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Abstract
Speech production requires the combined efforts of feedforward and feedback control, but
it remains unclear whether the relative weighting of feedforward and feedback control is
organized differently between the first language (L1) and the second language (L2). In the
present study, a group of Chinese–English bilinguals named pictures in their L1 and L2,
while being exposed to multitalker noise. Experiment 1 compared feedforward control
between L1 and L2 speech production by examining intensity increases in response to
a masking noise (90 dB SPL). Experiment 2 compared feedback control between L1
and L2 speech production by examining intensity increases in response to a weak
(30 dB SPL) or strong noise (60 dB SPL). We also examined a potential relationship
between L2 fluency and the relative weighting of feedforward and feedback systems.
The results indicated that L2 speech production relies less on feedforward control relative
to L1, exhibiting attenuated Lombard effects to the masking noise. In contrast, L2 speech
production relies more on feedback control than L1, producing larger Lombard effects to
the weak and strong noise. The relative weighting of feedforward and feedback control is
dynamically changed as second language learning progresses.
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Introduction
An issue receiving intense attention in speech production is how the brain plans
linguistic processing prior to overt speech production (Levelt et al., 1999). Although
articulation is seen as a lower-level motor output (Indefrey & Levelt, 2004), speaking
is a highly complex sensorimotor task that requires the combined efforts of
feedforward and feedback control systems (Guenther et al., 2006). To date, how
these two subsystems work to ensure successful communication remains poorly
understood.
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Terminology and general principles of speech motor control

Several speech motor control models have been formulated; we integrated Directions
into Velocities of Articulators (DIVA; Guenther, 2006) and State Feedback Control
(Houde & Nagarajan, 2011) to describe feedforward and feedback control (see
Figure 1 for details). Speech production begins with a unit in the “speech sound
map,” which can be a phoneme, syllable, or phrase. As schematized in Figure 1,
feedforward control reads out previously learned motor commands for speech sounds
and further issues them to articulators. This mechanism emphasizes its independence
from the sensory feedback associated with articulation (Guenther, 2016). Therefore,
feedforward control enables the rapidity of speech, but lacks the ability to monitor
errors in speech output (Parrell et al., 2019). Because we live in time-varying and
unpredictable surroundings, feedforward control alone cannot ensure effective
speech.

Unlike feedforward control, feedback control relies on sensory feedback to main-
tain speech (Guenther, 2016; Kearney & Guenther, 2019). The auditory feedback
control system compares actual auditory feedback with intended auditory feedback,
and in case of any mismatch, auditory errors are transformed into corrective

Figure 1. A schematic diagram of the processes involved in speech motor control. The model includes an
internal forward model (pink box) that generates auditory prediction based on a copy of planned feed-
forward commands (efference copy). Auditory feedback control compares actual auditory feedback with
auditory prediction and auditory target, indicated by blue and green arrows, respectively. A special case
of feedforward control eliminates the involvement of auditory feedback by comparing auditory prediction
with auditory target (indicated by yellow arrows). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article).
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commands that decrease the perceived errors. This is similar to a somatosensory
feedback control mechanism (Guenther, 2006, 2016; Hickok et al., 2011). Within
this framework, there are two coexisting routes to generate intended auditory feed-
back (Tian & Poeppel, 2012). Firstly, the activation of speech sound map leads to the
activation of auditory target, which defines the desired auditory feedback that should
arise when a speaker correctly produces the sound (Guenther, 2016; Tourville &
Guenther, 2011). Secondly, an internal forward model utilizes an efference copy of
feedforward commands to internally estimate the current state of vocal tract dynamics
and generate auditory prediction (Hickok, 2012; Tian & Poeppel, 2010, 2012, 2013).
The feedback control system is indispensable in speech motor control, allowing
speakers to regulate movements and interact well with the environment in presence
of external perturbations (Bays & Wolpert, 2006).

Parrell et al. (2019) proposed a special case of feedforward control by eliminating
auditory feedback involvement. An auditory prediction (realized using an internal
forward model) is the possible outcome of articulatory movement before auditory
feedback is received. This prediction is based on previously established causal asso-
ciations between motor commands and auditory output. This is also why speakers
feel that they can “hear” the speech internally when they imagine speaking without
moving any articulators (Tian & Poeppel, 2012, 2015). Critically, the motor-based
auditory predictions can be directly compared with auditory targets to verify the
correctness of planned feedforward commands (Hickok, 2012). If auditory predic-
tions fail to match auditory targets, the feedforward control system transforms error
signals into corrective motor commands (Parrell et al., 2019).

Speech motor control in bilinguals

Current models detail the organization of feedforward and feedback control exclu-
sively in the first language (L1; see Parrell et al., 2019 for a review), while research
into the second language (L2) has not yet fully considered this issue. More recently,
researchers noticed that speech motor control in bilinguals may vary by language
type (L1 vs. L2; Liu & Tian, 2018; Mitsuya et al., 2011; Simmonds et al., 2011a,
2011b). Here we adopt Grosjean’s (2010) succinct definition of bilinguals as people
who use two languages in their daily life. Of note, there is still insufficient theoretical
and empirical information on L2 speech motor control, which highlights the need
for further research in this field.

For L1 speech production, a basic idea is that the feedforward and feedback con-
trol subsystems cooperate with each other (Parrell et al., 2019); thus, it is important
to understand the relative weighting of these systems in speech motor control
(Guenther, 2016; Guenther et al., 2006). Researchers have emphasized a transition
from feedback-dominant to feedforward-dominant, driven by production experien-
ces (Guenther, 2006; Guenther & Vladusich, 2012; Liu et al., 2010c; Scheerer et al.,
2013). Speakers’ initial attempts to produce speech result in errors, and
production relies heavily on feedback control. With sufficient practice, feedforward
commands can result in the same sensory consequences without errors, and pro-
duction principally relies on feedforward control (Guenther, 2006; Guenther &
Vladusich, 2012). However, L1 and L2 production experiences are inherently
different (Mitsuya et al., 2011). L1 speech motor learning begins in infancy
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(Tourville & Guenther, 2011), but within the broad population of bilinguals, the L2
acquisition age is widely varied. Some bilinguals acquire L2 from birth, some around
puberty, and others during adulthood (Woumans et al., 2015). In most cases, bilin-
guals are exposed to an L2 after their L1 has already been established. It is therefore
possible that feedforward and feedback control are weighted differently for bilin-
guals’ two language systems.

