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We consider the mechanical energy budget for horizontal Boussinesq convection and
show that there are two distinct energy pathways connecting the mechanical energy
(i.e. kinetic, available potential and background potential energies) to the internal en-
ergy reservoir and the external energy source. To obtain bounds on the magnitudes of
the energy transfer rates around each cycle, we first show that the volume-averaged dis-
sipation rate of buoyancy variance χ ≡ κ〈|∇b|2〉, where b is the buoyancy, is bounded
from above by 4.57h−1κ2/3ν−1/3b7/3

max . Here h is the depth of the container, κ the mo-
lecular diffusion, ν the kinematic viscosity and bmax the maximum buoyancy difference
that exists on the surface. The bound on χ is used to estimate the generation rate
of available potential energy Ea and the rate at which Ea is irreversibly converted to
background potential energy via diapycnal fluxes, both of which are shown to vanish at
least as fast as κ1/3 in the limit κ → 0 at fixed Prandtl number Pr = ν/κ . As a thought
experiment, consider a hypothetical ocean insulated at all boundaries except at the
upper surface, where the buoyancy is prescribed. The bounds on the energy transfer
rates in the mechanical energy budget imply that buoyancy forcing alone is insufficient
by at least three orders of magnitude to maintain observed oceanic dissipation rates
and that additional energy sources such as winds, tides and perhaps bioturbation are
necessary to sustain observed levels of turbulent dissipation in the world’s oceans.

1. Introduction
In a horizontally convective flow, heating and cooling are applied at a single level.

This is a classical model of the buoyancy-forced ocean circulation (Sandström 1908;
Jeffreys 1925; Rossby 1965; Stern 1975). Spurred by Munk & Wunsch’s discussion
of the energy sources of ocean turbulence (Munk & Wunsch 1998), there has been
substantial experimental and theoretical work on horizontal convection in the last
decade. This progress is reviewed by Hughes & Griffiths (2008), who conclude
their discussion of thermodynamics by remarking that the energetics of horizontal
convection is still an open issue.

A general result concerning the energetics of horizontal convection is Paparella
& Young’s demonstration (Young 2002) that in horizontal convection the rate of
transformation of potential energy into kinetic energy is directly proportional to the
molecular thermal diffusivity κ (see (2.10)). This result is a precise version of Jeffreys’
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222 K. B. Winters and W. R. Young

argument (Jeffreys 1925) that molecular diffusion enables internal penetration of
surface temperature variations, so that the heating and cooling of circulating fluid
elements can occur at different pressures. Thus Sandström’s Carnot-cycle arguments
(Sandström 1908), which assume that heating is strictly at the surface, are not valid.
As an antidote, Nycander et al. (2007) provided a modern thermodynamic view of the
overturning circulation of the ocean. But the point remains that because κ is small, the
interior penetration of heating is confined to a thin surface boundary layer, and the
resulting energy source is feeble. In this narrow sense Sandström’s intuition is correct
(Sandström 1908). In fact, using one definition of turbulence, (2.10) implies that
steady horizontal convective flows are not turbulent in the bulk. There is, however,
the possibility of turbulence in a small part of the domain e.g. in localized plumes.

Following Bjerknes (1916), Sandström’s thermodynamic ruminations (Sandström
1908) unfortunately came to be known as Sandström’s theorem, which claimed that
differential heating applied at a single level cannot drive a circulation. This conclusion,
influentially endorsed in Defant’s textbook (Defant 1961), is false on several grounds.
Not the least of these is that experiments clearly show a circulation (e.g. Rossby
1965; Mullarney, Griffiths & Hughes 2004; Wang & Huang 2005; Coman, Griffiths
& Hughes 2006). Thus it is important to realize that (2.10) constrains neither the
strength of the overturning circulation nor the heat transport. The quest here is
for additional integral constraints that probe these important quantities, and thus
we develop further thermodynamic arguments, based on dissipation of buoyancy
variance and generation of available potential energy.

