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ABSTRACT

Age-depth models provide essential temporal frameworks in paleoenvironmental science. We use a sample of 80 recently-
published age-depth models to comment on current practices in building and reporting radiocarbon-based age-depth models.
We address options for model building, sampling strategies, dating densities, and best practices for reporting age-depth mod-
els and associated data. Our review reveals incomplete reporting of 14C ages, model-building methods, age-depth models and
associated meta-data in many recent studies. All information needed to evaluate, reproduce and update an age-depth model
should accompany every publishedmodel.We also present a case study of building age-depth models for a lake sediment core
that has both 14C ages and an independent varve chronology. The case study illustrates that choosing the ‘best model’ is not a
simple task, and that model accuracy is ultimately controlled by differences between 14C ages and true age that likely occur in
many late Quaternary records.
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INTRODUCTION

Age-depth models provide the critical temporal foundation for
individual paleoenvironmental archives, and are essential for
quantifying rates of change, making comparisons among
proxy records, and hypothesizing drivers of environmental
change. In this contribution to theQR Forum, we use a sample
of recently-published age-depthmodels to comment on current
practices inbuilding and reporting radiocarbon-basedagemod-
els. We address options for model building, sampling strate-
gies, dating densities, and how best to report age models and
associated data. To supplement the literature sample, we also
present a case study of building age-depth models for a lake
sediment core that has 22AMS 14C ages as well as an indepen-
dent varve chronology, whichwe use to assessmodel accuracy.
We do not provide an exhaustive review of current practices,
nor a comprehensive guide to building age-depth models.
Instead, our intention is to cast light and prompt discussion
on the building and reporting of 14C-based age models.

To take stock of current practices, we examined all papers
published in 2018 and 2019 in Quaternary Research and
Journal of Quaternary Science, and identified those that
included 14C-based age-depth models that had not been
previously published and did not rely on wiggle-matching
to independent records for chronological control. We
included all age-depth models regardless of sediment type
or the temporal length of the record. We chose these two jour-
nals to concentrate our assessment of current practices on
recently-produced models as opposed to previously-
published models that are often included in review papers
(e.g., Quaternary Science Reviews), without biasing the sam-
ple towards Holocene models (e.g., The Holocene) or those
produced for lake sediments (e.g., Journal of Paleolimnol-
ogy). Our compilation of models from Quaternary Research
and Journal of Quaternary Science resulted in a sample of 80
age-depth models published in 62 papers (Supplementary
Table 1), all with unique first authors. Almost half of the
papers have a first author based in North America (45%);
the other half are based in Europe (24%), China (13%) or
elsewhere (18%). About half of the age models (59%) are
fit to lake sediments, and the remaining are fit to peat
(19%), marine sediment (13%), or other types of sediments
(10%) such as loess, colluvium and floodplain deposits
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(Table 1). We take this to be a small but representative sample
that provides sufficient grounds to comment on current prac-
tices in building and reporting 14C-based age-depth models.
We did not observe a journal effect in any of our assessments
i.e., current practices in papers published in the two journals
appear to be more or less equivalent.

CLASSICAL AND BAYESIAN AGE-DEPTH
MODELS

In the last decade, the practice of modelling the relationship
between depth and age has been advanced through wide
availability of statistical code or programs for “classical”
approaches such as clam (Blaauw, 2010) and Bayesian mod-
elling such asOxCal (Bronk Ramsey, 2008), Bchron (Haslett
and Parnell, 2008) and Bacon (Blaauw and Christen, 2011).
An important advantage of using one of these programs is
the 14C age calibration process that is dynamically included
in the construction of models through repeated random sam-
pling of the calibration distributions (Telford et al., 2004a,
2004b; Michczynski, 2007; Blaauw, 2010). Regardless of
the type of model chosen, consideration of full calendar age
probability distributions during model construction is a
more robust approach than calibrating each 14C age in insola-
tion (e.g., using CALIB; Stuiver and Reimer, 1993) and then
building an age model on the single calibrated age estimates
(e.g., the weighted average or median of the probability dis-
tribution). While most of the models in our literature sample
took advantage of the built-in age calibration in one of these
programs, 20% of the models were built on 14C ages that were
reduced to single calibrated age points before model building.
In some cases, these models might be reasonable approxima-
tions of the true age-depth relationship, but given that code
and programs with built-in calibration processes are now
readily available, this approach should be abandoned.
The simplest approach for constructing an age-depth

model is to use linear interpolation between 14C ages. Linear
interpolation assumes that ages are accurate and that accumu-
lation rates between ages are linear. This was arguably the
most commonly used approach for building chronologies
30 years ago (Webb and Webb, 1988). In our literature sam-
ple, 21% of recently-published age models relied on simple
linear interpolation, and many of these models were built in

unspecified programs (Table 1). Linear interpolation models
suffer from the problem that inferred changes in accumulation
rate occur only, but exactly, at every dated depth (Bennett,
1994). This means that had 14C ages been obtained at differ-
ent depths, changes in sedimentation rate would be located at
different but equally-precise positions in the sequence. As
pointed out by Bennett and Fuller (2002), “rates of sediment
accumulation do not, in nature, change at the locations cho-
sen for radiocarbon dates.”

