. Note that (0,0, D (1)) € Dy for all A € P and
scaling functions «(n), and similarly (0,0,p;,(t)) € Dy for all A € P and scaling functions
o(n). The space Dy is closed, so all limits of diagram functions exist in Dy, even when
limit shapes do not exist.

Remark 2. Sometimes the limit shape does not exist, even though there is a scaling
for which a limit curve exists. Consider, as in [43, Example 3.4], the set of partitions
A= {kF1¥"}, k > 1, consisting of a k x k square block and a 1 x k tail. For each n of the
form n = 2k* k > 1, there is exactly one partition in A of size n. In fact, one can take the
limit of the scaled diagram function through values of n indicated, and obtain the limit

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

Limit Shapes via Bijections 203

curve
1 1

= 0 < X < T

a(x) = V2 V2
0 otherwise,

which does not have unit area. This corresponds to the element (1/2,0,a(x)) € Dy. All
other scaling functions would send the scaled diagram function to either (1,0,0) € Dy or
(0,1,0) € Dy in the limit.

3.5. Two U theorems
The theorems below indicate the types of limit shape results already known, which we
shall use to obtain new ones. They are specializations of [59, Theorem §].

Theorem 3.3 ([59]). Suppose Py is unrestrictedly smooth with parametersr > 1 and B > 0.
Let ¢ = d(r, B). Then the limit shape of Py under scaling function a(n) = n'"/*") exists and
is denoted by ®(t;r, B), and we have

0 e C¢BY
®(t;r,B) = ————dy, t>0. 3.7
B = | b ()

Theorem 3.3 above covers a large class of examples of interest in our present setting.
It is also the starting point for finding limit shapes of partitions with non-multiplicative
restrictions in Section 4.1. We will also need another particular specialization, which
is when all multiplicities of allowable part sizes are strictly bounded from above by
some fixed number a > 2. Typically the value a = 2, i.e. distinct parts, is sufficient, but
Section 6.5 contains an example where we need further generality.

Theorem 3.4 ([59]). Suppose Py is restrictedly smooth with parameters r > 1, B > 0, and
a>2. Let c=d(r,B,a). Then the limit shape of A under scaling function a(n) = n"/(1+7)
exists and is denoted by ®(t;r, B, a), and we have

0 —cBy" 2 —2¢By" -1 —(a—1)cBy"
(D(t;r,B,a)z/ e + 2e +-+(a )e

‘ dy, t>0.
(¢/B)V/r 1+ e<BY 4 ¢2¢By L ... 4 p—(a—D)cBy y

In particular, by taking f(x) = 1/(1 —x) and f(x) = (1 +x + -+ + x*~1), respectively,
in [59, Theorem 8], we recover Theorems 3.3 and 3.4.

3.6. MM-bijection and MP-bijection
Two subsets of partitions A, B = P are called equinumerous if |A,| = |B,| for all n > 1.
For sets A,, B, < P,, we consider one-to-one correspondences 3, : A, — B, which can
be expressed as a real-valued linear transformation.

We define MP-bijection (multiplicities to parts) to be a one-to-one correspondence that
maps, using a linear transformation, multiplicities of parts of partitions 4 € A, to parts
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of partitions p € B, for all n. The transformation has the form

o= (Zv(l,j)mj,Zv(Lj)mj,...,Zv(n,j)mj> >0, (3.8)

j=1 j=1 j=1

for some set of coefficients v = {v(i, j) : 1 <i,j < n} such that

i when je U,
Zv(i,j)z J J_ forall j=1,...,n
; 0 otherwise,
To avoid excessive subscripting we have opted for the functional notation of indices, i.e.
v(i, j) instead of v; ;.

Similarly, we define MM-bijection (multiplicities to multiplicities) to be a one-to-one

correspondence 3,(m, my,...,m,) that maps, using a linear transformation, multiplicities
of parts of partitions 4 € A, to multiplicities of parts of partitions u € B,. Define the
vector

X=(x1’x29"'axn) € Rn’

with

e,
X; = P ) foralli=1,2,...,n.
0 otherwise,

Denote the multiplicities of u by (m), m},...,m),). Then the transformation has the form

(m),mb,....m,) = (Z v(1, j) mj,Zv(Lj) mj,...,Zv(n,j) mj> >0, (3.9)

J J J

and the vector x is a left eigenvector of the matrix v with eigenvalue 1.

We define ¢, := 9, when the correspondence 3, is an MM-bijection or MP-bijection
with coefficients v, to emphasize the role of » in the bijection, and to distinguish MM-
bijections and MP-bijections from general one-to-one correspondences between sets of
partitions (see for example [44]).

We next extend the notion of MM-bijection and MP-bijection to countable sequences.
In this setting, the matrix of coefficients v = {v(i, j) : 1 <, j} lies in H, which we recall is
the set of real-valued operators on the Banach space of real-valued, countable sequences.
Define also the vector y = (yy, y2,...), with

i ieU,
yVi= P . foralli> 1.
0 otherwise,

For MP-bijections, we have

i when je U
Zv(i,j)z{] WCNJ € Ho forall j > 1.

- 0 otherwise,

Similarly, for MM-bijections, we have that the vector y is a left eigenvector of matrix »
with eigenvalue 1. Note that it is not necessary for every entry of v to be non-negative.
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3.7. Stability

Suppose A = P denotes a set of partitions which is unrestrictedly smooth with parameters
r > 1, B> 0. We denote the limit shape of A by ®(x;r, B), and, furthermore, we define
¢(y;r, B) as the continuous function ¢(-;r, B) : R — R, which satisfies

o
®O(x;r,B) = / ¢(y;r,B)dy, where x > 0.
(x/B)r

Suppose there exists an MM-bijection or MP-bijection between a set of partitions .4 and
some other set of partitions B < P, with coefficients ». Since partitions in A only have
parts in U, the non-zero values of coefficients v are of the form v(i,u), i > 1, k > 1.

We require a condition on the coefficients v as follows. We let

m 1/r
= k>1,
o= ()

k 1 1/r
~ — Avi ~ | — .
ST (a(n))

We say the coefficients » are (r, B, K)-MP-stable if there exists a bounded and piecewise
continuous function K : Ry x Ry — R, such that for all t > 0 and k > 1 we have

([ B(n)t], u) plursr, B) ~ B(n) K(t, yi, p(yic; 7, B)). (3.10)

Similarly, we say the coefficients v are (r, B, a, K)-MP-stable if there exists a bounded
and piecewise continuous function K : R, x Ry — R, such that for all t > 0 and k > 1
we have

so that

v([B(n)t], ux) dluis r, B,a) ~ B(n) K(t, yi, ¢(yi; 7, B, a)). (3.11)

We say the coefficients v are (r, B, K)-MM-stable if there exists a bounded and piecewise
continuous function K : Ry x Ry — R such that for all t > 0 and k > 1 we have

[u~' ()]
> o(IBM)] we) pluisr, B) ~ B(m) K (¢, yis p(vic: 7. B)). (3.12)
k=1
Similarly, we say the coefficients v are (r, B, a, K)-MM-stable if there exists a bounded
and piecewise continuous function K : R; x Ry — R, such that for all t > 0 and k > 1
we have
Lu~" (m)]
v([B(n)t], ux) plux;r, B, a) ~ B(n) K(t, y, p(yi;r, B, a)). (3.13)
k=1
When an MM-bijection ¢y is defined by an (r, B, K)-stable set of coefficients v, we say
that bijection ¢, is (r, B, K)-stable, and we denote the limit shape of B by ®(t;r, B,K).
Similarly, when an MP-bijection ¢, is defined by an (r, B, K)-stable set of coefficients v, we
say that bijection ¢y is (r, B, K)-stable, and we denote the limit shape of B by ¥(¢;r, B,K).
A bijection defined in terms of linear combinations of multiplicities of part sizes acts
as a Markov operator on the diagram function; see for example [9, Section 2.3.39]. Recall
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that a Markov operator P is a linear operator that sends functions f € L (Ry) to LL(Ry)
and is such that

(1)Pf >0 for f >0, and

2) i Pf(x)dx = [} f(x)dx.

The coefficients v in equation (3.10) correspond to an explicit form of the operator P. Note
that while we must have ) i v(i, j)m; > 0 for all i > 1, there is no restriction that each
entry v(i, j) be non-negative. Most noteworthy, however, is the fact that Markov operators
are linear contractions, and hence preserve a form of the large deviation principle, which
we revisit in Section 10.2.

Remark 3. Not all bijections give a means to compute the limit shape. For example, it
is not apparent how to utilize Dyson’s iterated map for odd-distinct parts to compute
limit shapes [43]. A more natural example would be the Garsia—Milne involution principle
bijections of Rogers—Ramanujan identities [26] (see also [44]). Both sides have a limit
shape; however, we are not aware of any way to draw conclusions about one limit shape
from the other using the involution, as it would seem to be difficult to do in general [36].

4. Transfer theorems

4.1. MM-bijection and MP-bijection
We now state our key technical theorems, which specify conditions under which the limit
shapes map continuously, and provide the means for computing an explicit formula.

Theorem 4.1 (first transfer theorem). Suppose Py is unrestrictedly smooth with parameters

r>1and B> 0. Let ¢c =d(r,B).

(1) If there exists a set of partitions B < P and an MM-bijection ¢y : Py — B that is
(r, B,K)-stable, then the limit shape of B under scaling function p(n) = n'/*") is given

by
0 e—cBy" p 0
K|t s T , t>0.
(e ) o

(2) If there exists a set of partitions B <P and an MP-bijection ¢, : Py — B that is
(r, B,K)-stable, then the conjugate limit shape of B under scaling function f(n) = n'/0+7)

is given by
0 e—cBy"
Kl(ty, ————— )dy, t>0.
[ (o)

Note that the integrand function K in the theorem is not necessarily multiplicative with
respect to its final argument, as it is in the case of convex partitions in Section 2.3; see
also Section 5. It is more generally a distribution (in the analysis sense) on L, (R.), and
we present an explicit example demonstrating the need for this generality in Section 6.2.

An analogous result holds for partitions with multiplicities all strictly bounded by some
a>=2.
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Theorem 4.2 (second transfer theorem). Suppose Py is restrictedly smooth with parameters
r>1,B>0,a>2 Let c=d(r,B,a).