2. Formulation and the mechanical energy balance
We consider a three-dimensional rotating fluid in a rectangular box of volume V

with horizontal cross-sectional area A and uniform depth h; the vertical coordinate
is 0 � z � h. The density is expressed as ρ = ρ0(1 − g−1b), where b is the ‘buoyancy’.
The Boussinesq equations of motion are then

Du
Dt

+ 2Ω × u + ∇p = b ẑ + ν∇2u, (2.1)

Db

Dt
= κ∇2b, (2.2)

∇ · u = 0. (2.3)

The pressure is ρ0p, and Ω is the rotation vector. The boundary conditions on u =
(u, v, w) are u · n̂ = 0, where n̂ is the outward normal to the surface of V , and some
combination of no slip and no stress. The buoyancy is specified at the top surface

b(x, y, h) = bs(x, y), with 0 � bs(x, y) � bmax . (2.4)

On the other five faces of V , there is no flux of buoyancy i.e. ∇b · n̂ = 0. Throughout,
we use the phrase ‘horizontal convection’ to refer to the idealized problem defined by
(2.1)–(2.3) along with the boundary conditions described above.

We denote a space–time average over the horizontal coordinates x and y, and time
t , by an overbar; e.g. b̄(z) is the horizontally averaged buoyancy. Two important
constraints are obtained by horizontally averaging (2.2):

wb − κb̄z = 0 and κbz(h) = 0. (2.5)

In (2.5), the subscript z indicates partial differentiation with respect to z. The first result
in (2.5) is the zero-flux constraint, saying that there is no net vertical flux of buoyancy
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Figure 1. Energy cycle between mechanical and internal energies for steady, or statistically
steady, horizontal convection.

at every level z. Evaluating the zero-flux constraint at z = h gives the second result in
(2.5): in statistical steady state there is no net input of buoyancy through the surface.

The kinetic and potential energies per unit mass may be defined via the integrals

Ek(t) ≡ 1

2

∫
|u|2 dV and Ep(t) ≡

∫
(h − z)b dV. (2.6)

Evolution equations for Ek and Ep are derived from the equations of motion (2.1)–
(2.3) and are given for general boundary conditions in Winters et al. (1995). For the
boundary conditions of horizontal convection, the energy equations in Winters et al.
(1995) reduce to

dEp

dt
= −

∫
wb dV + κ

∫
b ẑ · n̂ dA, (2.7)

dEk

dt
=

∫
wb dV − ν

∫
|∇u|2 + |∇v|2 + |∇w|2 dV. (2.8)

Taking the time and volume averages of the equations above produces two expressions
for the vertical buoyancy flux:

〈wb〉 = ε and 〈wb〉 =
κ

h
�b, (2.9)

where �b ≡ b(h) − b(0) and where 〈〉 denotes the average over V . In (2.9), the kinetic
energy dissipation is ε ≡ ν〈|∇u|2 + |∇v|2 + |∇w|2〉. The surface boundary condition
(2.4) has not been used to obtain (2.9): thus these balances apply more generally to
horizontal convection with fixed-flux or relaxation conditions at z = h.

The balances in (2.9) quantify the rate of production of Ep , the conversion from
Ep to Ek and the rate of kinetic energy dissipation. Independent of the exact form of

bs(x, y), each of these energy transfer rates has a magnitude of κ�b/h. Because the
largest and smallest values of b are on the surface z = h, (2.4) yields a bound on the
average dissipation rate:

ε �
κ

h
bmax . (2.10)

With fixed buoyancy at the surface and therefore known bmax , the anti-turbulence
theorem of Paparella & Young (2002) follows: in the limit ν → 0 with fixed Pr ≡ ν/κ ,
the volume-averaged dissipation rate ε vanishes.

