
TLP 10 (3): 331–359, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000116

331

Inductive Logic Programming in Databases:
From Datalog to DL+log

¬∨

FRANCESCA A. LISI

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy

(e-mail: lisi@di.uniba.it)

submitted 24 April 2009; revised 17 October 2009; accepted 2 February 2010

Abstract

In this paper we address an issue that has been brought to the attention of the database

community with the advent of the Semantic Web, i.e., the issue of how ontologies (and

semantics conveyed by them) can help solving typical database problems, through a better

understanding of Knowledge Representation (KR) aspects related to databases. In particular,

we investigate this issue from the ILP perspective by considering two database problems, (i)

the definition of views and (ii) the definition of constraints, for a database whose schema is

represented also by means of an ontology. Both can be reformulated as ILP problems and

can benefit from the expressive and deductive power of the KR framework DL+log
¬∨. We

illustrate the application scenarios by means of examples.

KEYWORDS: Inductive Logic Programming, relational databases, ontologies, description

logics, hybrid Knowledge Representation and reasoning systems

1 Motivation

Inductive Logic Programming (ILP) has been historically concerned with the

induction of rules from examples for classification purposes (Nienhuys-Cheng and

de Wolf 1997). Due to the close relation between Logic Programming and Relational

Databases (Ceri et al. 1990), ILP has established itself as a major approach to

Relational Data Mining (Džeroski and Lavrač 2001). Indeed, Datalog (Ceri et al.

1989) is the most widely used Knowledge Representation (KR) framework in ILP.

Conversely, interesting extensions of Datalog such as Datalog
¬∨ (Eiter et al. 1997)

have attracted very little attention in ILP. Some effort has been made also at making

ILP more able to face the challenges posed by Relational Data Mining applications,

e.g., scalability (Blockeel et al. 1999). However, the actual added value of ILP with

respect to far more efficient approaches still remains the use of prior conceptual

knowledge (also known as background knowledge, or shortly BK) during the learning

process which enables the induction of conceptually meaningful rules. Yet, the BK

in ILP is often not organized around a well-formed conceptual model. This practice

seems to ignore the latest achievements in conceptual modeling such as ontologies.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

332 F. A. Lisi

In Artificial Intelligence, an ontology refers to an engineering artifact (more

precisely, produced according to the principles of Ontological Engineering, Gómez-

Pérez et al. 2004), constituted by a specific vocabulary used to describe a certain

reality, plus a set of explicit assumptions regarding the intended meaning of the

vocabulary words. This set of assumptions has usually the form of a first-order logical

(FOL) theory, where vocabulary words appear as unary or binary predicate names,

respectively called concepts and relations. More formally, an ontology is a formal

explicit specification of a shared conceptualization for a domain of interest (Gruber

1993). Among the other things, this definition emphasizes the fact that an ontology

has to be specified in a language that comes with a formal semantics. Only by

using such a formal approach ontologies provide the machine interpretable meaning

of concepts and relations that is expected when using an ontology-based approach.

Among the formalisms proposed by Ontological Engineering, the most currently used

are Description Logics (DLs) (Baader et al. 2007). In particular, the advent of the

Semantic Web (Berners-Lee et al. 2001) has given a tremendous impulse to research

on DL-based ontology languages. Indeed the DL SHIQ (Horrocks et al. 2000) has

been the starting point for the definition of the W3C standard mark-up language

OWL (Horrocks et al. 2003). Note that DLs are decidable fragments of FOL that are

incomparable with Clausal Logics (CLs) as regards the expressive power (Borgida

1996) and the semantics (Rosati 2005b). Yet, DLs and CLs can be combined

according to some limited forms of hybridization. For example, DL+log
¬∨ is a

general KR framework that allows for the tight integration of DLs and Datalog
¬∨

by imposing the condition of weak DL-safeness on hybrid rules (Rosati 2006)1. We

argue that the adoption of such hybrid KR systems can help overcoming the current

difficulties in accommodating ontologies in ILP.

In this paper we address an issue that has been brought to the attention of the

database community with the advent of the Semantic Web, i.e., the issue of how

ontologies (and semantics conveyed by them) can help solving typical database

problems, through a better understanding of KR aspects related to databases. In

particular, we investigate this issue from the ILP perspective by considering two

database problems:

• the definition of views

• the definition of constraints

for a database whose schema is represented also by means of an ontology. Both can

be reformulated as ILP problems and can benefit from the expressive and deductive

power of the KR framework DL+log
¬∨, mainly from its nonmonotonic (NM)

features. We illustrate the application scenarios by means of examples.

The paper is organized as follows. Section 2 provides basic notions on DLs,

a short summary of KR research on the integration of DLs and CLs, and a

brief introduction to ILP. Section 3 introduces syntax, semantics, and reasoning of

DL+log
¬∨. Sections 4 and 5 define the ILP proposals for inducing database views

1 We prefer to use the name DL+log
¬∨ instead of the original one DL+log in order to emphasize the

Datalog
¬∨ component of the framework.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 333

Table 1. Syntax and semantics of some typical DL constructs

Bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)

Atomic concept A AI ⊆ ΔI

(Abstract) simple role S SI ⊆ ΔI × ΔI

(Abstract) individual a aI ∈ ΔI

Concept C

Role R

Concept negation ¬C ΔI \ CI

Concept intersection C1 	 C2 CI
1 ∩ CI

2

Concept union C1 � C2 CI
1 ∪ CI

2

Value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
Existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}
At least number restriction � nR {x ∈ ΔI | |{y|(x, y) ∈ RI}| � n}
At most number restriction � nR {x ∈ ΔI | |{y|(x, y) ∈ RI}| � n}
At least qualif. number restriction � nR.C {x ∈ ΔI | |{y ∈ CI |(x, y) ∈ RI}| � n}
At most qualif. number restriction � nR.C {x ∈ ΔI | |{y ∈ CI |(x, y) ∈ RI}| � n}
Role inversion R− {(x, y) ∈ ΔI × ΔI | (y, x) ∈ RI}
Role intersection R1 	 R2 RI

1 ∩ RI
2

and database constraints, respectively, within the DL+log
¬∨ framework. Section 6

surveys related work. Section 7 concludes the paper with final remarks.

2 Background

2.1 Representing ontologies

DLs are a family of decidable FOL fragments that allow for the specification of

knowledge in terms of classes (concepts), instances (individuals), and binary relations

between instances (roles) (Borgida 1996). Complex concepts can be defined from

atomic concepts and roles by means of constructors. Syntax and semantics of some

typical DL constructs are reported in Table 1. For example, concept descriptions

in the basic DL AL are formed according to only the constructors of atomic

negation, concept conjunction, value restriction, and limited existential restriction.

The DLs ALC and ALN are members of the AL family. The former extends AL
with (arbitrary) concept negation (also called complement and equivalent to having

both concept union and full existential restriction), whereas the latter with number

restriction. The DL ALCNR adds to the constructors inherited from ALC and

ALN a further one: role intersection. Conversely, in the DL SHIQ (Horrocks et al.

2000) it is allowed to invert roles and to express qualified number restrictions of the

form � nR.C and � nR.C where R is a simple role. Also transitivity holds for roles.

A role (expression) is called complex if it contains any role operations other than

inversion, e.g., role intersection.

A DL knowledge base (KB) Σ can state both is-a relations between concepts

(axioms) and instance-of relations between individuals (resp. couples of individuals)

and concepts (resp. roles) (assertions or facts). Axioms form the so-called termino-

logical box (TBox) T whereas facts are contained in the so-called assertional box

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

334 F. A. Lisi

Table 2. Syntax and semantics of DL KBs

Concept equivalence axiom C1 ≡ C2 CI
1 = CI

2

Concept subsumption axiom C1 � C2 CI
1 ⊆ CI

2

Role equivalence axiom R1 ≡ R2 RI
1 = RI

2

Role inclusion axiom R1 � R2 RI
1 ⊆ RI

2

Concept assertion C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Individual equality assertion a ≈ b aI = bI

Individual inequality assertion a �≈ b aI �= bI

(ABox) A. A SHIQ KB encompasses also a role box (RBox) R which consists of a

finite set of role equivalence and role inclusion axioms. Therefore hierarchies can be

defined over not only concepts but also roles. Transitivity of roles is also specified

by means of axioms. Thus, when a DL-based ontology language is adopted, an

ontology is nothing else than a TBox, possibly together with a RBox. If the ontology

is populated, it corresponds to a whole DL KB, i.e., encompassing also an ABox.

The semantics of DLs can be defined directly with set-theoretic formalizations as

shown in Table 2 or through a mapping to FOL as shown in Borgida (1996). An

interpretation I = (ΔI , ·I) for a DL KB consists of a domain ΔI and a mapping

function ·I . Under the Unique Names Assumption (UNA) (Reiter 1980), individuals

are mapped to elements of ΔI such that aI �= bI if a �= b. Yet UNA does not hold

by default in DLs. Thus individual equality (inequality) assertions may appear in

a DL KB (see Table 2). An interpretation I is a model of a KB Σ = (T ,A) iff

it satisfies all axioms and assertions in T and A . Also the KB represents many

different interpretations, i.e., all its models. This is coherent with the Open World

Assumption (OWA) that holds in FOL semantics. A DL KB is satisfiable if it has at

least one model. An ABox assertion α is a logical consequence of a KB Σ, written

Σ |= α, if all models of Σ are also models of α.