(1) If there exists a set of partitions B < P and an MM-bijection ¢y : Py — B, defined by
a set of coefficients v that is (r, B, a,K)-stable, then
e—¢BY + Do 2By + 4 (a—1) e—(a=1)cBy
1 + e*(rBy’ + ef2cBy" 4+ -+ ef(afl)cBy"

dy, t>0
4.1)

.
<1>(t;r,B,a,K)=/ K (t,y,
0

is the limit shape under scaling function p(n) = n'/0+7).
(2) If there exists a set of partitions B < P and an MP-bijection ¢y : Py — B, defined by
a set of coefficients v that is (r, B, a, K)-stable, then

0 —cBy" —2¢By" | ... _ —(a—1)cB )"
.. _ e + 2e 4+ +(@a—1)e
() (zf,r,B,a,K)—/0 K<t,y, [ F By o 2By - f o @DcBy dy,
t>0 (4.2)

is the conjugate limit shape under scaling function f(n) = n'/(+7),

The case a = 2 is most common, corresponding to partitions into distinct parts, but the
analysis is the same for any a > 2, and we shall utilize the full generality in Section 6.5.

4.2. Geometric bijections

In [43], a general paradigm for representing partition bijections is presented involving
the composition of transformations acting on the Young diagram of an integer partition.
These transformations map points in the plane in such a way that under certain conditions,
the limit shape along with certain other statistics of interest are mapped continuously.
This property is referred to as asymptotic stability, and the limit shape is the statistic of
the Young diagram corresponding to the boundary.

We briefly recount the transformations with respect to how they act on the limit shape,
and refer the interested reader to the more comprehensive treatment in [43]. Note that
while a bijection defined in terms of a collection of transformations maps a limit shape
to another limit shape, each transformation itself is a map from a collection of limit
curves to another collection of limit curves. For example, stretch and paste corresponds
to combining several limit curves, say with boundaries f,..., f,;, which exist on the same
domain and with the same area, by taking the sum with an appropriate scaling to keep
the sum of the resulting expression constant. We think of this operation as a shuffle,
which corresponds to

fime)+ -+ fu(mt).

(1) Conjugation is equivalent to taking a functional inverse: f(t) — f!(¢).

(2) Move adds a constant: f(t) — f(t) + a.

(3) Shift adds a linear function at: f(t)— f(¢t) + at.

(4) Shred and move acting together on r components effectively split up the limit shape

into r pieces, each having shape scaled by r with area 1/r, which corresponds to

f@O) — (f(r1),.... f(r1)).
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Table 1. Geometric transformations and their
limit shape maps

Transformation Limit shape map
Stretch and paste fimt)+ -+ f(mt)
Cut fO)— (P f(1),Q f(1)
Conjugation f@O— 71

Move f)— f(t) +a

Shift fO)— f(t) +at

Shred and move fO) — (f(rt),....f(re)
Paste (P f(0), 0 f(1)) — £(2)
Union f(t)+g(t)

+ ' +g e

(5) A union, or sort, between two components corresponds to the addition f(t) + g(t).

(6) The + operator between two components corresponds to the inverse to the addition
of the inverses: (f~!(f) + g~'())".

(7) A cut is somewhat more complicated, and requires treating the limit shape as defining
a region in the positive quadrant of R?, which can be split in two pieces, one of which
is a piecewise function, the other being the inverse of a piecewise function; see for
example, Figure 2(a). It partitions the curve into two curves, say via projections P
and Q, as f(t) — (P f(1), Q f(1)).

(8) A paste by itself corresponds to combining two curves whose domains partition some
region in R? into a single curve. Under appropriate conditions, paste acts as the
inverse to a cut, i.e. (P f(t),Q f(t)) — f(¢).

Theorem 4.3 (third transfer theorem [43]). The geometric transformations on integer par-
titions correspond to the transformations on collections of limit curves given in Table 1.

5. Partitions with non-negative rth differences

Throughout this section, r is any fixed integer, r > 2.

Theorem 5.1. Let C" denote the set of partitions with parts that have non-negative rth
differences, that is, Aj(u) > 0, i > 1 for each p € C". The conjugate limit shape of C" under
scaling function f(n) = n'/+") is given by

<D<t;r,1/r!,%My;r,l/r!)),

with explicit formula

o0 — )y —cy"/r!
/ ()(}r 1)' I ¢ o dy, t>0, wherec=d(r1/r!).
¢ -4 - ’
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When r =2, we obtain Corollary 2.6. A similarly defined set of partitions with
multiplicative restrictions is utilized to obtain this result.

Theorem 5.2 ([59], cf. Section 12.1). Let F" denote the set of partitions into parts of sizes
given by we = ("*71), k > 1. The limit shape of F" under scaling function a(n) = n"/0+7) is
given by ®(t;r,1/r!).

We now define the bijection ¢, : F), — C}, in [12], which is a straightforward generaliz-
ation to the one in Section 2.3. For each . € F}, let m;(/) denote the number of parts of
size (""I*/) in 4. Then u = ¢,(2) is given by

r—=14j—i .

jzi

Lemma 5.3. The bijection ¢, is an MP-bijection. Moreover, ¢, is (r,1/r!,K)-MP-stable,

with
_ =1
Kty i /) = 5= g/

Proof. Fori>1and j> 1, we have v(i,u;) = (" ./™"), and 0 otherwise. We have

] J— J— _—
ZU(IM] =Z<r rli_i 1>=<r ;1,+])—1

i i=1

With a(n) = 0/, f(n) = n'/0+), we have

L T
P T wn) T ran)
SO
j 1
N
7 Bn) 7 Bn)
Hence,

v(B(n) t,u) plusr, 1/r!) ~ B(n) K(1, yi, p(yisr, 1/r)),
where f(n) ~ n'/0+D and

r—1+B(n) y —
r—1

1
(v — 17

(r—1n!
which implies the result. U]

Kty (v 1/r1)) ~ ( 4 t) Sir1/r]) ~ (yir 1/r1),
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6. Euler’s theorem and generalizations

6.1. Glaisher’s bijection
Let O denote the set of partitions with all parts odd and let D denote the set of partitions
with all parts distinct. We show in this section that Glaisher’s bijection ¢ : D — O is an
MM-bijection, and present several extensions.

Recall the following classical result.

Theorem 6.1 (Euler’s theorem). For each n > 1, we have |0, = |D,|.

Glaisher’s bijection ¢ is defined as follows. Start with 4 € D. Replace each part of size
m?2" with 2" parts of size m, for all r > 1 and m odd.

Define the sets O" = {odd parts with multiplicities < 2"} and D" = {distinct parts not
divisible by 2"}. The bijection ¢ : D — O, restricted to D" and O, shows that |O"| = |D"|
for all » > 1. The limit shapes of O" and D" exist, and the bijection between them was
shown to be a geometric bijection [43]. An informal calculation in [43] derives the limit
shape of O using the limit shapes D" for all » > 1. Below we formalize this calculation by
showing that Glaisher’s bijection ¢ is an MM-bijection.

Proposition 6.2. Glaisher’s bijection ¢ : D" — O" is an MM-bijection for all r € N. Fur-
thermore, Glaisher’s bijection ¢ : D — O is an MM-bijection.

Proof. For clarity of exposition, we first show cases r = 1,2, then we show in full
generality.

In the case r = 1, O! = D! and ¢ = id, the identity transformation. The transformation
matrix is given by Vi(2s 4+ 1,2s + 1) =1 for all s > 0, and 0 otherwise.

In the case r = 2, D? consists of parts of odd size and even parts not divisible by 4.
The transformation is given by

1 i=2s+1and j=2s+1,
Va(i,j) =<2 i=2s+1and j=4s+2, foralls>0.

0 otherwise,
The general case r = k has transformation given by

1 i=2s+1and j=2s+1,

2 i=2s+1and j=4s+2,

Vi(i,j) =< - : forall s >0 and k > 1.
k=1 j =254 1 and j=2ks 4 2K1,

0 otherwise,

It follows that V} is a transformation matrix for an MM-bijection for all k > 1.
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Using pointwise convergence in H, we have V;, — V., as k — oo, where

%=1 =254 1 and j = 2ks+ 21
Vw(i,j)z{ PEasland J =SS S e alls>0and k> 1. (61)

0 otherwise,

It is easy to verify that V, has a left eigenvector of (1,2,3,...) corresponding to
eigenvalue 1. Thus, Glaisher’s bijection ¢ : D — O is an MM-bijection. U]

We will refer to the transformation V., from equation (6.1) as Glaisher’s linear
transformation.

6.2. O’Hara’s algorithm

A generalization to Euler’s theorem was given by Andrews [2] (see also [44]). For vectors
a=(ay,ay,...)and b= (by,by,...), let A, and 5, denote the Andrews class partitions P,
and Py of size n, respectively. Define supp(a) to be the set of all i > 1 such that a; < co.
We say that a ~ b if there exists a bijection 7 : supp(a) — supp(b) such that ia; = jb; for
all j = n(i).

Theorem 6.3 (Andrews’ theorem [2]). If a ~ b, then |A,| = |B,]| for all n > 1.
Proof. We have

- R e . - )
L4 A = =l 7= =1+ 2 1B
n=1 i=1 n=1

i=1

where we assume the convention that t* = 0. ]

The following algorithm (see [41]) performs the bijection given by Andrews classes of
partitions, and is known as O’Hara’s algorithm. For sets of partitions P, and Py, suppose
a~b. Start with 4 € P,. Replace a; parts of size i with b; parts of size j, where as
before j = (i), i > 1. Repeat until m;(4) < a; for all i > 1. In its full generality, O’Hara’s
algorithm is not asymptotically stable, and may require exponentially many steps (see
[36]). In the special case below, however, the algorithm is in a sense monotonic, and gives
a valid alternative approach to obtaining Glaisher’s linear bijection.

Consider D =7P,, a=(2,2,2,2,...) and O =Py, b=(c0,1,00,1,...), with 7 :i — 2i.
O’Hara’s algorithm exchanges each even part for two parts of half the size. This is
repeated until all parts are odd. Denote by V the linear transformation of one step in
O’Hara’s algorithm. Then

1 i=jodd,
V(i,j)=42 i=2j, (6.2)

0 otherwise.

Each step in O’Hara’s algorithm corresponds to multiplication of the vector of
multiplicities by the matrix V. Let S; := V¥ denote k steps in O’Hara’s algorithm. We
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have

m k—1 k—1 T

E i—1 k 2 i—1 k

Sk my = < 2! myi-1, 2 Mok+1,..., 2! M(2/+1)2i—1 5 2 m(2/+1)2k+1, .. ) .
. i=1 i=1

Using pointwise convergence in H, we have
Sk >V, ask — oo,

where

my

00 0 T
= <Z 21_17’}’121'—1 . 0, N Z 21_1WZ(2/+1).21‘—1 s 0, .. )
i=1 i=1

6.3. Asymptotic stability
Let w(y) := ¢(y; 1, 1,2) denote the integrand for the limit shape of partitions into distinct
parts.

