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Large-eddy simulation of turbulent flow over a
parametric set of bumps
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Turbulent flow over a series of increasingly high, two-dimensional bumps is studied
by well-resolved large-eddy simulation. The mean flow and Reynolds stresses for
the lowest bump are in good agreement with experimental data. The flow encounters
a favourable pressure gradient over the windward side of the bump, but does not
relaminarize, as is evident from near-wall fluctuations. A patch of high turbulent
kinetic energy forms in the lee of the bump and extends into the wake. It originates
near the surface, before flow separation, and has a significant influence on flow
development. The highest bumps create a small separation bubble, whereas flow
over the lowest bump does not separate. The log law is absent over the entire
bump, evidencing strong disequilibrium. This dataset was created for data-driven
modelling. An optimization method is used to extract fields of variables that are used
in turbulence closure models. From this, it is shown how these models fail to correctly
predict the behaviour of these variables near to the surface. The discrepancies extend
further away from the wall in the adverse pressure gradient and recovery regions than
in the favourable pressure gradient region.
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1. Introduction
Predicting the development of boundary layers in an adverse pressure gradient

remains a driving force for improving various types of turbulence models (Slotnick
et al. 2014). Some Reynolds-averaged models predict premature onset of separation;
some overpredict the separation length; some underpredict the rate of recovery
after the end of an adverse pressure gradient region (Durbin 2018). In hybrid
Reynolds-averaged Navier–Stokes/large-eddy simulations (RANS-LES), sometimes
eddies develop too slowly, resulting in incorrect predictions. For these reasons,
adverse pressure gradient test cases have become standard for model development and
validation. Flow over bumps has become a source of data for such studies, because
of the geometric simplicity (Seifert & Pack 2002; Breuer et al. 2009; Rumsey 2018).
While the motive is to investigate an adverse pressure gradient (APG), the upstream
side of a bump is exposed to a favourable pressure gradient (FPG). That does not
mitigate the usefulness of the data, but now the data are for a particular geometry,
and one is looking more broadly at pressure gradient effects.

† Email address for correspondence: rmatai@iastate.edu
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FIGURE 1. Mesh used for the LES simulation, shown for the h20 reference bump. Note
the disconnected recycling domain for generating the inlet flow (C= 0.305 m).

Most datasets are for a single geometry. This creates uncertainty whether predictions
are peculiar to that particular case. Here, we address this concern about idiosyncrasy
by considering a family of bumps. By considering a parametric family, systematic
behaviours can be explored. Aspects of data that are representative for the class of
flows can be distinguished from specific data for a single geometry. Mollicone et al.
(2017) also studied a family of bumps, but all their bumps had separated flow.

For the present study, the circular arc geometry of Webster, DeGraaff & Eaton
(1996) is adopted – see figure 1. The Webster et al. (1996) data have been seen as
a resource for testing turbulence models, and the present simulations have that as
a motivation, too. The directly measured data are mean flow and Reynolds stresses.
But, the best that can be done with such data is to compute with turbulence models,
and compare. It would be valuable to go beyond that. This is the aim of modern,
data-driven modelling. One would like to have data on turbulence model variables,
such as νT, k, ω, as well. However, such quantities are not measurable, physical
variables. They are defined by their role in a closure model, and cannot be measured
directly. Even the variable k, which is named ‘turbulent kinetic energy’, does not
behave as the measurable turbulent kinetic energy. An innovative method to extract
turbulence variables has been developed by Duraisamy, Zhang & Singh (2015)
and Parish & Duraisamy (2016). Turbulence variables are obtained by solving an
optimization problem. Data on the variables of the k–ω model, obtained by this
method, will be presented in § 4. The prospect of improving turbulence models with
those extracted data, and machine learning methods, is discussed in Singh et al.
(2017) and Matai & Durbin (2019). To that end, a parametric series of datasets is
helpful for training and testing.