Motor movements used to produce native sounds are highly overlearned and
automatic, requiring much less online sensory monitoring (Simmonds et al.,
2011a, 2011b). However, evidence shows that L2 sounds are produced with larger
variability (Chen et al., 2001; Ng et al., 2008; Wang & van Heuven, 2006), implying
that L2 feedforward commands are less familiar and more variable (Mitsuya et al.,
2011). Thus, we hypothesized that, compared with L1, L2 production relies on
feedback control to a greater extent and on feedforward control to a lesser extent.
This hypothesis is supported by two early studies reporting that bilinguals speak
more slowly and have more hesitation or sound repetitions in L2 relative to L1
under a delayed auditory feedback condition (Mackay, 1970; Van Borsel et al.,
2005). The underlying logic is that an increased weighting of feedback control
increases the disturbing influence of incoming perturbed auditory feedback
(Guenther, 2006).

The past several decades have seen an unprecedented upsurge in the number of
bilinguals; however, for most bilinguals, speaking a second language is a challenging
task (Bergmann et al., 2015). Typical disfluency markers include pauses, syllable
repetition, and self-corrections (Götz, 2013; Kormos, 2006). Growing evidence
shows that speakers are considerably less fluent in L2 compared with their L1.
For example, Wiese (1984) reported that L2 speech contains two to three times
as many hesitations as L1 speech. Hincks (2008) also found slower speech rates
in L2 than in L1. It is well known that feedforward control is crucial for fluent
speech, while excessive reliance on feedback control causes a time-lag problem
because of the delay inherent in processing auditory feedback and launching cor-
rective commands (Civier, 2010; Civier et al., 2010; Perkell, 2012). Thus, it is rea-
sonable to hypothesize that poorer L2 fluency is correlated with heavier weighting of
feedback control, and, accordingly, better L1 fluency is associated with heavier
weighting of feedforward control.

This fluency-related hypothesis is supported only by indirect evidence from
patients with speech motor disorders. Guenther (2016) found that patients with
speech motor disorders usually have impaired feedforward control. For example,
apraxia of speech, a speech motor planning and programming disorder, is most
often associated with damage to the left inferior frontal gyrus, anterior insula,
and/or ventral precentral gyrus. According to the DIVA model, damage to these
areas affects the speech sound map and the feedforward commands for articulating
speech sounds. Stuttering is also a disorder that disrupts speech fluency, but the
mechanism remains controversial. Several researchers believe stuttering is a result
of abnormal auditory-motor transformation in the feedback control system (Cai
et al., 2012; Loucks et al., 2012). Other researchers suggest that stuttering results
from a general auditory prediction deficit (Daliri & Max, 2015a, 2015b) and a heavy
weight on feedback control (Civier et al., 2010; Tourville et al., 2008).
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Feedforward and feedback control of voice intensity

The current study aimed to address whether the relative weighting of feedforward
and feedback control varies between L1 and L2. In previous bilingualism research,
investigators either compared same-language L1 and L2 speakers or compared L1
and L2 in the same bilinguals (Bergmann et al., 2015). The difficulty for intraspeaker
comparisons lies in interpreting whether the observed differences are caused by lan-
guage status or language differences. To avoid this confusion, we selected voice
intensity to dissociate the role of language status because this attribute has few
well-known language-specific phonological features.

There is a considerable amount of research describing how speakers control pitch
(Chang et al., 2013; Chen et al., 2012), formant (Cai et al., 2012; Mitsuya et al., 2011),
and intensity (Bauer et al., 2006; Heinks-Maldonado & Houde, 2005; Liu et al., 2007).
Typically, auditory perturbations induce compensatory behaviors that change speech
parameters in the opposite direction (Behroozmand et al., 2015; Chang et al., 2013).
To date, previous studies have provided evidence that pitch and formant control may
differ across languages. In tonal languages, such as Chinese, pitch plays a key role in
differentiating meanings, while in nontonal languages, such as English, pitch only
conveys stress and intonation information (Chen et al., 2012; Liu et al., 2010b;
Ning et al., 2015; Ning et al., 2014). Languages also differ in the number, location,
and relative proximity of vowels, thus the requirements for formant control also vary
across languages (Mitsuya et al., 2011). Uniquely, voice intensity is a basic and low-
level sound attribute (Tian et al., 2018) that is not highly effective for encoding
linguistic contrasts (Liu et al., 2007). To date, there is no direct evidence suggesting
that voice intensity is sensitive to the different languages native speakers use.

Studies have shown that online intensity control is similar to pitch and formant
control (Bauer et al., 2006; Heinks-Maldonado & Houde, 2005; Liu et al., 2007). For
example, Bauer and colleagues found that during vowel production, individuals
demonstrated a compensatory response to unexpected intensity perturbations
(200 ms, ±1, 3 vs. 6 dB SPL; see also Heinks-Maldonado & Houde, 2005).
Furthermore, Liu et al. (2007) observed that Mandarin speakers also compensated
for intensity perturbations (200 ms, ± 3 dB SPL) during Mandarin production.
These studies imply that intensity control works to monitor and stabilize voice inten-
sity around a desired level. In this line of research, it is assumed that speakers who rely
more on feedforward control will produce speech based more on stored feedforward
commands, and hence more stable vocal output. Also, speakers who rely more on
feedback control will produce speech based more on auditory feedback to correct
for errors, and hence are more affected by perturbations and produce a larger com-
pensatory response (Guenther, 2006).1 These studies addressed intensity control
through real-time manipulation of speakers’ original auditory feedback.

Noise experiments offer another line of intensity control research. Lombard
(1911) was the first to find that speakers unconsciously increase their voice intensity
to compensate for reduced audibility in a noisy environment. This phenomenon is
known as the Lombard effect and has been documented in many studies (Lin et al.,
2015; Patel & Schell, 2008). Noise experiments typically instruct participants to pro-
duce speech while a constant noise is added to their feedback (Bauer et al., 2006).
Because speaking is a goal-oriented behavior developed to facilitate communication,
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speakers usually automatically increase voice intensity to improve the signal-to-
noise ratio (Liu et al., 2007). Previous noise studies demonstrated that intensity con-
trol in a noisy environment differs from that in online perturbation paradigms
(i.e., to monitor and stabilize), instead it works to regulate intensity around a loud-
ness level to make speakers heard over the noise. In other words, intensity control in
online perturbation paradigms functions to monitor and stabilize, while intensity
control in noisy environments functions to overcome noise (Chang-Yit et al., 1975).