The main reasoning task for a DL KB Σ is the consistency check which tries to

prove the satisfiability of Σ. The consistency check is performed by applying decision

procedures mostly based on tableau calculus. Another well-known reasoning service

in DLs is instance check, i.e., the check of whether an ABox assertion is a logical

implication of a DL KB. A more sophisticated version of instance check, called

instance retrieval, retrieves, for a DL KB Σ, all (ABox) individuals that are instances

of the given (possibly complex) concept expression C , i.e., all those individuals a

such that Σ entails that a is an instance of C . In data-intensive applications, querying

KBs plays a central role. Instance retrieval is, in some aspects, a rather weak form

of querying: although possibly complex concept expressions are used as queries, we

can only query for tree-like relational structures, i.e., a DL concept cannot express

arbitrary cyclic structures. The possibility of expressing conjunctive queries (CQ)

and unions of conjunctive queries (UCQ) is widely studied in DLs. Let PC and PR
be the alphabets of concept names and role names, respectively. A Boolean UCQ

over the alphabet PC ∪ PR is a FOL sentence of the form q1 ∨ . . . ∨ qn, where

each qi is a conjunction ∃�Xconji(�X) of atoms whose predicates are in PC ∪ PR and

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 335

whose arguments are either constants or variables from the tuple �X. A Boolean CQ

corresponds to a Boolean UCQ in the case when n = 1. The Boolean UCQ entailment

problem in DLs is defined as follows: A KB Σ entails a UCQ Q = q1∨ . . .∨qn, written

as Σ |= q1∨ . . .∨qn, if, for every model I of Σ, there is some i such that qi is satisfied

in I and 1 � i � n. Note that instance check can be expressed as the problem of

query entailment problem of a Boolean CQs constituted by just one ground atom.

The Boolean CQ/UCQ containment problem2 in DLs is defined as follows: Given a

DL-TBox T , a Boolean CQ Q1 and a Boolean UCQ Q2 over the alphabet PC ∪ PR,

Q1 is contained in Q2 with respect to T , denoted by T |= Q1 ⊆ Q2, iff, for every

model I of T , if Q1 is satisfied in I then Q2 is satisfied in I . This problem has been

proved decidable for many DLs, notably for the very expressive SHIQ (Glimm

et al. 2008) and SHOQ (Glimm et al. 2008). Finally, when the UNA does not hold,

it can be immediately reduced to the Boolean UCQ entailment problem (Calvanese

et al. 2008). In the rest of the paper we shall consider DLs without UNA.

2.2 Integrating ontologies and relational databases

The integration of ontologies and relational databases follows the tradition of KR

research on hybrid systems, i.e., those systems which are constituted by two or more

subsystems dealing with distinct portions of a single KB by performing specific

reasoning procedures (Frisch and Cohn 1991). The motivation for investigating

and developing such systems is to improve on two basic features of KR formalisms,

namely representational adequacy and deductive power, by preserving the other crucial

feature, i.e., decidability. Those KR systems that integrate ontologies and relational

databases will be referred to as DL-CL hybrid KR systems in the rest of the paper.

They implement different solutions to the problem of combining DLs and CLs.

Indeed DLs and CLs are FOL fragments incomparable as for the expressiveness

(Borgida 1996) and the semantics (Rosati 2005a) but combinable at different degrees

of integration. The integration is said to be tight when a model of the hybrid KB is

defined as the union of two models, one for the DL part and one for the CL part,

which share the same domain. In particular, combining DLs with CLs in a tight

manner can easily yield to undecidability if the interaction scheme between the DL

and the CL part of a hybrid KB does not fulfill some condition of safeness(Rosati

2005b). Indeed safeness allows to solve the semantic mismatch between DLs and

CLs, namely the OWA for DLs and the CWA for CLs3. In the following we shall

briefly describe two exemplary cases of tightly integrated DL-CL hybrid KR systems:

AL-log (Donini et al. 1998) and Carin (Levy and Rousset 1998). The former is safe

whereas the latter is not.

AL-log (Donini et al. 1998) is a hybrid KR system that integrates ALC (Schmidt-

Schauss and Smolka 1991) and Datalog (Ceri et al. 1989). In particular, variables

occurring in the body of rules may be constrained with ALC concept assertions

to be used as “typing constraints.” This makes rules applicable only to explicitly

2 This problem was called existential entailment in Levy and Rousset (1998).
3 Note that the OWA and CWA have a strong influence on the results of reasoning.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

336 F. A. Lisi

named objects. A further restriction is that only Datalog atoms are allowed in

rule heads. Reasoning for AL-log knowledge bases is based on constrained SLD-

resolution, i.e., an extension of SLD-resolution with a tableau calculus for ALC to

deal with constraints. Constrained SLD-resolution is decidable and runs in single

nondeterministic exponential time. Constrained SLD-refutation is a complete and

sound method for answering ground queries, i.e., conjunctions of ground Datalog

atoms and ALC concept assertions.

A comprehensive study of the effects of combining DLs and CLs can be found in

Levy and Rousset (1998). Here the family Carin of hybrid languages is presented.

Special attention is devoted to the DL ALCNR. The results of the study can

be summarized as follows: (i) answering CQs over ALCNR TBoxes is decidable,

(ii) query answering in a logic obtained by extending ALCNR with nonrecursive

Datalog rules, where both concepts and roles can occur in rule bodies, is also

decidable, as it can be reduced to answering a UCQ, (iii) if rules are recursive, query

answering becomes undecidable, (iv) decidability can be regained by disallowing

certain combinations of constructors in the logic, and (v) decidability can be regained

by requiring rules to be role-safe, where at least one variable from each role literal

must occur in some non-DL-atom. As in AL-log, query answering is decided using

constrained resolution and a modified version of tableau calculus.

2.3 Learning rules with ILP

Inductive Logic Programming was born at the intersection between Logic Pro-

gramming and Concept Learning (Muggleton 1990). From Logic Programming it

has borrowed the KR framework, i.e., Horn Clausal Logic (HCL). From Concept

Learning it has inherited the inferential mechanisms for induction, the most promi-

nent of which is generalization. Concept Learning is concerned with the problem of

automatically inducing the general definition of some concept (called target), given

examples labeled as instances or noninstances of the concept. In ILP the target

is the predicate whose definition is returned by the inductive learning process as

a hypothesis. The definition may consist of one or more clauses. A distinguishing

feature of ILP with respect to other forms of Concept Learning is the use of

prior knowledge of the domain of interest, called background knowledge (BK).

Therefore, induction with ILP generalizes from individual instances/observations in

the presence of BK, finding valid hypotheses. Validity depends on the underlying

setting.

2.3.1 Settings

At present, there exist several formalizations of induction in ILP that can be

classified according to the following two orthogonal dimensions: the scope of

induction (discrimination versus characterization) and the representation of ob-

servations (ground definite clauses versus ground unit clauses) (De Raedt and

Dehaspe 1997). Discriminant induction aims at inducing hypotheses with discriminant

power as required in tasks such as classification where observations encompass

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 337

both positive and negative examples. Characteristic induction is more suitable

for finding regularities in a data set. This corresponds to learning from positive

examples only. For a thorough discussion of differences between discriminant and

characteristic induction see (Michalski 1983). The second dimension affects the

notion of coverage, i.e., the condition under which a hypothesis explains/confirms

an observation. In learning from entailment (also called normal or explanatory ILP

setting), hypotheses are clausal theories, observations are ground definite clauses, and

a hypothesis covers an observation if the hypothesis logically entails the observation

(Frazier and Pitt 1993). In learning from interpretations (also called nonmonotonic or

confirmatory ILP setting), hypotheses are clausal theories, observations are Herbrand

interpretations (ground unit clauses) and a hypothesis covers an observation if the

observation is a model for the hypothesis (De Raedt and Džeroski 1994). Summing

up, when learning from entailment with the aim of discrimination, a hypothesis is

valid (or correct) if it logically entails all positive examples and none of the negative

examples. The former condition of validity is called completeness, whereas the

latter is referred to as consistency. If the scope of induction is characterization,

the condition of consistency is dropped out from the notion of validity due to

the absence of negative examples. The two settings for the case of learning from

interpretations can be defined similarly.

2.3.2 Techniques

In Concept Learning, thus in ILP, generalization is traditionally viewed as search

through a partially ordered space of inductive hypotheses (Mitchell 1982). According

to this vision, an inductive hypothesis is a clausal theory and the induction of a

single clause requires (i) structuring, (ii) searching, and (iii) bounding the space of

clauses (Nienhuys-Cheng and de Wolf 1997).

First, we focus on (i) by clarifying how the algebraic notion of ordering can be

applied to clauses. A generality relation allows for determining which one, between

two clauses, is more general than the other. It defines a preorder (or quasi-order)

on the set of clauses, i.e., a partially ordered set of equivalence classes. One such

ordering is θ-subsumption (Plotkin 1970): Given two clauses C and D, we say that

C θ-subsumes D if there exists a substitution θ, such that Cθ ⊆ D4. Given the

usefulness of BK, orders have been proposed that reckon with it. Among them is

relative subsumption (Plotkin 1971): Given two clauses C and D and a clausal theory

K, we say that C subsumes D relative to K if there exists a substitution θ such that

K |= ∀(Cθ =⇒ D). Also, generalized subsumption (Buntine 1988) is of interest to

this paper: Given two definite clauses C and D standardized apart5 and a definite

program K, we say that C subsumes D w.r.t. K iff there exists a ground substitution

θ for C such that (i) head(C)θ = head(D)σ and (ii) K ∪ body(D)σ |= body(C)θ where

4 This definition relies on the set notation for clauses.
5 Two clauses C and D are said to be standardized apart if they have no variables in common.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

338 F. A. Lisi

σ is a Skolem substitution6 for D with respect to {C} ∪ K. In the general case,

generalized subsumption is undecidable and does not introduce a lattice7 on a set of

clauses. Because of these problems, θ-subsumption is more frequently used in ILP

systems. Yet for Datalog generalized subsumption is decidable and admits a least

general generalization.