In many cases, a smooth sedimentation rate is more realis-
tic, at least in cases where sediment or peat type does not
change abruptly. Thus, another approach is to use one of
many classes of smooth functions: 21% of models in our lit-
erature sample used a smooth, cubic or monotonic spline,
whereas only a few relied on polynomial regression
(Table 1). These approaches use all of the dating information
from the whole sediment sequence or core to model accumu-
lation as a function of time. These models are now typically
built in the clam package (Blaauw, 2010) in R. In our litera-
ture sample, 28% of all models were built using clam (Table
1). Unfortunately, clam offers few diagnostics to help choose
the best model. Nonetheless, citations of clam have substan-
tially increased since it was first introduced (Yue Wang et al.,
2019), with researchers using clam to implement various
smooth functions as well as linear interpolation.

An alternative methodology for age-depth modelling is to
use the Bayesian techniques available in OxCal (Bronk Ram-
sey, 2008), Bchron (Haslett and Parnell, 2008) and Bacon
(Blaauw and Christen, 2011). These Bayesian approaches
enforce monotonicity of ages (positive accumulation rates)
and incorporate assumptions about accumulation rates (e.g.,
Goring et al., 2012) and/or how they vary, although in each
program these are based on different depositional models
with different parameters. The popularity of Bayesian tech-
niques appears to be increasing. YueWang et al. (2019) docu-
ment a fairly consistent increase in citations of OxCal (Bronk
Ramsey, 2008) and Bacon (Blaauw and Christen, 2011),
although in many cases OxCal is used solely for 14C age cal-
ibration and not model building. Half of the models in our lit-
erature sample relied on a Bayesian approach, with most of
these built using Bacon (34%), rather than OxCal (14%) or
Bchron (6%). Like clam, there are few diagnostic tools in
these programs to help choose the best model. With Bacon,
it is also difficult to know when to change default values

Table 1. Summary of 80 radiocarbon-based age-depth models published in Quaternary Research and Journal of Quaternary Science in 2018
and 2019.

Type of Deposit (n) Type of Model (n) Model software (n)

Lake sediment (47) Bayesian (44) Bacon (27)
Peat (15) Linear interpolation (17) clam (22)
Marine sediment (10) Spline (17) Not specified (13)
Loess (2) Polynomial regression (2) OxCal (11)
Other (6) Bchron (5)

Other (2)
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for accumulation rate priors and segment lengths, and the
manual provides little guidance on setting model parameters.
As a consequence, of the Baconmodels in our literature sam-
ple that reported priors, most (73%) used the default values,
regardless of whether the model was built for lake sediment,
peat, or another type of sedimentary record.
Although Bayesian techniques use a different approach in the

construction of age models, the ‘best-fit’ model can resemble
simple linear interpolation e.g., when the mean age-depth
model goes through each calibrated age range with changes in
accumulation rate at dated depths. Resemblance to linear inter-
polation occurred in half (48%) of the Baconmodels we exam-
ined (e.g., Yongbo Wang et al., 2019; McCulloch et al., 2019)
and most if not all of theOxCal (e.g., Frodlová et al., 2018) and
Bchron (e.g., Schiferl et al., 2018) models. Trachsel and Telford
(2017) observed that “although Bayesian age-depth modelling
routines simulate changing accumulation rates, the mean accu-
mulation rate (that is mostly used by scientists) is fairly constant
between two dated levels, and therefore, the age-depth model is
a straight line between two dated levels.” Similarity to linear
interpolation is not altogether surprising, especially for Bacon
and Bchron, as they are based in part on modelling piece-wise
linear accumulations. For example, Parnell et al. (2011) explain
that an important constraint in Bchron is that a change in sedi-
mentation rate is assumed to occur at each dated depth, thus
treating each age as accurate as is the case in linear interpolation.
Consequently, in the absence of many ages, these Bayesian
techniques can result in a ‘best-fit’ model that resembles linear
interpolation, albeit with improvements in uncertainty estima-
tion (Trachsel and Telford, 2017; Blaauw et al., 2018).
Assessing the accuracy of age models requires that the true