The effects of pressure gradients, with and without surface curvature, have been
studied previously by experiments and numerical simulations. These have explored
various aspects of pressure gradient flows, such as disequilibrium, relaminarization
and separation. Blackwelder & Kovasznay (1972) reported that a strong favourable
pressure gradient resulted in the disappearance of the law of the wall and caused a
decrease in the intermittency within the boundary layer. A numerical and experimental
study by Spalart & Watmuff (1993) of turbulent boundary layers with pressure
gradients revealed that the buffer layer and lower end of the log layer shift up in
FPG and down in APG. Bandyopadhyay & Ahmed (1993) also noticed a departure
from the log law. Alving, Smits & Watmuff (1990) reported a slow recovery of the
skin friction and Reynolds stresses after removal of a pressure gradient. The slow
recovery is confirmed herein, but the profiles over the bump cannot be characterized
by log-layer shifts; rather, the log layer ceases exist.

Disruption of the log law and substantial disequilibrium occur with relatively low
bumps; the reference bump height in the present study is two-thirds of the inlet
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99 % boundary layer thickness. Strong disequilibrium, in a simple geometry, adds a
fundamental value to the present simulations.

2. Simulation overview
The geometry of Webster et al. (1996) is shown in figure 1. It is a circular arc

of length L = 254 mm and h = 20.1 mm. Convex fillets are added before and after
the bump to create a total length of C = 305 mm. In § 3.2 this basic geometry
will be extended by increasing h, with other dimensions unchanged. The series is
parametrized by h/C, starting with h/C= 20/305, and increasing up to 42/305. The
flow has separated by that value. The baseline geometry was previously simulated at
a lower Reynolds number by Wu & Squires (1998), who were able to reproduce the
experimental measurements via LES.

At present, the flow was simulated by wall-resolved LES in the finite volume code
OpenFOAM (Weller et al. 1998). OpenFOAM uses a collocated grid arrangement
with support for unstructured grids. The simulations were carried out with the
unsteady and incompressible flow solver ‘pisoFoam’. The second-order, backward,
implicit time advancement scheme was selected. Gauss-linear discretization was used
for gradient and divergence terms, where ‘linear’ stands for a central differencing,
second-order-accurate scheme to interpolate values from cell centres to face centres,
and ‘Gauss’ specifies Gaussian integration. Laplacians were also discretized with
the Gauss scheme and surface-normal gradients were computed with the corrected
scheme, which is also second-order-accurate. The pressure and momentum equations
were solved by preconditioned (bi)conjugate gradient. Diagonal incomplete-Cholesky
factorization (pressure equation) and incomplete-LU factorization (momentum
equation) was used for preconditioning. The PISO algorithm solves the pressure
and momentum equation correctors two times in each step. Subgrid stresses were
represented by the dynamic Smagorinsky model.

A time-dependent, turbulent inflow was generated by a separate, concurrent flat-plate
boundary layer simulation as can be seen in figure 1. The disconnected, upstream
domain recycles and rescales the flow (Arolla 2016) to generate fully developed inflow
to the downstream domain. The inlet momentum thickness was Θ = 3.6 mm; hence,
for the baseline case Θ/h= 0.18 and δ99/h= 1.5. This same thickness was used for
the higher bumps. The time step, dt = 0.009Θ/Uref , ensured a maximum Courant–
Friedrichs–Lewy (CFL) number <0.7, where Uref is the inlet free-stream velocity.

The inlet to the bump is located at x/C = −1/3 with an inlet Reynolds number
of 2500 based on inlet free-stream velocity and momentum thickness (= C/82). The
bump starts at x/C = 0 and ends at x/C = 1 and the width of the domain is 0.22C.
The top boundary condition is zero normal-gradient for the velocity and pressure, and
the outlet condition is zero normal gradient for the velocity, and zero pressure.

2.1. Verification
As the highest bump has the largest separation and requires the finest grid, a sensitivity
study is shown for this bump. This same resolution was used for all the bumps.
Table 1 gives the grid characteristics for the different resolutions that were tested and
figure 2 shows the skin friction for these meshes. The grid spacing is in plus units,
using the friction velocity at the inlet. LES is inherently grid-dependent. Hence, the
grid dependence in figure 2 can be regarded as a measure of experimental accuracy.
The accuracy is very good, and even better for the lower bumps; indeed, the reference
bump is virtually grid-independent.
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FIGURE 2. Grid convergence for highest bump (h42), LES: ——, mesh 1; - - - -, mesh 2;
· · · · · ·, mesh 3; — - —, mesh 4.