Once structured according to a generality order, the space of hypotheses can be

searched (ii) by means of refinement operators. A refinement operator is a function

which computes a set of specializations or generalizations of a clause according

to whether a top-down or a bottom-up search is performed. The two kinds of

refinement operator have been therefore called downward and upward, respectively.

A good refinement operator should satisfy certain desirable properties (van der

Laag 1995). We shall illustrate these properties for the case of downward refinement

operators but analogous conditions are actually required to hold for the upward ones

as well. Ideally, a downward refinement operator should compute only a finite set

of specializations of each clause—otherwise it will be of limited practical use. When

it accomplishes this condition, it is called locally finite. Furthermore, it should be

complete: every specialization should be reachable by a finite number of applications

of the operator. Finally, it is better only to compute proper specializations of a clause,

for otherwise repeated application of the operator might get stuck in a sequence

of equivalent clauses, without ever achieving any real specialization. Operators that

satisfy all these conditions simultaneously are called ideal. It has been shown that

ideal refinement operators do not exist for both full and Horn clausal languages

ordered by either subsumption or the stronger orders (e.g., implication).

In order to define a refinement operator for full clausal languages, it is necessary to

drop one of the three properties of idealness. Since local finiteness and completeness

are usually considered the most important among these properties, this means that

locally finite and complete, but improper refinement operators can be defined for

full clausal languages. On the other hand, in order to retain all the three properties

of idealness, it seems that the only possibility is to restrict the search space. Hence,

the definition of refinement operators is usually coupled with the specification of a

declarative bias for bounding the space of clauses (iii). Bias concerns anything which

constrains the search for theories, e.g., a language bias specifies syntactic constraints

on the clauses in the search space. One such constraint is connectedness: A clause

C is connected if each variable occurring in head(C) also occurs in body(C). The

constraint of linkedness is also widely used: A definite clause C is linked if each

literal li ∈ C is linked. A literal li ∈ C is linked if at least one of its terms is linked.

A term t in some literal li ∈ C is linked with linking chain of length 0, if t occurs

in head(C), and with linking chain of length d + 1, if some other term in li is linked

6 Let B be a clausal theory and C be a clause. Let X1, . . . , Xn be all the variables appearing in C ,
and a1, . . . , an be distinct constants (individuals) not appearing in B or C . Then the substitution
{X1/a1, . . . , Xn/an} is called a Skolem substitution for C w.r.t. B.

7 A lattice is a partially ordered set (also called a poset) in which any two elements have a unique
supremum (the elements’ least upper bound) and an infimum (greatest lower bound).

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 339

with linking chain of length d. The link-depth of a term t in li is the length of the

shortest linking chain of t.

3 Integrating ontologies and databases with DL+LOG
¬∨

The KR framework of DL+log
¬∨ (Rosati 2006) allows for the tight integration

of DLs (Baader et al. 2007) and Datalog
¬∨ (Eiter et al. 1997). More precisely, it

allows a DL KB to be extended with Datalog
¬∨ rules according to the so-called

weak safeness condition as shown in the following.

3.1 Syntax

Formulas in DL+log
¬∨ are built upon three mutually disjoint predicate alphabets:

an alphabet PC of concept names, an alphabet PR of role names, and an alphabet

PD of Datalog predicates. We call a predicate p a DL-predicate if either p ∈ PC or

p ∈ PR. Then, we denote by N a countably infinite alphabet of constant names. An

atom is an expression of the form p(�X), where p is a predicate of arity n and �X is a

n-tuple of variables and constants. If no variable symbol occurs in �X, then p(�X) is

called a ground atom (or fact). If p ∈ PC ∪ PR, the atom is called a DL-atom, while

if p ∈ PD, it is called a Datalog atom.

Definition 1

Given a description logic DL, a DL+log
¬∨ KB B is a pair (Σ,Π), where Σ is a DL

KB and Π is a set of Datalog
¬∨ rules, where each rule R has the form

p1(�X1) ∨ . . . ∨ pn(�Xn)←
r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk), not u1(�W1), . . . , not uh(�Wh) (1)

with n, m, k, h � 0, each pi(�Xi), rj(�Yj), sl(�Zl), uk(�Wk) is an atom and:

• each pi is either a DL-predicate or a Datalog predicate;

• each rj , uk is a Datalog predicate;

• each sl is a DL-predicate;

• (Datalog-safeness) every variable occurring in R must appear in at least one

of the atoms r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk);

• (weak DL-safeness) every head variable of R must appear in at least one of

the atoms r1(�Y1), . . . , rm(�Ym).

We remark that the condition of weak DL-safeness allows for the presence of

variables that only occur in DL-atoms in the body of R. This condition allows to

overcome the main representational limits of the safe approaches by keeping the

integration scheme still decidable. Indeed, the notion of DL-safeness proposed in

Motik et al. (2005) can be expressed as follows: every variable of R must appear

in at least one of the atoms r1(�Y1), . . . , rm(�Ym). Therefore, DL-safeness forces every

variable of R to occur also in the Datalog atoms in the body of R. This disables the

possibility of expressing CQs and UCQs. By weakening the DL-safeness condition,

this possibility can be enabled. For these reasons, DL+log
¬∨ is located between

AL-log and Carin along the expressivity line.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

340 F. A. Lisi

Without loss of generality, we can assume that in a DL+log
¬∨ KB (Σ,Π) all

constants occurring in Σ also occur in Π.

Example 1

Let us consider a DL+log
¬∨ KB B (adapted from Rosati 2006) integrating the

following DL-KB Σ (ontology about persons)

[A1] PERSON � ∃ FATHER−.MALE
[A2] MALE � PERSON

[A3] FEMALE � PERSON

[A4] FEMALE � ¬MALE
MALE(Bob)

PERSON(Mary)

PERSON(Paul)

FATHER(John,Paul)

and the following Datalog
¬∨ program Π (database about students):

[R1] boy(X) ← enrolled(X,c1,ft), PERSON(X), not girl(X)

[R2] girl(X) ← enrolled(X,c2,ft), PERSON(X)

[R3] boy(X)∨ girl(X) ← enrolled(X,c3,ft), PERSON(X)

[R4] FEMALE(X) ← girl(X)

[R5] MALE(X) ← boy(X)

[R6] man(X) ← enrolled(X,c3,pt), FATHER(X,Y)

enrolled(Paul,c1,ft)

enrolled(Mary,c1,ft)

enrolled(Mary,c2,ft)

enrolled(Bob,c3,ft)

enrolled(John,c3,pt)

encompassing rules that mix DL-literals and Datalog-literals. The rule [R3], e.g.,

says that: If X is a PERSON enrolled in the course c3 as a full-time student (ft), then

X is either a boy or a girl. The rule [R6] says that: If X is a FATHER (of some Y)

enrolled in the course c3 as a part-time student (pt), then X is a man. Notice that

the variable Y in R6 is weakly safe but not DL-safe, since Y does not occur in any

Datalog literal of R6.

3.2 Semantics

For DL+log
¬∨ two semantics have been defined: a FOL semantics and a NM

semantics. The FOL semantics does not distinguish between head atoms and negated

body atoms. Thus, the rule (1) is equivalent to

p1(�X1) ∨ . . . ∨ pn(�Xn) ∨ u1(�W1) ∨ . . . ∨ uh(�Wh)←
r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk) (2).

The NM semantics is based on the stable model semantics of Datalog
¬∨. According

to it, DL-predicates are still interpreted under OWA, while Datalog predicates are

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 341

interpreted under CWA. Notice that, under both semantics, entailment can be

reduced to satisfiability, since it is possible to express constraints in the Datalog

program. In particular, it is immediate to verify the following theorem on ground

query answering (Rosati 2006).

Theorem 1

Given a DL+log
¬∨ KB (Σ,Π) and a ground atom α, (Σ,Π) |= α iff (Σ,Π ∪ {← α})

is unsatisfiable.

Analogously, CQ answering can be reduced to satisfiability in Datalog
¬∨, more

precisely it can be performed by means of multiple satisfiability tests. Consequently,

Rosati (2006) concentrates on the satisfiability problem in DL+log
¬∨ KBs. It has

been shown that, when the rules are made out of Datalog
∨ (i.e., without negated

atoms), the above two semantics are equivalent with respect to the satisfiability

problem. In particular, FOL-satisfiability can always be reduced (in linear time) to

NM-satisfiability by rewriting rules from the form (1) to the form (2). Hence, only

the satisfiability problem under the NM semantics is deeply treated in Rosati (2006).

Example 2

With reference to Example 1, it can be easily verified that all NM-models for B
satisfy the following ground atoms:

(1) boy(Paul) (since rule [R1] is always applicable for {X/Paul} and [R1] acts

like a default rule, which can be read as follows: if X is a person enrolled in

course c1, then X is a boy, unless we know for sure that X is a girl);

(2) girl(Mary) (since rule [R2] is always applicable for {X/Mary});
(3) boy(Bob) (since rule [R3] is always applicable for {X/Bob}, and, by rule [R4],

the conclusion girl(Bob) is inconsistent with Σ);

(4) MALE(Paul) (due to rule [R5] and conclusion 1);

(5) FEMALE(Mary) (due to rule [R4] and conclusion 2).