Neither the bound (2.10) nor the mechanical energy budget (2.9) say anything
about the rate at which energy is externally supplied via surface buoyancy flux or
the rate at which energy is irreversibly converted to background potential energy via
diapycnal mixing. In fact, one can regard the energy conversion rates of (2.9) as a
closed energy cycle (see figure 1) in which energy is exchanged between internal and
mechanical forms in the Boussinesq limit (Winters et al. 1995; Wang & Huang 2005).
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224 K. B. Winters and W. R. Young

Moreover, the energy transfers in this cycle are weak. For example, one can
use the bound (2.10) to estimate the maximum ε that might be sustained by non-
uniform surface buoyancy flux alone under oceanic conditions. If bmax = 5×10−2 m s−2,
corresponding to a temperature difference of 25 K and an expansion coefficient of
2 × 10−4 K−1, h = 5000 m and κ =10−7 m2 s−1, then

ε � 1 × 10−12 W kg−1. (2.11)

The observed level of small-scale turbulence in the ocean interior is ε ∼ 10−9 Wkg−1,
which is greater than (2.11) by three orders of magnitude. Notice that the estimate
(2.11) can be made using an observed bmax and therefore is not hostage to the
fixed-buoyancy boundary condition in (2.4).

3. Buoyancy variance and its dissipation
If (2.2) is multiplied by b and integrated over the volume one has

d

dt

∫
b2

2
dV =

∫
bs κbz dAz=h − κ

∫
|∇b|2 dV. (3.1)

Time and volume averaging the buoyancy variance equation above, one has

χ =
κ

h
bs bz(h), where χ ≡ κ〈|∇b|2〉. (3.2)

Notice that buoyancy variance is forced by the correlation between the imposed
surface buoyancy bs(x, y) and the unknown surface buoyancy flux κbz(x, y, h, t).
Because χ > 0, (3.2) shows that the correlation is positive.

The measure of how strongly buoyancy variance is cascaded into small dissipation
scales by the flow is χ , and it also is the most basic measure of the advective
intensification of buoyancy gradients and vertical mixing (Osborn & Cox 1972). More
detailed information than the single number χ is provided by the function φd(b);
following Winters & D’Asaro (1996) φd(b) is the normalized and averaged flux of
buoyancy across the buoyancy surface Sb,

φd(b) ≡ 1

AT

∫ T

0

∫
κ |∇b| dSb dt, (3.3)

where A is the horizontal cross-sectional area of the box. Noting that dV = dSbdb/|∇b|,
one can show that

χ =
1

h

∫ bmax

0

φd(b) db. (3.4)

In this section we obtain a rigorous bound on χ , implying that

lim
κ→0

χ = 0. (3.5)

Because φd(b) � 0 for all b, the identity (3.4) implies that the average buoyancy flux
through every buoyancy surface vanishes as κ → 0.

3.1. A bound on χ as κ → 0 at fixed Pr: heuristic considerations

To motivate our approach, note that the limit in (3.5) does not follow immediately
from (3.2) because we cannot eliminate the possibility that b develops very small
scales near z = h, so that a boundary layer with a thickness proportional to κ is
created; i.e. bz in (3.2) might be as large as O(κ−1). This very thin layer could, in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

66
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006685


Horizontal convection 225

principle, result in a non-zero injection of buoyancy variance and non-zero χ , even
as κ → 0. This is a very real possibility in Rayleigh–Bénard convection (Siggia 1994).

At a heuristic level one can argue that the smallest conceivable boundary layer
thickness δ is determined by concentrating all of the energy dissipation bounded by
(2.10) in the layer and that there is a balance δ ∼ ν/U , where U is the characteristic
magnitude of the velocity difference across the layer. The energy dissipation in this
hypothetical boundary layer scales as εδ ≡ ν(U/δ)2, and since the layer occupies a
fraction δ/h of the total volume, the volume-averaged dissipation is

ε ∼ δ

h
εδ ∼ U 3

h
. (3.6)

Equating the estimate above to ε in (2.10), one obtains

U ∼ (κbmax )1/3 and δ ∼ ν

(κbmax )1/3
=

Pr κ2/3

b
1/3
max

, (3.7)

where Pr ≡ ν/κ is the Prandtl number. Taking the limit κ → 0, with Pr fixed,
indicates that the thinnest possible boundary layer scales as

δ ∝ κ2/3 
 κ. (3.8)

For comparison, Rossby’s (1965) boundary layer has a thickness scaling as κ2/5, which
is much larger than δ above. The heuristic argument leading to (3.8) indicates that,
because of the feeble supply of kinetic energy, it is not possible to create a boundary
layer with thickness as small as κ and therefore not possible to supply a finite non-
zero χ in the limit κ → 0. In fact, using the estimates bs � bmax and bz � bmax/δ in
the right-hand side of (3.2) we have

χ �
κb2

max

δ
∼ κ1/3b7/3

max

hPr
. (3.9)

With this motivation, we turn to a rigorous version of these estimates.