No. 1y+ 1x+ (APG, FPG/ZPG) 1z+ Number of cells Nx, Ny, Nz

Mesh 1 <0.5 41 17 7 million 584, 109, 110
Mesh 2 <0.33 23, 41 17 13 million 767, 159, 110
Mesh 3 <0.33 23, 41 11 18 million 767, 159, 154
Mesh 4 <0.33 18, 41 9 27 million 876, 159, 199

TABLE 1. Grid characteristics of the bump simulation at Reθ = 2500.

It was observed that resolution in the spanwise and streamwise directions was more
important for accuracy than was the wall-normal direction. The streamwise resolution
was most important in the APG region. As seen in figure 2, the upstream region is
virtually grid-independent. Hence, streamwise refinements were made after the crest
of the bump; before the crest, all meshes have the same streamwise resolution (Matai
2018).

Mesh 3 and mesh 4 had identical skin friction and velocity profiles, indicating that
mesh 3 had sufficient resolution and, thus, was chosen for all the simulations.

The ratio of the subgrid viscosity to molecular viscosity is a standard metric for
LES resolution. The ratio was less than 2 over almost all of the domain, which
indicates very good LES resolution (Durbin & Reif 2011).

Figure 7, below, shows that the domain width is sufficient to capture several
high- and low-speed streaks, indicating that the domain width was sufficient in the
z-direction. Further verification studies are reported in Matai (2018).

2.2. Validation
Time- and span-averaged velocity profiles were compared with experimental data
(Webster et al. 1996). Those data are for the lowest bump, only. The published data
are at Reθ = 4000, but unpublished data are available for the present Reθ = 2500.
Those were used in figure 3. Velocity is scaled on the inlet free-stream velocity, and
the inlet momentum thickness is the length scale. Components of Reynolds stresses,
uu (figure 4), vv, ww and uv (figure 5), were also compared.

The LES profiles of mean velocity in the x-direction match extremely well with the
experimental data. Over the bump, figure 3 shows large deviations from the log law;
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FIGURE 3. Time- and span-averaged x-velocity at various x locations: ——, LES;
∗, experiment.
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FIGURE 4. Time- and span-averaged uu at various x locations: ——, LES; — - —, single
wire; ∗, X-wire.

this will be seen clearly below in figure 13, where velocity is normalized by viscous
units. The experimentalists noted the absence of a log layer, too, and used an oil drop
method to infer skin friction.

The uu profiles, figure 4, match well with the X-wire experimental data, where they
are available. However, the LES shows structure close to the wall that could not be
measured by the X-wire. The experimenters measured some data with a single wire,
but they are not quantitatively accurate. The single-wire data are included to show
that the near-wall behaviour, seen in the LES, was also present in the laboratory
experiment. The uu peak is an order of magnitude larger than the other diagonal
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FIGURE 5. (Colour online) Time- and span-averaged vv, ww and −uv at various x
locations normalized by U2
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FIGURE 6. Pressure coefficient, pressure gradient parameters and intermittent flow reversal
at the wall.

components of the Reynolds stress tensor. The peaks of uu at y+ ∼ 11 are at the
position of highest production in a zero pressure gradient (ZPG) flat-plate boundary
layer (y+ = 11).

The vv and ww data are slightly overpredicted by LES. This is similar to what
Wu & Squires (1998) observed. The uv component (figure 5), also, is slightly
overpredicted by LES.

3. Flow analysis
3.1. Base case

The surface static pressure coefficient and non-dimensionalized gradient of pressure
are plotted in figure 6. The pressure gradient is adverse as the flow approaches the
bump and then becomes favourable until the crest of the bump. It then becomes
adverse and drops to being favourable in the recovery region of the flow.
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FIGURE 7. Skin friction coefficient.

The effect of the sudden change in pressure gradient at the start and end of the
bump can be seen on the skin friction coefficient (figure 7); it too exhibits sudden
increase and decrease at x/C = 0 and x/C = 1. The skin friction coefficient shows
a plateau from x/C = 0.6 to 0.8. The plateau (observed in this case of Reθ = 2500)
was attributed by Wu & Squires (1998) to intermittent flow reversal at the wall;
intermittent flow reversal is the percentage of time the skin friction is negative. At
their Reθ = 1500, the streamwise locations of the Cf plateau and the intermittent
flow reversal coincide. This, however, is not the case at the current Reynolds number.
Figure 6 shows that the intermittent flow reversal at the wall occurs at x/C = 0.8,
which is after the plateau.