Notice that B |=NMFEMALE(Mary), while Σ �|=FOL FEMALE(Mary). In other words,

adding rules has indeed an effect on the conclusions one can draw about DL-

predicates. Moreover, such an effect also holds under the FOL semantics of

DL+log-KBs, since it can be verified that B |=FOLFEMALE(Mary) in this case.

3.3 Reasoning

The problem statement of NM-satisfiability for finite DL+log
¬∨ KBs relies on the

aforementioned Boolean CQ/UCQ containment problem for the DL part and on the

so-called DL-grounding of the Datalog
¬∨ component. In particular, DL-grounding

is an adaptation of the grounding operation used in stable model semantics to the

DL+log
¬∨ case.

Given a DL+log
¬∨ KB B = (Σ,Π), we denote by CΠ the set of constants occurring

in Π. The DL-grounding of Π, denoted as grp(Π), is a set of Boolean CQs obtained

by grounding all and only the DL-parts of rule bodies and the DL-atoms appearing

in rule heads in Π with respect to the constants in CΠ. Note that grounding in

grp(Π) is partial, since the variables that only occur in DL-atoms in the body of

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

342 F. A. Lisi

Fig. 1. The algorithm NMSAT-DL+log (Rosati 2006).

rules are not replaced by constants in grp(Π). Similarly to grp(Π), we define the

partial grounding of Π on CΠ, denoted as pgr(Π, CΠ), as the program obtained from

Π by grounding with the constants in CΠ all variables except for the existential

variables of rules that only occur in DL-atoms. Finally, given a partition (GP ,GN)

of grp(Π), we denote by Π(GP ,GN) the ground Datalog
¬∨ program obtained from

pgr(Π, CΠ) by taking into account the two sets GP and GN so that no DL-predicate

occurs in such a program.

Let G be a set of Boolean CQs. Then, we denote by CQ(G) (resp. UCQ(G))

the Boolean CQ (resp. UCQ) corresponding to the conjunction (resp. disjunction)

of all the Boolean CQs in G. The algorithm NMSAT-DL+log for deciding NM-

satisfiability of DL+log
¬∨ KBs has a very simple structure (see Fig. 1). It guesses a

partition (GP ,GN) of grp(Π) that is consistent with the DL-KB Σ = (T ,A) (Boolean

CQ/UCQ containment problem) and such that Π(GP ,GN) has a stable model. More

details can be found in Rosati (2006).

The decidability of reasoning, thus of ground query answering, in DL+log
¬∨

depends on the decidability of the Boolean CQ/UCQ containment problem in DL.

Theorem 2

For any DL, satisfiability of DL+log
¬∨ KBs (under both FOL and NM semantics)

is decidable iff Boolean CQ/UCQ containment is decidable in DL (Rosati 2006).

From Theorem 2 and from previous results on query answering and query con-

tainment in DLs, it follows the decidability of reasoning in several instantiations

of DL+log
¬∨. In all these decidable cases, ground queries can be answered by

applying NMSAT-DL+log.

The complexity of reasoning in DL+log
¬∨ depends on the specific DL chosen for

instantiating the framework. We remind the reader to Rosati (2006) for the analysis

of some cases.

4 Inducing database views in DL+LOG
¬ with ILP

In this section we consider the problem of defining a new view in a database whose

schema is partly represented by an ontology. We suppose that there are tuples

known to belong to the view as well as tuples known not to belong to the view. Cast

in the DL+log
¬ framework, this problem boils down to the problem of building

DL+log
¬ rules defining a Datalog predicate p which stands for the view name.

Tuples are ground Datalog facts that are true for p if they belong to the view, false

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 343

otherwise. The database problem of interest can be reformulated as the following

problem of discriminant induction.

Definition 2

Given:

• a Datalog database Π and a DL ontology Σ integrated into a DL+log
¬ KB

B (background theory);

• a Datalog predicate p (target predicate);

• a set O of ground Datalog facts that are either true or false for p (examples);

and

• a set L of constraints on the form of DL+log
¬ definitions for p (language of

hypotheses)

the problem of defining the view of name p is to induce a set H ⊂ L (hypothesis) of

DL+log
¬ rules from O and B such that H explains O by taking B into account.

We assume that the background theory B in Definition 2 is a DL+log
¬ KB which

consists of an intensional part K (i.e., the TBox T plus the set ΠR of rules) and an

extensional part F (i.e., the ABox A plus the set ΠF of facts). Also we denote by

PC(B), PR(B), and PD(B) the sets of concept, role and Datalog predicate names

occurring in B, respectively. Note that p �∈ PD(B).

Example 3

Throughout this section we shall consider a database Π in the form of the following

Datalog
¬ program:

famous(Mary)

famous(Paul)

famous(Joe)

scientist(Joe)

containing also the rule

[R1] RICH(X) ← famous(X), not scientist(X)

linking the database to the ontology Σ expressed as the following DL KB:

[A1] RICH	UNMARRIED � ∃ WANTS-TO-MARRY−.�
[A2] WANTS-TO-MARRY�LOVES

UNMARRIED(Mary)

UNMARRIED(Joe)

Note that Π and Σ can be integrated into a DL+log
¬ KB B (adapted from Rosati

2006) that concerns the individuals Mary, Joe, and Paul and builds upon the al-

phabets PC(B) = {RICH/1, UNMARRIED/1}, PR(B) = {WANTS-TO-MARRY/2, LOVES/2},
and PD(B) = {famous/1, scientist/1}.

The language L of hypotheses in Definition 2 must allow for the generation of

DL+log
¬ rules starting from three disjoint alphabets PC(L) ⊆ PC(B), PR(L) ⊆

PR(B), and PD(L) ⊆ PD(B). Also we distinguish between P+
D

(L) and P−
D

(L) in order

to specify which Datalog predicates can occur in positive and negative literals,

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

344 F. A. Lisi

respectively. More precisely, we consider DL+log
¬ rules of the form

p(�X)← r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk), not u1(�W1), . . . , not uh(�Wh)

where the unique literal p(�X) in the head is formed out of a Datalog-predicate p

which represents the target predicate. Note that the conditions of linkedness and

connectedness usually assumed in ILP are guaranteed by the conditions of Datalog

safeness and weak DL safeness valid in DL+log
¬∨.

Example 4

Suppose that the Datalog-predicate happy is the target and the set P+
D

(Lhappy) ∪
PC(Lhappy) ∪ PR(Lhappy) = {famous/1, RICH/1, LOVES/2, WANTS-TO-MARRY/2} pro-

vides the building blocks for the language Lhappy. The following DL+log
¬ rules

R
happy
1 happy(X) ← famous(X)

R
happy
2 happy(X) ← famous(X), RICH(X)

R
happy
3 happy(X) ← famous(X), LOVES(Y,X)

R
happy
4 happy(X) ← famous(X), WANTS-TO-MARRY(Y,X)

belonging to Lhappy can be considered definitions for the target predicate happy.

The set O of observations in Definition 2 contains facts of the kind p(�ai) where p

is the target predicate and �ai is a tuple of individuals occurring in the ABox A. We

assume B∩O = ∅. Furthermore, the description of each observation oi ∈ O is in the

background theory and may be incomplete due to the inherent nature of DL+log
¬.

Therefore, the normal ILP setting is the most appropriate to the learning problem

in hand and can be extended to DL+log
¬ as follows.

Definition 3

Let R ∈ L be a DL+log
¬ rule, B a DL+log

¬ KB, p the target predicate, and

oi = p(�ai) ∈ O a ground Datalog fact. We say that R covers oi under entailment

w.r.t. B iff B ∪ R |= p(�ai).

Note that the coverage test can be reduced to query answering in DL+log
¬ KBs

which in turn can be reformulated as a satisfiability problem of the KB.

Example 5

The rule R
happy
4 mentioned in Example 4 covers the observation oMary = happy(Mary)

because B ∪ R
happy
4 |= happy(Mary). Indeed, all NM-models for B′ = B ∪ R

happy
4

satisfy:

• famous(Mary) is in B;

• ∃ WANTS-TO-MARRY−.�(Mary), due to the axiom [A1] and to the fact that both

RICH(Mary) and UNMARRIED(Mary) hold in every model of B′. In particular,

RICH(Mary) holds because of [R1];

• happy(Mary), due to the above conclusions and to the rule R
happy
4 . Indeed,

since ∃WANTS-TO-MARRY−.�(Mary) holds in every model of B′, it follows that

in every model there exists a constant x such that WANTS-TO-MARRY(x,Mary)

holds in the model, consequently from R
happy
4 it follows that happy(Mary) also

holds in the model.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 345

Note that R
happy
4 does not cover the observations oJoe = happy(Joe) and oPaul =

happy(Paul). More precisely, B′ �|= happy(Joe) because scientist(Joe) holds in

every model of B′, thus making the rule [R1] not applicable for {X/Joe}, therefore

RICH(Joe) not derivable. Finally, B′ �|= happy(Paul) because UNMARRIED(Paul) is

not forced to hold in every model of B′, therefore ∃WANTS-TO-MARRY−.�(Paul) is

not forced by [A1] to hold in every such model.

It can be proved that also R
happy
3 covers only oMary, while R

happy
1 covers all the

three observations and R
happy
2 covers oMary and oPaul only.

In order to support the induction of DL+log
¬ rules with ILP techniques, the

language L of hypotheses needs to be equipped with a generality order � so

that (L,�) is a search space. Therefore, the next two subsections, Section 4.1 and

Section 4.2, are devoted to suggested techniques for structuring and searching the

hypothesis space, respectively. Conversely, Section 4.3 sketches an ILP algorithm

employing these techniques to solve the original problem of inducing database views.