Theorem 6.4. Glaisher’s linear transformation is (r, B,a,K)-MM-stable for r =1,B =1,
a=2, with

o0
Kty p(y) = 2 lpy/2 0y = /2, >0,

k=1

Moreover, the limit shapes satisfy

=32 (55)

i1

Proof. Note first that V.,(u;, 2" u;) = 2571, so

21 B(n) /25 = yja(n),
0 otherwise.

v(f(n)t, yjo(n)) = {

Next, we split the terms v(f(n)t, y;joa(n))p(y;ju(n)) according to the integer k for which we
have B(n)t = y;a(n) 2=1. This gives

[e¢]
Zv n)t, yjo(n ZZ" ! p(yon)L(y; = t/25° N, t>0.
j=1 k>1

Note that V,, corresponds to a Markov operator P acting on the diagram function D,
with

PD(t Z Z 2i_IZ(2j_1)2i—1 = Z2i_15([/2i_1), t> 0

izl {j:2j—1>ta(n)/2-1} i>1
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Let y; =(2j—1)/a(n) for all j>1, so that Ay; = 2/a(n), and take the limit of the
expectation, as n — co. We obtain

N a(n)? . 1 o
E[PD(1)] =) (2n) > 2TEZ g Ay; — EZ\P(z/z b, t>0,

i1 Juyyz/2e1 i1
which is finite for each ¢t > 0 if and only if « f Finally, note that also directly we
have
E[PD(1)] — 20(t/2),
which is the standard expression for the limit shape of partitions into odd parts. U]

This example also demonstrates that the function K in equation (3.10) does not need
to be multiplicative with respect to its final argument.

6.4. Geometric bijection

Another way to understand the connection between the limit shapes of O and D is via
the construction of a geometric bijection. In this case, the bijection is more complicated
(see [43, Figure 16]), but the same rules apply to the limit shape. A summary of the
mappings is below. Note that instead of mapping the diagram function at each stage,
we have instead chosen to demonstrate how the bijection acts on the conjugate diagram
function. We have

V20(x+/2)
> (V20(x+/2), 4 20(x4/2))
V20(x12) 20(x12)
ﬁcp(xﬁ)—zx,( R 5 ))

J20(x42) = 2x 20(x2) = 2x\ ([ D(xy2)\ T [D(xy2)\ TV
e () (%) )

(
— N N7
. (;(ﬁ@(x}ﬁ) —2x N ﬁcb(x\zﬁ) —2x)’ (cb(ic[\z/i) . d)(ic/\zﬁ) _x))
. <;(ﬁ®(x\2/§) —2x N ﬁcl)(x\zﬁ) _2x>’;<®(i%@ - @(T/\Eﬁ) _X>)

. D(x+/2) — 2x q)(xﬁ)—zx> . <c1>(xﬁ) B ) _
< \/j H \/Z \/i X - lP(x)s

where the final equality comes from a straightforward rearrangement of terms.
6.5. Stanton’s generalization
In this section, r > 1, and m > 2 are integers. The following is a generalization of

Theorem 6.4.

Theorem 6.5. Let A denote the set of partitions into perfect rth powers with multiplicity at
most m" — 1, with limit shape given by ®(t;r,1,m"). Let B denote the set of partitions into
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perfect rth powers not divisible by m", with limit shape given by

m r
Dt _— .
Then we have

_1 rk=1=k @t D 1) = @ £ m . .
(m—1)>"m (tm™ Ve 1,m") tr{——) ), >0 (63

k>1

Note that the limit shapes of .4 and B in Theorem 6.5 follow from Theorems 3.3 and 3.4,
respectively. The relation in equation (6.3) is obtained from the following generalization
of Euler’s theorem.

Theorem 6.6 (Stanton [53]). Let {uy}k>1 be a sequence of distinct positive integers, and
let m > 2 be an integer. If u/ux = my is an integer for all k, then the number of integer
partitions of n into parts of sizes avoiding {un}r>1 is equal to the number of integer
partitions of n into parts of size {uy}r>1, where uy has multiplicity at most my, — 1.

Theorem 6.6 also follows by Andrews’ theorem (Theorem 6.3) using the mapping
7 uye — miuy. The generalization of Glaisher’s bijection in this case is replacing parts of
size uyk into my parts of size ux. When my = m =2 and {u}r>1 = {2,4,6,...}, we obtain
Glaisher’s bijection.

Define Stanton’s (r,m)-bijection ¢,,, : A — B as follows. Replace parts of size (km/)"
into m/" parts of size k", for all k > 1 not divisible by m’.

Theorem 6.7. Stanton’s (r,m)-bijection @, ,, is an MM-bijection.

Proof. Stanton’s (r,m)-bijection can be written using the transformation matrix V.., with

entries
o (m" )"~ fori=k"and j=m "Dk,
Vr,m(la ]) = . (64)
0 otherwise,
for all k > 1 not divisible by m" and w > 1. ]

Theorem 6.5 then follows from equation (6.4) in a similar fashion to the proof of
Theorem 6.4.

7. Lebesgue’s identity

7.1. Limit shapes and Bressoud’s bijection
In this section, we use a bijection due to Bressoud (see [44, 4.3.2]) to obtain the limit
shape below.

Theorem 7.1. Let 1 </ <k. Let L denote the set of partitions u into parts congruent
to 0 or / mod k such that parts differ by at least k, and parts congruent to £ mod k differ
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o
—_—
A p
Y
: HJ || H_IJ
Y v
B
o —p HJ—M
H_IJ
L

Figure 4. Example of a bijection ¢ : 1 — u for L € Ay, u € L,.

by at least 2k. The limit shape of L* is given by

2\‘? [2( 1 + e ™/2V2K) +\/1+e—m/f + 6e—t/(232k >)] t>0. (7.1)

Let A, denote the set of partitions of size n into distinct parts which are congruent to
0,1 or 2 modulo 4. Let £, denote the set of partitions u of size n with consecutive parts
wi — i1 = 2 for even part sizes u; and p; — ;1 > 4 for all odd part sizes u;, i > 1. Recall
Bressoud’s bijection ¢ : A, — L, illustrated in Figure 4 (see [44]). The bijection ¢ is used
in [44, §4.3.2] to prove Lebesgue’s identity, given below.

Theorem 7.2 (cf. [44]). We have

it(/;1)(l+zt)(1+zt2)--~(1+zt/)

= s 2i i
I+0010) - (1+0) =] +ze)1 +6).

/=1 i=1

The proof of Theorem 7.1, using k = 2 and / = 1 for simplicity, is explicitly worked out
below, and a plot appears in Figure 5. Whereas the value of / is an
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0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 2 3 4 5

Figure 5. Plot of the limit shape of L!2, the set of partitions y with consecutive parts
i — pi—1 = 2 for even part sizes y; and y; — pi—1 > 4 for all odd part sizes p;, i > 1.

important aspect of the bijection, the limit shape is invariant to the particular value of /
chosen.

7.2. Proof of Theorem 7.1

Let A denote the set of partitions into distinct parts which are congruent to 0,1 or 2
modulo 4. Let £ denote the set of partitions p with consecutive parts u; — ;1 > 2 for
even part sizes y; and p; — ;1 > 4 for all odd part sizes u;, i > 1. By Theorem 3.4, the
limit shape of A is given by

s(x) = \/j‘l’(x \/i) = %]n(l + e—nx/4)'

Since the bijection to £ is given by a geometric bijection (see [43, Corollary 10.2]), the
limit shape of L exists, and we now derive its explicit form. We are unaware of its explicit
form appearing in the literature.

In Figure 4, each non-blue square is the equivalent of two dots side by side, and each
blue square is the equivalent of one dot. Asymptotically, this distinction is negligible, but
for the bijection it is essential. The first step in the bijection is to separate all of the parts
divisible by three; call this partition y, and the partition consisting of the remaining parts
by o U S.

The first step of the bijection (see Remark 4 below) is the map

s (3509.°5) =020

3
which corresponds to separating the limit curves of o U § and y, respectively, in Figure 4.
Note that since s(x) = (3/7) In(1 + e~™/4), we have s(0) = (3/7)In(2).

The next step in the bijection is to separate out partitions o and f from « U f. The
bijection places all parts in o U § which are < 2/(y) in f3, and leaves the rest in «. Since 7(y)
is an asymptotically stable statistic, with 2/(y)/ /n — 25(0)/3, we may further separate
limit curves a(x), b(x), c(x) corresponding to o, ff,7 as follows:

s(x) — (a(x), b(x), ¢(x)),
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0.30 0.20
0.08
0.25 0.15
0.20 0.06
0.15 0.04 0.10
0.10 0.05
0.05 0.02 '
1 2 3 4 5 01 02 03 04 1 2 3 4 5

(@ a(x) (b) b(x) (©) c(x)

Figure 6. Plots of limit curves corresponding to the different parts of Bressoud’s bijection.

where
2s(0
o 0Sxs §), 250 —n0 0<x< 2
— =3 3
a(x) b(x)
2 25(0) .
gs(x) > 3 0 otherwise,

¢(x) = s(x)/3 for x > 0, and

no = §S(2S(0)/3) = iln(l \15)

We also need the following inverses:

41n(—1 + e™/?) <x<n |
—_—— X A X 0o, —4 —1 x 0
a(x) = n = AL 5O

T 3
0 X > 1o,
The limit curve of v is given by
v(x) = 2b(2x) + ¢ H(x) = —2x — 21n< + f) Zlog(e™? —1), 0<x< .
s

The limit curve of p; is the line 2(1p + s(0)/3 — x), for 0 < x < 5o + 5(0)/3. We let xo =
no + s(0)/3. Now we subtract out the staircase by defining é := o\ p; and & :=v \ p;.
Denote the limit curve of § by d(x) and the limit curve of ¢ by e(x). We have

d(x) = (a 1(x) — 2(xo — x)) = —% In(e™/? —1) — 2x¢ 4+ 2x, 0 < x < 1o,
e(x) = v(x) — 2(s(0)/3 — x) = —2x — 2x — %m(em/2 —1), 0<x<s(0)/3.

Next, we sort the parts of partitions ¢ and & which correspond to a union of parts; call
this partition 0, with corresponding limit curve ¢(x). First, we have

2 2
d7'(x) = == In(1 — e ™04 o7l (x) = Zn(1 4 e T4 x>0,
T s
and

) =@ '(x)+el(x) == ln coth( (x+ xo)) x> 0.