Studies have addressed feedforward control by observing how speakers adapt
motor commands when auditory feedback is perturbed over a long period (Ballard
et al., 2018; Lametti et al., 2014). However, speech adaptation paradigms only reveal
the updating of feedforward control, rather than feedforward control in and of itself.
In the present study, we innovatively employed a noise-masking paradigm to inves-
tigate feedforward control of voice intensity. This paradigm is based on the premise
that a loud masking noise would effectively eliminate the auditory feedback for con-
trolling speech movements (Christoffels et al., 2007; Houde et al., 2002; Lin et al.,
2015; Maas et al., 2015; Terband et al., 2015). As schematized in Figure 2A, a masking
noise disrupts comparisons involving actual auditory feedback. Although it is impos-
sible to create an experimental condition without any feedback2 (Kent et al., 2000;
Maas et al., 2015), it is reasonable to expect a much heavier reliance on feedforward
control in the absence of auditory feedback (Guenther, 2006, 2016; Guenther &
Vladusich, 2012).

Feedforward control incorporates a mechanism that allows speakers to make
vocal adjustments independent of auditory feedback (Hickok, 2012; Parrell et al.,
2019). In face of a loud masking noise, speakers evaluate the disturbance from noise
signals before they speak. Considering the adverse environment, speakers retrieve
the predetermined commands but will not issue them directly to the articulators to
avoid obvious errors. Instead, speakers generate an auditory prediction of voice
intensity based on feedforward commands and background noise. Then, speakers
internally compare auditory prediction and auditory target, which further activate
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Figure 2. (A) A model for determining the voice intensity increases under a masking noise. The red crosses
indicate that auditory feedback is not audible for feedback control. (B) A model for determining the voice
intensity increases under a weak or strong noise. The red ticks indicate that auditory feedback is less
audible but still available for feedback control. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article).
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auditory error representing the noise-induced decrease in audibility. At this time,
speakers launch a corrective command based on established auditory-motor trans-
formations to surpass the masking noise. We thus predicted that speakers who rely
more on feedforward control would adjust motor plans based more on predicted
loss in audibility, and hence produce a larger Lombard effect than those who rely
less on feedforward control.

The premise of feedback control involves speakers’ perception of their auditory
feedback. We thus applied noise signals where participants could hear their voice
over the noise, but their voice would be less audible than what they expected to hear.
The purpose of added noise was to partially mask air-conducted auditory feedback,
and thus reduce the signal-to-noise ratio. As exhibited in Figure 2B, a noise that is
not intense enough to mask the original auditory feedback activates feedback
control comparisons. Although feedforward control also plays a role in vocal adjust-
ments to noise signals, it was reasonable to expect increased weighting of feedback
control to correct motor commands based on perceived auditory errors (Guenther,
2006; Guenther & Vladusich, 2012). We thus predicted that speakers who relied
more on feedback control would adjust motor plans based more on perceived loss
in audibility, and hence produce a larger Lombard effect than those who relied less
on feedback control.

The current study

We designed two noise experiments to test whether the relative reliance on feedfor-
ward and feedback control was affected by language type and L2 fluency in Chinese–
English bilinguals. In Experiment 1, we addressed the weighting of feedforward
control by observing how bilinguals react to a masking noise (90 dB SPL multitalker
noise) during L1 and L2 spoken word production. We predicted that L1 relies more
on feedforward control compared with L2, so the Lombard effect would be larger in
L1. We also predicted a correlation between L2 fluency and the reliance on feedfor-
ward control for L2 speakers, where more fluent bilinguals would exhibit larger
Lombard effects.

In Experiment 2, we addressed the weighting of feedback control by observing how
bilinguals react to a weak noise (30 dB SPL multitalker noise) and a strong noise (60 dB
SPL multitalker noise) during L1 and L2 spoken word production. Although both
strong noise and masking noise have a high volume, they differ in that speakers’
auditory feedback is still available for feedback control under strong noise but is not
available under masking noise. We predicted that L2 relies more on feedback control
compared with L1, so the Lombard effect would be larger in L2. In addition, we also
expected a correlation between L2 fluency and the reliance on feedback control for L2
speakers, where less fluent bilinguals would be accompanied by larger Lombard effects.

Experiment 1
Methods

Participants
Experiment 1 was completed by 24 Chinese–English bilinguals from Renmin
University of China. All participants were right-handed, free of any neurological
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disease, and self-reported to have normal hearing. On enrolling in the study,
participants were instructed to name pictures in both L1 and L2 at their habitual
volume while wearing a headphone. The multitalker noise with random varying
levels (30 dB, 60 dB, and 90 dB SPL) was sent to the headphone, and participants
needed to judge whether they could perceive their auditory feedback under
each noise level. All participants reported that they could hear their voice under
30 dB and 60 dB noise but not under 90 dB noise. This screening test was performed
to ensure noise manipulation validity in the current study.

The bilinguals’ (11 males) mean age was 20.3 years (SD= 2.2, range 18–28).
Note that bilinguals can be classified based on age of L2 acquisition. The cut
point for early and late bilinguals is learning L2 between birth and eight years,
or at eight years or older (Birdsong & Molis, 2001). In the current study, we only
included bilinguals who reported receiving their schooling in Chinese and being
exposed to English after age 8 (see also Epstein et al., 1996). The mean age of
L2 acquisition for the 24 Chinese–English bilinguals was 9.7 years (SD= 1.1,
range 9–13).

Stimuli
Twenty black-and-white simple line pictures (including 15 targets and 5 practice
items) were selected from a database created by Zhang and Yang (2003). The prac-
tice items were used to familiarize participants with the experimental procedure and
were not employed in the formal experiment. All pictures referred to common
objects and had good indexes in visual complexity, familiarity, and image agree-
ment. All pictures had monosyllabic names in both Chinese and English (e.g.,
Chinese: “猫” /mao/; English: cat). We employed a 90 dB SPL multitalker noise
to mask participants’ auditory feedback (Patel & Schell, 2008).