age-depth relationship be known, which is rarely the case.
Model comparisons and tests of model accuracy have gener-
ally relied on simulations e.g., using varve chronologies to
produce a series of simulated 14C ages upon which various
models are built and then compared to the known varve
chronology (Telford et al., 2004a). Using this approach
with three independent varve chronologies, Trachsel and
Telford (2017) showed that Bayesian models built in
Bacon, OxCal and Bchron as well as a smooth spline
model from clam each produced a mean age model close to
the true varve age; however, all models were challenged to
produce reliable accumulation rates. In another simulation
study, Wright et al. (2017) concluded that no single model-
ling package (clam,OxCal, Bchron, and Bacon and its prede-
cessor Bpeat) out-performed all others. Blaauw et al. (2018)
compared the accuracy of linear interpolation, smooth spline,
Bacon and Bchron models to a varve chronology as well as
simulated hypothetical sequences, varying the dating density
to further assess model accuracy. Their simulations demon-
strate that, at low dating densities (<1 date per millennium,
dpm), most models fail to accurately reproduce known age-
depth relationships. The accuracy of all models improved as
dating density increased, but this was especially the case
with Bacon-produced models, which were more consistently
accurate in their simulations, although even these models
were offset from true age at high dating densities.

A significant difference between Bayesian and classical
models, especially linear interpolation, lies in the estimation
of age uncertainties. In Bayesian models, age uncertainties
tend to increase between chronological control points e.g.,
with distance from 14C ages (Parnell et al., 2011; Trachsel
and Telford, 2017; Blaauw et al., 2018). In contrast, models
built with methods such as polynomial regression and smooth
splines typically have uncertainties that are relatively constant
between dated levels, and uncertainties in linear interpolation
models may even decrease between ages (Bennett, 1994;
Trachsel and Telford, 2017; Törőcsik et al., 2018). Trachsel
and Telford (2017) suggest that smooth splines in clam usu-
ally underestimate age uncertainties and that Bayesian
approaches generally provide better error estimation,
although these can be too large in Bchron and too large or
too small in Bacon and OxCal, depending on how modelling
routines are parameterized. Similarly, Blaauw et al. (2018)
argue that linear interpolation and smooth splines produce
age uncertainties that are too narrow and that the wider uncer-
tainties in Bacon and Bchron are more realistic. However, age
uncertainties produced by the various programs are different
types of uncertainties, making their direct comparison less
meaningful. The Bayesian programs provide age uncertain-
ties for single predicted ages for a given depth (i.e., prediction
intervals), whereas clam returns confidence intervals that are
uncertainties on the mean predicted age for a given depth
(Trachsel and Telford, 2017). This is a subtle but important
difference that likely helps to explain why uncertainties in
clam are almost always lower than in the Bayesian models;
predicting a single age for a given depth is inherently more
uncertain than predicting its mean age.
Age uncertainties are important for assessing the synchro-

nicity of paleoenvironmental changes among records and/or
sites, and identifying the drivers of such changes. There
are, however, few examples in the literature of studies that
explicitly integrate age model uncertainties into paleoenvir-
onmental reconstructions (e.g., Charman et al., 2009; Blaauw
et al., 2010; Chevalier and Chase, 2015). In the vast majority
of studies, researchers are interested in the ‘best fit’ or mean
modelled age for individual depths (i.e., point estimates)
and pay little attention to age model uncertainties or preci-
sion. Although 84% of the papers in our literature sample
showed uncertainties on a plot of the age model, none
made explicit use of the uncertainties in their paleoenviron-
mental reconstructions. Weller et al. (2019) was the only
paper to use uncertainty estimates in a tangible way i.e., in
the assignment of ages to poorly-dated tephras. Consideration
of age model uncertainties will need to be incorporated into
paleoenvironmental reconstructions for the advances pro-
vided by Bayesian age models to be fully realized.

DATING DENSITIES AND SAMPLING
STRATEGIES

The degree of chronological control in an age-depth model
acts as an important constraint on the research questions
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that can be answered in any given study. One basic measure
of chronological control is dating density i.e., the number of
ages per time interval. Blaauw et al. (2018) note that, on aver-
age, late Quaternary sites in the Neotoma database (Williams
et al., 2018) have the equivalent of one 14C age every 1400 yr
(or 0.72 dates per millennium) and that only 14% of sites have
>2 dpm. To estimate dating densities in our sample of 80
recently-published age-depth models, we included 14C ages
as well as other chronological control points such as known
tephras and ages that had been assigned to 0 cm, typically
the year of sediment core collection. Only 20% of the models
in our literature sample had >2 dpm; with only one exception,
these well-dated records span 6000 years or less. The mean
across all 80 models was 1.4 dpm (median = 1.0 dpm). Dating
densities were slightly higher in models spanning the last
15,000 years or less (mean = 1.8 dpm, median = 1.4 dpm;
n = 52). On average, this indicates an age every 600 to 700
yr, which comes close to Blaauw et al.’s (2018) recommenda-
tion of obtaining a minimum of 2 dpm. Taken at face value,
this suggests a respectable amount of chronological control
in recently-published models, particularly in light of the
constraints imposed by research funding. The accuracy of
age models should generally increase with higher dating
densities (Telford et al., 2004a; Trachsel and Telford, 2017;
Blaauw et al., 2018), provided the ages themselves are
reasonably accurate. Of course, the maximum number of
dates, given funding constraints, should be obtained.
However, using the mean number of ages per millennium
to assess model quality ignores what we refer to below as
the ‘age spacing problem’.
Many of the age-depth models in our literature sample suf-