8

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

218 S. DeSalvo and I. Pak

0.0 0.1 0.2 03 04 05
Figure 7. Limit curves of ¢ (red), ps (black), and ¢ (blue).

Note that

_ 1 x+1
hlix)=31
coth™ (x) 5 n(x 1

) for |x| > 1.

Therefore,

N

X0-

4 x/2 1
t(x)=—2x0+fln!, 0<x
T /2 —1

The last step of the bijection adds partitions 6 and py, and corresponds to the conjugate
limit shape of £. Namely,

4 —nx/2 1
m(x) = 2(xg — x) + t(x) = — ln(H>, 0 < x < xo. (7.2)
T /2 — 1
We can also invert to obtain the limit shape of £. To obtain the inverse, we solve for w in
_ow+l
w2 —w’

m(x)/2 and u = ¢™/4. The positive solution for positive w is of the form

W L4 u+ /14 6u+u?
= 5 :

where w = ¢

The limit shape of £ is thus given by

—nx/4 —nx/4 —nx/2
e 4 1+ 6em/i+e ) x>0, (7.3)

m(x) = ilog( 5

This completes the proof of Theorem 7.1. L]

Remark 4. Note that the limit shapes of y and « U do not follow from any of the
transformations defined in Section 4.2. Instead, the limit shapes exist in the stated form
by Section 10. First, the expected number of parts divisible by three over any collection
of (b— a)\/fl parts, 0 < a < b, in the joint distribution of independent random variables
exists and is given by c¢(x). Appealing again to Section 10, we see that the pointwise
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convergence of expectation of the independent random variables is sufficient to guarantee
convergence in probability for the set of integer partitions.

7.3. Proof of Corollaries 1.5 and 1.6

From the limit shape given in equation (7.3), we can now obtain various statistics.

For example, the expected number of parts in a random partition of size n in L is

asymptotically given by m(0),/n, which corresponds to equation (1.4) in Corollary 1.5.
To obtain Corollary 1.6, we solve either for m(x) = x or m~!(x) = x. In this case, solving

for m—!(x) = x using equation (7.2) is the simpler calculation, from which equation (1.5)

follows.

8. Minimal difference d partitions

In this section, let d denote a fixed positive integer, i.e. d > 1.

Theorem 8.1 (c¢f. Sections 2.1, 12.7). Let D, denote the set of partitions u in which p; —
wi—1 = d; that is, parts are at least d apart and there is no restriction on the number of
parts. Let Dy(x) denote the limit shape of Dy. Then we have

_ w ) ! ) . e—cdx/w
DIV (x) = Y log [(ewd/m _ e"f(d—”/w)l
C

—e—cx/w |’

wei/1— gya —log(1 — v) (8.2)

Y= >
V/Lizya) + (d/2) log*(1 — ya)
yg4 is the unique solution to (1 — y)? =y in the interval (0,1), and c is the solution to

¢ = \/Lig(1 — e=1/v).

x>0, (8.1)

where

Here Liy(x) is the usual dilogarithm function, which for positive real-valued inputs x is
defined as

. Xk
le(x) = E k7
k>1

It is easy to obtain a minimal difference d partition: take any partition Ay > 4, > --- > A,
and apply the transformation 4;—— A;+d - (£ —i), for all i =1,...,/(A). This mapping,
however, is not size-preserving, as it is between unrestricted partitions of n into exactly k
parts, and minimal difference d partitions of n + d (g) into exactly k parts. Geometrically,
we are adding a right triangle with slope d whose right angle lies at the origin to the
conjugate limit shape.

Theorem 8.2 (c¢f. Section 12.7). Let D,y denote the set of partitions p into exactly k parts,
in which y; —pi—1 >d for i=1,...,k. Suppose k ~z\/ﬁ for some z>0, and d > 1. Let
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D,.(x) denote the limit shape of Dyy. Then we have
) , ) . e—cdx/w
Dd_z](x) — K 10g (e(zd/w _ etz(d—l)/W)l
i c

—e—ex/w |’

x >0, (8.3)
where D[]’Z(D(ZZI (x) = x.

Proof. Let D, denote the set of minimal difference d partitions of n into exactly k
parts. Let P, denote the set of unrestricted partitions of n into exactly k parts. We have
[Dpax] = |73n_d(/;)‘k|, so we must tilt the distribution of the random size of the partition to

have expected value n —d(5) and exactly k parts.

By conjugation, each partition in P,x corresponds to an unrestricted partition with
largest part at most k. Hence, for k ~ z,/n, z > 0, we may generate the conjugate limit
shape of P,x, which we denote by g, directly using the method of Section 10. Let g.(¢)
denote the limit shape of P, for k =z, /n, z > 0. We have

(t)—/zid ey~ g — e, 0<i<c:
R A ¢ ’ o7

where ¢ is the constant defined by the equation foz g(t)dt = 1. In [48], it is shown that the
constant ¢ satisfies

¢ = Lip(1 — e™%).

However, rather than tilt the distribution of a random partition to have expected size
n, we instead tilt the distribution so that the expected size of the partition is n —d(’;).
This changes the limit shape from g.(t) to a limit curve, say h,,(t), given by

ho(£) = 2 In(1 — ey — Yn(p — =50 > g,
S S
where s is such that
s = Lip(1 — /),

The final step is to add the triangle of slope d, i.e. the curve d(z — t), to h.,,(t). Rearranging
the terms yields equation (8.1). ]

Theorem 8.1 then follows by the result below; c¢f. Section 12.7.

Proposition 8.3 ([48]). A random partition in D, has number of parts asymptotic to y\/ﬁ,
where y is given by equation (8.2).

9. Further examples

9.1. Partitions into an even number of parts < k
This section presents a bijection which requires one additional transformation before
applying the conjugation transformation; see Figure 8.
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Figure 8. The geometric bijection between A, , the set of partitions into even parts such that the largest
part has size < 2k, and Bk, the set of partitions into even parts such that the number of parts is < k.

Theorem 9.1 ([43]). Let B, denote the set of partitions into even parts such that the
number of parts is < k. Suppose k/\/ﬁ — b >0, and let By, = U,B,x. Then the limit shape
of By is given by

2b —c2y
2 y
G(1) ::/ leidy, >0,
t

— e ¢ 2y

where ¢ is the constant such that fooo G(t)dt = 1.

Let A, denote the set of partitions into even parts such that the largest part has size
< 2k. The map 9, : A,x — Byx given in [43, Section 5] is defined as follows: divide each
part of 1 € B, by 2, double the resulting multiplicities, and take the conjugate.

Theorem 9.2 ([44]). For each n > 1 and 1 < k < n, the map 3, is a bijection between sets
-An,k and Bn,k~

Theorem 9.3. Bijection 3, is an MP-bijection.
Proof. The bijection 3, corresponds to the transformation matrix
2 i>1and j=2i+ 2k,

V(i j) = k>0. 9.1
i.J) 0 otherwise, G-
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Furthermore, this transformation V can also be realized as a composition of two
transformations, V = V| V,, where

Vi) 1 i>landj>i, V(i ) 2 i>1andj=2i
i,j)= i,j)=
1 0 otherwise, 27 0 otherwise.

We have that 1 is the conjugate transformation, and V; is the transformation (1/2 U 1/2)
defined above. Ul

Lemma 9.4. Suppose k/\/ﬁ —b>0. Let Ay =UnAukx and let By, = U,Bu. The bijec-
tion @y : Ay — By is (r,B,K)-stable with r =1, B =2, scaling function o(n) = \/ﬁ and
K(t,y,¢) =2 for 0 <t <y <2b, and 0 otherwise.

Theorem 9.5 ([48]). Suppose k/\/ﬁ — b >0, and let Ay = Uy Ayk. The limit shape of Ay
under scaling function a(n) = \/ﬁ is given by

b efc2y
F(t) = —dy,
0 Lﬂ_ﬂny

where c is the constant such that fOZb F(t)dt = 1.

In fact, as written, the constant ¢ in Theorem 9.5 and the constant ¢ in Theorem 9.1
coincide.

9.2. A generalization to Section 9.1

For any m > 2 and r > 1, let Anm, denote the set of partitions of n into parts from
the set U with u; =m" j", with the largest part having size at most m"k. Let By,
denote the set of partitions of n into parts from the set U with u; = m" j* and number
of summands < k. The bijection 9, : Aykmsr —> Bnimr 18 as follows: divide each part of
A € Bpjm, by m", multiply the resulting multiplicities by m", and take the conjugate. Define
Ab,m,r = UnAn,k,m,r and Similaﬂy Bb,m,r = Uan,k,m,r-

Theorem 9.6. Suppose k/n"/"*+) — b > 0. Let Ay, = UpApim, and similarly let By, =
Uan,k,m,r-

j ol ] i bmr ? ’ = r

(1) (See Section 12.1.) The limit shape of Ay, under scaling function a(n) = n"/0+) is

given by

b e ¢ m"y"
F,..(t) = ———dy, 0<t<mb,
(1) LwM—ewfy <

where ¢ is a constant such that fomr Y Ea(t)dt = 1.
(2) The bijection @y : Ang,mr = Bng,mr is (r, B,K)-stable with B =m", scaling function

a(n) =m0t and K(t,y,¢) =m" for 0 <t <y <m'b", and O otherwise.
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(3) The limit shape of By, under scaling function a(n) = n'/"+1 is given by

m" b e—cmy )
Gy (1) = / e dy, 0<t<al Y,
t

— e—cm'y’

where ¢ is the constant such that [} b G, (t)dt = 1.

10. Probabilistic setting

10.1. Probabilistic definitions for unrestricted partitions

In this section we introduce the probabilistic tools used in the proofs of the theorems.
Denote by A, a random partition of size n, where each partition is equally likely.
Similarly, denote by C;(n) the number of parts of size i in the random partition A,, so
that >, i Ci(n) = n is satisfied with probability 1. The diagram function (see Section 3.4)
for a random partition of size n is given by

()= _Cin), forallt>0. (10.1)

i>t

Let {X;(x)} denote a sequence of independent, but not identically distributed, geometric-
ally distributed random variables with parameters 1 — x/, i > 1, where P(Xi(x) > k) = x|
k>0,0<x < 1. Wewrite X; = X;(x) and C; = Ci(n) When the parameters are understood
by context.