The non-dimensional pressure gradient parameters, defined as

Pg =
dpw

ds
θref

U2
ref
, P+ =

dpw

ds
ν

τ
3/2
w
, (3.1a,b)

are shown in figure 6(b). There, P+ = 0.09, marked in the figure, was suggested
by Patel (1965) as a criterion for the onset of separation; indeed, it correlates
with the beginning of intermittent flow reversal at the wall. Patel (1965) suggested
P+=−0.018, also marked in the figure, as a criterion for the onset of relaminarization.
The pressure gradient parameter crosses this mark, briefly, just near the front of the
bump, but is above it near the crest.
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FIGURE 8. (Colour online) Bump geometries.

Bump Height (mm) Description Bump designation δinlet
99 /R

1 20 (0.0659C) Original bump (no separation) h20 0.069
2 26 (0.0878C) Flow on verge of separation h26 0.095
3 31 (0.1032C) Separated flow h31 0.113
4 38 (0.1259C) Separated flow h38 0.137
5 42 (0.1377C) Separated flow h42 0.149

TABLE 2. Summary of bumps.

There has been speculation that the Webster et al. (1996) bump relaminarized at the
crest. That was partly because turbulence closure models did not capture the flattening
of the Cf curve, near the crest. However, even for the highest bump, we found this
not to be the case. The instantaneous Cf at the mid-span plane is plotted in figure 7
to illustrate that the flow does not become laminar. This and the instantaneous skin
friction coefficient contours (figure 7) show turbulent fluctuations. In § 4 it will be
seen that the flow can be predicted by a fully turbulent RANS computation.

3.2. Bump series
In order to study the progression towards separation, the flow over bumps of
increasing height was simulated. The bump geometries are shown in figure 8. The
set of bumps is summarized in table 2. The bumps were created by fitting a circular
arc between three points: the end of the first convex fillet, the crest of the bump and
the beginning of the last convex fillet.

The flow over the original bump, h20, did not separate; h26 is on the verge of
separation; and h31–h42 develop a small separated region near the end of the bump,
as seen in the skin friction coefficient (Cf ) plots in figure 9(a). As the bump height is
increased, Cf at the bump crest also increases, due to greater flow acceleration; this is
exemplified by the Cp curves and by the pressure gradient curves in figure 10. Because
P+ uses τw in the denominator, it behaves erratically in the separated region of the
flow.

Pressure gradient parameter Pg becomes progressively more negative as the bump
height increases. The region of intermittent flow reversal becomes wider and the
percentage time the flow is reversed also increases. The maximum flow reversal
increases from 25 % of the time for h20 to 100 % of the time for h42. There is also
some reversal where the flow encounters APG before the start of the bump. The Cf
plateau near x/C= 0.7 becomes a local maximum and a separated region – negative
Cf – develops near x/C= 0.8 as the bump height increases.
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FIGURE 9. Comparison of skin friction coefficient and pressure for different bump crest
heights.
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FIGURE 10. Pressure gradient parameters and intermittent flow reversal at the wall for
bumps with different crest heights.

To test the sensitivity to incident boundary layer thickness, two additional
momentum thicknesses equal to C/52 (momentum thickness 2) and C/101 (momentum
thickness 3) were prescribed at the inlet. The effect of the change in momentum
thickness is shown in figure 11. The Cf and Cp profiles remain qualitatively similar;
thus, the qualitative behaviour is not sensitive to inlet boundary layer thickness.

The instantaneous skin friction coefficient in a z-plane and its surface contours are
plotted in figure 12. The contours show streaky structures and the line plots show
turbulent structures, showing that the flow did not relaminarize, even over the highest
bump.

