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In the present study, shock tube experiments are used to study the very late-time
development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal,
initial perturbation into a fully turbulent flow. The interface is generated by two
opposing gas flows and a perturbation is formed on the interface by transversely
oscillating the shock tube to create a standing wave. The puncturing of a diaphragm
generates a Mach 1.2 shock wave that then impacts a density gradient composed of
air and SF6, causing the Richtmyer–Meshkov instability to develop in the 2.0 m long
test section. The instability is visualized with planar Mie scattering in which smoke
particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded
using four high-speed video cameras operating at 6 kHz that allow the recording of
the time history of the instability. In addition, particle image velocimetry (PIV) is
implemented using a double-pulsed Nd:YAG laser with images recorded using a single
CCD camera. Initial modal content, amplitude, and growth rates are reported from
the Mie scattering experiments while vorticity and circulation measurements are made
using PIV. Amplitude measurements show good early-time agreement but relatively
poor late-time agreement with existing nonlinear models. The model of Goncharov
(Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with growth rate measurements
at intermediate times but fails at late experimental times. Measured background
acceleration present in the experiment suggests that the late-time growth rate may
be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration.
Numerical simulations conducted using the LLNL codes Ares and Miranda show
that this acceleration may be caused by the growth of boundary layers, and must
be accounted for to produce good agreement with models and simulations. Adding
acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved
agreement. It is found that the growth rate and amplitude trends are also modelled
well by the Likhachev–Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids,
vol. 17, 2005, 031704). Circulation measurements also show good agreement with
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the circulation value extracted by fitting the vortex model to the experimental
data.

Key words: compressible flows, instability, nonlinear instability

1. Introduction
The Richtmyer–Meshkov instability (Richtmyer 1960; Meshkov 1969) is a member

of a class of fluid instabilities that occur across density interfaces in fluid media.
This instability is very similar to the better-known Rayleigh–Taylor instability
(Rayleigh 1900; Taylor 1950) that occurs when an interface is subjected to a
constant acceleration such as produced by gravity. The Richtmyer–Meshkov instability,
however, occurs when the interface is impulsively accelerated. This instability is a
major component of supersonic mixing, and enhances mixing during fuel injection
in scramjet propulsion systems (Yang, Kubota & Zukoski 1993). The instability
occurs in nature when the helium–hydrogen interface in core-collapse supernovae
is subjected to the shock wave generated by the bouncing stellar core (Kifonidis
et al. 2006). In engineering applications, the Richtmyer–Meshkov instability occurs
in inertial confinement fusion when a capsule containing deuterium and tritium is
ablated and the heavy and light fuel layers begin to mix. Minimization of mixing of
the deuterium–tritium fuel by instabilities is crucial to the successful formation of the
fusion reaction’s central hot spot (Edwards et al. 2011).

In the generation of Richtmyer–Meshkov instability, a perturbed interface is
subjected to an impulsive acceleration (often produced by a shock wave), which
deposits kinetic energy on the fluid interface and causes perturbations to grow with
time. This growth eventually causes the fluids separated by the interface to mix
together and become turbulent. This instability is initiated by baroclinic vorticity
deposition (as shown in figure 1) when the shock wave, a pressure gradient
(∇p), interacts with a density gradient (∇ρ). The two-dimensional, inviscid vorticity
transport equation can be written as

ρ
D
Dt

(
ω

ρ

)
= 1
ρ2

∇ρ ×∇p. (1.1)

Thus, the initial vorticity (ω) distribution is generated by the shock wave when there
is a misalignment of pressure and density gradients. Additional weak vorticity will
also be generated by the transmitted and reflected shock waves, which will be curved
due to interaction with the perturbed interface (Huerte Ruiz de Lira, Velikovich &
Wouchuk 2011). The deposited vorticity causes the interface to roll up into mushroom-
like spikes of heavy fluid penetrating into the light fluid, separated by bubbles of
light fluid moving into the heavy fluid (as shown in figure 1). The total amount of
vorticity deposited by the shock wave determines the growth rate of the instability.
The spikes and bubbles continue to grow and the vorticity rolls up into regions of
concentrated vorticity of alternating sign. Later in the development of the instability,
the misalignment of the centripetal acceleration of the vortex cores and the interfacial
density gradient causes the generation of additional vorticity (Peng, Zabusky & Zhang
2003). The rolling up of the vorticity will also generate shear on the thin arms of the
mushroom structure, leading to the growth of a secondary instability. Over time, this
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Vortex rollup
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FIGURE 1. Explanation of the deposition of baroclinic vorticity on the interface. (a) The
shock wave travels downward toward the interface and applies a pressure gradient across
the density gradient which generates baroclinic vorticity on the interface. (b) This baroclinic
vorticity rolls up into spikes of heavy fluid separating bubbles of light fluid as the interface
travels down the shock tube with the mean post-shock flow.

secondary instability eventually becomes turbulent, and the mushroom structures begin
to disintegrate as the stems thin and the arms mix due to turbulent diffusion.

The Richtmyer–Meshkov instability was initially modelled by Richtmyer (1960), by
replacing gravity in the linear stability theory of Taylor (1950) with an impulsive
acceleration in the form of a Dirac delta function, resulting in

a(t)= a0[1+ kA1Vt], (1.2)

which describes the growth of the perturbation amplitude a, where k is the
wavenumber of the initial disturbance, 1V is the velocity change of the interface
due to impulsive acceleration, and A is the Atwood number defined by

A= ρ2 − ρ1

ρ2 + ρ1
, (1.3)

where ρ2 is the density of the lower fluid and ρ1 is the density of the upper fluid.
Richtmyer further observed that for the light-to-heavy configuration post-shock values
of a0 and A produced the best agreement with numerical simulations, while for the
heavy-to-light configuration Meyer & Blewett (1972) observed that the average of
pre-shock and post-shock values of a0 worked best. While there have been a number
of more recent studies aimed at incorporating more realistic physics into this simple
linear stability analysis (Wouchuk & Nishihara 1997; Krechetnikov 2009), linear
stability theory is, nevertheless, accurate for only a very brief time following shock
interaction. As a result there have been a number of attempts to extend Richtmyer’s
linear solution into the nonlinear regime (Nishihara et al. 2010). For example Zhang
& Sohn (1997a), and others (Vandenboomgaerde, Gauthier & Mügler 2002; Matsuoka,
Nishihara & Fukuda 2003), have focused on weakly nonlinear analyses. These types
of analysis extend the linear solution a bit farther in time. However, they still
fail to effectively model the instability at moderate to late times. Other types of
analysis use potential flow to model the late-time motion of the bubble and spike
tips (Goncharov 2002; Mikaelian 2003; Herrmann, Moin & Abarzhi 2008). However,
the most successful models are those that are semi-empirical in nature: for example,
see the models of Sadot et al. (1998), Likhachev & Jacobs (2005), and Dimonte &
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Ramaprabhu (2010). In addition to theoretical analyses, there have been a number of
studies using numerical simulations to model the late-time instability (Holmes et al.
1999; Schilling, Latini & Don 2007). Note that the term ‘late-time’ is used here to
refer to the single-mode instability, which is distinguished from recent work focused
on simulating the multimode, fully turbulent instability (Grinstein, Gowhardhan &
Wachtor 2011; Hahn et al. 2011; Lombardini et al. 2011; Thornber et al. 2011).