3.2. A bound on χ as κ → 0 at fixed Pr: the comparison function method

To obtain rigorous versions of (3.8) and (3.9) we follow Balmforth & Young (2003) and
introduce a ‘comparison function’ c(x) that satisfies the same boundary conditions
as b(x, t) and has other desirable properties outlined below. In analogy with the
right-hand side of (3.2), we define

χc ≡ κ

h
bscz(h). (3.10)

Multiplying (2.2) by c(x), space–time averaging and using Green’s second theorem
with c = bs at the surface, one obtains

χ = χc − 〈bu · ∇c〉 − κ〈b∇2c〉. (3.11)

The salient property of (3.11) is that the right-hand side does not involve derivatives
of b. Thus, invoking the extremum principle

0 � b � bmax , (3.12)

we obtain the upper bound:

χ � χc + bmax [〈|u||cx | + |v||cy | + |w||cz|〉 + κ〈|∇2c|〉]. (3.13)

With (3.13) we can bound χ from above, knowing nothing about ∇b.
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226 K. B. Winters and W. R. Young

As a comparison function we now introduce

c(x) =
cosh(μz)

coshμh
bs(x, y); (3.14)

c(x) above satisfies the same boundary conditions as b(x, t) at z = 0 and z = h. To
secure the lateral boundary conditions on c(x), we make the non-essential assumption
that bs(x, y) satisfies no-flux boundary conditions on the walls of the container. The
parameter μ in (3.14) is at our disposal and is used below to obtain the minimum
upper bound on χ attainable using this approach. In fact, we now limit attention to
large values of μ so that c(x) is non-zero only in a boundary layer of thickness μ−1

clinging to z = h, and in this sheath

c(x, y, z) ≈ eμ(z−h)bs(x, y). (3.15)

It is now straightforward to obtain an upper bound on the right-hand side of (3.13).
The main point is that z-derivatives of c are of order μ but only in a boundary layer
of thickness μ−1; i.e. the interior of the box does not contribute. All the horizontal
derivatives of c are asymptotically negligible.

The easiest term is χc defined in (3.10):

χc ≈ κμh−1b2
s � κμh−1b2

max . (3.16)

The term κ〈|∇2c|〉 on the right-hand side of (3.13) is also easy: ∇2c ≈ μ2c, and one
has

κ〈|∇2c|〉 ≈ κμh−1〈|bs |〉 � κμh−1bmax . (3.17)

To obtain useful estimates of the advective term 〈|w||cz|〉 in (3.13), one must bound
|w|. Because w vanishes at z = 0 and h, the largest possible value of |w| in the interior
of the domain must somehow be bounded by the root mean square of wz:

ω(x, y, t) ≡

√
1

h

∫ h

0

w2
z dz. (3.18)

For example, if ω is zero, then w must vanish everywhere, and if ω is small, then w

can’t be very large, even in the middle of the domain. Howard’s Lemma 1 (Howard
1972), that

w(x, t) �
√

z(h − z) ω(x, y, t), (3.19)

provides a rigorous basis for these intuitive expectations. Howard’s inequality (3.19)
(Howard 1972), along with

|cz(x)| � μbmax eμ(z−h), (3.20)

implies that

〈|w||cz|〉 � μ〈ω〉
〈√

z(h − z) eμ(z−h)
〉
bmax (3.21)

� μ
√

〈ω2〉
〈√

z(h − z) eμ(z−h)
〉
bmax , (3.22)

�
3

2

√
π
〈
w2

z

〉
μh

bmax . (3.23)
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The Cauchy–Schwarz inequality 〈ω〉 �
√

〈ω2〉 has been used to pass from (3.21) to
(3.22). Between (3.22) and (3.23) we have used 〈ω2〉 = 〈w2

z〉 and

〈√
z(h − z) eμ(z−h)

〉
≈ 3

2

√
π

hμ3
. (3.24)

The horizontal advective terms on the right-hand side of (3.13) can be estimated using
the x and y analogues of Howard’s (1963) lemma. These contributions however are
negligible relative to 〈|w||cz|〉 as μh → ∞.