4.1 The hypothesis space

The definition of a generality order for hypotheses in L must consider the pe-

culiarities of DL+log
¬. One issue arises from the presence of NAF literals (i.e.,

negated Datalog literals) both in the background theory and in the language of

hypotheses. As pointed out in Sakama (2001), rules in normal logic programs are

syntactically regarded as Horn clauses by viewing the NAF-literal ¬p(X) as an

atom not p(X) with the new predicate not p. Then any result obtained in ILP on

Horn logic programs is directly carried over to normal logic programs. Assuming

one such treatment of NAF literals, we propose to adapt generalized subsumption

(Buntine 1988) to the case of DL+log
¬ rules and provide a characterization of the

resulting generality order, denoted by �¬K, that relies on the reasoning tasks known

for DL+log
¬∨ and from which a test procedure can be derived.

Definition 4

Let R1, R2 ∈ L be two DL+log
¬ rules standardized apart, K a DL+log

¬ KB, and

σ a Skolem substitution for R2 with respect to {R1} ∪ K. We say that R1 is more

general than R2 w.r.t. K, denoted by R1 �¬K R2, iff there exists a ground substitution

θ for R1 such that (i) head(R1)θ = head(R2)σ and (ii) K ∪ body(R2)σ |= body(R1)θ.

We say that R1 is strictly more general than R2 w.r.t. K, denoted by R1 �¬K R2, iff

R1 �¬K R2 and R2 ��¬K R1. We say that R1 is equivalent to R2 w.r.t. K, denoted by

R1 ≡¬K R2, iff R1 �¬K R2 and R2 �¬K R1.

Note that condition (ii) is a variant of the Boolean CQ/UCQ containment problem

because body(R2)σ and body(R1)θ are both Boolean CQs. The difference between (ii)

and the original formulation of the problem is that K encompasses not only a TBox

but also a set of rules. Nonetheless this variant can be reduced to the satisfiability

problem for finite DL+log
¬ KBs. Indeed the skolemization of body(R2) allows to

reduce the Boolean CQ/UCQ containment problem to a CQ answering problem.

Due to the aforementioned link between CQ answering and satisfiability, checking (ii)

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

346 F. A. Lisi

can be reformulated as proving that the KB (T ,ΠR ∪ body(R2)σ ∪ {← body(R1)θ})
is unsatisfiable. Once reformulated this way, (ii) can be solved by applying the

algorithm NMSAT-DL+log.

Example 6

Let us consider the hypotheses

R
happy
1 happy(A) ← famous(A)

R
happy
2 happy(X) ← famous(X), RICH(X)

reported in Example 4 up to variable renaming. We want to check whether

R
happy
1 �¬K R

happy
2

holds. Let σ = {X/a} be a Skolem substitution for R
happy
2 with respect to K ∪ Rhappy

1

and θ = {A/a} a ground substitution for R
happy
1 . Both conditions of Definition 4 are

immediately verified. Thus, R
happy
1 �¬K R

happy
2 . Since the viceversa does not hold, we

can say that R
happy
1 �¬K R

happy
2 . Analogously, it can be proved that R

happy
1 �¬K R

happy
3

and R
happy
1 �¬K R

happy
4 . Also, it turns out that R

happy
2 is incomparable under �¬K with

R
happy
3 and R

happy
4 . Finally, it can be proved that R

happy
3 �¬K R

happy
4 . In particular, the

condition (ii) K∪{famous(a), WANTS-TO-MARRY(b,a)} |= {famous(a), LOVES(b,a)}
is nothing else that a ground query answering problem in DL+log

¬. The entailment

is guaranteed by the axiom [A2].

It can be proved that �¬K is a decidable quasi-order (i.e., it is a reflexive and

transitive relation) for DL+log
¬ rules. In particular, the decidability of �¬K follows

from the decidability of DL+log
¬.

4.2 A refinement operator

As pointed out in Section 4.1, the space (L,�¬K) is a quasi-ordered set, therefore it

can be searched by refinement operators. In the following, we define a downward

refinement operator for a DL+log
¬ language.

Definition 5

Let L be a DL+log
¬ language of hypotheses built out of the three finite and

disjoint alphabets PC(L), PR(L), and P+
D

(L) ∪ P−
D

(L), and

p(�X)← r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk), not u1(�W1), . . . , not uh(�Wh)

be a rule R belonging to L. We define a downward refinement operator ρ¬ for (L,�K)

such that the set ρ¬(R) contains all R′ ∈ L that can be obtained from R by applying

one of the following refinement rules:

〈AddDataLit B+〉 body(R′) = body(R) ∪ {rm+1(�Ym+1)} if

(1) rm+1 ∈ P+
D

(L)

(2) rm+1(�Ym+1) �∈ body(R)

〈AddDataLit B−〉 body(R′) = body(R) ∪ {not um+1(�Wh+1)} if

(1) uh+1 ∈ P−
D

(L)

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 347

(2) uh+1(�Wh+1) �∈ body(R)

〈AddOntoLit B〉 body(R′) = body(R) ∪ {sk+1(�Zk+1)} if

(2) sk+1 ∈ PC(L) ∪ PR(L)

(2) it does not exist any sl ∈ body(H) such that sk+1 � sl

〈SpecOntoLit B〉 body(R′) = (body(R) \ {sl(�Zl)}) ∪ s′l(
�Zl) if

(1) s′l ∈ PC(L) ∪ PR(L)

(2) s′l � sl

All the rules of ρ¬ are correct, i.e., the R′s obtained by applying any of the rules of

ρ¬ to R ∈ L are such that R �¬K R′. This can be proved intuitively by observing that

they act only on body(R). Thus condition (i) of Definition 4 is satisfied. Furthermore,

it is straightforward to notice that the application of any of the rules of ρ¬ to R

reduces the number of models of R. In particular, as for 〈SpecOntoLit〉, this intuition

follows from the semantics of DLs. So condition (ii) also is fulfilled.

Example 7

With reference to Example 4, applying the refinement rule 〈AddDataLit B+〉 to

R
happy
0 happy(X) ←

produces R
happy
1 which can be further specialized into R

happy
2 , R

happy
3 , and R

happy
4 by

means of 〈AddOntoLit B〉. Note that no other refinement rule can be applied to

R
happy
1 and that R

happy
4 can be also obtained as refinement via 〈SpecOntoLit B〉 from

R
happy
3 .

Ideal refinement operators have been proven not to exist for clausal languages

ordered by θ-subsumption or stronger orders but can be approximated by dropping

the requirement of properness or by bounding the language (Nienhuys-Cheng and

de Wolf 1997). We choose the latter option because it guarantees that, if (L,�) is

a quasi-ordered set, L is finite and � is decidable, then there always exists an ideal

refinement operator for (L,�). In our case, since �¬K is a decidable quasi-order for

any DL with decidable Boolean CQ/UCQ containment problem, we only need to

bound L in a suitable manner. From Definition 5 we know that the alphabets PC(L),

PR(L), and P+
D

(L) ∪ P−
D

(L) are finite. Having Datalog as basis for the CL part

of DL+log
¬ avoids the generation of infinite terms. Yet, the expressive power of

DL+log
¬ requires several other bounds to be imposed on L in order to guarantee its

finiteness. It is necessary to introduce a complexity measure for DL+log
¬ rules, as

a pair of two different coordinates. Considering that the complexity of a DL+log
¬

rule resides in its body, the former coordinate is the size (i.e., the difference between

the number of symbol occurrences and the number of distinct variables) of the

biggest literal in body(R), while the latter is the number of literals in body(R). To

keep L finite, we need first to set a maximum value for these two coordinates.

Second, it is necessary to set the maximum number of specialization/generalization

steps of the DL literals so that the search in the ontology is also depth-bounded.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

348 F. A. Lisi

Fig. 2. Main procedure of NMLEARN-DL+log
¬.

4.3 An algorithm

The algorithm in Figure 2 defines the main procedure of NMLEARN-DL+log
¬.

Notice that the outer loop (4–14) corresponds to a variant of the sequential covering

algorithm, i.e., it learns new rules one at a time, removing the positive examples

covered by the latest rule before attempting to learn the next rule (13). The hypothesis

space search performed by NMLEARN-DL+log
¬ is best understood by viewing

it hierarchically. Each iteration through the outer loop (4–14) adds a new rule

to its disjunctive hypothesis H. The effect of each new rule is to generate the

current disjunctive hypothesis (i.e., to increase the number of instances it classifies as

positive), by adding a new disjunct. Viewed at this level, the search is a bottom-up

search through the space of hypotheses, beginning with the most specific empty

disjunction (1) and terminating when the hypothesis is sufficiently general to cover

all positive training examples (14). The inner loop (7–11) performs a finer-grained

search to determine the exact definition of each new rule. This loop searches a second

hypothesis space, consisting of conjunctions of literals, to find a conjunction that will

form the preconditions for the new rule. Within this space, it conducts a top-down,

hill-climbing search, beginning with the most general preconditions possible (5), then

adding literals one at a time to specialize the rule (7) until it avoids all negative

examples. To select the most promising specialization from the candidates generated

at each step (9), NMLEARN-DL+log
¬ considers the performance of the rule over

the training examples, i.e., it maximizes the number of positive examples covered

while keeping the number of negative examples covered as low as possible.