The Richtmyer–Meshkov instability was first observed experimentally by Meshkov
(1969). These early experiments used a thin membrane (Vetter & Sturtevant 1995;
Prasad et al. 2000) to separate the two test gases prior to the impact of the shock
wave. This method is still in use today despite the fact that pieces of the membrane
become entrained in the fluid impeding flow visualization. In addition, it has been
found that in the light-to-heavy configuration, particles from the membrane will
remain on the interface and reduce the linear growth rate of the instability (Mariani
et al. 2008). Other studies have used explosive drivers to ablate easily liquefiable
metal with machined initial perturbations (Benjamin, Trease & Shaner 1984). Another
experimental technique involves extracting a plate that initially separates the interfacial
fluids, using the wake it creates as the initial perturbation (Bonazza & Sturtevant
1996). A membraneless approach was developed, using gas cylinders deposited by a
laminar jet, to develop well-characterized diffuse initial conditions (Jacobs 1993). This
technique was then extended by using a varicose gas curtain to develop a thin layer
initial perturbation (Jacobs et al. 1993, 1995). This technique is still in use at the Los
Alamos National Laboratory (Balakumar et al. 2008; Tomkins et al. 2008).

Jones & Jacobs (1997) first used the novel technique of using a stagnating flow of
gases exiting from slots in the sidewall of the shock tube to create a well-defined
initial interface. This technique was further employed by Collins & Jacobs (2002)
and Jacobs & Krivets (2005). In these experiments the initial perturbation was created
by gently oscillating the shock tube back and forth, creating a standing sinusoidal
wave on the interface. The time scale associated with the standing wave is orders of
magnitude longer than the time scale associated with the propagation of the shock
wave. Therefore, during the experiment, the initial perturbation can be considered
static. This technique is currently in use at The University of Arizona, and has most
recently been implemented by the Wisconsin Shock Tube Laboratory via moving
plates that push and pull the fluid at the interface in a rigid shock tube (Motl et al.
2007).

Since the first work on this subject, the experiments at the University of Arizona
have evolved by making improvements in visualization capability, such as by
implementing planar-laser-induced fluorescence (PLIF) (Collins & Jacobs 2002) and
most recently particle image velocimetry (PIV) (Aure & Jacobs 2008). In addition,
attempts have been made to extend the observation time farther into the nonlinear
regime (Jacobs & Krivets 2005).

One major shortcoming encountered in these previous shock tube experiments
was the inability to acquire multiple images from a single experiment. Due to the
variation in initial conditions from experiment to experiment, the scatter in the data
was significant. The current study employs high-speed video imaging to capture a
sequence of images from a single experiment. Hence, the initial perturbation is well
characterized and the time history of the instability is observed. This time history
causes relatively little scatter in the data and time derivatives can be extracted. In
addition to the improved data acquisition capability, the experiments reported here use
a much longer shock tube, thus allowing the observation of the instability at much
later times prior to re-shock. Thus, the current study represents our best effort to date,
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FIGURE 2. (Colour online) The University of Arizona 10 m vertical shock tube used for
the present study: (a) scale diagram demonstrating the overall length of the shock tube,
(b) the test section and visualization optics. The length of the test section maximizes the
amount of time before re-shock occurs, while the large driver section delays the onset of the
reflected expansion wave. The major difference between this setup and the particle imaging
velocimetry setup is that one CCD camera on a rail system is utilized for PIV instead of the
four CMOS cameras depicted in (b).

in that it employs our new capability to measure the growth of the instability. In
addition, it extends our experimental durations by a factor of three over our previous
studies.

2. Experimental setup
2.1. Shock tube

Experiments were performed using the 10 m shock tube at the University of Arizona.
Details of previous research using this shock tube can be found in Aure & Jacobs
(2008). Figure 2 shows two diagrams of the shock tube: the complete shock tube to
scale (figure 2a) and the test section and visualization optics (figure 2b). The shock
tube has a 3.7 m driver section, a 6.3 m driven section, and a 2.0 m test section
with a 88.9 mm square cross-section. The driven section is separated by two to three
polypropylene diaphragms and is pressurized using nitrogen gas. When the pressure
in the driver section reaches the desired value a solenoid is activated which plunges
an arrowhead made from four X-acto knife blades into the diaphragm. The blades
puncture the diaphragm, sending a shock wave travelling down the shock tube. The
shock wave impacts the air–SF6 interface, and the Richtmyer–Meshkov instability
develops in the test section. Figure 3 shows the interaction of the waves generated by
the rupturing of the diaphragm in the shock tube.
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FIGURE 3. An x versus t diagram for the shock tube used in the present study. The dashed
lines indicate the test area actually imaged by the cameras. This diagram shows the long test
time available before reflected waves reach the interface.

The interface is created between air entering through a plenum at the top of the
driven section and SF6 entering through a similar plenum at the bottom of the test
section at matched flow rates of 6 l min−1. The opposing flows of gas are allowed
to exit through two 6.4 by 88.9 mm slots at the front and back of the top of
the test section creating a flat interfacial stagnation flow. After this flat interface is
established, a stepper motor gently oscillates the flexible shock tube at a prescribed
frequency to create a standing wave. Due to the perturbation formation method, only
n + 1/2 wavelengths, where n = 1, 2, 3, can be generated across the shock tube
width. When the shock wave impacts the interface, the interface is in the shape of
a two-dimensional sinusoidal wave, which becomes the initial perturbation for the
experiment.

The experiment is initialized by synchronizing a signal from an optical switch
attached to the stepper motor to a handset switch controlled by the operator. When
both switches are simultaneously closed, the solenoid plunger is activated. As the
shock wave travels down the shock tube, it passes two PCB Piezotronics 112A22
high-resolution, dynamic, ICP pressure transducers located 273 and 732 mm above the
interface. Both pressure transducers are connected to an Agilent 225 MHz Universal
Counter while the second is also used to trigger a Stanford Research Systems
DG535 digital delay generator. The delay generator employs a prescribed delay before
triggering the start of an image acquisition sequence. Experiments are illuminated by
laser-light entering the test section through a fused silica window in the bottom of the
shock tube.

2.2. Particle image velocimetry
In the PIV experiments, the light and heavy gases are seeded using custom-built
atomizers that atomize a suspension of 0.30 µm polystyrene latex spheres suspended
in distilled water (Liu & Lee 1975). The concentration of latex spheres in the solution
determines the seeding density in the gas. Water is removed from the seeded gas flow
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using desiccant driers located between the atomizers and the shock tube plenums. The
seeding densities of the gas flows are matched and optimized visually by adjusting the
suspension particle concentrations.