fer from long temporal gaps between ages e.g., gaps of
>3000 yr between ages in full Holocene records, gaps of
>1000 yr in records spanning 3000 yr, etc. Of the 80 models,
two-thirds (64%) suffered from this ‘age spacing problem’,
leaving these records with poor chronological control in por-
tions of the record. Some particularly-poorly constrained
sequences had two or three long gaps between ages. Others
had a number of ages within a short time interval, which
reduces the quality of the overall age-depth model compared
to having the same number of ages spread over longer inter-
vals. Thus, the issue is not solely whether sufficient ages are
being used to build age models but also how closely spaced
the ages are in time. Of course, the length of tolerable gaps
will depend on the research question(s). Nonetheless, we rec-
ommend, based on common sense, that researchers avoid
long temporal gaps between dated levels e.g., gaps of more
than 20% of the total length of the record. We acknowledge
that in some cases, especially in regions such as the Arctic,
long temporal gaps may be unavoidable, if there is insuffi-
cient carbon for dating in long sections of a sediment
sequence. Of course, additional ages should be obtained for
sequences with substantial changes in accumulation rates
and those subjected to high-resolution proxy analyses.
Building a robust age model begins with choices on what

to date and where along a sequence to obtain ages. Attention
must be paid to deciding how many ages to obtain and what

material to date (e.g., MacDonald et al., 1991; Björck and
Wohlfarth, 2001; Oswald et al., 2005; Walker et al., 2007;
Grimm et al., 2009; Piotrowska et al., 2011). When the num-
ber of ages is constrained by the availability of funds, the best
strategy involves several iterations of dating i.e., obtaining a
first batch of ages spread along the length of the sequence,
including one near or at the base, followed by second and/
or third batches in which additional depths are chosen strate-
gically so that ages are more or less evenly spread in time and
changes in sediment type or accumulation are considered
(PALE Steering Committee, 1993; Bennett, 1994; Piotrow-
ska et al., 2011; Blaauw et al., 2018). Large changes in accu-
mulation rates are usually only discovered after dating; thus,
dating in batches helps to produce a better model. To assess
the extent to which models in our literature sample were
built with ages obtained in batches, we examined the lab ref-
erence numbers reported for each 14C age in every paper.
Because analytical labs generally number 14C ages in the
order in which they are produced, models built on 14C ages
obtained in a single batch should have lab numbers that are
in numerical order (e.g., the UOC ages in Table 2), while
14C ages with notably different lab numbers or from different
labs indicate iterations of dating. For the chronologies in our
literature sample that reported lab numbers (26% of papers

Table 2. AMS radiocarbon ages from Lac Noir, southwestern
Québec, Canada from Neil and Gajewski (2018). All 14C ages are on
plant remains including leaf fragments, seeds and needles.

Depth
(cm)

Radiocarbon age
(14C yr BP ± 1σ)

Calendar Agea

(cal yr BP) Lab Numberb

41–42 580 ± 40 530–650 Beta-276987
77–78 980 ± 40 800–960 Beta-276988
160–163 2346 ± 168 1990–2760 UOC-5286
200–203 2599 ± 43 2500–2790 UOC-5287
220–223 3201 ± 141 3060–3820 UOC-5288
240–242 3310 ± 51 3410–3680 UOC-5289
260–261 3660 ± 30 3900–4080 UOC-5290
280–283 4159 ± 64c 4530–4840 UOC-5291
300–302 4134 ± 26 4550–4820 UOC-5292
320–322 4639 ± 38 5300–5470 UOC-5293
340–341 4894 ± 58 5480–5840 UOC-5294
360–361 5183 ± 25 5910–5990 UOC-5295
380–382 5492 ± 63 6130–6410 UOC-5296
400–403 6170 ± 71 6900–7250 UOC-5297
420–421 6708 ± 43 7500–7660 UOC-5298
432–433 7149 ± 27 7940–8010 UOC-5299
448–449 7621 ± 27 8380–8450 UOC-5300
480–482 8769 ± 155 9530–10,210 UOC-5301
500–502 9078 ± 65 9960–10,480 UOC-5302
511–512 9404 ± 33 10,560–10,730 UOC-5303
522–524 9610 ± 35 10,780–11,160 UOC-5304
540–543 10,080 ± 82 11,310–11,990 UOC-5305