Example 8

With reference to Example 7 and Example 5, we suppose that

E+ = {oMary, oJoe}
E− = {oPaul}

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 349

The outer loop of the algorithm NMLEARN-DL+log
¬ starts from

R
happy
0 happy(X) ←

which is further refined through the iterations of the inner loop, more precisely it is

first specialized into

R
happy
1 happy(X) ← famous(X)

which in turn, since it covers negative examples, is then specialized into

R
happy
2 happy(X) ← famous(X), RICH(X)

R
happy
3 happy(X) ← famous(X), LOVES(Y,X)

R
happy
4 happy(X) ← famous(X), WANTS-TO-MARRY(Y,X)

out of which the rule R
happy
3 is selected as the best and added to the hypothesis

because it does not cover negative examples. Note that R
happy
3 is preferred to R

happy
4

because it is more general.

5 Inducing database constraints in DL+LOG
¬∨ with ILP

In this section we face the problem of inducing an integrity theory H for a database

Π whose instance ΠF is given and whose schema K encompasses an ontology Σ and

a set ΠR of rules linking the database to the ontology. We assume that Π and Σ

shares a common set of constants so that they can constitute a DL+log
¬∨ KB B.

Definition 6

Given:

• an intensional Datalog database ΠR and a DL ontology Σ integrated into a

DL+log
¬∨ KB K (background theory);

• a set O = ΠF of ground Datalog facts (observation); and

• a set L of constraints on the form of DL+log
¬∨ rules to be induced (language

of hypotheses)

the problem of defining an integrity theory for ΠF is to induce a set H ⊂ L
(hypothesis) of DL+log

¬∨ rules from O and K such that H confirms O by taking

K into account.

Note that, as opposite to the learning problem formally stated in Definition 2, the

background theory in Definition 6 is a DL+log
¬∨ KB K which does not include

the extensional part ΠF of the database. Indeed ΠF plays the role of the unique

observation from which the learning process should induce a theory H. Conversely,

similarly to Section 4, we denote by PC(B), PR(B), and PD(B) the sets of concept, role

and Datalog predicate names occurring in B, respectively, assuming that B = Σ∪Π.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

350 F. A. Lisi

Example 9

Throughout this section we shall refer to a database about students in the form of a

Datalog
¬∨ program Π which consists of an extensional part ΠF with the following

facts:

boy(Paul)

girl(Mary)

enrolled(Paul,c1)

enrolled(Mary,c1)

enrolled(Mary,c2)

enrolled(Bob,c3)

and an intensional part ΠR with the following rules:

[R1] FEMALE(X) ← girl(X)

[R2] MALE(X) ← boy(X)

linking the database to an ontology about persons expressed as the following DL
KB Σ:

[A1] PERSON � ∃ FATHER−.MALE
[A2] MALE � PERSON

[A3] FEMALE � PERSON

[A4] FEMALE � ¬MALE
MALE(Bob)

PERSON(Mary)

PERSON(Paul)

Note that Π and Σ can be integrated into a DL+log
¬∨ KB B (adapted from

Rosati 2006) that concerns the individuals Bob, Mary, and Paul and builds upon

the alphabets PC(B) = {FEMALE/1, MALE/1, PERSON/1}, PR(B) = {FATHER/2}, and

PD(B) = {boy/1, girl/1, enrolled/2}.

The language L of hypotheses in Definition 6 must allow for the generation of

DL+log
¬∨ rules starting from three disjoint alphabets PC(L) ⊆ PC(B), PR(L) ⊆

PR(B), and PD(L) ⊆ PD(B). Analogously to Section 4, we distinguish between P+
D

(L)

and P−
D

(L) in order to specify which Datalog predicates can occur in positive and

negative literals, respectively.

Example 10

The following DL+log
¬∨ rules:

PERSON(X) ← enrolled(X,c1)

boy(X) ∨ girl(X) ← enrolled(X,c1)

← enrolled(X,c2), MALE(X)

← enrolled(X,c2), not girl(X)

MALE(X) ← enrolled(X,c3)

belong to the language L built upon the alphabets PC(L) = PC(B), PR(L) = ∅,
P+

D
(L) = {boy/1, girl/1, enrolled(,c1), enrolled(,c2), enrolled(,c3)},

and P−
D

(L) = {boy/1, girl/1}.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 351

The scope of induction in the learning problem of interest is characterization

because we are looking for a theory which confirms the observation. Also, since a

DL+log
¬∨ KB may be incomplete due to the inherent nature of this KR framework,

the most appropriate setting for induction is the one for learning from entailment.

The coverage test proposed in the following generalizes the case illustrated in

Definition 3 to observations which are not singletons of facts.

Definition 7

Let R ∈ L be a DL+log
¬∨ rule, K a DL+log

¬∨ KB, and O = {pi(�ai)} a set

of ground Datalog facts. We say that R covers O under entailment w.r.t. K iff

K ∪ R |=
∧
pi(�ai).

It is immediate to notice that the coverage test of Definition 7 can be reduced

to Boolean CQ answering in DL+log
¬∨ KBs and therefore to a NM-satisfiability

problem.

In the following we sketch the ingredients for an ILP system able to discover such

integrity theories on the basis of NMSAT-DL+log.

5.1 The hypothesis space

The order of relative subsumption (Plotkin 1971) is suitable for extension to

DL+log
¬∨ rules because it can cope with arbitrary clauses and admit an arbitrary

finite set of clauses as the background theory.

Definition 8

Let R1, R2 ∈ L be two DL+log
¬∨ rules, and K a DL+log

¬∨ KB. We say that R1

is more general than R2 w.r.t. K, denoted by R1 �¬∨K R2, if there exists a substitution

θ such that K |= ∀(R1θ =⇒ R2). We say that R1 is strictly more general than R2

w.r.t. K, denoted by R1 �¬∨K R2, iff R1 �¬∨K R2 and R2 ��¬∨K R1. We say that R1 is

equivalent to R2 w.r.t. K, denoted by R1 ≡¬∨K R2, iff R1 �¬∨K R2 and R2 �¬∨K R1.

Example 11

Let us consider the following DL+log
¬∨ rules belonging to the language L specified

in Example 10:

R1 boy(X) ← enrolled(X,c1)

R2 boy(A) ∨ girl(A) ← enrolled(A,c1)

It can be easily proved that R1 �¬∨K R2. Let θ = {X/A} be the substitution to be

applied to R1 and let us suppose that, for every A, if A is enrolled in the course c1,

then A is a boy (i.e., the rule R1θ is true), thus we can also say that A is either a boy

or a girl (i.e., the rule R2 is true). Note that R2 ��¬∨K R1.

Let us now consider the following DL+log
¬∨ rules also belonging to L:

R3 MALE(X) ← enrolled(X,c1)

R4 PERSON(A) ← enrolled(A,c1)

In order to prove that R3 �¬∨K R4, we apply θ = {X/A} to R3 and suppose that,

for every A, if A is enrolled in the course c1, then A is a MALE (i.e., the rule R1θ is

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

352 F. A. Lisi

true). Due to axiom [A2] occurring in the ontology Σ reported in Example 9, A is a

PERSON (i.e., the rule R4 is true). It is immediate to verify that R3 �¬∨K R4.

The generality relation defined by �¬∨K is a quasi-order on DL+log
¬∨ rules,

therefore the resulting space (L,�¬∨K) can be searched by means of refinement

operators.

5.2 The refinement operator

A refinement operator for (L,�¬∨K) should generate DL+log
¬∨ rules good at

expressing integrity constraints. Since we assume the database Π and the ontology

Σ to be correct, a rule R must be modified to make it satisfiable by Π ∪ Σ by either

(i) strengthening body(R) or (ii) weakening head(R).

Definition 9

Let L be a DL+log
¬∨ language of hypotheses built out of the three finite and

disjoint alphabets PC(L), PR(L), and P+
D

(L) ∪ P−
D

(L), and

p1(�X1) ∨ . . . ∨ pn(�Xn)←
r1(�Y1), . . . , rm(�Ym), s1(�Z1), . . . , sk(�Zk), not u1(�W1), . . . , not uh(�Wh)

be a rule R belonging to L. We define a downward refinement operator ρ¬∨ for

(L,�K) such that the set ρ¬∨(R) contains all R′ ∈ L that can be obtained from R

by applying one of the following refinement rules:

〈AddDataLit B+〉 body(R′) = body(R) ∪ {rm+1(�Ym+1)} if

(1) rm+1 ∈ P+
D

(L)

(2) rm+1(�Ym+1) �∈ body(R)

〈AddDataLit B−〉 body(R′) = body(R) ∪ {not um+1(�Wh+1)} if

(1) uh+1 ∈ P−
D

(L)

(2) uh+1(�Wh+1) �∈ body(R)

〈AddOntoLit B〉 body(R′) = body(R) ∪ {sk+1(�Zk+1)} if

(1) sk+1 ∈ PC(L) ∪ PR(L)

(2) it does not exist any sl ∈ body(H) such that sk+1 � sl

〈SpecOntoLit B〉 body(R′) = (body(R) \ {sl(�Zl)}) ∪ s′l(
�Zl) if

(1) s′l ∈ PC(L) ∪ PR(L)

(2) s′l � sl

〈AddDataLit H〉 head(R′) = head(R) ∪ {pn+1(�Xn+1)} if

(1) pn+1 ∈ P+
D

(L)

(2) pn+1(�Xn+1) �∈ head(R)

〈AddOntoLit H〉 head(R′) = head(R) ∪ {pn+1(�Xn+1)} if

(1) pn+1 ∈ PC(L) ∪ PR(L)

(2) it does not exist any pi ∈ head(R) such that pn+1 � pi

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 353

〈GenOntoLit H〉 head(R′) = (head(R) \ {pi(�Xi)}) ∪ p′i(
�Xi) if

(1) p′i ∈ PC(L) ∪ PR(L)

(2) pi � p′i

Note that, since we are working under NM-semantics, two distinct rules, namely

〈AddDataLit B−〉 and 〈AddDataLit H〉, are devised for adding negated Datalog

atoms to the body and for adding Datalog atoms to the head, respectively. It can

be proved that all the rules of ρ¬∨ are correct, i.e. the R′’s obtained by applying

any of the rules of ρ¬∨ to R ∈ L are such that R �¬∨K R′. Intuitively, it is sufficient

to observe that the application of any of the rules of ρ¬∨ conceived to strengthen

body(R) reduces the number of models of R whereas the rules aiming at weakening

head(R), when applied, do not augment the number of models of R.