One double-exposed image per experiment is obtained by illuminating the seeded
flow using a dual cavity pulsed Nd:YAG laser. The laser beam is focused using 1677.0
and 1118.1 mm spherical lenses and expanded to a 1 mm thick light sheet using
−165.6 and −220.7 mm cylindrical lenses. Experimental images are captured using a
thermoelectrically cooled CCD camera with 1250 pixel × 1152 pixel resolution and a
Nikon 60 mm f/2.8D macro lens. To enhance the signal-to-noise ratio of the data and
to minimize noise from reflections and scattering of light from the shock tube walls,
the walls are painted with a mixture of clear varnish and Rhodamine 6G. When the
green laser light is absorbed by the walls, it is weakly emitted in the yellow-to-red
spectrum (λ > 545 nm). The yellow/red light emitted from the shock tube walls is
filtered out by an optical bandpass filter (λ= 532± 5 nm) attached to the camera lens.

The processing of particle images is implemented using LaVision’s DaVis
FlowMaster software. Image processing is done using a three-step multipass
autocorrelation algorithm with a decreasing window size. The initial pass utilizes
a normalized second-order correlation function and 64 pixel × 64 pixel interrogation
windows with 50 % overlap. The final two passes utilize a normalized correlation
function and 32 pixel × 32 pixel interrogation windows with 50 % overlap (Keane &
Adrian 1990, 1991). A liberal restriction was put on the allowable vector range and a
median filter was applied after the final pass. Empty cells were filled with interpolated
vectors. Optimal 1tPIV and processing parameters were determined based on known
theory and optimized experimentally (Westerweel 1993; Raffel, Kompenhans & Willert
1998). The raw data were analysed using MATLAB to extract vorticity, circulation,
and growth rates.

2.3. Planar Mie scattering
Planar Mie scattering experiments are visualized by seeding the light gas with incense
smoke. Incense smoke and air are added at the top of the driven section and are
allowed to displace the air in the driven section. The smoke is visualized by a
light sheet created by a 50 mm focal length collimating lens, a 600 mm focal length
focusing lens, and a 2000 mm focal length cylindrical lens. A high flashing frequency
Photonics Industries model DM50-527 diode pumped Nd:YLF laser operating at a
wavelength of 527 nm is used for illumination. Scattered light from smoke particles is
recorded by four Photron Fastcam-APX RS cameras with Nikon 50 mm f/1.2 lenses
operating at a resolution of 512 pixels× 1024 pixels at 6 kHz.

Acquisition timing is controlled by a LaVision HSC external timing board. Data
are acquired using the DaVis software by LaVision GmbH. The delay generator waits
0.3 ms before triggering the HSC to start recording images. Upon receiving the trigger
signal, the HSC sends synchronized signals to the laser control unit and high-speed
cameras. Image data were calibrated in DaVis using an image of a linear scale located
at the centre of the laser plane for all of the cameras.

Each camera’s field of view overlaps with its neighbour’s by ≈1 cm. In order to
maximize the number of data points measured and ultimately create videos of the
instability the images are spliced together. The splicing was accomplished using a
number of MATLAB routines using tools found in the image processing toolbox
and DaVis macros. The MATLAB routines straighten the images, splice them across
cameras, and scale their intensities to match across cameras. Measurements are made
visually and have an error of 6±0.54 mm.
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3. Numerical simulation methods
3.1. Miranda

The Miranda code is a research hydrodynamics code developed at Lawrence Livermore
National Laboratory (LLNL). The compressible version of the Miranda code (Cook
& Cabot 2005; Cook 2007) used solves the Navier–Stokes equations for compressible
ideal gases. In order to capture the effects of small scales on the problem, grid-
dependent artificial viscosities and diffusivity are used. The governing equations are
solved using a fourth-order Runge–Kutta scheme in time, and a tenth-order compact
scheme for spatial derivatives (Cook & Cabot 2005). More details on the accuracy
of the scheme used for solving the differential equations are given in Cook & Cabot
(2004) and Cook (2007).

The setup for the problem in Miranda simulates the instability starting from a
pure cosine wave initial perturbation. In the x direction, periodic boundary conditions
are used to mimic an endless row of developing mushrooms. In the z direction an
outflow boundary condition is used which allows most waves to exit the domain.
The simulation uses a frame of reference travelling downward at the post-shock
unperturbed interface velocity. Thus, when the problem is initiated, the interface
appears to travel upward at the velocity induced by the shock wave (as found in
a one-dimensional simulation). The shock wave is initiated 2 wavelengths above the
interface and travels downward.

Once the shock wave and interface interact, the unperturbed interface location is
frozen in the moving frame of reference. The perturbed simulations have bubbles and
spikes that grow from the fixed unperturbed interface position. The shock waves that
reflect and refract from the interface are removed from the computational domain to
avoid any spurious reflections that they may cause at the boundaries. This is done
by removing the small pieces of computational domain near the boundaries in which
they reside and enforcing outflow boundary conditions at the post-shock states. The
final computational domain is 6 wavelengths long by 1 wavelength across with the
unperturbed interface location residing 2 wavelengths from the bottom of the domain
(allowing sufficient numerical domain for the spike to grow into). The resolution of
the simulation is 256 grid points per wavelength on a square mesh. Convergence was
checked by performing simulations at 256 and 512 grid points per wavelength where it
was found that the higher-resolution simulation produced only a 0.04 % change in the
instability amplitude.

The initial perturbation is a pure cosine wave

zint = z0 − a0 cos(kx) (3.1)

with a wavenumber

k =
2π
(

n+ 1
2

)
88.9 mm

(3.2)

estimated based on the width of the physical shock tube, where z0 is the mean location
of the interface and zint is the location of the interface. The diffusion profile used is an
error function such that

Y1 = 1
2
+ 1

2
erf
(√
π(z− zint)

δ

)
, (3.3)

where Y1 is the species mass fraction of fluid 1, the error function is approximated
as found by Abramowitz & Stegun (1964), and δ is the maximum slope thickness.
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The values used for maximum slope thicknesses were measured in PLIF experiments.
Shock wave strengths were estimated based on the mean interface velocity that
the shock wave induced in the experiments. This step is necessary as the interface
generation slots reduce the effective Mach number of the incident shock wave. All of
the computational parameters were taken as the mean of the experimental parameters
of four experiments.

Amplitude data are extracted using the LLNL VisIt visualization software. Since
the transverse location of the bubbles and spikes do not move in these simulations,
line-outs are used to determine the 50 % mass fraction points. The amplitude is
calculated as half of the distance along the shock tube between the 50 % mass fraction
points that make up the bubble and spike. Circulation is extracted by area, integrating
the two-dimensional vorticity over a box that includes one half-wavelength of the
instability and extends to the edges of the simulation.

3.2. Ares

Ares is an arbitrary Lagrangian–Eulerian (ALE) hydrodynamics code developed at
LLNL (see McFarland, Greenough & Ranjan 2011). The Lagrange time advancement
is second-order predictor–corrector and uses the Gauss divergence theorem to give the
discrete finite difference equations (Wilkins 1963). The Lagrange scheme operates on
a staggered mesh where velocities are defined at nodes and the density and energy
are defined at zone centres. All numerical differences are fully second-order in space.
Artificial viscosity is used to suppress spurious oscillations following the method of
Kolev & Rieben (2009). The remap phase of the calculation, where the Lagrangian
solution is remapped back to a non-Lagrangian mesh, is fully second-order. The
original method is given by Sharp & Barton (1981).