The diagram function Dy, (t) of equation (10.1) is constrained to have fixed total area
for a given n, corresponding to a partition of fixed size n, for n > 1. The random variables
X; and C; are related by, for all 0 < x < 1,

(10030

See [24]; see also [5]. Here, equality means in distribution.
We next introduce a sequence of random variables {Z;(x)};>1, where Z;(x) is defined as
the value of X;(x) conditional on X;(x) <a,i>1,a> 1,0 < x < 1; that is,

le —n> = (Cy,...,Cy), foreachn > 1. (10.2)

Zi(x) 2 (Xi(x)|Xi(x) < a), wherei> L.

We also allow for the case when a = co, in which case we have Z;(x) 2 Xi(x). Denote by
A a random partition of fixed size n from an unrestrictedly smooth or restrictedly smooth
set of partitions with parameters » > 1 and B > 0. Let M;(n) denote the number of parts
of size i in the random partition A, i > 1. Then M;(n) =0 fori ¢ U and M;(n) <a, i€ U.
An analogous result to (10.2) holds, namely, for all 0 < x < 1,

( > Ly - - - ‘ ZzZ —n> g(Mul,Muz,...), for each n > 1. (10.3)

iceU

For a given scaling function o(n) and constant ¢, define the tilting parameter

x(n) :=exp(—c/a(n)), n=>1. (10.4)
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We define the independence diagram function by

Si)= > Zix), t>0,0<x<L
keU, k>t

It has the same form as the diagram function D,,, except it is a sum of independent
random variables. The tilting parameter x(n) tilts the distribution, and we choose ¢ so
that the expected area of Sy, is asymptotic to n.

We also define the scaled independence diagram function as

o(n)

Sc(t) = = Sdamn), >0, 0<x<1. (10.5)

10.2. Concentration of the independence process

In this section, we formalize the intuition that the weak notion of a limit shape, i.e.
the pointwise convergence in expectation of the scaled independence diagram function,
coincides with the limit shape of a certain set of integer partitions.

Theorem 10.1 ([59], c¢f. Section 12.1). Let Sy denote the scaled independence diagram
function corresponding to a set of partitions Py which is either restrictedly smooth or
unrestrictedly smooth. Suppose there exists a piecewise continuous function ® : R, — R,
such that

]E[gx(t)] — @(t) for each continuity point t > 0.
Then the limit shape of A is given by ®.
The same kind of result holds in our setting as well. Note that an MM-bijection or

MP-bijection ¢, : A — B induces a continuous, bijective map Ty : L1 (R;) — LL(R}).
For diagram functions, we have

TuD(1) = Ty mi(2) = Y v(t,k)mi(2) =

{pgov(),)(t) MP-bijection,
k>t k

Dy, »(t) MM-bijection.

Theorem 10.2. Let S, denote the scaled independence diagram function corresponding to a
set of partitions Py which is either restrictedly smooth or unrestrictedly smooth with para-
meters r > 1 and B > 0. Suppose there exists a piecewise continuous function ® : R, —
R, such that

IE[:S'\X(L‘)] —> @(t), for each continuity point t > 0.

Suppose further there exists a set of partitions B and an MM-bijection or MP-bijection
@y : A —> B that is (r, B,K)-stable. Suppose there exists a piecewise continuous function
O Ry — R, such that

E[Tv§x(t)] —> Ok (t), for each continuity point t > 0.

Then the limit shape of B is given by ®k.
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The proof is straightforward but requires several technical lemmas, so we present it in
the next section. The analogous theorem, valid for geometric transformations, is stated
below.

Theorem 10.3 ([42]). Let S, denote the scaled independence diagram function correspond-
ing to a set of partitions Py which is either restrictedly smooth or unrestrictedly smooth.
Suppose there exists a piecewise continuous function ® : R, — Ry, such that

E[§X(t)] —> @O(t), for each continuity point t > 0.

Suppose further that there exists a set of partitions B and a geometric bijection ¢y : Py —
B. Then the limit shape of B exists and can be found via the application of transformations
in Theorem 4.3. In addition, each geometric transformation is asymptotically stable.

Proof. Each geometric transformation is a continuous injection in the space L!(R.),
and thus the contraction principle applies to each transformation individually. U]

10.3. Proof of Theorem 10.2
The proof has two steps. The first establishes an exponential concentration, and the
second is an example of ‘overpowering the conditioning’ (see [5, Section 10]); that is, the
conditioning on the event {>_! | iZ; = n} is not too strong.

Let ®(¢) denote the pointwise limit of the expected value of a scaled independence
diagram function. A well-known and key calculation is the following:

P,(ID:(1) — (1)| > €) = m(@ut) —D() >e| ) iZi= n>
icU
< PullSi(1) — @) > €)
P icviZi=n)

This formalizes the intuition that it is sufficient to have a large deviation which is little-
o of the probability of hitting the target. First, we note that it is sufficient to find a
concentration inequality for the independence diagram, as long as we have some bound
on the probability of hitting the target of interest. Fortunately, in the case of integer
partitions, much is already known.

(10.6)

Theorem 10.4 ([18, 59]). Suppose §X(t) is the independence diagram function for a set of
partitions Py that is either unrestrictedly smooth or restrictedly smooth with parameters
r>1and B > 0. Assume ]E§x(t) — @©(t) for all continuity points t > 0 of ®. Then for every
€ > 0, there exists 0 := d(e,t) € (0,1/(2r + 2)) such that for all n large enough we have

P(1S.(t) — (1)] > €) < exp(—c; s n'/ ), (10.7)

where c;5 € (0,00) is a constant that does not depend on n.

Theorem 10.5 (see e.g. [59, Corollary 11]; cf. Section 12.1). Suppose U is unrestrictedly
smooth with parameters r>1 and B >0, and x = exp(—d(r,B)/n/0*): or, U is
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restrictedly smooth with parameters r > 1 and B >0 for some a<oo, and x=
exp(—d(r, B,a)/n"/"*7)). Then, there exists an ny > 1 such that

]P’(Z iZ; = n> >n~",  for all n > ny, (10.8)

ieU

where y > 0 is a constant that does not depend on n.

Lemma 10.6. Under the assumptions of Theorem 10.2, for every € > 0, there exists

1

such that for all n large enough, we have
P(T,5,(1) — @k (1)) > €) < exp(—d;, n'/CH), (10.9)

where d;. € (0,00) is a constant that does not depend on n.

Proof. Equation (10.9) follows by the contraction principle for continuous bijections (see
[19, Theorem 4.2.1]). ]

10.4. Large deviation principle for the dependent process
In [18, §6.2], a large deviation principle (LDP) is presented for a general class of measures
over a process of independent coordinates, which is stronger than Theorem 10.4. In
particular, the authors of [18] let {cx};2, denote a sequence of non-negative integers, and
say that {c;} is of type (g,b) € (0,00) X (0,00) whenever

(1+e)L

lim lim e 1L~¢ E ¢k = b.
e—0 L—wo =L

In this more general context, ¢, denotes the number of different kinds of parts of size k;
for example, we can give each part of size 1 any of ¢; colours, each part of size 2 can
be any of ¢ colours, efc. In this paper, we consider only the case ¢, € {0,1} for all k. In
particular, for a sequence u; ~ B k", this corresponds to

1 keU, .
= , cx is of type (1/r,1/(r BY")).
0 otherwise,

Then, as in [18], we let m,; denote the positive, o-finite measure on [0,00) which has
density dmy,/dt = bti~'. Then the corresponding limit shapes given in [18], namely,
Wy(t) and W ,(¢), correspond to our @(t;r, B) and W(¢;r, B).

In our setting, the LDP is an asymptotic expression, both upper and lower bounds,
governing the exponential rate at which a sequence of measures, say IP,,, assigns probability
to a given measurable event as n — co. For example, a typical event is of the form
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X, :={|X — u| > €}, and we say that measure P, satisfies the LDP with rate «(n) and
good rate function I(X,) if it has the form

lim L

logP,(| X, — pl > €) = —I(Xe).
fim S log By(X, — > €) = ~I(X)

This is equivalent to
Pu(| Xy — ul = €) ~ exp(—a(n)l (X)),

and is stronger than the inequality in Theorem 10.4. There are further details which pertain
to the topology of convergence, a weakening of the limit as a liminf and limsup, and
the precise form of the rate function I. These details are relevant in order to distinguish
between limit shapes of Andrews partitions with unrestricted multiplicities of allowable
part sizes, where the expected number of parts grows like O(o(n)log(n)), and Andrews
partitions with bounded multiplicities of allowable part sizes, where the expected number
of parts grows like O(a(n)). In the former case, we only obtain pointwise convergence.
In the latter case, the LDP is obtained in the topology of uniform convergence. We are
only able to prove an LDP when the allowable part sizes have bounded multiplicity: see
Theorem 10.7 below.

Let J < [0,00) denote an interval, and let D(J) be the space of all functions f : J —» R
that are left-continuous and have right limits. Let AC,, denote the subset of D([0,0))
of non-increasing absolutely continuous functions f which satisfy lim,_,., f(t) = 0, and let
ACEM = A, denote the set of functions with derivatives which are Lebesgue-a.e. in the
interval [—1,0]. We write the Lebesgue decomposition of f as f(t) = f..(t) + fs(t), where
fac denotes the absolutely continuous part of f, and f; denotes the singular part. Let g’
denote the derivative of a function g with respect to .

We write ¢ instead of d(r, B, a) just for equation (10.10) below. Define

Tsa(v.f) :=c<1— /0 - t(—f/(t))dt) + /0 : ﬁ( df —d(D(V’B’“))qu,b, (10.10)

dmgp’ dmgp

for all
feAC, and / (=) df(t) < v,
0

and T,.,B,a(v,f) = o0, otherwise. Here fla(f,g) = flog(f/g) — f + g denotes the relative
entropy between functions f and g.

Theorem 10.7. Suppose the set of partitions Py is restrictedly smooth with parameters r > 1
and B > 0 and a < co. Then the diagram functions D, satisfy the large deviation principle in
D[0,0) (equipped with the topology of uniform convergence), with speed n'/1*") and good
rate function T,,B’a(l,f), given by equation (10.10).

For partitions without any restrictions on allowable part sizes, there is an area
transformation that allows one to conclude that the LDP for the independent process also
applies to the dependent process. When restrictions like u;, ~ B k" are imposed, this area
transformation is no longer defined. We now supply an appropriate area transformation
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and prove the above claim, which only covers the case when the multiplicity of each part
size is bounded. Our treatment closely mimics [18, §5].

Proof of Theorem 10.7. Let N(A) denote the size of the partition 1. We define the
transformation F, g ,,(4) as follows.