Collecting the estimates above, the bound in (3.13) is

χ � b2
max

⎡
⎣2

κm

h2
+

3

2

√
π
〈
w2

z

〉
m

⎤
⎦, (3.25)

where m ≡ μh. Next, since 〈w2
z〉 � ε/ν,

χ � b2
max

[
2
κm

h2
+

3

2

√
πε

νm

]
. (3.26)

Finally, we minimize the right-hand side of (3.25) over m. The optimal value

m∗ =

(
3
√

π

8

√
ε

ν

h2

κ

)2/3

(3.27)

results in the bound

χ � 4.57

(
κ

ν

ε

h2

)1/3

b2
max , (3.28)

where the numerical constant is 35/3π1/3/2 ≈ 4.57.
Inequality (3.28) shows that χ is limited from above by the inverse time scale

(ε/h2)1/3. Consequently if ε → 0 with κ , then so does χ . In particular, the bound
ε � bmaxκ/h implies that for horizontal convection

χ � 4.57
κ1/3b7/3

max

Pr1/3h
. (3.29)

The bound (3.29) is almost in agreement with (3.9): both approaches yield estimates
with a boundary layer thickness δ ∝ m−1

∗ ∝ κ2/3. This forces the conclusion that χ

vanishes at least as fast as κ1/3 as κ → 0 for fixed Pr . The difference between (3.29) and
(3.9) is a factor Pr2/3. (If one initially took the boundary thickness as δ = κ/U in the
heuristic argument, then (3.29) and (3.9) differ only by the numerical constant 4.57.)

To conclude this section we note that (3.28) does not take advantage of any
potential cancellation, such as that in κb̄z(h) = 0. Instead, we have used inequalities
that very crudely estimate the maximum possible magnitude of the various terms in
the comparison function bound on χ . Thus, unlike the bound on ε in (2.10), the
upper bound on χ is likely generously large.

4. The available potential energy cycle of horizontal convection
We turn now to the available potential energy cycle specialized to horizontal

convection (see also Hughes, Hogg & Griffiths 2008). The first step is to decompose
the total potential energy, Ep in (2.6), into available and background components and
consider the evolution equations for the components separately. This is accomplished
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by defining the background potential energy as the minimum potential energy
achievable via adiabatic rearrangement of infinitesimal fluid parcels. To this end,
we define z∗(b, t) to be the reference height in the minimum potential energy state of
fluid with buoyancy b(x, t). As discussed in Winters et al. (1995),

z∗(b, t) =
1

A

∫
H [b(x, t) − b(x ′, t)] dV ′, (4.1)

where H is the Heaviside step function; 0 � z∗ � h is a unique function of b.
The background potential energy Eb, defined by analogy with Ep in (2.6), is then

Eb ≡
∫

(h − z∗)b dV, (4.2)

and we define the available potential energy as Ea ≡ Ep − Eb.
For horizontal convection, the evolution equation for background potential energy

from Winters et al. (1995) is

dEb

dt
= κ

∫
dz∗

db
|∇b|2 dV + κ

∫
(h − z∗)bz dAz=h. (4.3)

The equation for Ea is obtained by subtracting (4.3) from (2.7):

dEa

dt
= −

∫
wb dV + κ

∫
b ẑ · n̂ dA − κ

∫
dz∗

db
|∇b|2 dV − κ

∫
(h − z∗)bz dAz=h. (4.4)

The first term on the right-hand side of (4.4) is the rate at which kinetic energy is
converted to available potential energy through advective buoyancy flux. The second
and third terms, taken together and discussed further below, quantify the rate at which
available potential energy is converted to background potential energy via diapycnal
buoyancy flux, i.e. irreversible mixing. The last terms in (4.3) and (4.4) give the rate at
which surface buoyancy fluxes decrease/increase the background/available potential
energy of the system respectively.