The setup for the Ares problems starts with a pure cosine wave initial perturbation,
and unlike in the Miranda simulations, the full width of the shock tube is simulated.
The diffuseness of the initial interface is modelled with the same error function profile
as in Miranda. The full 2.0 m length of the test section is used with the shock wave
starting 10.0 cm above the interface. A reflection region 410.0 cm long is set up
above the interface to prevent spurious waves from interacting with the developing
interface. The bottom, left, and right walls of the shock tube are set as zero normal
velocity enforcing the no-penetration condition. Since the full shock tube width is
simulated, boundary layers that approximately simulate those seen in experiments can
be developed. The boundary layer simulations use a simple constant viscosity model
for constructing the viscous stress, and the boundary conditions in these simulations
are imposed as solid, no-slip, insulated walls. The top boundary condition is input
as a set of sources at the post-shock conditions. Adaptive mesh refinement with four
levels of refinement by factors of 3 is used to resolve the interface, the boundary
layer entrainment, and the incident shock wave. This results in a resolution of ∼218
points per wavelength. Convergence was checked by performing simulations at up to
four levels of refinement, where it was found that the highest-resolution simulation
produced only a 2.4 % variation in the post-shock interface velocity.

Amplitude data extraction becomes more complicated when boundary layers are
present, as the location of the point of maximum spike amplitude begins to move
in the transverse direction. Amplitudes were extracted by finding the maximum and
minimum points of the 50 % contour (within a window that excludes the boundary
layer entrainment region). Circulation is extracted by area, integrating the two-
dimensional vorticity over a box containing one half-wavelength of the instability
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 4. (Colour online) A montage of images comparing planar Mie scattering images
to PIV vorticity images at (a) t = 0.5 ms, (b) t = 1.0 ms, (c) t = 1.5 ms, (d) t = 2.0 ms,
(e) t = 2.5 ms, (f ) t = 3.0 ms, (g) t = 3.5 ms, (h) t = 4.0 ms, (i) t = 4.5 ms, and (j) t = 5.0 ms.
The vorticity can be seen to roll up into concentrated centres of vorticity as the instability
develops.

and excluding the boundary layer. The box is centred at the average interface location
and extends far beyond the interface (80 cm in each direction).

4. Results
4.1. Experimental results

The sequence of images displayed in figures 4 and 5 shows a planar Mie scattering
experiment compared to vorticity maps obtained from separate PIV experiments
chosen to have matching conditions. In these images only one wavelength of a 2.5-
wavelength experiment is shown. The first frame shows the instability during the linear
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(k)

(m)

(o)

(q)

(l)

(n)

( p)

(r)

(s)

FIGURE 5. (Colour online) Continued montage of images comparing planar Mie scattering
images to PIV vorticity images at (k) t = 5.5 ms, (l) t = 6.0 ms, (m) t = 6.5 ms, (n) t =
7.0 ms, (o) t = 8.0 ms, (p) t = 9.0 ms, (q) t = 10.0 ms, (r) t = 11.0 ms, and (s) t = 12.0 ms.
The vorticity is seen to disperse as the secondary instability breaks up the mushroom
structures.

growth phase, with the initial vorticity distribution created from the passage of the
shock wave through the diffuse interface. From 1.0 to around 2.0 ms, the interface
becomes multivalued and enters the nonlinear phase. In these images, vorticity is
advected into areas of concentrated vorticity. From 2.5 to 3.5 ms the concentrated
vorticity causes the interface to develop into a mushroom-like shape with spirals
of heavy fluid circling the centres of vorticity. From 4.0 to 5.5 ms the arms of
the instability begin to exhibit a secondary instability as they rotate inward. The
centres of vorticity become visible in the Mie scattering experiments as centripetal
acceleration evacuates them of smoke. From 6.0 ms onward the spirals near the centres
of vorticity begin to break down and strong mixing occurs. In the last few frames the
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Parameter Symbol 1.5 waves 2.5 waves Units

Initial amplitude (pre-shock) a−0 3.0–3.3 1.9–2.2 mm
Initial amplitude (post-shock) a+0 2.0–2.8 1.5–1.9 mm
Wavenumber k 0.1059 0.1765 mm−1

Shock Mach number Ms 1.2 1.2 None
Initial growth rate ȧ0 7.3–8.5 6.3–7.9 mm ms−1

Piston velocity V 62.51–63.82 65.92–70.45 mm ms−1

Non-dimensional initial amp. ka+0 0.21–0.30 0.26–0.34 None
Atwood number (post-shock) A+ 0.68 0.68 None
Shaking frequency fshake 3.72 4.60 Hz
Shaking amplitude ashake 1.0 1.0 mm

TABLE 1. Parameters extracted from single-mode planar-laser-induced Mie scattering
experiments for two different wavenumbers. Parameters fshake and ashake are imposed using
a stepper motor controller and an eccentric cam. The superscripts − and + correspond to
pre-shock and post-shock states respectively.

Parameter Symbol 1.5 waves 2.5 waves Units

Initial amplitude (pre-shock) a−0 3.0 1.1 mm
Wavenumber k 0.106 0.176 mm−1

Shock Mach number Ms 1.21 1.21 None
Piston velocity V 63.5 63.5 mm ms−1

Non-dimensional initial amp. ka−0 0.32 0.12 None
Atwood number (post-shock) A+ 0.66 0.66 None
Shaking frequency fshake 3.72 4.59 Hz
Shaking amplitude ashake 1.5 1.0 mm
Driver pressure pd 239.2 239.2 kPa

TABLE 2. Parameters extracted from single-mode particle image velocimetry experiments
for two different wavenumbers. The superscripts − and + correspond to pre-shock and
post-shock states respectively.

mushroom stems begin to thin, while turbulent diffusion causes the vorticity to spread
into the surrounding flow. Table 1 contains parameters for the planar Mie scattering
experiments and table 2 contains parameters for the PIV experiments. The interface
velocity was extracted as the slope of a linear fit to the mean interface displacement
versus time during the linear growth phase. The time at which this curve fit intersected
the initial mean interface location (average of bubble and spike locations) was set
to t = 0. The initial growth rate and amplitude were extracted using a linear fit to
amplitude versus time plots during the linear growth phase.

We want to produce a single-mode perturbation, but it is likely that the method used
to produce the initial perturbation will introduce higher harmonics on the interface.
To examine the modal content of the initial perturbation, a discrete Fourier transform
of an edge-detected image of the initial perturbation was constructed. Figure 6 shows
the spectrum of the initial perturbation for a 1.5-wavelength and a 2.5-wavelength
experiment. These spectra show strong peaks at the dominant wavenumbers, some
weaker harmonics, and little spectral content for the highest wavenumbers. While the
spectra are not completely single-mode, the large dimensionless amplitude ka for the
dominant modes will cause them to quickly dominate the flow.
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0 2.0

(a) (b)

FIGURE 6. Spectra of wavenumbers present in the initial perturbation of Mie scattering
experiments: (a) 1.5 wavelengths; (b) 2.5 wavelengths. Both sets of spectra exhibit weak
higher harmonics and a strong peak near the desired wavenumber.