(1) If N(2) = n, then F, g 4,(1) = /.
(2) If 0 < N(A) = k < n, then there are two cases.

(a) If there exists a set of partitions of size k consisting of parts from U \ 4, with each
part size having multiplicity strictly less than a, for a = 2,3,..., then let A, denote
the partition which has the least number of parts; in the case of a tie, we choose
the partition which is lower in lexicographic order.

(b) If there does not exist a set of partitions of size k consisting of parts from U \ 4,
then let Ay, denote the partition of n in Py with the least number of parts.

Then we define F) p,,(A) as

F @ A+ 2y case (a),
r’ Ehetl /L =
Ban Amin case (b).

We now note the following properties of the transformation A —— F, g 4,(4):

(1) For some fixed c3 that does not depend on n, and for n large enough, we have
0 < @F, 5,0 (1) — @a(i) < e3(n — N(2))"/ 1+

for all 1 € Py.
(2) For any /4 with N(4) = n, we have

B an(W < pu(n—k).
k=1

(3) Let # € (0, 1), which we will choose later. For any 4y € Py with N(4g) = n, and for n
sufficiently large, we have
P(A € Fg (o), 1 =8 <n'N(A) <1—35/n'""")
k<(n—d n')
> puln—k) xR = Ao)

k>(1—o)n
< npu(dn) exp(cd /Uy P(L = A)
< ' exp((9n) /") exp(c d n/ DY P(L = Ag), (10.11)

N

where y; is some real-valued constant which does not depend on n, which holds under
the assumption that U is restrictedly smooth with parameters r > 1, B > 0, and any
2 < a < o0. In addition,

P(le F i, .(20), 1 =38/n'™" <n 'N() < 1)

r,B,an
n

< DL puln—k)X P = o)
k>(n—d n")
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< npy(dn) exp(cd n" DY) = )
< 2 exp((on)V D) exp(c & 0"/ ITNP(L = ),
where y; is some real-valued constant which does not depend on n.

Next, we define the sets

Bys = {f €D[0.0) : ||f — ¢l <},
Bls, ={0.0) 1 If =l <d.(1—=8) <v <(1—8/n"™)},
B, = {0 ) lf —ol <o,(1—d/n'") <v <1},
Bys=Bjs,UBl;, ={0.0) 1 If — ol <d.(1—8) <v <1}

Define §, :=2¢36"/#"). Then n can be taken sufficiently large, so that we have
P((N(2)/n.D;) € Bys5) < P(Fu(2) € Bys,).

Thus, for such sufficiently large n, following the progression of inequalities in item (3)
above in an analogous manner, we have

P((n"'N(4),D,) € Bl;,)

= > P(Fupan(d) =40, (n"'N(2).D;) € B} 5,)
).0€B¢75r,N(10)=n

> PUeF g, (k). N(A) € (1—8,1—35/n"))
XoEB(p‘(;r,N(/lo):n

< ' expl(6n)/" D] exp(c 6 n/TH)P(n " N(2) = 1,D; € Bys,),

N

and

P((n"'N(2),D,) € B},

= Y P(Fpan(d) =io.(n"'N(2).D;) € B} 5,)
}.063@5,,]\](20):}1

<Y PUEF ). NG € (1=3/n",1))
).O€B¢‘6’,N(;L0)=’1

< 2 exp[(6n") Y+ exp(c & n /U FNYP(rIN(2) = 1,D; € Byg,).

Thus, for any € (0,1), we have

) . 1 ~ . -
liminf ———1og P(N(A)/n = 1,D; € Bys) > — inf T pa(v,p) —cd — "0,
n—oo  pl/(1+r) o ("#‘)EE(I).E o

where /I\r’B,a(V,f) is given by equation (10.10).

The rest of the proof is straightforward; the only ingredient previously missing was the
area transformation F, p,, and the inequality given by equation (10.11). U]
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Finally, we note that our transformation F,p,, does not apply for integer partitions
into unrestricted part sizes, as our proof relies on the total number of parts in a typical
partition to be O(n!'/(1+") as n — 0.

11. Proofs of transfer theorems

11.1. Notation
Forr>1,B>0and a>2,let Z;,i>1, c =d(r,B,a), and let x = x(n) be defined as in
Section 10.1. Define E,(x) := E[Z;(x)], which has explicit form given by

X42x2 433+ (a—1)x47!

Eu(x) =
(X) 1+x+x2+x3+...+xa71

a>=2.

Note that ¢(y;r,B,a) = E,(e “8Y"). Similarly, when multiplicities are unrestricted, we
define E(x) := x/(1 — x).

We are now ready to state and prove our general theorem regarding limit shapes. We
assume for the rest of the section that the set U is such that Py is unrestrictedly smooth
or restrictedly smooth with parameters r > 1, B > 0, a >

11.2. Proof of Theorems 3.3 and 3.4
Let yi be such that as n — oo, we have B y;, = uy/a(n), Ayx ~ (1/Ba(n))!/". Then as n — oo,
we have

nr/(1+r)

E[S.(1)] =

> ElZ]

keU :k>to(n)
> sy B BR)Ay, — @(t;r, B) for Theorem 3.3,
> s (t/B)r E.(e BY)Ay, — ®(t;r,B,a) for Theorem 3.4.

By Theorem 10.1, this calculation is sufficient to establish the limit shape.

11.3. Proof of Theorems 4.1 and 4.2
We continue to use the notation from Section 11.2. In the case of an MP-bijection, we
have

18,0 = P S g ) 2,

k>1

Taking expectation, and applying equation (3.10) and equation (3.11), as n — oo we have

BIT800) = P S o(Bnyt, B ) ELZs ]

k20
Jo K(t,y,E *LBY")) dy  for Theorem 4.1,
Jo  K(t,y,Eq(eBY"))dy for Theorem 4.2.
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In the case of an MM-bijection, similarly by equation (3.12) and equation (3.13), as n — oo
we have

E[TS.(1)] = ") 3 S e(Bm),w) EZ

iztf(n) k>1
Jo K(t,y,E(e“BY"))dy  for Theorem 4.1,
. A
Jo  K(t,y,Eq(e=BY"))dy for Theorem 4.2.

By Theorem 10.2, the proof is complete.

12. Equivalence of ensembles

12.1. Historical remark

The probabilistic model utilized for integer partitions goes back to Khinchin [35]. The
explicit form of the limit shape curve ®(t) for unrestricted integer partitions was derived
via heuristic arguments by Temperley [54]. He applied the method of steepest descents to
the generating function for p(n), the number of partitions of size n, in order to describe
the equilibrium state of crystalline structures. Several decades later, Kerov and Vershik
[56] found and proved the limit shape for integer partitions under the Plancherel measure,
which weights each partition of size n by the squared dimension (f#)? of the corresponding
irreducible representation of S,. Its formula (rotated by 45°) is given by

2 t
= <t arcsin 3 + 44— t2) [t <2,

lt| lt] =2

Q(t) =

We refer to [50] for a thorough and well-written proof of this result and its applications.

Let us mention that the final section of [56] states without proof that the approach used
also gives the limit shape of integer partitions under the uniform measure. A follow-up
paper by Vershik [55] states the strong notion of a limit shape for uniformly random
integer partitions, but leaves out the essential details which imply the strong version
from the weak one, sometimes referred to as ‘equivalence of ensembles’ in the statistical
mechanics literature.

In parallel to the probabilistic notions of a limit shape, there was an early interest in
understanding the joint distribution of part sizes, which appears to begin with the work
of Erdés and Lehmer on the largest part size [21], later extended by Erdds and Szalay
[22] to the largest t part sizes, where t > 0 is fixed. A significant improvement occurred
with the work of Fristedt [24], who extended many but not all of the results to the largest
o(n'/*) part sizes.

Pittel fully resolved the strong notion of a limit shape in [45]. The proof starts
by confirming a conjecture of Arratia and Tavaré [5] governing the total variation
distance between the joint distribution of component sizes and the joint distribu-
tion of appropriately chosen independent random variables, precisely those defined
in Section 10, and essentially extending Fristedt’s results to the largest o(n'/?) part
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sizes.t The total variation distance between two distributions, say £(X) and L£(Y), is
defined as
dry(L(X),L(Y)) = sup [P(X € 4) —P(Y € A)|,
AcR
where A4 is a Borel subset of R. There are two initial, complementary results, governing
the smallest part sizes and the largest part sizes.

Theorem 12.1 (Theorem 1 of [45]). In the definitions from Section 10, let x = e=/N" with
c= n/ﬁ, and suppose Z; = Z;(x) is a geometric random variable with parameter 1 — x',
for i > 1, where all Z; are mutually independent. Let C;(n) denote the number of parts of
size i in a random integer partition of size n. Then

drv(L(Ci(n), C2(n), ..., C,(n), L(Z1, 2>, ..., Zy,)) — O,

and k, < t\/nlog(n) for any © < (1/3/2)/x .

Thus, one may treat both small and large part sizes as approximately independent,
which was utilized in [46], for example, to resolve several conjectures for integer partitions
involving statistics localized on the largest part sizes. Pittel also showed in [45, Theorem 1]
that if we include in the joint distribution of part sizes those parts which are at most
t./n, for some t > 0, then this joint distribution converges to a non-trivial limit which
is the total variation distance between two appropriately defined normal distributions.
However, total variation distance is a considerably strong metric, since one can take any
measurable function of the random variables and the resulting total variation distance
is guaranteed not to increase, whereas a limit shape is one particular statistic. Thus, by
a more detailed analysis of the component sizes, specifically for the limit shape statistic,
Pittel was able to show that the limit shape of random integer partitions is indeed close
in probability to the limit shape ® indicated by the weaker notions of convergence, thus
formally establishing the equivalence of ensembles.

The reason why the weaker notion of the limit shape, i.e. convergence in expectation of
random-size partitions with independent part sizes, coincides with the strong notion of the
limit shape, i.e. convergence in probability of integer partitions of a fixed size, is due to the
exponential concentration of the limit shape statistic. This has traditionally been handled
either via a martingale technique, or via more direct methods like Markov’s inequality,
and demonstrates an unsurprising exponential concentration around the expected value
which could be considered implicit in the work of Vershik [55]. As noted in Section 10.4,
an LDP is not just an upper bound on the rate of exponential concentration, as is often
all that is needed to prove the strong notion of a limit shape from the weak notion: it is
also an asymptotic expression for the rate of concentration.