The balances in (4.3) and (4.4) simplify after space–time averaging. Using (2.5) and
(2.9), the steady state budget for available and background potential energy reduce
to

Φd =
κ

h
z∗(bs)bz(h), where Φd ≡ κ

〈
dz∗

db
|∇b|2

〉
� 0. (4.5)

The result above is analogous to (3.2), and again we face the problem that the
surface source on the right-hand side of (4.5) depends on the unknown surface flux
κbz(x, y, h, t).

The balance (4.5), in combination with (2.9), suggests that we view the energy
budgets of horizontal convection in terms of two closed cycles that link the mechanical
energy to both internal and external energy reservoirs, as shown in figure 2. The upper
cycle describes the energy transfers between external and mechanical energies and,
more specifically, between external, available and background potential energies.

At this point, (4.5) and (2.9) provide exact expressions quantifying the energy
transfers through both cycles in figure 2, but we have a useful bound (2.10) only on
the transfer through the lower cycle. To constrain the strength of upper cycle, we
estimate the right-hand side of (4.5) using z∗ � h and bz � bmax/δ, where δ is the
upper boundary layer thickness. Thus

Φd �
κbmax

δ
∼ κ1/3b4/3

max

Pr
, (4.6)
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Ek
Internal
energy

�wb�

ε

h–1 κ Δb

External
energy

Ea

h–1 κ z*bz h–1 κ z*bz

Φd – h–1 κ Δb
Eb

Figure 2. Energy cycle between mechanical, external and internal energies for steady, or
statistically steady, horizontal convection. The bound on the lower cycle (cf. (2.10)) is rigorous,
while that on the upper cycle (cf. (4.6)) is approximate.

where in the second inequality we’ve used the estimate of δ in (3.7). Because of the
heuristic estimate of δ (4.6) is not a rigorous upper bound on Φd . But in view of the
agreement between (3.29) and (3.9), the estimate of δ in (4.6) is very plausible.

5. Discussion and conclusions
We have shown that the energy budget of horizontal convection consists of two

distinct energy pathways that branch from the available potential energy reservoir as
shown in figure 2. Consideration of the total mechanical energy budget allows rigorous
bounding of only the lower cycle associated with kinetic and internal energies. In
the case of the upper cycle, which exposes the exchanges with the external source,
the bound (4.6) is not rigorous, but it is very plausible. Thus the rate of energy
transfer around both cycles vanishes in the limit (κ, ν) → 0 at fixed Pr . Moreover the
dissipation of buoyancy variance χ is rigorously bounded in (3.29) so that χ → 0
with κ . These bounds highlight the role of the surface boundary layer as a bottleneck
in horizontal convection: because the boundary layer thickness is significantly thicker
than O(κ) it is not possible to inject non-zero available potential energy and buoyancy
variance into a steady horizontally convective flow as κ → 0.

As in (2.11), the bound on ε is small compared to observed oceanic values. These
results imply then, in the absence of additional energy sources, surface buoyancy
forcing alone is incapable of driving a circulation with dissipation rates comparable
to those observed, consistent with the interpretation of Hughes et al. (2008) based
on their analysis of available potential energy. We argue that this conclusion is
inescapable from (2.10) and consistent with the widely accepted hypothesis that ε in
the bulk of the ocean is due primarily to breaking internal gravity waves, with marine
bioturbation (Dewar et al. 2006) a second, speculative possibility. Winds and tides
are prime and direct generators of internal waves (Munk & Wunsch 1998), and thus
it is natural that a combination of surface stresses and body forces must be added
to the idealized horizontal convection model to force gravity waves and develop a
circulation with a realistic value of ε.

This work was supported by the National Science Foundation (grant number
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