4.2. Comparisons with simulations
Several simulations were completed to compare with experiments. Figure 7 shows a
comparison of experimental images with images from a Miranda simulation. Good
qualitative agreement is observed throughout this sequence. Some slight differences
are observable, with the experiment exhibiting less symmetry and finer detail. The
secondary instability is observed to occur earlier in the experiment and also becomes
more turbulent at later times. Also in the experiments, the vortex cores are marked by
the evacuation of smoke particles caused by the strong centrifugal forces present in
these regions.

Figure 8 compares experimental amplitude measurements to those extracted from a
Miranda simulation and an Ares simulation. This comparison shows good qualitative
agreement at early times. However, at later times, the amplitude of the simulations is
noticeably less than that of the experiment. A comparable simulation was run using
the Ares code which is also shown in figure 8. As observed in figure 8, the Ares
and Miranda simulations produced similar amplitude trends. Note that the data of
figure 8 are plotted in terms of the dimensionless variables kȧ0t versus k(a − a0) with
ȧ0 obtained from Richtmyer’s theory. These variables are used in order for amplitude
curves with different initial growth rates to have a slope of unity near the origin,
and to better reveal differences in the nonlinear behaviour. This rescaling is shown
to collapse the experimental amplitude measurements well into the nonlinear region
(Jacobs & Krivets 2005). However, both simulations are observed to produce a non-
dimensional late-time growth rate that is less than that produced by the experiment.

4.3. Effects of additional acceleration
The amplitude discrepancies observed in figure 8 can be explained by examining
the late-time interface velocities. Figure 9 shows the velocity of the bubble tips in
the laboratory fixed frame for four 2.5-wavelength experiments. Note that the bubble
velocity should decay to zero as t→∞ in the reference frame moving with the mean
interface location. This implies that bubbles should approach constant velocity in the
laboratory frame. In our experiments, however, the bubble velocities are observed to
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 7. Montage of (a) experimental images compared with (b) pseudocolour images
of species mass fraction from a Miranda simulation at (a) t = −0.08 ms, (b) t = 1.42 ms,
(c) t = 2.92 ms, (d) t = 4.42 ms, (e) t = 5.92 ms, (f ) t = 7.42 ms, (g) t = 8.92 ms, and
(h) t = 10.42 ms. Good qualitative agreement is observed, but an amplitude discrepancy is
present.

be increasing with time at late times. In order to investigate this further, several flat
interface experiments were undertaken in which no initial perturbation was imposed.
Figure 10 shows interface velocity measurements taken from four of these experiments.
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2.5-run02
2.5-run03
2.5-run04
Miranda without acceleration
Ares without boundary layer

FIGURE 8. Non-dimensional amplitude for two simulations compared with 2.5-wavelength
experimental data. The simulations without boundary layers or acceleration have lower
amplitudes than the experiments.

As can be seen in the plots, the velocity increases with time, indicating acceleration.
Since the acceleration is directed from the light fluid into the heavy fluid, one would
expect the addition of Rayleigh–Taylor instability to induce Richtmyer–Meshkov
growth rates that are larger than those with no acceleration present. This additional
Rayleigh–Taylor growth could explain the discrepancy observed in figure 8.

In one-dimensional gas dynamics theory, flat fluid interfaces with a shock wave
impacting them from the light gas to the heavy gas are expected to reflect a shock
or compression wave and transmit a shock or compression wave. The interface then
moves at the constant velocity induced by the transmitted wave. Figure 10 shows
a horizontal line indicating the expected results from a one-dimensional analysis.
The figure shows that when accelerated by a shock wave, the interface travels at a
speed initially less than that predicted by gas dynamics and then slowly accelerates,
approaching but not reaching the one-dimensional result. In an attempt to understand
this variation, two possible causes were investigated using numerical simulations. The
first is the effect of the slots, the two 6 mm openings in the shock tube walls, on
the resulting interface velocity. This effect was simulated in Miranda by applying
a localized mixed boundary condition which allows the pressure to relax to the
ambient value for the 0.75 cm of shock tube wall occupied by the slots. In figure 10
this simulation shows the shock interaction to accelerate the interface to a constant
velocity lower than the theoretical value. Thus, the slots appear to reduce the impulsive
acceleration of the interface, but do not produce acceleration.

The other possible cause for the acceleration that was investigated in the simulations
was the effect of the boundary layers that are known to grow on the shock tube
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78
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66

2.5-run01
2.5-run02
2.5-run03
2.5-run04

FIGURE 9. A plot of the bubble velocities relative to the shock tube fixed frame from four
experiments showing how they accelerate at late times, in disagreement with most predictions.
The flat interfaces in the experiment experience a similar acceleration to that experienced by
the bubbles.

wall following shock acceleration. Contact surface acceleration was described by Glass
& Patterson (1955) when they observed the velocity of the contact surfaces in their
experiments increasing with the distance traversed by the contact surface. This effect
has more recently been produced in the numerical simulations of Badcock (1992).
The theory developed by Roshko (1960) for laminar boundary layers and Brocher
(1964) for turbulent boundary layers describes the acceleration as being caused by
mass leakage through the interface caused by the boundary layer. In order to conserve
mass in a shock fixed reference frame, the length of the gas column between the
interface and the shock must decrease. According to Mirels (1956), boundary layers
will produce a wall-normal velocity which will act on the inviscid mean flow as
a mass source or sink. For negative wall velocities, the mass sink will cause the
generation of expansion waves that will accelerate the interface (Mirels & Braun
1957). These situations are assumed to be analogous to the boundary layer growing
between the transmitted shock and the interface.

The theory as outlined in Brocher (1964) consists of balancing the flow entering
through the shock with the flow leaking out of the interface and relating this to
the change in volume of the column of gas. This leads to the following expressions
relating non-dimensional gas column length to non-dimensional time:

ln
(

1
1− L1/2

)
+ L1/2 =−T

2
(4.1)
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FIGURE 10. Comparison of results from flat interface experiments and a simulation in
Miranda where the effects of the slots are approximately modelled.

for laminar boundary layers, and

1
4

ln
(

1+ L1/5

1− L1/5

)
+ 1

2
tan−1(L1/5)− L1/5 = T

5
(4.2)

for turbulent boundary layers. The non-dimensional length is L = l/lm, where l and lm

are the physical length and maximum length of the gas column, respectively, where

lm =
(

d

4β

)2(
ρ2

ρw

)2
(ut − u2)

2

u2

(
ρ2

µw

)
, (4.3)

and for turbulent boundary layers

lm =
(

ut

u2

)(
d

4β

)5/4(
ρwut

νw

)1/4

. (4.4)

Here d is the width of the shock tube, the subscript w indicates wall values, the
subscript 2 denotes shocked test gas values, ν is the kinematic viscosity, and β is an
empirical boundary layer scaling. The non-dimensional time scale is T = (ut − u2)t/lm,
where ut is the velocity of the transmitted shock and u2 is the velocity induced by the
transmitted shock. For the Mirels & Braun (1957) approximation, all terms relating to
the regions above the interface are ignored and the weak shock limit is assumed. This
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FIGURE 11. Comparison of results from flat interface experiments, a simulation in Ares
where the effects of boundary layers are approximately modelled, the boundary layer leakage
models of Roshko (1960) and Brocher (1964), and the compressible one-dimensional wave
generation models of Mirels & Braun (1957).

leaves the expression

1u2

a2

(
d

ut

)1−n(a2d

ν2

)n 1− n

2L2 (M2
2)

1−n =
4

(γ + 1)M2

×

(1+ (γ + 1)M2

8

) 1− u2

ut

1− γ + 1
4

M2


1−n

−
(

1+ γ + 1
4

M2 − u2

ut

)1−n

 t1−n,

(4.5)

for the velocity perturbation 1u2 at the interface. Here n = 1/2 for laminar, n = 1/5
for turbulent, and the parameter L2 is given in Mirels (1956) by equation (D3c) for
laminar and (E1c) for turbulent. The parameters a2, M2 and γ are the sound speed, the
Mach number, and the adiabatic index of the shocked test gas respectively.