Figure 13 provides the streamwise mean velocity profiles in viscous units (note that
the viscous units were based on local friction velocity). As in the base simulation,
major departure from the log law can be seen over the bump. From figure 10 it is
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FIGURE 11. Comparison of skin friction coefficient and pressure for different inlet
momentum thicknesses (h20).
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FIGURE 12. Instantaneous skin friction coefficient for h42.

seen that the flow changes from APG to FPG around x/C = 0.08 and an immediate
deviation from the log law is observed. Profiles after x/C = 0.1 show similarity to
reverse transitional profiles; i.e. we see an increase in the thickness of the viscous
sublayer that becomes greater as the bump height increases. However, as noted earlier,
the flow is never laminar. It is interesting to note that this thick viscous sublayer
continues, even after the pressure gradient changes signs (FPG turns to APG) at
x/C = 0.5. The present simulations parallel behaviours seen over flat and curved
surfaces (Tsuji & Morikawa 1976): in the experiments of Tsuji & Morikawa (1976),
APG did not result in deviation from the log law, but FPG did.

The profiles progressively deviate from h20 and major deviations can be seen after
y+ = 10. At x/C = 1 profiles have not been plotted for cases in which the flow
separated, because Cf is negative. After the bump all the profiles tend towards h20.
But, by the end of the domain, the flow has not fully recovered to a ZPG boundary
layer.

Figures 14–17 show components of the Reynolds stress tensor for the complete set
of bumps. As before, uu is the largest diagonal component of the stress tensor; i.e. it
is the major contributor to the turbulent kinetic energy (TKE), with its highest value
being an order of magnitude larger than those of vv and ww.

The uu profiles show that increasing the crest height decreases the first peak, at
around y+ = 10, and increases the outer peak, at x/C = 0.1. Over the crest and in
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FIGURE 13. (Colour online) Time- and span-averaged x-velocity at various x locations:
——, h20; - - - -, h26; · · · · · ·, h31; — - —, h38; _______, h42.

the APG, the inner peak forms into a plateau. The outer peaks are much higher for
bumps with higher crest height.

The other components of Reynolds stress develop a similar pattern of near-wall and
outer peaks, each component differing in where they develop and in their relative
heights, as seen in figures 15–17.

An overview of the field of TKE is provided by contour plots in figure 18. This
is especially interesting because the pattern shown has a large effect on skin friction
and has a relevance to turbulence closure models. The prominent feature in the
contour plots is a band of high TKE that originates near the wall, on the lee side.
It originates close to the position where the Cf plateau is observed in figure 9 and
extends downstream over the recovery region. The band extends further downstream
for higher bumps and the magnitude also increases; note that this is not a region
of separated flow. While that behaviour seems extraordinary, it was seen in RANS
computations with eddy viscosity, as well. The primary departure of RANS from
LES was that the band originated farther from the wall. A consequence is that the
RANS prediction of Cf is inaccurate, as will be seen in figure 20. The LES data
provide an insight into the dominant role of near-wall behaviour.

The production of uu for h42 is an order of magnitude larger than vv, as shown
in figure 19. All the production components start near the wall and extend into the
recovery region. It can be seen that the streamwise position of this increase coincides,
almost perfectly, with the increase in Cf . Full budgets (Matai 2018) show that in the
near-wall (y+ < 20) APG region, turbulent transport can be more than 50 % as high
as production. Thus, turbulent transport is a major contributor to near-wall TKE.
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4. Data extraction by inversion
The ambiguous connection between model variables and measurable quantities has

been a juggernaut to using data to improve RANS models. Obvious examples are the
eddy viscosity and ω, of the k–ω model: these are not measurable variables; they exist
as artifacts of the closure model. But, even k, as used in the k–ω and k–ε models,
does not correspond to turbulent kinetic energy; for example, it equals 3.3u2

∗
in the

log layer, while the actual TKE is higher and depends on Reynolds number (Durbin
& Reif 2011). Duraisamy et al. (2015) proposed an innovative method to extract data
on model variables by solving an optimization problem. (We gratefully acknowledge
Professor Duraisamy for providing the computer code to do this.)

In the method of Duraisamy et al. (2015), optimization is accomplished after
introducing a coefficient into the k–ω model. The coefficient can be inserted in
various places. Here, the production term of the ω equation is multiplied by a
coefficient β:

Dω
Dt
= β(x) cω1|S|2 − cω2ω

2
+∇ · (ν + σωk/ω)∇ω, (4.1)

where β is initialized to the baseline value of unity. Then values of β over the grid
are found by minimizing a cost function, J. Two cost functions were examined: the
surface skin friction, and the x-velocity profiles; either

J =
∑

(CRANS
f −CLES

f )2Aface or J =
∑

(URANS
−ULES)2

Vcell

d2
w

, (4.2a,b)
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where dw is wall distance. Inverse wall distance weighting was used in (4.2) to
compensate the small values of U near the wall.