a2σ calendar age range rounded to the nearest 10 yr; from CALIB 7.1 based
on IntCal13 (Reimer et al., 2013)
bBeta = Beta Analytic Inc.; UOC =University of Ottawa A.E. Lalonde AMS
Laboratory
cExcluded from the linear interpolation models only
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did not report lab codes), only 21% had lab numbers that were
in order, suggesting that most researchers are indeed using
several iterations of dating to refine their chronologies. How-
ever, we found that two-thirds (69%) of the age models with
lab numbers in numerical order had the ‘age spacing prob-
lem’ described above. Two or more iterations of dating
should help avoid long temporal gaps between ages.
As a general rule, extrapolating an age-depth model

beyond the dated range of a sediment sequence should be
avoided, as it assumes that the relationship between depth
and time holds for sediments lacking chronological control.
Extrapolation should not be used across changes in sediment
or peat type. Excessive extrapolation, which we defined as
1000 years or more beyond the oldest 14C age, was used in
only 14% of the models we examined; however, in a few
cases, the age model was extrapolated by several thousand
years. In cases where basal sediments lack chronological con-
trol, we recommend that proxy data below the lowest age be
plotted without a timescale.

REPORTING AGE-DEPTH MODELS

All 14C ages and associated methods need to be described in
adequate detail if others are to successfully reproduce an age-
depth model, update the model as new calibration datasets
and modelling techniques are developed, or use the data in
large-scale synthesis efforts. Of course, meta-data on 14C
ages and the steps taken to build a chronology are also
necessary for assessing the quality of age models and the
paleoenvironmental inferences that rely on them.
We were surprised to find that one-third (34%) of the

papers we examined failed to report one or more of the fol-
lowing: whether the ages were based on AMS or radiometric
14C dating, what material was dated, the name of the lab that
performed the dating, and/or the lab reference numbers for
each 14C age. In addition, nearly one-quarter (23%) of papers
did not report which 14C calibration dataset was used. Of the
34 papers that reported 14C ages on bulk sediment or peat,
74% failed to report sample thickness. Sample thickness is
important information for reproducing or updating an age
model, as it is the midpoints of the depth ranges that should
be used in age-depth modelling. A number of papers also
failed to specify important parameters used in model con-
struction. For example, 54% of papers that used Bacon did
not report the priors that are essential to this Bayesian tech-
nique. The upper panels of a default Bacon age-depth plot
include the priors as well as information about model itera-
tions; however, these panels are often omitted from publica-
tions. We suspect in most cases where the priors were not
reported that default values were used, as that is by far the
most common approach. Information about priors along
with which version of Bacon should always be reported,
because the default priors have changed between versions.
We also encourage inclusion of δ13C values for each 14C
age but only when measured independently through
isotope-ratio mass spectrometry (IRMS). These values can
potentially provide information about the material being

dated and/or the environmental conditions the sample is
derived from.
Assigning an age to the surface or top of the sequence is

now common practice. Almost two-thirds of the papers in
our literature sample used an assigned top age in their age
model e.g., the year of sediment core collection for 0 cm.
However, the majority of papers (86%) that assigned a top
age failed to report the details of the age. In some cases, it
was apparent in the plot of the model that a top age was
used to constrain the chronology, but this constraint was
not stated in any way in the text. In other cases, the paper
stated that a top age was used in the model, but the specific
age and its error were not reported. In fact, the year of sedi-
ment collection, whether it was used in the age model or
not, was not reported in 40% of papers in our literature sam-
ple. When a top age is used as a control point in an age-depth
model, its depth and assigned age and error must be reported.
Given the central role of age models, both a table of 14C

ages and a plot of the model should be included. Plots of
age-depth models should include both the ‘best-fit’ model
used for proxy data as well as age uncertainty estimates.
Building an age-depth model is a statistical exercise
(i.e., age = ƒ(depth) + error) and as such, depth belongs on
the x-axis, as it is the known variable from which age is
predicted (Bennett, 1994). However, in our sample of
recently-published models, most placed depth on the y-axis,
which implies, according to statistical convention, that
depth was predicted from age.
Rejection of 14C ages was surprisingly common in the

papers we examined. In 33% of cases, one or more 14C age
was rejected before model building, primarily because of
age reversals. In many cases, rejected ages are not included
in the plot of the age-depth model. We recommend including
rejected ages not only in the table of ages but also in the age
model plot, as this aids assessment of the context, validity and
implications of age rejections. All of the model-building pro-
grams discussed above include some sort of ‘outlier’ argu-
ment or command that can be used to plot a rejected age
while still excluding it from the model.