Figure 11 shows the behaviours of the various acceleration models. The transmitted
Mach number and the boundary layer β parameter were adjusted iteratively to produce
the best agreement with the data for the Roshko (1960) and Brocher (1964) models. It
can be seen that for the laminar case, this produces a somewhat large β parameter. In
this case β2 = 47, which is much larger than the theoretical value for incompressible
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FIGURE 12. Non-dimensional amplitude for four simulations compared to data. The
simulations without boundary layers have lower amplitudes than the experiments. The
simulations with boundary layers and acceleration exhibit increased amplitudes and growth
rates agreeing better with experimental trends.

laminar flow of β2 = 2.962 (Schlichting & Gersten 2000). However, a very realizable
transmitted Mach number, Mt = 1.276, is found. For the turbulent case β2 = 0.0021,
which is very close to the theoretical value of β2 = 0.0023 based on incompressible,
turbulent flow, with a 1/7 power velocity profile (von Kármán 1921). In this case
Mt = 1.28, which is reasonable compared to a theoretical value of Mt = 1.27 for an
incident shock strength of Ms = 1.18 (as was found by matching interface velocity in a
Miranda simulation to experiments). It is notable that the turbulent model of Brocher
(1964) approaches an acceleration of around 200 m s−2 at late times. The model of
Mirels & Braun (1957) produces worse agreement as it lacks a free parameter. It does
consider compressibility effects and shock attenuation which would tend to decrease
the acceleration of the interface. It is important to remember that these models were
developed to predict the arrival time of the contact surface. However, the agreement of
the Brocher (1964) model indicates that a turbulent boundary layer may produce the
acceleration observed in the experiments.

Boundary layers were produced in the Ares simulations applying no-slip boundary
conditions on the walls. This produced thick, laminar, two-dimensional and under-
resolved boundary layers which is in contrast to the turbulent three-dimensional
boundary layers likely to be present in the experiments. It can be observed in figure 11
that these boundary layers produce a prolonged accelerative effect on the interface.
The magnitude of this acceleration is of the order of that observed in the flat interface
experiments, and using linear fits to the data, the magnitude of this acceleration is
found to be approximately 200 m s−2.

Figure 12 shows experimental amplitudes compared to amplitudes from Ares
simulations and Miranda simulations with accelerative effects present. Simulations
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FIGURE 13. Amplitude measurements from Mie scattering experiments in non-dimensional
coordinates compared to models for the Richtmyer–Meshkov instability: (a) 1.5 wavelengths;
(b) 2.5 wavelengths. The RM–RT buoyancy–drag model plotted here uses Rayleigh–Taylor
instability theory to attempt to account for accelerations present in the shock tube
experiments.

were run using Ares to determine how boundary layers might affect the late-time
growth rates. As shown in figure 12, the presence of boundary layers produces
increased late-time amplitudes and growth rates. The agreement with experimental
data seen in figure 12 is better than should be expected, as this simulation is two-
dimensional and does not simulate the boundary layers properly. Richtmyer–Meshkov
(RM) instability with an imposed Rayleigh–Taylor (RT) instability was also simulated
in Miranda by imposing a gravitational acceleration of 200 m s−2 at t = 1 ms in order
to simulate the acceleration measured in flat interface experiments. This produced an
increased late-time growth rate consistent with that observed in the experiments as
shown in figure 12. In addition, the simulations also produced a constant late-time
growth rate also observed in the experiments. Nevertheless, the magnitude of the
late-time growth rate differs slightly from that measured.

It should be noted that there are other effects not accounted for in our
two-dimensional simulations that could cause the discrepancies observed in the
comparisons of the experiments and simulations. For example three-dimensionality
could cause this difference. In order to investigate this possibility, preliminary three-
dimensional simulations using plausible guesses for initial conditions in the spanwise
direction in the form of noise were performed. However, these simulations failed to
produce the large differences in growth observed when boundary layers are added. It is
possible that there is some other type of three-dimensional disturbance (most probably
a long-wavelength one) causing this difference. However, in the absence of knowing
the precise form of this perturbation we are unable to carry out this study at this time.
We must therefore reserve it for future study.

4.4. Comparison with models

Figures 13 and 14 show comparisons of experimental amplitude and growth rate
measurements with those predicted by the linear early-time model of Richtmyer
(1960), along with the nonlinear models described below.
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FIGURE 14. Measured growth rates from Mie scattering experiments compared to the
Goncharov model, the vortex model, and the combined RM–RT buoyancy–drag model: (a)
1.5 wavelengths; (b) 2.5 wavelengths.

4.4.1. The Zhang and Sohn model
Zhang & Sohn (1997b) modelled the nonlinear growth of the RM instability using

Padé approximates in which the growth rate can be expressed as

ȧb/s = η̇even ∓ η̇odd , (4.6)

where the upper sign is for the bubble and the lower sign is for the spike,

η̇odd = ȧ0

1+ a0ȧ0k2t +max{0, a2
0k2 − A2 + 1/2}ȧ2

0k2t
, (4.7)

and

η̇even = Akȧ2
0t

1+ 2k2a0ȧ0t + 4k2ȧ2
0[a2

0k2 + (1/3)(1− A2)]t2
, (4.8)

where ȧ0 = kA1Va0 according to the theory of Richtmyer (1960). The Zhang and Sohn
model produces the worst agreement with our experiments due to its 1/t2 late-time
growth behaviour.