Design
The experiment adopted a 2 (language: L1 and L2) × 2 (noise condition: quiet and
masking noise) within-subjects and within-items design. Within a block, partici-
pants named 15 target pictures consecutively in each experimental condition, for
a total of 15 trials. The order of blocks (L1-quiet, L1-masking noise, L2-quiet,
L2-masking noise) was randomized. Participants finished three blocks for each
experimental condition, generating a total of 180 trials. The order of items was
randomized within L1 blocks but pseudo-randomized in L2 blocks to ensure that
a target would not follow a target with the same initial phoneme (e.g., ball, book) to
avoid a phonological facilitation effect. A new order was generated for each partici-
pant and for each block.

Apparatus
The auditory experiment was conducted in a soundproof room and controlled by
E-Prime Professional Software (version 2.0; Psychology Software Tools). Naming
latencies were recorded from target presentation using a voice-key, connected to
the computer using a PST Serial Response Box. This multitalker noise was calibrated
through an audiometer (SMART SENSOR AS804) and presented to participants
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using a supra-aural headphone (Bose QuietComfort35 II). The participants’ speech
was collected and recorded with an external condenser microphone (SHURE
SM58S) connected to a YAMAHA Steinberg CI1 soundcard. The microphone
was fixed on a short microphone holder standing on the desk and secured at
10 cm from the subjects’ mouth. The target words were extracted and saved as sep-
arate WAV files. The recorded speech signals were analyzed with the Praat speech
analysis software (version 6.0.43; Boersma & Weenink, 2013). The syllabic bound-
aries of all words were labeled by hand and the vocal cycles were hand-checked for
errors such as a miss or double mark. A custom-written Praat script was used to
extract the mean intensity of each syllable.

Procedure
Participants were tested individually. First, participants were asked to familiarize
themselves with target pictures by viewing each target for 2000 ms with the picture
name printed below. After the learning phase, participants received a picture-
naming test without concurrently presented names. When the experimenter
determined that participants named all pictures correctly in both L1 and L2, the
practice blocks were administered. In the practice phase, participants finished
one block composed of five practice pictures for each experimental condition.
The practice blocks procedure was identical to the experimental blocks procedure,
except for the number of pictures. When the experimenter determined that partic-
ipants understood the naming task instructions, the experimental blocks were
administered.

Figure 3 is a schematic representation of the sequence for a block. At the begin-
ning, a flag was presented for 2 seconds to cue the target language in the block.
Meanwhile, the noise signals were played continuously in the masking noise con-
dition but remained silent in the quiet condition. Then a fixation point (�)
appeared in the middle of the screen for 500 ms, followed by a blank screen.
Next, 15 pictures were presented on the screen, 2 seconds apart. Participants were
asked to name the picture as quickly and accurately as possible. We stopped playing

Figure 3. A schematic diagram of the sequence for a block (upper panel: L1 picture naming; lower panel:
L2 picture naming).
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noise signals after participants finished naming 15 pictures. Finally, a break lasting
10 seconds concluded each block.

L2 fluency test
We included two English speaking tests to measure participants’ L2 fluency.
Previous research typically addressed L2 fluency by measuring temporal features,
such as speech rate, duration and rate of hesitations, and filled and silent pauses
(Hilton, 2014; Kormos, 2006; Segalowitz, 2010). The current study measured L2 flu-
ency using speech rate indicated by the length of time required to complete the
speaking tasks, with shorter time indexing more fluent L2 speech and longer time
indexing less fluent L2 speech.

The order of speaking tasks was as follows. First, participants completed a rapid
automated naming task in which four 7× 7 item grid stimulus displays were created
for computer presentation. Each grid consisted of one of the following randomly
ordered stimulus types: letters (g, k, m, r), objects (pictures depicting a dog, chair,
bed, or key), colors (boxes colored red, blue, yellow, or green), and digits (2, 4, 6, 9).
Participants were instructed to sequentially name aloud each item in the grid from
the top left item to the bottom right item as quickly as possible without errors. This
was repeated for each stimulus grid (letters, objects, colors, and digits), and the task
order was counterbalanced across participants. The experimenter manually pressed
the mouse to start and end the timing procedure for each grid. The final rapid nam-
ing duration was the average of each grid’s duration for letter, object, color, and
digit-naming tasks.

Next, participants completed a passage reading task in which four English
passages were extracted from New Concept English Two. They were instructed to
sequentially read aloud each passage at their habitual speed. The experimenter
manually pressed the mouse to start and end the timing procedure for each passage
reading. The final duration for passage reading was the average of the four passage
reading durations. The English fluency tests were performed using E-prime
Professional Software.

Results

Two participants were excluded; one could not tolerate the loud masking noise and
quit the experiment, and the other’s voice intensity in the quiet and masking noise
conditions differed by more than two standard deviations from the group mean
(see Lametti et al., 2014 for a similar data removal procedure). The remaining data
from 22 participants were included in the subsequent analyses. Table 1 presents the
mean picture-naming reaction time, error percentages, and mean intensity by lan-
guage and noise condition.

We used the lmer program of the lme4 package (Baayen et al., 2008; Bates, 2005;
Bates et al., 2014) in R software (R Core Team, 2015) to estimate fixed and random
effects. The data (i.e., response time, the percentage of error responses, and mean
intensity) were analyzed using a linear mixed-effects model with language and noise
condition as the fixed factors and participants and items as the random factors.
Models used restricted maximum likelihood estimation to find the optimal
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parameter estimation of the best-fitting model to the observed data. The best-fitting
model was defined as the most complex model that significantly improved the vari-
ance estimation over previous models. Model fitting included three steps: specifying
a model (i.e., null model) that included only random factors (participants and
items); enriching the null model by adding fixed factors (i.e., language and noise
condition) one by one, and then by adding the two-way interactions between the
two factors; and comparing the newly established model to the previous model
using the chi-square test. If adding a fixed factor or an interaction to the existing
model did not significantly improve the variance estimation (p> 0.05), then the
current model was designated the best-fitting model.

Behavioral results
Data from incorrect responses (0.81%), naming latencies longer than 1500 ms or
shorter than 200 ms (2.25%), and latencies deviating two standard deviations from
each participant’s mean (6.14%) were removed from the behavioral analyses. For
response time, the best-fitting model only included the factors of language and noise
condition (see Table 2). Adding the two-way interaction between language and noise
condition did not significantly improve the fit, χ2 (1, 3596)= 1.15, p= 0.28. A parallel
analysis was conducted on the errors, but a binomial family was used because of the
binary nature of the response. The best-fitting model only included the factor of noise
condition; adding language, χ2 (1, 3928)= 0.51, p= 0.48, and the interaction between
language and noise condition, χ2 (1, 3928)= 1.22, p= 0.54, did not significantly
improve the fit.3 Table 2 displays parameter estimates for the fixed effects for response
time, percentage of errors, and mean intensity.