LAC NOIR: A CASE STUDY IN AGE-DEPTH
MODELLING

Simulation studies such as those by Trachsel and Telford
(2017) and Blaauw et al. (2018) provide much-needed insight
into the performance of age-depth models. However, as
pointed out by Telford et al. (2004a), these simulations are
often conducted under conditions that are notably different
from building age models with real datasets: the simulated
ages are accurate, precise and often equally-spaced, and
there are no concerns about contamination, reservoir effects,
hiatuses, or extreme changes in accumulation rates.
Here, we compare a series of age-depth models built for a

well-dated lake sediment core that has an independent varve
chronology. This provides an opportunity to assess the per-
formance and accuracy of models built on real ages,
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as opposed to simulations. The sediment core is from Lac
Noir (45°46.53’N, 75°8.10′W) in southwestern Québec, Can-
ada (Neil and Gajewski, 2018), is 5.43 m long, and has
22 AMS 14C ages (Table 2), resulting in a dating density of
2 dpm. The sediments are continuously laminated to a
depth of 5.24 m with varves spanning the last 11,160 cal yr.
We treated the varve chronology as true and accurate,
although replicate varve counts indicate counting imprecision
of 1.5 to 6.7% depending on the core section (Neil and
Gajewski, 2018). We fit the three most common types of
models encountered in our literature sample: a Bayesian
model using the default priors in Bacon (vers. 2.3.9.1), and
linear interpolation and smooth spline models using clam
(vers. 2.3.2). We also fit a 2nd-order polynomial, as it
represents an end-member of models to choose from and
polynomials were commonly used in older studies. For linear
interpolation, we excluded the 14C age at 280 cm (Table 2)
prior to model construction. The age is from a ‘flat’ portion
of the calibration curve and causes a minor age reversal.
Thus, excluding this age was necessary for linear interpola-
tion but unnecessary when fitting the other models. In a sec-
ond iteration, we built all four models using only every
second 14C age to assess their performance at a dating density
(i.e., 1 dpm) that is typical of many published studies. In all
cases, we used an age of −62 ± 2 cal yr BP for 0 cm, based
on the year of core collection (2012). We focus on the ‘best-
fit’ models (Figs. 1 and 2) and their associated sediment
accumulation rates (Fig. 3), as these have important
implications for estimating proxy accumulation rates, and
place less emphasis on estimated age uncertainties as these
are not directly comparable between Bacon and clam.
The mean age-depth model from Bacon goes through each

calibrated age range with age uncertainties that are mostly
between 275 and 500 yr (Figs. 1A and 2A). Linear interpolation
behaves similarly (Fig. 1A), but its uncertainties (not shown)
are mostly smaller (150 to 350 yr). The median differences
between the Bacon and linear interpolation models compared
to the varve chronology are 223 and 228 yr, respectively
(Fig. 2A). It is difficult to distinguish the ‘best-fit’ Bacon
and linear interpolation models, except in the few sections
of the core where they differ (Fig. 1A). However, differences
are readily apparent in their estimated accumulation rates
(Fig. 3B), which show the linear segments fit in each case
i.e., between pairs of 14C ages in linear interpolation and
for each of the 5-cm segments in Bacon. The mean model
from Bacon introduces high frequency changes in accumula-
tion rates that vary in amplitude, whereas for linear interpola-
tion, rate changes are mostly high in amplitude with their
frequency more tightly controlled by the position of the 14C
ages. At the lower dating density, the two models (Fig. 2B)
and their accumulation rates (Fig. 3C) are almost indistin-
guishable, although Bacon retains high frequency changes
in rates linked to segment length. This underscores the impor-
tance of high dating densities when fitting models in Bacon
(Blaauw et al., 2018). At the lower dating density, the Lac
Noir accumulation rates of the mean model from Bacon are
not substantially different from simple linear interpolation.

The smooth spline (Figs. 1B and 2A) fit in clam also goes
through each calibrated age range, but its age uncertainties are
generally smaller than the Bacon model. Uncertainties are
generally between 130 and 260 yr but are up to 600 yr in
the late Holocene where Bacon also returns large uncertain-
ties. The median difference between the smooth spline and
the varve chronology is 231 yr, which is similar to Bacon
and linear interpolation, and down-core changes in accuracy
are also similar to Bacon (Fig. 2A). Accumulation rates for
the smooth spline generally increase and decrease in concert
with those of Bacon (Fig. 3B), although rate changes are
sometimes higher or lower in amplitude. At the lower dating
density, changes in accumulation rates for the smooth spline
are, of course, smoother but are also generally similar to
Bacon and linear interpolation over the long-term (Fig. 3C).

As expected, the 2nd-order polynomial produces an even
smoother age-depth model (Fig. 1B), uncertainties are at
their lowest and have a relatively constant width (∼100 yr
for most depths), and accumulation rates are also relatively
constant for much of the sediment core (Fig. 3A). The median
difference compared to the varve chronology is 129 yr, which
is substantially lower than the other three models (Fig. 2A).
At the lower dating density, the polynomial model and its
accumulation rates are essentially unchanged, although this
is not surprising for a low-degree polynomial.