The optimization problem is (β(x, y) |minβ J). Minimization is accomplished
iteratively, requiring the full RANS equations to be solved at each iteration. A
gradient descent algorithm is used to reach the optimum solution. The gradient of
the cost (∂J/∂β), which represents its sensitivity to β, is calculated by solving a
linear adjoint set of equations (see Duraisamy et al. (2015) for a more complete
discussion).

Figure 20 shows that, once the optimal field β(x, y) was reached, the Cf matched
almost exactly with the LES data. Figure 21 shows that, even with Cf as the cost
function, the velocity profiles match well with the LES data; thus, although the cost
function is a wall quantity, its effect on the solution is not local. Figure 22 shows that
corrections are needed, mostly near the wall. Contour plots for case h42, figure 23,
show that β > 1 is needed in the FPG and β < 1 in the APG case. The former
enhances ω, hence reducing the eddy viscosity k/ω, and vice versa. This can be seen
clearly in figure 23(b).

We regard the eddy viscosity, obtained in this manner, to be data; albeit, data
that are extracted, not measured directly. Figure 24 shows the initial eddy viscosity,
corresponding to β = 1, and the optimized eddy viscosity. It can be seen that most
of the difference between the two is near the wall, below y/θref = 1 (y/θref = 1
corresponds to y+≈ 100). On the FPG side, the baseline model overpredicts the eddy

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.80


516 R. Matai and P. Durbin

101 103100 102 10410-1 101 103100 102 10410-1 101 103100 102 10410-1

101 103100 102 10410-1 101 103100 102 10410-1 101 103100 102 10410-1

101 103100 102 10410-1 101 103100 102 10410-1 101 103100 102 10410-1

4

3

2

1

0

4
5

3
2
1
0

0.015

0.010

0.005

0

0.015

0.010

0.005

0

0.010

0.005

0

8

6

4

2

0

8

6

4

2

0

0.020

0.015

0.010

0.005

0

0.015

0.010

0.005

0

y+ y+ y+

ww
/U

2 re
f

ww
/U

2 re
f

ww
/U

2 re
f

(a) (b) (c)
h20
h26
h31
h38
h42

Inlet x/C = 0.1

x/C = 0.5 x/C = 0.6 x/C = 0.7

x/C = 1 x/C = 1.33 x/C = 1.5

x/C = 0.25

(÷ 10-3)

(÷ 10-3) (÷ 10-3)

(÷ 10-3)

(d) (e) (f)

(g) (h) (i)

FIGURE 16. Time- and span-averaged ww at various x locations: ——, h20; - - - -, h26;
· · · · · ·, h31; — - —, h38; _______, h42.

viscosity. This trend continues for some distance even after the pressure gradient
reverses its sign, suggesting a lag effect. At the end of the bump, the baseline model
underpredicts the eddy viscosity near the wall. One can attribute failures of the
baseline k–ω model largely to erroneous eddy viscosity quite near the wall.

Although it might appear that the optimal and baseline viscosity are the same
when y/θref & 1, they are not; the cost function is insensitive to the eddy viscosity
in this region. Regions where the optimal and baseline viscosities are the same are
insensitive to the optimizer, and these cannot be trusted as extracted data. This points
to a limitation of the present method. The data that it provides on turbulence variables
are significant only where those data differ from the baseline model.

This is illustrated by changing the baseline model to the k–ω shear stress transport
(SST) model, with the corrector term, β, again multiplying the production of ω.
Figure 25(b) shows the optimal νT/ν for two baseline models. The optima agree
when y/θref . 1. However, dependence on the baseline model is seen further from
the wall. The cost function is not sensitive to data at these locations. Hence, the
values of νt remain the default, i.e. the same as the base model. A corollary to this
non-uniqueness is that correct velocity profiles can be obtained using different νt
distributions; and this is so because the near-wall behaviour has an overwhelming
influence on the boundary layer flow.