1 Note that Fristedt used the Prokhorov metric whereas Pittel used the total variation distance metric.
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While Pittel’s work proved the limit shape of unrestricted partitions, the large deviation
results by Dembo, Vershik and Zeitouni in [18] provided the limit shape of integer
partitions into distinct parts, and made their connection with the LDP explicit. In
addition, [18, Section 6.2] states the form of the limit shape for partitions with restrictions
of the form wu, = Bk", and provides the LDP for the independent process in both
cases of unrestricted multiplicities and distinct part sizes. Combining the LDP with
classical asymptotic enumeration formulas, e.g., those in for example [29, 58, 32], it is
straightforward to derive the equivalence of ensembles under these restrictions via the
inequality in equation (10.6). We have provided the LDP for the dependent process with
bounded multiplicities, i.e. the process governing random partitions of fixed size n, in
Section 10.4.

12.2. Connections with enumerative combinatorics

It is difficult to credit limit shape results like Theorem 3.3 precisely, owing to the connection
between asymptotic enumeration and concentration, and the precise conditions which are
assumed and utilized. The weak form of the limit shape in Theorem 3.3 is easily calculated
via the statistical models in Khinchin [35], and more explicitly by Kerov and Vershik [56]
— the same ones utilized by Fristedt [24] and Pittel [45]. The limit shape then follows by
concentration and a local central limit theorem, or equivalently, asymptotic enumeration,
via the inequality in equation (10.6); see also [27, 12].

Ingham [32, Theorem 2] provided quite general asymptotic enumeration formulas for
partitions satisfying the following conditions. Let N(u) denote the number of elements in
U less than or equal to u. Suppose there are constants L > 0, 6 > 0, and function R(u)
such that

N(u) = Lu’ + R(u),
and for some b > 0 and ¢ > 0 we also have

/ R®) 4o = blogu+ ¢+ o(1).
0

v

Define
B 1
a=-—— M=[LBT(S+1)(p+ 1)V
Trp M=IATE+ DU+ 1)
Then, as long as py(n) is monotonically increasing, we have
N2 } )
pU(n) ~ ( 27.[“) e(er(b71/2)oz u(bfl/Z)(lfoz)fl/Z P Y(Mu) ) (121)

Similarly, under the slightly weaker assumption that
/ R()dv = bu+ o(u),
0

and again assuming p¢,(n) is monotonically increasing, with M* := (1 —27%)1/Fwe have

d 1—o 1/217 o/ a1 oM
ph ~ (2) 2yt o
n
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Erd6s and Bateman in [7, Theorem 6] simplified the monotonically increasing assump-
tion for py(n) to be more simply that the greatest common divisor of U is 1. It is unknown
whether or not a corresponding condition exists for partitions into distinct parts, and it
would be interesting to find such necessary and sufficient conditions.

Roth and Szekeres provide a partial answer. They demand the elements u, satisfy more
generally

log uy

Jim Togk =r € [l,00). (ur)

In addition, they also assume the following condition, which is sufficient for the asymptotic
enumeration results to hold:

k
N )
Ji= 11;f{ ok 2l } S ask - o, (U2)

where [x] denotes the closest integer to x and the infimum is taken over o € (1/(2ux), 1/2].
They also show that when r is small, condition (U2) is not necessary.

Proposition 12.2 (Roth and Szekeres [51]).
(U1") and r < 3/2 = (U2).

There are also several classes of sequences U presented in the introduction in [51] which
cover many cases of interest.

(1) ux = px where py is the kth prime number.

(i1) ux = f(k), where f(x) is a polynomial which takes only integral values for integral x
and has the property that corresponding to every prime p there exists an integer x
such that p 1 f(x).

(iii) ux = f(px), where f(x) is a polynomial which takes only integral values for integral x
and has the property that corresponding to every prime p there exists an x such that
pfxf(x).

In particular, they specialize their main theorem in the case when u, = a,k" + a,_ k"~ +

-+ +ag and wuy satisfies (ii), which prevents any gaps in p{,(n); this is Theorem 3.2. We

have dropped the final condition that for every prime p there exists an integer x such that

p 1 f(x), requiring instead that should such a p exist then we take n to infinity through

multiples of the gcd of U, as is required for the corresponding limit shape.

One could also argue that Theorem 3.3 follows from Pittel’s analysis [45], in that it
requires no new ideas other than generalizing the analysis in a straightforward manner.
However, there are certain estimates utilized which must be carefully adapted, and a priori
require some kind of technical conditions similar to the ones initially imposed by Ingham
and others.

One may also be tempted to attribute Theorem 3.3 to Dembo, Vershik and Zeitouni
[18]. In [18, Section 6.2], they state explicitly an LDP for an independent process of
random variables, which is sufficient to prove concentration, but as stated the sequence U
consists of multiples of perfect powers. This is similar to the work in Goh and Hitczenko
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[27], whose extra technical assumption is the existence of four u; which are relatively
prime. Canfield, Corteel and Wilf [12] provide all of the ingredients for Theorem 3.3, even
including the restriction that uy is the image of a polynomial, which is the special case we
have adopted.

12.3. Growth conditions

We have decided to describe the growth conditions on sets U in terms of the growth of
ug, where k > 1. Meinardus [39], Granovski, Stark and Erlihson [28], Hwang [31] and
Bogachev [10], for example, impose conditions directly on the corresponding generating
functions. Yakubovich [59], Goh and Hitczenko [27] and Ingham [32], on the other hand,
have described growth conditions on the inverse function N (k) = #{j : u; < k}. Our choice
is natural for this setting since our sets of partitions and bijections have traditionally been
written in the form of allowable part sizes.

12.4. Ingham’s growth condition

The original form of the growth conditions in Ingham’s [32, Theorem 2] is particularly
elegant, even though it is not ideal for our setting. Rather than requiring a condition on
the greatest common divisor of allowable part sizes, the result is instead stated in terms
of sums of partition numbers. Formally, let py(n) denote the number of partitions of n
into parts from the set U. Ingham defines for real u > 0

Pu) =Y pulk).

k<u
Then, he proves an asymptotic result for P(u) and

Py(n) = w’ h>0,

under the condition that P,(n) is increasing for every fixed h > 0. When gcd(U) = a,
we can choose h = a. Then, for every u > 0, the number Py(n) is precisely one of py(¢)
for some / € [u— h,u), and, since (u—h) ~u ~ 7/, it thus captures the asymptotic rate
of growth of py(n), without needing to specify, as we have done, that n — oo through
multiples of a.

12.5. More general growth conditions

The conditions of Meinardus [39] and Yakubovich [59] are related to condition (U2),
and apply more generally to partitions where each part size can have multiple versions
(for example, three different types of 1s). These conditions are used by Hwang [31], for
example, where the distribution of the number of summands (taken without multiplicities)
follows a central and local limit theorem. There is also a central limit theorem proved by
Madritsch and Wagner in [38], concerning partitions whose base-b representation only
contains digits from some given set.

12.6. Partitions of n with ¢ _/n parts

The asymptotic number of partitions with part sizes restricted to be less than some t\/ﬁ
was studied by Romik [48]. The limit shape of the conjugate set of partitions, i.e. the
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set of partitions with a fixed number of summands t\/ﬁ, was studied by Yakubovich
and Vershik [57]. This is another example (see Section 2.1) where a bijection involving
conjugation is used to obtain the limit shape of a non-multiplicative set of restrictions. A
more detailed saddle point analysis, counting the number of partitions of n into exactly
m summands under further restrictions like those in Section 9.2, is contained in [30].

12.7. Romik’s formula

Another proof of Theorem 8.2 appears in the last section of the unpublished preprint [47].
This was used to obtain [47, Theorem 1]. Unfortunately, there appears to be a mistake,
as the formula given for the limit shape does not have unit area.

12.8. Non-uniform measures

In this paper we consider only P, = 1/|A,|, the uniform distribution; see, however, [56]
for limit shapes under Plancherel measure, and e.g. [25] for other types of measures on
partitions.

13. Final remarks and open problems

(1) The next natural generalization of our theorems would be the one considered by
Canfield and Wilf [13]: partitions of size n with part sizes in set U and with multiplicities
in set M. In our setting M ={0,1,2,...}, and in Section 2.1 we have M ={0,2,3,...}.
It would be interesting to investigate conditions on M and U such that the limit shape
exists.

(2) Our approach does not extend to computing the limit shape for classes of partitions
for which no bijection to Andrews class partitions is known. One notable example is the
partitions into powers of 2, which are equinumerous with certain Cayley compositions (see
[11, 37] and [52, A000123]). In this case the usual notion of a limit shape does not exist
and an alternative notion is required.

(3) Fristedt’s method [24] in Section 10 defines a random sampling algorithm for Andrews
class partitions of a fixed size n; that is, we sample independent geometric random
variables Z1, Z>, ..., Z,, where Z; has parameter 1 — x’, 0 < x < 1,i > 1, and check whether
S iZ; = n, repeating the sampling of Zy,Z>,...,Z, until the condition is satisfied. The
expected number of times that we resample is given by O(1/a,), where

An application of probabilistic divide-and-conquer (PDC), introduced in [4] (see also
[20]), uses von Neumann’s rejection sampling [40] to obtain a speed-up. The algorithm is
to sample repeatedly from Z;,Z3,...,Z, and U, uniformly on (0, 1), until

P(Zy=n—>1,iZ)

<
U< P(Z; =0)

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

Limit Shapes via Bijections 237

The expected number of times that we resample this procedure is O(n'/*) (see [4, Table 1]),
a considerable speed-up.

More generally, consider the set of partitions with parts in the set U, where uy ~ Bk".
The PDC deterministic second half algorithm to generate a random integer partition of
size n with parts in the set U is to sample repeatedly from Z,,,Z,,,... and U, uniformly
on (0, 1), until

P(Z, =n— E?=2 iZy,)

U<
Pz, =0)
The speed-up in this case is given by
1 .
speed-up = (max P(Z; =k))™' = P(Z,, =0)"' ~ ~ L) = o/1+),
k 1 —xt Uy

Hence, the expected number of rejections before a single accepted sample via the PDC
deterministic second half algorithm is asymptotically O(n1/C+2)),

(4) There are also bijections defined as linear transformations by Corteel and Savage [16],
and Corteel, Savage and Wilf [17], which correspond to partitions which satisfy various
inequality conditions on the part sizes, in a sense generalizing the set C" of partitions with
non-negative rth differences in Section 5. A further generalization was demonstrated by
Pak [42]; most of those examples involve sets U where u;, grows exponentially in k, and
so our theorems do not apply.