Comparison to the Lac Noir varve chronology shows that
all models are accurate in some sections but over- or underes-
timate age in others (Figs. 1 and 2). In addition, linear inter-
polation, Bacon and the smooth spline over-estimate
variability in accumulation rates compared to those based
on varve thickness, and changes are frequently out of phase
(Fig. 3B). Although most of the calibrated age ranges at
Lac Noir overlap the varve chronology (Fig. 1), 14C ages
between 450 and 360 cm depth (∼8400 and 6000 cal yr
BP) are generally younger than the corresponding varve
age and those above 220 cm depth (<3000 cal yr BP) are gen-
erally older. These systematic offsets may be related to
changes in plant communities, lake chemistry and/or other
environmental conditions. Regardless, these age offsets high-
light another important consideration in the construction of
age-depth models: each 14C age is merely a sample of n = 1
of the total population of ages for any given depth. Thus, it
should not be surprising when 14C ages, and models based
on them, deviate from true age. In the case of Lac Noir,
none of the modelled age uncertainties fully encapsulate the
varve chronology. The default Bacon model is most success-
ful in this regard, but even in this case, the age uncertainties
encompass the varve chronology for only 40% of the record’s
length (Figs. 1A and 2A).

Given that all of the models over and under-estimate age in
similar sections of the record, there is no obvious choice for
the ‘best model’. In general, the smooth spline and polyno-
mial are more effective at mimicking the smoothness of the
varve chronology over the long term. If proxies such as
loss-on-ignition or magnetic susceptibility are also smooth
(as at Lac Noir; Neil and Gajewski, 2018), then a smooth
model may be a reasonable choice. Among all four models,
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Figure 1. Age-depth models fit to the AMS radiocarbon ages from Lac Noir (Table 2) and an age of −62 ± 2 cal yr BP for 0 cm. Blue sym-
bols show the 22 calibrated 14C ages and their probability distributions as calibrated by Bacon vers. 2.3.9.1 and clam vers. 2.3.2. All clam
models were run with 10,000 iterations. (A) Mean age-depth model from Bacon (blue) built using default priors of 20 yr cm-1 and 1.5 for
mean deposition time and shape, respectively, with its 95% prediction intervals in grey. Linear interpolation model (red) from clam without
confidence intervals and the varve chronology (dashed black) are also shown. Prior to model construction, the 14C age at 280 cm was
excluded from the linear interpolation model only. The linear interpolation model (red) is mostly obscured by the ‘best-fit’ Bacon
model (blue) because of their similarity. (B) Smooth spline model (blue) and its 95% confidence intervals in grey, built with default smooth-
ing of 0.3 in clam. A 2nd-order polynomial model (orange) from clamwithout confidence intervals and the varve chronology (dashed black)
are also shown.
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Figure 2.Difference in years between the Lac Noir varve chronology and each age-depth model in Figure 1 and their uncertainties, when built
using (A) all 22 14C ages and (B) only every second 14C age in Table 2.

Figure 3. Accumulation rates for the age-depth models in Figure 1. In all panels, rates based on varve thickness measurements are shown as
open grey symbols and vertical dashed lines show the median of the probability distribution of each calibrated 14C age. (A) Loess curve (black;
loess span = 0.2) fit to accumulation rates based on varve thickness, and accumulation rates from the 2nd-order polynomial model (orange) in
Fig. 1B. (B) Accumulation rates based on the default ‘best-fit’ Bacon model (blue) in Fig. 1A showing its 5-cm linear segments, linear inter-
polation (black) in Fig. 1A, and the clam-based smooth spline (red) with default smoothing of 0.3 in Fig. 1B. (C) The same as panel B, except
models are based on only every second 14C age in Table 2 to mimic a more typical dating density.
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the polynomial has the lowest deviations, on average, from
the varve chronology (Fig. 2A), but it clearly underestimates
variability in accumulation rates, especially in the past ∼4000
years (Fig. 3A). The ‘best-fit’ Bacon model is an improve-
ment over simple linear interpolation and is fairly similar to
the smooth spline (Fig. 2A), although Bacon appears to over-
estimate variability in accumulation rates (Fig. 3B), as also
shown by Trachsel and Telford (2017). Increasing the seg-
ment length in Bacon from the default 5 cm to match the
median (20 cm) or mean (25 cm) distance between 14C ages
further increases the resemblance between Bacon and linear
interpolation, although changes in the Bacon-produced
accumulation rates sometimes lead or lag the position of the
14C ages. Wright et al. (2017) found similar phase offsets
with Bacon-produced models.
Interestingly, the modelled ages and accumulation rates of