Acoustic analysis
Only data from incorrect responses (0.81%) were removed from the acoustic analy-
ses. Figure 4A illustrates the mean intensity score distribution from 22 participants
in each experimental condition. For mean intensity, the best-fitting model included
the noise condition and the interaction between language and noise condition (see
Table 2). Adding the factor of language did not significantly improve the fit,
χ2 (1, 3928)= 2.53, p= 0.11. The two-way interaction is interesting; simple analyses
indicated that masking noise increased speakers’ voice intensity relative to the quiet
condition in both L1 (β= 10.05, t = 83.10, p< 0.001) and L2 word production
(β= 9.94, t = 73.25, p< 0.001), but the intensity increase was larger in L1 than
L2 (see Figure 4B). As shown in Figure 4C, simple analyses in the other direction

Table 1. Mean picture-naming response time (RT, in ms), percentage of errors (PE, %), mean intensity (MI,
in dB), and standard deviations (SD, in parenthesis) as a function of language and noise condition in
Experiment 1

L1 L2

RT (SD) PE (SD) MI (SD) RT (SD) PE (SD) MI (SD)

Quiet 688 (114) 0.51 (0.83) 48.50 (4.16) 706 (96) 0.40 (0.86) 48.46 (4.42)

Masking noise 635 (97) 0.91 (1.09) 58.80 (3.77) 661 (80) 1.41 (1.07) 58.13 (3.93)
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Table 2. LMM estimates of fixed effects for picture-naming response time (RT), percentage of errors (PE), and mean intensity (MI) in Experiment 1

Measure

RT PE MI

Fixed effects β SE t p β SE z p β SE t p

(Intercept) 687.76 21.90 31.36 <0.001 5.39 0.33 16.13 <0.001 48.55 0.85 57.23 <0.001

Language2 22.59 3.46 6.54 <0.001 – – – – – – – –

Noise2 –49.19 3.46 –14.23 <0.001 –0.95 0.39 -2.40 0.02 102.93 3.31 31.10 <0.001

Language2:Noise2 – – – – – – – – –0.52 0.14 –3.71 <0.001

Note: Language2, L2; Noise2, masking noise.
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indicated that in the quiet condition, the mean intensity did not differ between
L1 and L2 word production (β = –0.13, t = –1.06, p= 0.29), but in the masking
noise condition, the mean intensity was significantly higher in L1 than L2 word
production (β = –0.52, t = –4.51, p< 0.001).

Correlation analysis between the Lombard effect and L2 fluency
To test whether more fluent L2 speakers rely more on feedforward control than less
fluent L2 speakers, we examined the relationship between the Lombard effect in L2
spoken word production and the fluency performance in L2 rapid naming and pas-
sage reading. Data from 22 participants in Experiment 1 were entered into the
Pearson’s correlation analysis. Here, the Lombard effect was defined as the differ-
ence between the mean intensity in the L2-quiet and L2-masking noise conditions.
In addition, L2 fluency was measured by two English production tasks and defined
as the average durations for rapid naming and passage reading, respectively. The
results indicated that the Lombard effect was negatively correlated with the duration
for L2 rapid naming task (r= –0.67, 95% CI [–0.36, –0.83], p= 0.002) and the dura-
tion for L2 passage reading task (r = –0.62, 95% CI [–0.42, –0.80], p= 0.002). This
suggests that the more fluently bilinguals speak in their L2, the larger Lombard effect
they exhibit in L2 speech production (see Figures 4D and 4E).

Discussion

To the best of our knowledge, this was the first cross-language study to compare
feedforward control in a group of Chinese–English bilinguals using a masking noise.

Figure 4. Results in Experiment 1. (A) Box plots illustrating the distribution of average mean intensity
scores of 22 participants in each experimental condition. Box definitions: middle line is the median,
top and bottom of boxes are 75th and 25th percentiles, and square is the mean. (B) Column charts of
the mean intensity (mean and standard error) in the L1 and L2 speech production as a function of noise
condition. (C) Column charts of the mean intensity (mean and standard error) in the quiet (Q) and
masking noise (MN) conditions as a function of language. Asterisks indicate the significant effects.
(D) The scatterplot for the correlation between rapid naming and the Lombard effect. (E) The scatterplot
for the correlation between passage reading and the Lombard effect. Here, the Lombard effect is defined
as the difference between the mean intensity in L2-quiet and L2-masking noise conditions.
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A 90 dB SPL multitalker noise virtually eliminated speakers’ auditory feedback, thus
the mechanism of feedback-based motor correction had little role to play, whereas
the predictive feedforward control dominated the speech motor control. Notably,
we observed that the Lombard effect elicited by a masking noise was larger in L1
than L2 word production. In addition, correlation analyses showed that the
Lombard effect in L2 word production was larger in more fluent L2 speakers than
less fluent ones. Thus, the results support our two hypotheses that bilinguals’ feed-
forward control is influenced by language and related to L2 fluency, where a heavier
weighting was assigned to feedforward control in the L1 production system and
more fluent L2 speakers than to the L2 production system and less fluent L2
speakers.

In Experiment 2, we adjusted the levels of multitalker noise signal from 90 dB to
either 60 dB or 30 dB to enable the involvement of auditory feedback in speech
motor control. By measuring the magnitude of the Lombard effect in response
to a noise that was not as loud as the masking noise, we examine bilinguals’ relative
reliance on feedback control in L1 and L2 spoken word production.

Experiment 2
Method

Participants
Participants in Experiment 2 were the same as those in Experiment 1. The order of
the two experiments was counterbalanced between participants, with half of the par-
ticipants completing Experiment 2 after Experiment 1 and the other half completing
Experiment 1 after Experiment 2. The interval between the two experiments was
about 15 minutes (5 minutes’ short break plus 10 minutes’ L2 fluency tests).
This within-subjects practice not only maximized the sensitivity to compare
between experiments but also confirmed that result differences were unrelated to
individual differences.