The sensitivity of the inverse solution to the position of the correction multiplier
was checked by moving β to the destruction term (D in figure 25) of the ω equation
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(4.1). Figure 25 shows that the inverse solutions for the eddy viscosity are virtually
identical.

The effect of the cost function on the inverse solution was examined by using
the second cost function in (4.2). Figure 26 shows the velocity profile for both the
cost functions. A small difference is visible only at x/C= 0.655. The eddy viscosity
profiles show some differences (figure 27), suggesting a non-unique optimum eddy
viscosity. Near the end of the bump they become identical. Of the two, the Cf cost
function seems preferable.

The variable k shows a trend similar to the eddy viscosity since they are directly
proportional (figure 28). In the FPG section of the bump, k is overpredicted by the
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RANS solutions and the objective function for the optimization (h20).

baseline RANS solution. The baseline also predicts a spurious peak near the wall,
which does not exist in the optimal solution.

A similar optimization procedure was carried out for h38, and is shown in figure 29.
The inverse solution matches almost exactly with the LES data, except very near the
end of the bump. At this point the gradients become exceedingly small and the
optimization does not converge to the data. Elsewhere, it is quite accurate. Figure 30
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shows the optimal solution agreeing well with the LES data, again proving that
optimizing the Cf cost function can correct the velocity field away from the wall.

One might propose a simpler extraction of eddy viscosity. Least-squares minimizat-
ion of the eddy viscosity in the formula

uiuj =−2νtSij +
3
2 kδij (4.3)
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gives

νt =−
uiujSij

2SijSij
. (4.4)
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Inserting LES data on the right extracts an eddy viscosity. Note, however, that this is
not a rational method; there is no connection between least squares and the operational
use of eddy viscosity. Figure 31 shows that the eddy viscosity from least squares
agrees with the inverse solution near the wall at some locations. However, in general,
it is quite unreasonable.

5. Conclusion
The present is an empirical study. LES was used to create flow over a set of

five bumps, with increasing crest heights. The influence of pressure gradients on the
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turbulence is brought out through comparisons within this family. The base case, with
the lowest bump height, had been studied experimentally by Webster et al. (1996)
and the LES were validated with their data. Conversely, the LES fills in omissions
from laboratory data, providing a more complete picture of the flow field for the
reference bump.
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The lowest bump had no separation, while, the highest bump produced a marginal
separation. The grid requirements are the most severe for the highest bump. To ensure
solution accuracy, a convergence study was carried out for that case. For LES, grid
refinement studies provide a measure of ‘experimental uncertainty’. The grid that was
used in the present simulations provides a benchmark degree of accuracy. A database
for the bump series is available at Rumsey (2018).

The Reynolds stress data show some intriguing behaviours. All components of the
Reynolds stress developed second peaks over the bump. A detached layer of high TKE
developed in the wake. This is distinct from high TKE in fully separated flow. Even in
the marginally separated cases, the band of high TKE leaves the surface well before
separation. The band is due to the mean shear profile created by adverse pressure
gradient.

A plateau in the skin friction develops into a local maximum on the lee side
(figure 9), as the bump height increases. In combination with the band of high TKE,
this is seen to be a consequence of the reaction of the Reynolds stresses to the flow
field, and not a direct effect of the pressure distribution.

These and other effects of strong disequilibrium, such as the absence of a log
layer, prevent data correlation. Hence, the parametric series provides a systematic
view of the development of disequilibrium. Although the focus is on adverse pressure
gradient, there is flow acceleration over the front slope of the bump. In that region,
turbulent intensity is initially reduced near the wall – increasingly so as the bump
height increases. However, the flow remains fully turbulent. There has been some
question over whether the flow relaminarizes: it does not, even for the highest bump.

The database was originally created for assessment and development of Reynolds-
averaged models. It was shown that RANS with k–ω fails to correctly simulate flow
over these bumps. In order to explore the origin of this failure, turbulence variables
were extracted by an optimization procedure. The extracted data include the eddy
viscosity, νt. It was shown that current turbulence models fail because their predicted
eddy viscosity is erroneous close to the wall. The behaviour of the eddy viscosity
further away from the wall did not have an appreciable effect on the flow solution.
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