4.4.2. The Sadot et al. model
The model of Sadot et al. (1998) is an empirical model with parameters chosen to

match observed asymptotic behaviours of the Richtmyer–Meshkov instability. In this
model the growth rate is expressed as

ȧ(t)= ȧ0
1+ ȧ0kt

1+ (1± A)ȧ0kt + 1
2πC

(
1± A

1+ A

)
ȧ2

0k2t2

, (4.9)

with the remaining parameter chosen as C = 1/(3π) for A & 0.5. The model
parameters are chosen to produce good agreement at late times with experiments,
simulations, and with the early-time behaviour as given by the first two terms of the
asymptotic expansion of Zhang & Sohn (1997a). Expanding (4.9) around t→∞ leads
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to the late-time behaviour of

ȧb/s→ 1
1

2πC

(
1± A

1+ A

)
kt
. (4.10)

Comparing the Zhang and Sohn and the Sadot models to the data in figure 13 shows
that the Sadot model provides significantly better agreement with the data than does
the Zhang and Sohn model, a finding also observed in previous experiments (Jacobs
& Krivets 2005). However, contrary to what was observed in the earlier experiments,
the Sadot model appears to diverge from the data at the latest times. It should be
noted that the experiments of Jacobs & Krivets (2005) used a technique that allows
the acquisition of only one image per experiment, thus introducing scatter to the data.
It can be seen in figure 13 that the Sadot et al. (1998) model passes through the
data but the trajectories at late times are different. Thus this late-time trend could
have easily been obscured by the data scatter. Since the Sadot et al. (1998) model is
based on providing good agreement with experimental data, it may be influenced due
to the presence of shock tube boundary layers in their experiments, and thus may not
accurately represent the boundary-layer-free situation one might expect to find in a
shock tube with much larger cross-sectional area.

4.4.3. The buoyancy–drag model
Starting from a kinematic viewpoint, the Richtmyer–Meshkov instability can be

modelled as a series of bubbles of fluid either rising or falling while surrounded by a
heavier or lighter fluid (Oron et al. 2001). The equations of motion for the bubble and
spike are

(ρ2 + Caρ1)ä= geff (ρ2 − ρ1)− Cd

λ
ρ1 (ȧ)

2, (4.11)

and

(ρ1 + Caρ2)ä= geff (ρ2 − ρ1)− Cd

λ
ρ2 (ȧ)

2, (4.12)

where Ca is the virtual mass coefficient, Cd is a drag coefficient, and λ is the
wavelength of the instability. This results in

ä= gC − Bȧ2, (4.13)

with the constants gC and B expressed as

gCb/s = 2gA

1∓ A+ Ca(1± A)
(4.14)

and

Bb/s = Cd(1± A)

λ[1∓ A+ Ca(1± A)] . (4.15)

For Richtmyer–Meshkov instability, geff → 0, and Oron et al. (2001) chose Ca = 2 and
Cd = 6π (for two dimensions) resulting in

ȧ2
b/s =−

3± A

3k(1± A)
äb/s. (4.16)
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The growth rates can be found by integrating (4.16), resulting in

ȧb/s = 3± A

3k(1± A)

1
kt
. (4.17)

It can be seen that (4.17) exhibits a 1/t late-time dependence and matches what
Goncharov (2002) found using a method similar to Layzer (1955). Figure 14 shows
the experimentally measured growth rates plotted in logarithmic form. Thus a 1/t
late-time dependence will be given by a straight line with a −1 slope in these plots.
Also shown in figure 14 are lines indicating the asymptotic behaviour given by (4.17),
which appears to agree with the data at intermediate times but is unable to properly
predict the trends in the data at early and late times.

4.4.4. The RM–RT buoyancy–drag model
One could argue that the discrepancy with the nonlinear models might be anticipated

because of the observed late-time acceleration present in the experiments, and thus
it might be expected that better agreement could be obtained by properly accounting
for the accelerations present in the shock tube experiments. The differential equation
found for the buoyancy–drag model is known to reliably predict single-mode late-time
Rayleigh–Taylor growth as well as that of Richtmyer–Meshkov instability. If it is
assumed that the difference in growth rate between the simulation and experiment
is caused by the addition of a nearly constant acceleration, one would expect
that the buoyancy–drag model could be applied by retaining both terms on the
right-hand side of (4.13). Furthermore, it is reasonable to expect the initial growth
rate to be well modelled by Richtmyer–Meshkov linear stability theory. Thus, we
will model the experiments by imposing a constant acceleration after the initial
linear Richtmyer–Meshkov instability stage, matching the linear Richtmyer–Meshkov
instability amplitude to a nonlinear single-mode Rayleigh–Taylor instability amplitude
at kȧ0t = 1. Thus,

ȧ= ȧ0 = kAVa0 (4.18)

for kȧ0t 6 1, and

ȧ=
√

gC

B
coth[√gCB(t + CR)] (4.19)

for kȧ0t > 1, with

CR = 1√
gCB

coth−1

[
ȧ0

√
B

gC

]
− 1

kȧ0
. (4.20)

The result of this RM–RT modified buoyancy–drag model, using an acceleration of
approximately 200 m s−2, is shown in figures 13 and 14. As can be seen, this model
agrees well with the data at early times through the nonlinear transition, but fails to
properly capture the late-time growth rate of the instability (see figure 14).

4.4.5. The Likhachev and Jacobs vortex model
As shown by Jacobs & Sheeley (1996), the two-dimensional fluid motion induced

by the Richtmyer–Meshkov instability can be described by two rows of equally spaced
positive and negative line vortices. This model was extended by Sohn (2011) to
viscous instability for A→ 0. The vortex model of Likhachev & Jacobs (2005) extends
the model of Jacobs & Sheeley (1996) to systems with non-zero Atwood numbers. The
model attempts to capture the asymmetry-causing effects of the Atwood number by
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introducing a perturbative displacement ε to the vortex spacings. In this model, the
streamfunction takes the form

Ψ = Γ

4π
ln
(

cosh(ky)+ cos[k(x+ ε)]
cosh(ky)− cos[k(x− ε)]

)
, (4.21)

where the vortices are displaced by ±ε from the uniform spacing. The most significant
difference between the two models is that the perturbed vortex row moves upward as a
whole in the direction of the light fluid with the constant velocity

V = kΓ

4π
tan(kε). (4.22)

This velocity can be subtracted from the total velocity in order to determine the bubble
and spike growth rates in the reference frame travelling with the vortex system. The
bubble and spike growth rates are given by

d(kab/s)

dτ
=∓ cos(kε)

cosh(kab/s)± sin(kε)
− 1

2
tan(kε), (4.23)

where the non-dimensional time is defined as τ = k2Γ t/(2π). This implies that the
growth rate of the full (bubble-to-spike) amplitude of the instability will approach
constant value at late times. In viewing figure 12, the experimental data indeed appear
to asymptote to a constant growth rate in agreement with what is predicted by the
vortex model, and does not appear to have the 1/t dependence predicted by most
Richtmyer–Meshkov models. The weakness of this model, however, lies in the fact
that the circulation and vortex spacing are unknown. Nevertheless, they can be used
as fitting parameters, adjusted to obtain the best agreement with the experimental
data. Figures 13 and 14 show plots of the vortex model with parameters chosen to
provide the best fit. As can be seen in this plot, the vortex model seems to capture the
character of the instability throughout the largest portion of the development. This is in
part due to the parameters being adjusted to produce the best agreement. Nevertheless,
the vortex model does have the proper asymptotic behaviour, implying that point
vortices do well to model the flow.