Stimuli
The picture stimuli were the same as those in Experiment 1. Previous works suggest
that the magnitude of the Lombard effect is influenced by noise level. For example,
Patel and Schell (2008) manipulated noise condition by using quiet, 60 dB, and 90 dB
multitalker noise and observed more voice intensity increases when the background
noise was 90 dB compared to 60 dB. Following their practice, we also included a
60 dB multitalker noise and added a 30 dB multitalker noise to further investigate
how proportional changes in noise level affect vocal adjustments in voice intensity.
To differentiate from the masking noise in Experiment 1, we called the 60 dB multi-
talker noise the strong noise and the 30 dB multitalker noise the weak noise.

Design
Experiment 2 adopted a 2 (language: L1 and L2) × 3 (noise condition: quiet, weak
noise, and strong noise) within-subjects and within-items design. Within a block,
participants named 15 target pictures consecutively in each experimental condition,
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for a total of 15 trials. The order of blocks (L1-quiet, L1-weak noise, L1-strong noise,
L2-quiet, L2-weak noise, L2-strong noise) was randomized. Participants finished
three blocks for each experimental condition, generating a total of 270 trials.

Apparatus and procedure
Identical to Experiment 1.

Results

Data from 22 participants were entered into the final analyses using the same LMM
estimation. Table 3 presents the mean picture-naming response time, percentage of
errors, and mean intensity by language, and noise condition.

Behavioral results
Data from incorrect responses (0.88%), naming latencies longer than 1500 ms or
shorter than 200 ms (2.19%), and latencies deviating two standard deviations from
each participant’s mean (5.49%) were removed from all analyses. For response time,
the best-fitting model only included the factors of language and noise condition (see
Table 4). Adding the two-way interaction between language and noise condition did
not significantly improve the fit, χ2 (2, 5432)= 2.93, p= 0.23. For the
percentage of errors, the best-fitting model only included the factor of language;
adding noise condition, χ2 (2, 5888)= 5.21, p= 0.07, and the interaction between
language and noise condition, χ2 (2, 5888)= 5.93, p= 0.20, did not significantly
improve the fit.4 Table 4 displays parameter estimates for fixed effects for response
time, percentage of errors, and mean intensity.

Acoustic analysis
Only data from incorrect responses (0.88%) were removed from the acoustic
analyses. Figure 5A illustrates average mean intensity score distribution of the 22
speakers in each experimental condition. For mean intensity, the best-fitting model
included language and noise condition as well as their interaction (see Table 4). To
examine the two-way interaction, simple analyses indicated that both weak
noise (L1: β= 5.95, t = 52.29, p< 0.001; L2: β= 6.40, t = 53.46, p< 0.001) and
strong noise (L1: β= 6.40, t = 53.46, p< 0.001; L2: β= 6.40, t = 53.46,
p< 0.001) increased speakers’ voice intensity relative to the quiet condition, but

Table 3. Mean picture-naming response time (RT, in ms), percentage of errors (PE, %), mean intensity (MI,
in dB), and standard deviations (SD, in parenthesis) as a function of language and noise condition in
Experiment 2

L1 L2

RT (SD) PE (SD) MI (SD) RT (SD) PE (SD) MI (SD)

Quiet 673 (98) 0.51 (0.93) 48.90 (3.85) 703 (63) 0.71 (1.04) 48.77 (4.13)

Weak noise 627 (92) 0.40 (0.86) 54.87 (3.97) 655 (63) 1.11 (1.30) 55.24 (3.70)

Strong noise 634 (70) 0.91 (1.09) 56.07 (4.32) 656 (66) 1.62 (1.20) 57.33 (3.74)
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Table 4. LMM estimates of fixed effects for picture-naming response time (RT), percentage of errors (PE), and mean intensity (MI) in Experiment 2

Measure

RT PE MI

Fixed effects β SE t p β SE z p β SE t p

(Intercept) 673.34 18.12 37.17 <0.001 5.20 0.28 18.82 <0.001 48.98 0.85 57.32 <0.001

Language2 28.85 2.77 10.42 <0.001 –0.64 0.29 –2.22 0.03 –0.18 0.12 –1.41 0.16

Noise2 –46.49 3.40 –13.68 <0.001 – – – – 5.95 0.13 47.56 <0.001

Noise3 –41.98 3.41 –12.31 <0.001 – – – – 7.12 0.12 57.09 <0.001

Language2:Noise2 – – – – – – – – 0.46 0.18 2.58 0.01

Language2:Noise3 – – – – – – – – 1.39 0.18 7.88 <0.001

Note: Language2, L2; Noise2, weak noise, Noise3, strong noise.
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the intensity increase was larger in L2 than L1 (see Figure 5B). As shown in
Figure 5C, simple analyses in the other direction also indicated that the mean inten-
sity was not different between L1 and L2 word production in the quiet condition (β
= –0.15, t = –1.24, p= 0.22), but the mean intensity was significantly higher in L2
than L1 word production in the weak noise condition (β= 0.27, t = 2.24, p= 0.03),
and the strong noise condition (β= 1.18, t = 10.64, p< 0.001).5

Correlation analysis between the Lombard effect and L2 fluency
To test whether less fluent L2 speakers rely more on feedback control than more
fluent L2 speakers, we examined the relationship between the Lombard effect in L2
spoken word production and the fluency performance in L2 rapid naming and
passage reading. Data from 22 participants in Experiment 2 were entered into
the Pearson’s correlation analysis. The Lombard effect was defined as the differ-
ence between the mean intensity in the L2-quiet and L2-strong noise conditions.
The results indicated that the L2 Lombard effect was positively correlated with
the duration for L2 rapid naming task (r= 0.58, 95% CI [0.30, 0.81], p= 0.005)
and the duration for L2 passage reading task (r= 0.55, 95% CI [0.31, 0.81],
p= 0.009). This suggests that the less fluently bilinguals speak in their L2, the
larger Lombard effect they exhibit in L2 speech production (see Figure 5D and 5E).

Discussion

In Experiment 2, we observed that the Lombard effect elicited by a weak or strong
noise was larger in L2 than L1 word production. In addition, correlation analyses
suggest that the Lombard effect in L2 word production was larger in less fluent L2

Figure 5. Results in Experiment 2. (A) Box plots illustrating the distribution of average mean intensity
scores of 22 participants in each experimental condition. Box definitions: middle line is the median,
top and bottom of boxes are 75th and 25th percentiles, and square is the mean. (B) Column charts of
the mean intensity (mean and standard error) in the L1 and L2 speech production as a function of noise
condition. (C) Column charts of the mean intensity (mean and standard error) in the quiet (Q), weak noise
(WN) and strong noise (SN) conditions as a function of language. Asterisks indicate the significant effects.
(D) The scatterplot for the correlation between rapid naming and the Lombard effect. (E) The scatterplot
for the correlation between passage reading and the Lombard effect. Here, the Lombard effect is defined
as the difference between the mean intensity in L2-quiet and L2-strong noise conditions.
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speakers than more fluent L2 speakers. Thus, the results lend support to the hypoth-
eses that bilinguals’ feedback control is also affected by language and related to
L2 fluency, where a heavier weighting is assigned to feedback control in the L2
production system and in less fluent L2 speakers compared to the L1 production
system and more fluent L2 speakers.