Of particular note is that our linear transformations are only assumed to act as Markov
operators on the diagram function, so it is not necessary that the coefficients of the matrix
transformation v each be non-negative; matrix v simply needs to map positive coordinates
to positive coordinates.

(5) For self-conjugate partitions, it would be interesting to define a coupling over the set
of random variables governing the part sizes, although this has many apparent difficulties.
We hope to return to this problem in the future.

(6) One should be careful when defining maps between partitions. Consider the sets of
partitions A = {kk1¥}, B = (k%*}, k > 1.

Proposition 13.1. For each n > 1, we have

1 n=2k% k>1,
|An| = |Bu| = . (13.1)
0 otherwise.

We showed earlier in Remark 2 that the limit shape of A under scaling function \/ﬁ does
not exist, since the scaled diagram function converges to a(x) = l/ﬁ for 0 < x < 1/\/2
which does not have unit area. The limit shape of B exists and is equal to b(x) = 1/2 for
0 < x < 2. Consider the (non-bijective) transformation = : 1 — k, which sends partitions
in A to B. Even though there is a transformation, and each set of partitions tends to
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some limiting curve, there is no connection implied about the limit curves since the
transformation is not even a bijection.

Acknowledgements

The authors are grateful to Ken Alexander, Richard Arratia, Quentin Berger, Amir
Dembo, Alejandro Morales, Greta Panova, Dan Romik, Bruce Rothschild, Richard Stanley

and Damir Yeliussizov for helpful discussions. The second author was partially supported
by the NSF.

References

[1] Alon, N. and Krivelevich, M. (2008) Extremal and probabilistic combinatorics. In Princeton
Companion to Mathematics (W. T. Gowers et al., eds), Princeton University Press, pp. 562-575.

[2] Andrews, G. E. (1984) The Theory of Partitions, Cambridge University Press.

[3] Andrews, G. E. (2000) MacMahon’s partition analysis, II: Fundamental theorems. Ann. Comb.
4 327-338.

[4] Arratia, R. and DeSalvo, S. (2016) Probabilistic divide-and-conquer: A new exact simulation
method, with integer partitions as an example. Combin. Probab. Comput. 25 324-351.

[5] Arratia, R. and Tavare, S. (1994) Independent process approximations for random
combinatorial structures. Adv. Math. 104 90-154.

[6] Auluck, F. C. and Haselgrove, C. B. (1952) On Ingham’s Tauberian theorem for partitions.
Proc. Cambridge Philos. Soc. 48 566-570.

[7] Bateman, P. T. and Erdés, P. (1956) Monotonicity of partition functions. Mathematika 3 1-14.

[8] Blackburn, S. R., Neumann, P. M. and Venkataraman, G. (2007) Enumeration of Finite Groups,
Cambridge University Press.

[9] Bobrowski, A. (2005) Functional Analysis for Probability and Stochastic Processes, Cambridge
University Press.

[10] Bogachev, L. V. (2015) Unified derivation of the limit shape for multiplicative ensembles of
random integer partitions with equiweighted parts. Random Struct. Alg. 47 227-266.

[11] de Bruijn, N. G. (1948) On Mabhler’s partition problem. Indag. Math. 10 210-220.

[12] Canfield, E. R., Corteel, S. and Hitczenko, P. (2002) Random partitions with non negative rth
differences. In LATIN 2002: Theoretical Informatics (S. Rajsbaum, ed.), Vol. 2286 of Lecture
Notes in Computer Science, Springer, pp. 131-140.

[13] Canfield, E. R. and Wilf, H. S. (2012) On the growth of restricted integer partition functions.
In Partitions, g-series, and Modular Forms (K. Alladi and F. Garvan, eds), Springer, pp. 39—46.

[14] Cohn, H., Elkies, N. and Propp, J. (1996) Local statistics for random domino tilings of the
Aztec diamond. Duke Math. J. 85 117-166.

[15] Colomo, F. and Pronko, A. G. (2010) The limit shape of large alternating sign matrices. SIAM
J. Discrete Math. 24 1558-1571.

[16] Corteel, S. and Savage, C. D. (2004) Partitions and compositions defined by inequalities.
Ramanujan J. 8 357-381.

[17] Corteel, S., Savage, C. D. and Wilf, H. S. (2005) A note on partitions and compositions defined
by inequalities. Integers 5 A24.

[18] Dembo, A., Vershik, A. and Zeitouni, O. (2000) Large deviations for integer partitions. Markov
Process. Rel. Fields 6 147-179.

[19] Dembo, A. and Zeitouni, O. (1998) Large Deviations Techniques and Applications, Springer.

[20] DeSalvo, S. (2018) Probabilistic divide-and-conquer: Deterministic second half. Adv. Appl. Math.
92 17-50.

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

Limit Shapes via Bijections 239

[21] Erdés, P. and Lehner, J. (1941) The distribution of the number of summands in the partitions
of a positive integer. Duke Math. J. 8 335-345.

[22] Erdés, P. and Szalay, M. (1984) On the statistical theory of partitions. Collog. Math. Soc. Janos
Bolyai 34 397-450.

[23] Freiman, G. A., Vershik, A. M. and Yakubovich, Y. V. (2000) A local limit theorem for random
strict partitions. Theory Probab. Appl. 44 453-468.

[24] Fristedt, B. (1993) The structure of random partitions of large integers. Trans. Amer. Math.
Soc. 337 703-735.

[25] Fulman, J. and Goldstein, L. (2001) Zero biasing and Jack measures. Combin. Probab. Comput.
20 753-762.

[26] Garsia, A. M. and Milne, S. C. (1981) A Rogers—Ramanujan bijection. J. Combin. Theory Ser. A
31 289-339.

[27] Goh, W. M. Y. and Hitczenko, P. (2008) Random partitions with restricted part sizes. Random
Struct. Alg. 32 440-462.

[28] Granovsky, B. L., Stark, D. and Erlihson, M. (2008) Meinardus’ theorem on weighted partitions:
Extensions and a probabilistic proof. Adv. Appl. Math. 41 307-328.

[29] Hardy, G. H. and Ramanujan, S. (1918) Asymptotic formulas in combinatory analysis. Proc.
London Math. Soc. 2 75-115.

[30] Haselgrove, C. B. and Temperley, H. N. V. (1954) Asymptotic formulae in the theory of
partitions. Proc. Cambridge Philos. Soc. 5 225-241.

[31] Hwang, H. K. (2001) Limit theorems for the number of summands in integer partitions.
J. Combin. Theory Ser. A 96 89—126.

[32] Ingham, A. E. (1941) A Tauberian theorem for partitions. Ann. of Math. 42 1075-1090.

[33] Janson, S., Euczak, T. and Rucinski, A. (2000) Random Graphs, Wiley.

[34] Kenyon, R., Okounkov, A. and Sheffield, S. (2006) Dimers and amoebae. Ann. of Math. 163
1019-1056.

[35] Khinchin, A. 1. (1949) Mathematical Foundations of Statistical Mechanics, Dover.

[36] Konvalinka, M. and Pak, I. (2009) Geometry and complexity of O’Hara’s algorithm. Adv. Appl.
Math. 42 157-175.

[37] Konvalinka, M. and Pak, 1. (2014) Cayley compositions, partitions, polytopes, and geometric
bijections. J. Combin. Theory Ser. A 123 86-91.

[38] Madritsch, M. and Wagner, S. (2010) A central limit theorem for integer partitions. Monatsh.
Math. 161 85-114.

[39] Meinardus, G. (1954) Asymptotische Aussagen iiber Partitionen. Math. Z. 59 388-398.

[40] von Neumann, J. (1951) Various techniques used in connection with random digits. J. Res. Nat.
Bur. Stand. Appl. Math. Ser. 12 36-38.

[41] O’Hara, K. M. (1988) Bijections for partition identities. J. Combin. Theory Ser. A 49 13-25.

[42] Pak, 1. (2004) Partition identities and geometric bijections. Proc. Amer. Math. Soc. 132 3457—
3462.

[43] Pak, I. (2004) The nature of partition bijections, II: Asymptotic stability.
math.ucla.edu/~pak/papers/stab5.pdf

[44] Pak, 1. (2006) Partition bijections: A survey. Ramanujan J. 12 5-75.

[45] Pittel, B. (1997) On a likely shape of the random Ferrers diagram. Adv. Appl. Math. 18 432-488.

[46] Pittel, B. (1999) Confirming two conjectures about the integer partitions. J. Combin. Theory
Ser. A 88 123-135.

[47] Romik, D. (2003) Identities arising from limit shapes of constrained random partitions.
math.ucdavis.edu/~romik/data/uploads/papers/shape.pdf

[48] Romik, D. (2005) Partitions of n into t\/ﬁ parts. European J. Combin. 26 1-17.

[49] Romik, D. (2012) Arctic circles, domino tilings and square Young tableaux. Ann. Probab. 40
611-647.

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

240 S. DeSalvo and I. Pak

[50] Romik, D. (2015) The Surprising Mathematics of Longest Increasing Subsequences, Cambridge
University Press.

[51] Roth, K. F. and Szekeres, G. (1954) Some asymptotic formulae in the theory of partitions.
Quart. J. Math. 5 241-259.

[52] Sloane, N. J. A. The Online Encyclopedia of Integer Sequences. oeis.org

[53] Stanton, D. (2009) g-analogues of Euler’s odd = distinct theorem. Ramanujan J. 19 107-113.

[54] Temperley, H. N. V. (1952) Statistical mechanics and the partition of numbers, II: The form of
crystal surfaces. Proc. Cambridge Philos. Soc. 48 683-697.

[55] Vershik, A. (1996) Statistical mechanics of combinatorial partitions, and their limit shapes.
Funct. Anal. Appl. 30 90-105.

[56] Vershik, A. M. and Kerov, S. V. (1977) Asymptotic behavior of the Plancherel measure of the
symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233 1024-1027.

[57] Vershik, A. and Yakubovich, Y. (2001) The limit shape and fluctuations of random partitions
of naturals with fixed number of summands. Mosc. Math. J. 1 457-468.

[58] Wright, E. M. (1934) Asymptotic partition formulae, III: Partitions into k-th powers. Acta
Math. 63 143-191.

[59] Yakubovich, Y. (2012) Ergodicity of multiplicative statistics. J. Combin. Theory Ser. A 119
1250-1279.

[60] Ae Ja Yee (2004) Combinatorial proofs of Ramanujan’s ;y; summation and the g-Gauss
summation. J. Combin. Theory Ser. A 105 63-77.

https://doi.org/10.1017/50963548318000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548318000330