Example 12

From the rule belonging to the language L specified in Example 10:

← enrolled(X,c1)

we obtain the following rules by applying 〈AddDataLit B+〉:

← enrolled(X,c1), boy(X)

← enrolled(X,c1), girl(X)

← enrolled(X,c1), enrolled(X,c2)

← enrolled(X,c1), enrolled(X,c3)

the following ones by applying 〈AddDataLit B−〉:

← enrolled(X,c1), not boy(X)

← enrolled(X,c1), not girl(X)

the following ones by applying 〈AddOntoLit B〉:

← enrolled(X,c1), PERSON(X)

← enrolled(X,c1), FEMALE(X)

← enrolled(X,c1), MALE(X)

the following ones by applying 〈AddDataLit H〉:

boy(X) ← enrolled(X,c1)

girl(X) ← enrolled(X,c1)

enrolled(X,c2) ← enrolled(X,c1)

enrolled(X,c3) ← enrolled(X,c1)

and the following ones:

PERSON(X) ← enrolled(X,c1)

FEMALE(X) ← enrolled(X,c1)

MALE(X) ← enrolled(X,c1)

by applying 〈AddOntoLit H〉.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

354 F. A. Lisi

Fig. 3. Main procedure of NMDISC-DL+log
¬∨.

5.3 The algorithm

The integrity theory H we would like to discover is a set of DL+log
¬∨ rules. It

must be induced by taking the background theory K = Σ ∪ ΠR into account so

that B = (Σ,Π ∪H) is a NM-satisfiable DL+log
¬∨ KB. The algorithm in Figure 3

defines the main procedure of NMDISC-DL+log
¬∨: it starts from an empty theory

H (1), and a queue Q containing only the empty clause (2). It then applies a search

process (3) where each element R is deleted from the queue Q (4), and tested for

satisfaction w.r.t. the data ΠF by taking into account the background theory K and

the current integrity theory H (5). Note that the NM-satisfiability test includes also

the current induced theory in order to deal with the nonmonotonicity of induction

in the normal ILP setting. If the rule R is satisfied by the database (6), it is added to

the theory (7). If the rule is violated by the database, its refinements according to L
are considered (8). The search process terminates when Q becomes empty (9). Note

that the algorithm does not specify the search strategy. In order to get a minimal

theory (i.e., without redundant clauses), a pruning step and a post-processing phase

can be added to NMDISC-DL+log
¬∨ by further calling NMSAT-DL+log

8.

Example 13

With reference to Example 12, the following DL+log
¬∨ rule:

PERSON(X) ← enrolled(X,c1)

is the only one passing the NM-satisfiability test at step (5) of the algorithm

NMDISC-DL+log
¬∨. It is added to the integrity theory. All the other rules are

further refined. When the learning process ends at step (9) because the queue of

rules has become empty, the integrity theory will encompass the rules reported in

Example 10 because they are satisfied by the database.

6 Related work

Very few ILP frameworks have been proposed so far that adopt a hybrid DL-

CL representation for both hypotheses and background knowledge (Rouveirol and

8 Based on the following consequence of the Deduction Theorem in FOL: Given a KB B and a rule R
in DL+log

¬∨, we have that B |= R iff B ∧ ¬R is unsatisfiable.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 355

Ventos 2000; Kietz 2003; Lisi 2008; Lisi and Esposito 2008). They are less or

differently expressive than the one presented in this paper.

The framework proposed in Rouveirol and Ventos (2000) focuses on discriminant

induction and adopts the ILP setting of learning from interpretations. Hypotheses

are represented as Carin-ALN nonrecursive rules with a Horn literal in the head

that plays the role of target concept. The coverage relation of hypotheses against

examples adapts the usual one in learning from interpretations to the case of hybrid

Carin-ALN BK. The generality relation for hypotheses is defined as an extension

of generalized subsumption. Procedures for testing both the coverage relation and

the generality relation are based on the existential entailment algorithm of Carin.

Following Rouveirol and Ventos (2000), Kietz studies the learnability of Carin-

ALN , thus providing a preprocessing method which enables ILP systems to learn

Carin-ALN rules (2003).

In Lisi (2008), the representation and reasoning means come from AL-log.

Hypotheses are represented as constrained Datalog clauses. Note that this frame-

work is general, meaning that it is valid whatever the scope of induction is. The

generality relation for one such hypothesis language is an adaptation of generalized

subsumption to the AL-log KR framework. It gives raise to a quasi-order and can be

checked with a decidable procedure based on constrained SLD-resolution. Coverage

relations for both ILP settings of learning from interpretations and learning from

entailment have been defined on the basis of query answering in AL-log. As opposite

to Rouveirol and Ventos (2000), the framework has been partially implemented in

an ILP system (Lisi and Malerba 2004) that supports a variant of frequent pattern

discovery where rich prior conceptual knowledge is taken into account in order to

find patterns at multiple levels of description granularity.

The framework presented in Lisi and Esposito (2008) is the closest to the present

work. Indeed it faces the problem of learning in DL+log, i.e., by disregarding

the NM features of DL+log
¬∨. Yet the framework is more general than the one

illustrated here because two cases of rule learning are considered, one aimed at

inducing rules with one Datalog literal in the head and the other rules with one

DL literal in the head. The former kind of rule will enrich the Datalog part of the

KB, whereas the latter will extend the DL part.

The main procedure of NMLEARN-DL+log
¬ follows the principles of FOIL

(Quinlan 1990) but shows some peculiarities due to the nature of the underlying KR

framework, e.g., the setting of learning from entailment (which is more powerful than

the use of extensional background theory and coverage testing), and the ordering of

generalized subsumption (instead of θ-subsumption).

The main procedure of NMDISC-DL+log
¬∨ is inspired by CLAUDIEN

(De Raedt and Bruynooghe 1993) as for the scope of induction and the algorithm

scheme but differs from it in several points, notably the adoption of (i) relative

subsumption instead of θ-subsumption, (ii) stable model semantics instead of

completion semantics, and (iii) learning from entailment instead of learning from

interpretations, to deal properly with the chosen representation formalism for both

the background theory and the language of hypotheses.

ILP has been also applied to data engineering tasks such as the interactive

restructuring of databases giving rise to the so-called Inductive Data Engineering

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

356 F. A. Lisi

(IDE) (Flach 1993; Flach 1998; Savnik and Flach 2000). The main idea is to use

induction to determine integrity constraints, such as functional and multivalued

dependencies, that are valid (or almost valid) in a database and then use the

constraints to decompose (restructure) the database.

7 Conclusions and future work

In this paper, we have investigated two ILP solutions for learning in the KR

framework of DL+log
¬∨, both valid for any DL for which the instantiation of the

framework is decidable, but one restricted to Datalog
¬ and the other for the full

framework. Indeed, well-known ILP techniques for induction such as the orderings

of generalized subsumption and relative subsumption have been reformulated in

terms of the deductive reasoning mechanisms of DL+log
¬∨, namely by relying on

the algorithm NMSAT-DL+log devised to prove NM-satisfiability of DL+log
¬∨

KBs. Notably, we have defined generality orders, refinement operators and coverage

tests on the basis of NMSAT-DL+log. Though the work presented in this paper

is not yet supported by empirical evidence, it shows that it is feasible for ILP to

go beyond Datalog towards DL+log
¬∨. The potential of this extended ILP has

been illustrated in two traditional database problems, i.e., the definition of views

and the definition of integrity theories, for which we have sketched ad-hoc ILP

algorithms, NMLEARN-DL+log
¬ and NMDISC-DL+log

¬∨, respectively. The

NM features as well as the DL component of DL+log
¬∨ enable these algorithms

to build hypotheses with expressiveness far greater than the one reachable with the

predecessors FOIL and CLAUDIEN. Notably, ontologies accommodate elegantly

in the solution to the database problems being considered. From the ILP viewpoint

the expressive power of DL+log
¬∨ has, of course, raised some technical difficulties.

In particular, the critical point has been the DL component that has required an

appropriate treatment when defining both the generality orders and the refinement

operators. Also the setting of learning from entailment turned out to be the most

appropriate for the induction within the DL+log
¬∨ KR framework.

As next step towards any practice, we plan to first analyze the complexity and

then produce an efficient and scalable implementation of these ILP algorithms.

Adopting less expressive but tractable instantiations of DL+log
¬∨ may turn out

crucial from this point of view. For example, DL-Lite (Calvanese et al. 2007) has

been proved to be good at making DL+log
¬∨ practically useful (Rosati 2006).

Another point is the definition of so-called optimal refinement operators to be

actually employed in NMLEARN-DL+log
¬ and NMDISC-DL+log

¬∨. Indeed,

ideal refinement operators are mainly of theoretical interest, because in practice they

are often very inefficient. More constructive—though possibly improper—refinement

operators are usually to be preferred over ideal ones. Optimal refinement operators

can be easily derived from those proposed in this paper.