Our findings suggest that the mean intensity did not differ between L1 and L2
word production under the quiet condition in either Experiment 1 or Experiment 2.
The similar characteristic of voice intensity is of great importance in the L1-L2 con-
trast of two different languages; we thus suggest that the observed vocal changes
indeed resulted from the experimental manipulations rather than the languages.

General discussion
The purpose of the two experiments was to systematically determine the relative
weighting of feedforward and feedback control in bilinguals’ L1 and L2 speech pro-
duction, and to evaluate whether individual differences in L2 fluency are related to
the organisation of feedforward and feedback control in the L2 speech motor sys-
tem. We manipulated the noise level mixed with the auditory feedback that partic-
ipants received while speaking. When the noise intensity (90 dB multitalker noise)
exceeds a masking threshold where participants could not perceive their original
auditory feedback, bilinguals showed a larger Lombard effect in L1 than in L2 word
production. In addition, as L2 fluency increased, the Lombard effect in L2 word
production also increased. In contrast, when the noise intensity (30 dB or 60 dB
multitalker noise) was below the masking threshold but hampered speech intelligi-
bility, the same bilinguals showed increased Lombard effect in L2 word production
compared to L1 word production. In addition, as L2 fluency decreased, the Lombard
effect in L2 word production increased. The overall results indicate that compared
to L1, L2 speech motor control relies on feedforward control to a lesser extent but
relies on feedback control to a greater extent. Also, the correlation findings provide
initial evidence in second language learners that L2 speech rapidity is related to
higher weighting of feedforward control but lower weighting of feedback control.

Feedforward control between L1 and L2

We investigated bilinguals’ feedforward control using a masking noise in Experiment
1, and, for the first time, we observed that bilinguals exhibited a larger Lombard effect
in L1 word production than L2 word production, reflecting that L1 speech motor
execution relies more on feedforward control compared to L2. A previous study pro-
vided neuro-imaging evidence to differentiate native and novel speech production in
terms of feedforward control (Moser et al., 2009). According to the DIVA model, the
left inferior frontal gyrus and anterior insula are important brain regions involved in
feedforward control (Guenther, 2016; Kearney & Guenther, 2019). Damage to these
areas typically cause a disorder in motor speech planning. In Moser et al.’s study
(2009), 30 normal adults completed a speech production task consisting of two
types of three-syllable nonwords: English (native) syllables and non-English
(novel) syllables. The authors found that when novel syllable production was
compared to native syllable production, greater activations were observed in an

788 Xiao Cai et al.

https://doi.org/10.1017/S0142716420000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0142716420000223


extensive neural network including the left inferior frontal gyrus and anterior
insula. Of close relevance, they speculated that increased activity in motor speech
networks may directly reflect unfamiliarity with the motor commands necessary
for target sounds; that is, a difference in feedforward control. In our study, we
cannot explain the neural mechanism of a feedforward deficit (Alm, 2004,
2005; Kearney & Guenther, 2019) or its exact nature (Civier, 2010). Although
L2 words were not novel speech sounds, they were not as familiar as the L1 coun-
terparts to bilingual speakers (as reflected by longer naming latencies). Thus, it is
not surprising that a difference in feedforward control was found between L1 and
L2 speech motor control in Experiment 1.

For bilinguals, L1 is an overlearned language. The feedforward commands that
store detailed instructions for how to move the articulators to achieve a linguistic
goal, should be directly read out from “mental syllabary” without effort, with its
mechanism similar to singing a familiar song from memory (Civier et al., 2010).
Speakers in a highly automatic language have established accurate auditory-motor
bidirectional mappings; not only can they predict auditory consequences based on
an efference copy of the motor commands and environmental influence but they
can also issue motor commands based on the intended auditory consequences.
By accurately measuring the level of masking noise, native speakers adjust their
voice intensity more to make themselves heard. However, for second language
learners, articulation of L2 words is less rehearsed (Parker Jones et al., 2012)
due to factors such as the age of acquisition, the amount of exposure, and the
involvement in daily life (Abutalebi et al., 2001), so they are less likely to generate
long-term representations of L2 words that are as accurate as their L1 counterparts
in the “mental syllabary.” Thus, when L2 speakers face a loud masking noise, they
show smaller intensity adjustments to compensate for the inaudibility.

Theoretical frameworks contend that feedforward control can be accomplished
quickly by preventing additional processing of sensory feedback (Guenther, 2016;
Perkell, 2012). Thus, it is reasonable to associate speed of speech with the relative
weighting of feedforward control. Many patient studies also found that brain dam-
age related to feedforward control causes significant motor impairment (Kearney &
Guenther, 2019). In Experiment 1, we found a negative correlation between L2
fluency and the Lombard effect in L2 speech production, suggesting that more fluent
L2 speakers have superior feedforward control ability. This finding provided
additional evidence for a fluency-related hypothesis in normal L2 speakers. Speech
control models in native language assume that feedforward control weighting
is increased as language acquisition progresses (Tourville & Guenther, 2011).
Recent research findings highlight L2 fluency as a reliable predictor of L2 proficiency
(De Jong et al., 2012), thus our study also shows that feedforward control is
increased as second language learning progresses. Although L2 speech production
is inferior in feedforward control compared with L1, we should be optimistic about
the difference because, with increasing L2 proficiency, speech control may develop
on a continuum, biasing away from feedback control and toward feedforward con-
trol, allowing for more native-like speech production.
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Feedback control between L1 and L2

We investigated bilinguals’ feedback control under weak noise and strong noise con-
ditions. Contrary to Experiment 1, we observed that bilinguals exhibited larger
Lombard effects in L2 word production than in L1 word production, and the effect
was magnified in the strong noise condition relative to the weak noise condition.
These contrasting findings are interesting because both experiments introduced
noise to interfere with the perception of auditory feedback, and the only striking
difference was that neither the weak noise nor the strong noise were loud enough
to eliminate the auditory feedback needed for feedback control. Thus, the difference
in noise levels (weak and strong noise vs. masking noise) was not only quantitative
but also qualitive. Notably, in Experiment 2, the strong noise decreased the signal-
to-noise ratio to a greater extent than the weak noise, but both noise levels elicited
the same result patterns despite a difference in magnitude. Thus, the difference in
noise levels (weak noise vs. strong noise) was only quantitative, not qualitive. By
controlling for other factors, we suggest that L2 speech motor execution relies more
on feedback control compared to L1.