4.5. Circulation comparisons
Figure 15 shows non-dimensional circulation extracted from the PIV experiments
compared with that obtained from four simulations including Ares with and without
boundary layers and Miranda with and without acceleration. In this case the circulation
was obtained by integrating the vorticity over one half-wavelength using

Γ =
∫ ∫

λ/2
ωz dx dy. (4.24)

Circulation is an important parameter governing the growth of the instability; as
shown by Jacobs & Sheeley (1996) the initial growth rate is proportional to the
magnitude of the circulation deposited by the shock. As shown in figure 15, plotting
the non-dimensional group based on the circulation estimate Γ = 4ȧ0/k of Jacobs
& Sheeley (1996) effectively collapses the data from the two simulations computed
without the effects of boundary layers or acceleration. The circulation extracted from
the PIV experiments is observed to grow with time. Similar trends are also observed
in the numerical simulations without acceleration or boundary layers present, but
to a lesser degree. The numerical simulations with the effects of boundary layers
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FIGURE 15. Circulation from four simulations compared with PIV data from a 2.5-
wavelength experiment. The non-dimensionalization is based on the theory of Jacobs &
Sheeley (1996) and causes the circulation from the two simulations without boundary layers
or acceleration to nearly collapse. The boundary layers cause an increase in circulation
compared to the other simulations. The simulation with acceleration sees a continuous
increase in circulation.

and acceleration included exhibit a larger increase in circulation in better agreement
with the data at early times. The Miranda simulation with acceleration begins to
diverge from the data at late times while the Ares simulation follows the data. This
agreement, however, may be caused by the distortion of the interface, resulting in
vorticity leaving the rectangular interrogation window. One possible explanation for
the early-time increase in circulation is Rayleigh–Taylor-induced vorticity production
caused by interfacial acceleration. This increase in circulation is also observed in
the Miranda simulations with acceleration, as vorticity is continually produced by RT
growth. Additional circulation is produced by baroclinic generation and can be seen in
Miranda simulations without acceleration.

To characterize the vortex model, the two parameters extracted from fitting the
model to the data, the circulation (Γ ) and the vortex displacement (ε) are compared
to PIV experiments in figure 16. Using the distance between the centres of vorticity in
PIV experiments, an experimental ε value can be found and compared to that extracted
from the vortex model. As shown in figure 16, the measured vortex displacement
initially increases with time and then slowly decreases during the experiment. The
extracted value of vortex displacement, ε = 3.0 mm, is very close to the mean value of
the displacement over the entire experiment. The PIV experiments show the circulation
growing from around the Jacobs & Sheeley (1996) value of circulation based on linear
stability theory (Γ = 0.16 m s−2) up to approximately the value found from fitting the
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FIGURE 16. (a) Circulation developed in the PIV experiments compared with the extracted
value of circulation from the Likhachev & Jacobs (2005) vortex model. The extracted value is
very close to the peak value of the measured circulation. The Jacobs & Sheeley (1996) value
predicts the initial vorticity. (b) The separations of the centres of vorticity compared to the
spacing extracted from the vortex model.

model to the data (Γ = 0.39 m s−2). Thus the asymptotic circulation value agrees well
with the estimated circulation value of the vortex model.

5. Conclusions
Experiments were performed to study the late-time growth of the

Richtmyer–Meshkov instability from a diffuse nearly sinusoidal initial perturbation
into a fully turbulent flow. This experiment is an improvement over previous
experiments because it enables us to record time sequences of the instability from
known membraneless initial perturbations out to previously unattainable late times.
The 2.0 m length of the test section makes this study the longest-duration single-mode
Richtmyer–Meshkov experiment to date. This long duration allows the observation of
the growth of the instability into the nonlinear region and the beginning of turbulence.
The experiments used Mie scattering to extract amplitude and growth rates while
PIV experiments were used to extract vorticity and circulation. Experimental images
exhibit the growth of mushroom structures until the point where secondary instability
and turbulent diffusion cause them to break down. Extracting the time series of the
instability represents an improvement over previous experiments, which were only able
to acquire one image per experiment.

Experimental measurements are compared to those obtained from numerical
simulations, which are unable to capture all of the physical effects found in the
shock tube such as slots and boundary layers. It is shown that the slots in the shock
tube reduce the impulse imparted to the interface, while the boundary layers produce
prolonged accelerative effects. Attempts were made to model the acceleration using
previously published shock tube boundary layer analyses. The turbulent boundary
layer theory of Brocher (1964) produces the best agreement with measurements of
the flat interface acceleration. This indicates that the accelerative phenomenon may
best be described by a leak at the interface caused by the growth of turbulent
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boundary layers. The acceleration present in the shock tube causes disagreement with
existing Richtmyer–Meshkov instability models and simulations due to the presence
of Rayleigh–Taylor instability. Introducing acceleration to the numerical simulations
yields improved agreement with late-time growth rate and amplitude trends. Numerical
simulations with boundary layers present also improve agreement and exhibit increased
late-time growth rates. Since boundary layers are no doubt present in all RM
experiments using shock tubes of this size, this result implies that empirical models
evaluated using shock tube experiments such as the model of Sadot et al. (1998)
may be influenced by the presence of acceleration. The presence of acceleration also
produces increased circulation when modelled in simulations, improving the agreement
between simulations and experiments. The Likhachev & Jacobs (2005) vortex growth
model, when fitted to experiments, produces a circulation estimate that agrees well
with the asymptotic value found using PIV measurements.

Due to the very late times observed, the present experiments make a good basis
for comparison with late-time Richtmyer–Meshkov models. The amplitude of the
instability is modelled well by most models at early times, but the model of
Zhang & Sohn (1997b) exhibits the worst agreement at late times. The model of
Sadot et al. (1998) exhibits improved agreement but appears to have a different
functional dependence than the experiments at late times. Agreement with the
models can be improved by accounting for acceleration. This is done using the
RM–RT buoyancy–drag model, which exhibits an increased constant late-time growth
rate which agrees better with experiments. The Goncharov (2002) model agrees at
intermediate times but fails at the latest experimental times. The growth rate of the
instability is approximated best by the Likhachev & Jacobs (2005) vortex model. The
agreement with the vortex model implies that the vorticity distributions present in
the experiment resemble the perturbed point vortices of the model. The vortex model,
however, has the shortcoming that it is impossible to determine the parameters from
the initial perturbation of the instability as the parameters can only be determined
using a curve fit to the experimental data.
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VANDENBOOMGAERDE, M., GAUTHIER, S. & MÜGLER, C 2002 Nonlinear regime of a multimode

Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14, 1111–1122.
VETTER, M. & STURTEVANT, B. 1995 Experiments on the Richtmyer–Meshkov instability of an

air/SF6 interface. Shock Waves 4, 247–252.
WESTERWEEL, J. 1993 Digital particle image velocimetry, theory and application. PhD thesis,

Technische Universiteit Delft.
WILKINS, M. L. 1963 Calculation of elastic–plastic flow. UCRL-7322, Lawrence Radiation

Laboratory.
WOUCHUK, J. G. & NISHIHARA, K. 1997 Asymptotic growth in the linear Richtmyer–Meshkov

instability. Phys. Plasmas 4, 1028–1038.
YANG, J., KUBOTA, Y. & ZUKOSKI, E. E. 1993 Applications of shock-induced mixing to supersonic

combustion. AIAA J. 31, 854–862.
ZHANG, Q. & SOHN, S.-I. 1997a Nonlinear theory of unstable fluid mixing driven by shock wave.

Phys. Fluids 9, 1106–1124.
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