all four models are as or more similar to the varve chronology
when fit using only half of the 22 14C ages (Figs. 2B and 3C).
At the lower dating density (Fig. 2B), the median difference
compared to the varve chronology is lowest for the polyno-
mial (110 yr) and highest for the Bacon model (200 yr). For
Lac Noir, a higher dating density does not result in a more
accurate age model (cf. Blaauw et al., 2018). The overall pat-
tern of sediment accumulation at Lac Noir is smooth and
broadly linear, and fewer dates result in less scatter, so it is
not surprising that models built using a lower dating density
have similar or better accuracy. However, this is not likely
to be the case for records with more substantial changes in
sedimentation rates. Simulation studies have shown that low
dating densities typically decrease model accuracy (Telford
et al., 2004a; Trachsel and Telford, 2017; Blaauwet al., 2018).
In light of our model comparisons using the Lac Noir

record as well as the simulation studies of others (Telford
et al., 2004a; Trachsel and Telford, 2017; Wright et al.,
2017), we cannot support the blanket recommendation by
Blaauw et al. (2018) that Bayesian models be used in building
chronologies, to the apparent exclusion of other types of
models. Much depends on dating densities, age scatter, outli-
ers, and down-core changes in sediment type and accumula-
tion rates. Instead, as suggested by Blockley et al. (2007), an
array of models could be entertained along with assessment
of howwell each approximates the chronological data and sat-
isfies other information such as changes in sediment type or
other properties. This approach should clarify what effects,
if any, the routines and assumptions of each modelling
approach have on the resulting age model and accumulation
rates, and may suggest, at least informally, the confidence
that can be attached to conclusions based on associated
proxy data. In addition, modelled accumulation rates should
not be blindly imposed on proxy data e.g., in calculating pol-
len or carbon accumulation rates. Attention should be paid to
howmodel-driven changes in accumulation rates might affect
paleoenvironmental inferences from proxy accumulation
rates. To be clear, we are not suggesting that researchers fit
all possible models and choose the one deemed most desir-
able. Rather, we are arguing against the other extreme of rely-
ing solely on a single modelling technique for all scenarios.

Consideration should be given to whether the chosen
model, Bayesian or not, is sensible given other evidence on
the age-depth relationship and the history of sediment or
peat accumulation.

LOOKING FORWARD

Our recommendations on best practices for building and
reporting age-depth models are not new nor are they exhaus-
tive, but they bear repeating. When building an age-depth
model, 14C ages should not be reduced to single calibrated
age estimates before model construction, as there are now a
number of modelling options with built-in age calibration.
To the extent possible, researchers should avoid long tempo-
ral gaps between ages. Obtaining 14C ages in batches is part
of an effective strategy for avoiding long temporal gaps.
High density dating is particularly important for sequences
with substantial changes in accumulation rates and those sub-
jected to high-resolution proxy analyses. Extrapolation
beyond chronological control points is rarely justified. Our
review of recent studies illustrates that better reporting of
14C ages, model-building methods, age-depth models and
associated meta-data is needed. All information needed to
evaluate, reproduce and update an age model should accom-
pany every published model. This includes reporting the
material that was dated, sample thicknesses, radiocarbon
lab names and reference codes, and calibration datasets.
Details on assigned surface ages, rejected ages and all mod-
elling parameters including Bayesian priors should also be
reported.
Varve chronologies such as Lac Noir and others used in

simulation studies (Telford et al., 2004a; Trachsel and Tel-
ford, 2017; Blaauw et al., 2018) are useful in assessing
model accuracy, but sedimentation in varved records tends
to be fairly smooth and broadly linear. In contrast, two-thirds
of the age-depth models in our literature sample had sigmoi-
dal, concave or convex shapes. Future assessments of model
performance should attempt to address these more compli-
cated but routinely-encountered age-depth relationships. In
addition, user-friendly code for comparing models produced
by different programs and more diagnostic tools for choosing
the ‘best model’would help advance efforts to identify robust
age models. More work is needed to determine best practices
for incorporating age model uncertainties into paleoenviron-
mental reconstructions. It would be helpful if an option for
prediction intervals were added to clam, where this is feasible
(e.g., splines, polynomials), as it is the most widely used pro-
gram for classical age-depth modelling. This would facilitate
comparison of model uncertainties among classical and
Bayesian techniques, as the uncertainties that are currently
provided are not directly comparable in a statistical sense.
Approaches for integrating depth uncertainties (e.g., sample
thicknesses) into age-depth models and for combining 14C
and 210Pb ages in a single age model also warrant further
investigation.
The case study at Lac Noir highlights the offsets between

14C ages and true age that may very well occur in many late
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Quaternary records. Obtaining high-precisionAMS 14C ages on
tiny discrete samples, in lieu of low-precision radiometric ages
on bulk sediments, is now common practice. It is difficult to
know if this approach might be increasing the likelihood that
any given 14C age is offset from true age (Oswald et al.,
2005; Walker et al., 2007). Regardless, these potential offsets
are important to bear inmind. Age-depthmodel accuracy is ulti-
mately controlled by the accuracy of the ages themselves.
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