The finding of language-specific feedback control echoes an early study by
Mackay (1970), who employed a delayed auditory feedback technique to interfere
with normal speech production and found that artificial disfluency was more serious
in L2 speech production for both German–English bilinguals and English–German
bilinguals. These findings provided direct evidence that the feedback control differ-
ence was unrelated to the language but related to language status. Future studies
should investigate the influence of masking noise, weak noise, and strong noise
on speech motor control in a group of English–Chinese bilinguals.

In addition, Simmonds et al.’s (2011b) brain imaging study differentiated L1 and
L2 speech production in terms of feedback control. According to the DIVA model,
the auditory and somatosensory association cortices are important brain regions
involved in feedback control (Guenther, 2016; Kearney & Guenther, 2019). A per-
turbation to speakers’ auditory feedback typically results in increased neural activi-
ties in these areas (Tourville et al., 2008; Toyomura et al., 2007). In Simmonds et al.’s
(2011b) study, bilinguals produced overt propositional speech (i.e., defined visually
presented pictures) in both their L1 and L2. The results provided reliable evidence of
increased activations for L2 relative to L1 within the temporoparietal cortex. Of
close relevance, they attributed the increased temporoparietal cortex activity to
more taxing sensory monitoring of any discrepancies between the predicted and
actual sensory outcomes in L2 production. Thus, it is not surprising that our study
found a difference in feedback control between L1 and L2 production.

Previous research has shown that reliance on feedback control is a dynamic pro-
cess in nature that ranges from heavily to rarely dependent through vocal develop-
ment (Civier et al., 2010; Scheerer et al., 2013; Schmidt & Lee, 2005). The transition
is modulated by practice or experience (Guenther et al., 2006). For L1 speakers,
the brain has already internalized the relationships between speech movements
and the desired auditory feedback during the process of language acquisition;
thus, the additional information provided by auditory feedback becomes redundant.
However, for L2 speakers, the mapping between motor commands and their sensory
consequences is less reliable, as evidenced by larger vocal variability (Chen et al.,
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2001; Ng et al., 2008; Wang & van Heuven, 2006). Thus, auditory feedback is still
required to retune and strengthen the motor-sensory transformations. Growing evi-
dence also suggests that L2 speech output needs more careful monitoring to avoid
errors (Ganushchak & Schiller, 2009; Parker Jones et al., 2012). Overall, the feedback
subsystem may have a more prominent role to play in L2 speech motor control.

Overreliance on feedback control may introduce disfluency problems because a
feedback-based strategy is relatively slow to detect and correct errors (Parrell et al.,
2019; Perkell, 2012). Thus, it is reasonable to associate disfluency with the relative
weighting of feedback control. Civier and colleagues (2010) also found that people
who stutter may suffer from a motor strategy that weights too much toward audi-
tory feedback control, leading to a higher probability of triggering a repetition,
resulting in more stuttering. In Experiment 2, we found a positive correlation
between L2 fluency and the Lombard effect in L2 speech production, indicating that
less fluent L2 speakers are more dependent on feedback control. The findings in
Experiments 1 and 2 are important complement to each other because we showed
that increasing efficiency of L2 speech motor control is related to a bias away from
feedback control and toward feedforward control in the same group of bilinguals.
A large body of literature indicates that reliance on feedback control decreases as
language acquisition progresses (Liu et al., 2010a; Scheerer et al., 2013; Tourville
& Guenther, 2011). Concerning the close relationship between L2 fluency and
L2 proficiency, our study also suggests that feedback control plays a less prominent
role as second language learning progresses. This finding suggests that differences
between native speakers and L2 learners are not always ever-lasting; it is possible
that L2 learners can reach native-like efficiency of speech motor control.

Conclusion
In summary, our findings suggest that voice intensity control in bilinguals’ speech
production requires a joint effort of feedforward and feedback subsystems, and the
relative weighting of feedforward and feedback control depends on whether
bilinguals are producing words in L1 or L2. The correlation analyses suggest a close
relationship between L2 fluency and the organization of feedforward and feedback
control. Although more work is needed to establish these finding in different pop-
ulations with improved methodologies, this study opens a potential new line of
research into bilinguals’ speech motor control.
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Notes
1. Researchers investigate the relative weighting of feedback control by measuring the magnitude of com-
pensatory response, with larger response indexing heavier reliance on feedback control (Scheerer & Jones,
2014). However, the reliance on feedforward control cannot be addressed directly but inversely speculated
by measuring the reliance on feedback control, with higher weighting of feedback control indexing lower
weighting of feedforward control.
2. It needs to be highlighted that somatosensory feedback control is still at work under masking noise
because auditory feedback is not the sole input perceived by sensory system (Lametti et al., 2012). In
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addition, the perception of auditory feedback is indeed a very complex process, involving air conduction and
more peripheral bone conduction (Howell & Powell, 1984). Researchers usually minimize the influence of
bone-conducted auditory feedback using loud noise (Christoffels et al., 2007), whispered speech (Houde &
Jordan, 2002; Zheng et al., 2010), or acoustic calibration that provides the feedback with a sound pressure
level gain of 10 dB relative to participants’ vocal output (Ballard et al., 2018; Chen et al., 2015). In the current
experiment, a multitalker noise was presented at a high volume to effectively mask air-conducted feedback
and partially mask bone-conduced feedback.
3. The results indicated that there was no interaction between language and noise condition, reflecting that
the influence of noise on cognitive processing before articulation was not different between L1 and L2.
4. The results indicated that there was no interaction between language and noise condition, reflecting that
the influence of noise on cognitive processing before articulation was not different between L1 and L2.
5. The experiment was performed with 30 dB and 60 dB white noise as well, and that the same pattern of
results was obtained.
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