Learning in DL+log
¬∨ is also promising for Semantic Web applications for

the following reasons. First, it can deal with ontologies almost as expressive as

the ones that OWL allow. Indeed, as already mentioned, SHIQ has been the

starting point for the definition of OWL and gives rise to one of the currently

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 357

most expressive decidable instantiations of DL+log
¬∨. Second, it can deal with

incomplete knowledge thanks to the NM features of DL+log
¬∨. Third, it can deal

with ontologies and rules tightly integrated as devised by the W3C Rule Interchange

Format (RIF) working group.9 Indeed the activity of the RIF group concerns (i)

the definition of a core language with extensions some of which (the nonmonotonic

ones) will most likely be inspired by hybrid DL–CL languages like DL+log
¬∨ and

(ii) the identification of use cases many of which are suitable to our algorithms for

application.

As a final remark, we would like to point out that the shift from Datalog to

DL+log
¬∨ in ILP paves the way to an extension of Relational Learning (and Data

Mining), named Onto-Relational Learning, which accounts for ontologies in a clear,

well-founded, and systematic way. Following the work reported in this paper, we can

build new-generation ILP systems able to learn from relational databases integrated

with ontologies according to the principles of Onto-Relational Learning.

Acknowledgements

We are grateful to Riccardo Rosati for his precious advice on DL+log
¬∨ and Diego

Calvanese for his valid support on the Boolean CQ/UCQ containment problem.

Also we thank the anonymous reviewers whose commments very much helped us

improving this paper.

References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider, P., Eds. 2007.

The Description Logic Handbook: Theory, Implementation and Applications, 2nd ed.,

Cambridge University Press.

Berners-Lee, T., Hendler, J. and Lassila, O. 2001. The semantic web. Scientific American

May.

Blockeel, H., De Raedt, L., Jacobs, N. and Demoen, B. 1999. Scaling up inductive logic

programming by learning from interpretations. Data Mining and Knowledge Discovery 3,

59–93.

Borgida, A. 1996. On the relative expressiveness of description logics and predicate logics.

Artificial Intelligence 82, 1–2, 353–367.

Buntine, W. 1988. Generalized subsumption and its application to induction and redundancy.

Artificial Intelligence 36, 2, 149–176.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. 2007. Tractable

reasoning and efficient query answering in description logics: The dl-lite family. Journal of

Automated Reasoning 39, 3, 385–429.

Calvanese, D., De Giacomo, G. and Lenzerini, M. 2008. Conjunctive query containment

and answering under description logics constraints. ACM Transactions on Computational

Logic 9, 3.

Ceri, S., Gottlob, G. and Tanca, L. 1989. What you always wanted to know about datalog

(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1, 1,

146–166.

9 http://www.w3.org/2005/rules/wiki/RIF Working Group

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

358 F. A. Lisi

Ceri, S., Gottlob, G. and Tanca, L. 1990. Logic Programming and Databases. Springer.

De Raedt, L. and Bruynooghe, M. 1993. A theory of clausal discovery. In IJCAI. 1058–1063.

De Raedt, L. and Dehaspe, L. 1997. Clausal discovery. Machine Learning 26, 2–3, 99–146.

De Raedt, L. and Džeroski, S. 1994. First order jk-clausal theories are PAC-learnable.

Artificial Intelligence 70, 375–392.

Donini, F., Lenzerini, M., Nardi, D. and Schaerf, A. 1998. AL-log: Integrating datalog

and description logics. Journal of Intelligent Information Systems 10, 3, 227–252.

Džeroski, S. and Lavrač, N., Eds. 2001. Relational Data Mining. Springer.

Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive Datalog. ACM Transactions on

Database Systems 22, 3, 364–418.

Flach, P. 1993. Predicate invention in inductive data engineering. In Machine Learning:

ECML-93, P. Brazdil, Ed. Lecture Notes in Computer Science, vol. 667. Springer, 83–94.

Flach, P. 1998. From extensional to intensional knowledge: Inductive logic programming

techniques and their application to deductive databases. In Transactions and Change in

Logic Databases, B. Freitag, H. Decker, M. Kifer and A. Voronkov, Eds. Lecture Notes in

Computer Science, vol. 1472. Springer, 356–387.

Frazier, M. and Pitt, L. 1993. Learning from entailment: An application to propositional

horn sentences. In Proc. of the Tenth International Conference on Machine Learning. 120–

127.

Frisch, A. and Cohn, A. 1991. Thoughts and afterthoughts on the 1988 workshop on

principles of hybrid reasoning. AI Magazine 11, 5, 84–87.

Glimm, B., Horrocks, I., Lutz, C. and Sattler, U. 2008. Conjunctive query answering for

the description logic SHIQ. Journal of Artificial Intelligence Research 31, 151–198.

Glimm, B., Horrocks, I. and Sattler, U. 2008. Unions of conjunctive queries in SHOQ.

In Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh

International Conference, KR 2008, Sydney, Australia, September 16–19, 2008, G. Brewka

and J. Lang, Eds. AAAI Press, 252–262.

Gómez-Pérez, A., Fernández-López, M. and Corcho, O. 2004. Ontological Engineering.

Springer.

Gruber, T. 1993. A translation approach to portable ontology specifications. Knowledge

Acquisition 5, 199–220.

Horrocks, I., Patel-Schneider, P. and van Harmelen, F. 2003. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics 1, 1, 7–26.

Horrocks, I., Sattler, U. and Tobies, S. 2000. Practical reasoning for very expressive

description logics. Logic Journal of the IGPL 8, 3, 239–263.

Kietz, J. 2003. Learnability of description logic programs. In Inductive Logic Programming,

S. Matwin and C. Sammut, Eds. Lecture Notes in Artificial Intelligence, vol. 2583. Springer,

117–132.

Levy, A. and Rousset, M.-C. 1998. Combining Horn rules and description logics in CARIN.

Artificial Intelligence 104, 165–209.

Lisi, F. A. 2008. Building rules on top of ontologies for the semantic web with inductive

Logic Programming. Theory and Practice of Logic Programming 8, 03, 271–300.

Lisi, F. A. and Esposito, F. 2008. Foundations of onto-relational learning. In Inductive Logic

Programming, F. Železný and N. Lavrač, Eds. Lecture Notes in Artificial Intelligence, vol.

5194. Springer, 158–175.

Lisi, F. A. and Malerba, D. 2004. Inducing multi-level association rules from multiple

relations. Machine Learning 55, 175–210.

Michalski, R. 1983. A theory and methodology of inductive learning. In Machine Learning:

an artificial intelligence approach, R. Michalski, J. Carbonell and T. Mitchell, Eds. Vol. I.

Morgan Kaufmann, San Mateo, CA.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

ILP in Databases: From Datalog to DL+log
¬∨ 359

Mitchell, T. 1982. Generalization as search. Artificial Intelligence 18, 203–226.

Motik, B., Sattler, U. and Studer, R. 2005. Query Answering for OWL-DL with Rules.

Journal on Web Semantics 3, 1, 41–60.

Muggleton, S. 1990. Inductive logic programming. In Proceedings of the 1st Conference on

Algorithmic Learning Theory. Ohmsma, Tokyo, Japan.

Nienhuys-Cheng, S. and de Wolf, R. 1997. Foundations of Inductive Logic Programming.

Lecture Notes in Artificial Intelligence, vol. 1228. Springer.

Plotkin, G. 1970. A note on inductive generalization. Machine Intelligence 5, 153–163.

Plotkin, G. 1971. A further note on inductive generalization. Machine Intelligence 6, 101–

121.

Quinlan, J. 1990. Learning logical definitions from relations. Machine Learning 5, 239–266.

Reiter, R. 1980. Equality and domain closure in first order databases. Journal of ACM 27,

235–249.

Rosati, R. 2005a. On the decidability and complexity of integrating ontologies and rules.

Journal of Web Semantics 3, 1, 61–73.

Rosati, R. 2005b. Semantic and computational advantages of the safe integration of ontologies

and rules. In Principles and Practice of Semantic Web Reasoning, F. Fages and S. Soliman,

Eds. Lecture Notes in Computer Science, vol. 3703. Springer, 50–64.

Rosati, R. 2006. DL+log: Tight integration of description logics and disjunctive datalog.

In Proc. of Tenth International Conference on Principles of Knowledge Representation and

Reasoning, P. Doherty, J. Mylopoulos and C. Welty, Eds. AAAI Press, 68–78.

Rouveirol, C. and Ventos, V. 2000. Towards learning in CARIN-ALN . In Inductive Logic

Programming, J. Cussens and A. Frisch, Eds. Lecture Notes in Artificial Intelligence, vol.

1866. Springer, 191–208.

Sakama, C. 2001. Nonmonotonic inductive logic programming. In Logic Programming and

Nonmonotonic Reasoning, T. Eiter, W. Faber and M. Truszczynski, Eds. Lecture Notes in

Computer Science, vol. 2173. Springer, 62–80.

Savnik, I. and Flach, P. A. 2000. Discovery of multivalued dependencies from relations.

Intelligent Data Analysis 4, 3-4, 195–211.

Schmidt-Schauss, M. and Smolka, G. 1991. Attributive concept descriptions with

complements. Artificial Intelligence 48, 1, 1–26.

van der Laag, P. 1995. An analysis of refinement operators in inductive logic programming.

PhD thesis, Erasmus University.

https://doi.org/10.1017/S1471068410000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000116

