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In  we have�ABE
c

sin 1
2γ

=
a + b

sin (1
2π + 1

2 (α − β)) =
a + b

cos 1
2 (α − β)

.

The formulae of Mollweide and Newton may also be quickly obtained
from the figures used in the two proofs of the law of tangents in [1, pp. 66-
67]. In addition, alternative proofs of the formulae of Mollweide and
Newton can be found in [1, pp. 62-63].
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106.41 Infinitely many series arising from cos2x + sin2x = 1

In this Note we will exhibit some convergent series and identities
hidden in the most famous Pythagorean identity: , for all
complex numbers . In order to obtain these results we will consider the
expansion of the functions sine and cosine into infinite products.

cos2x + sin2x = 1
x

In [1], W. F. Eberlein proved Euler's formula for the infinite product of
the sine function using only simple arguments of analysis without
considering the Weierstrass theorem on infinite products or Fourier series.

Writing , we have the formula for the cosine expansion as

infinite product as follows

cos x =
sin 2x
2 sin x

sin x = x ∏
∞

n = 1
(1 −

x2

n2π2) ,  cos x = ∏
∞

n = 1
(1 −

4x2

(2n − 1)2 π2) .

Inserting these products into , we have:cos2x + sin2x = 1

x2 ∏
∞

n= 1
(1 −

2x2

n2π2
+

x4

n4π4) + ∏
∞

n= 1
(1 −

8x2

(2n − 1)2π2
+

16x4

(2n − 1)4π4) = 1. (1)

The central idea of this Note is to investigate the coefficients of  in the
(1). Clearly, for  these coefficients are equal to zero, but the most
important matter here is how to obtain this zero.

xn

n > 0
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Searching for the coefficient of  in (1), we find:x2

x2 (1 −
8

12π2
−

8
32π2

−
8

52π2
−  … ) = 0x2,

thus

∑
i odd

1
i2

=
π2

8
.

In that way, we have obtained the limit of a well-known series involving
quotients of odd terms. In fact, we get this result without using, as usual,
Parseval's identity (see Rudin [2] and Arfken [3] for more detailed
information).

Checking the terms involving , we havex4

−
2

12π2
−

2
32π2

−
2

52π2
−  … ,

from the coefficients of  in the first infinite product of (1), and the next
infinite sums are related to the contribution of the second product:

x4

( 82

1232π2
+

82

1252π2
+

82

1272π2
+  … ) + ( 16

14π4
+

16
34π4

+
16

54π4
+  … ) .

So we have the following equation

−
2
π2 ∑

∞

i = 1

1
i2

+
64
π4 ∑

i < j
i,j odd

1
i2j2

+
16
π4 ∑

i odd

1
i4

= 0.

As we know that,

∑
∞

i = 1

1
i2

=
π2

6
and ∑

i odd

1
i4

=
π4

96
, (2)

it follows that

∑
i < j

i,j odd

1
i2j2

=
π4

384
.

The last equation of (2) can be found using Parseval's identity.
Similarly, considering terms in , we have:x6

x6( 22

1222π4
+

22

1232π4
+

22

1242π4
+  … ) + x6( 1

14π4
+

1
24π4

+
1

34π4
+  … )

 + x6 (− 83

123252π6
−

83

123272π6
−

83

123292π6
−  … )

 + x6 (− 128
1234π6

−
128

1254π6
−

128
1274π6

−  … )
 + x6 (− 128

1432π6
−

128
1452π6

−
128

1472π6
−  … ) = 0x6.
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This leads to

−
83

π6 ∑
i < j < k odd

1
i2j2k2

= −
4
π4 ∑

i < j

1
i2j2

−
1
π4 ∑

∞

i = 1

1
i4

+
128
π6 ( ∑

i < j odd

1
i2j4

+ ∑
i < j odd

1
i4j2) ,

or more concisely

∑
i < j < k
i,j,k odd

1
i2j2k2

=
π2

128 ∑
i < j

1
i2j2

+
π2

512 ∑
∞

i = 1

1
i4

−
1
4 ∑

i,j odd
i,j distinct

1
i2j4

.

For the equation generated by the search for the coefficient of  in (1),
we get the following identity.

x8

∑
i < j < k < l odd

1
i2j2k2l2

=
π2

512 ∑
i < j < k

1
i2j2k2

+
π2

2048 ∑
i,j dixtinct

1
i2j4

−
1
4 ∑

i,j,k odd
i,j,k distinct

1
i4j2k2

−
1
16 ∑

i < j odd

1
i4j4

.

A natural question that arises is how to find an identity involving series
linked to the coefficient of the general term , for  even. We have an
identity involving sums as follows.

xn n

∑
i1 < 12 <…< im odd

1
i2
1i2

2… i2
m

.

For this purpose we make use of compositions. The A-restricted
composition of a positive integer  is an ordered collection of elements in
whose sum is . For instance, if , the compositions of
are: 2 + 2 + 1, 2 + 1 + 2, 1 + 2 + 2, 2 + 1 + 1 + 1, 1 + 2 + 1 + 1, 1 + 1 + 2 +
1, 1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1 . Detailed information on A-restricted
compositions can be found in Sills [4], and Heubach and Mansour [5].

n A
n A = {1, 2} n = 5

In our problem, let us consider , and  an even positive
integer. With  and , the equation
(1) can be rewritten as

A = {2,  4} n
am = −1 / (m2π2) bm = −4 / ((2m − 1)2 π2)

x2 ∏
∞

n= 1

(1 + 2anx
2 + (an)2x4) + ∏

∞

n= 1

(1 + 2bnx
2 + (bn)2x4) = 1. (3)

Let us consider  the set of all A-restricted
compositions of . We will use A-restricted compositions to obtain the
expansion of the products in (3) and search for identities hidden in the
coefficients of , for  an even positive integer. Searching for the
coefficient of , we find the following equation.

C (m, A) = {cn | m ∈ �}
m

xn n
xn
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∑
c(n− 2)∈C(n− 2,A)

∑
m≥ 1

0 ≤ ji < j2 <…< jr
0≤ l1 < l2 <…< ls

2ra(m + j1)… a(m + jr)a(m + l1)2… a(m + ls)2

+ ∑
c(n)∈C(n,A)

∑
m≥ 1

0≤ ji < j2 <…< jp
0≤ l1 < l2 <…< lq

2pa(m + j1)… a(m + jp)a(m + l1)2… a(m + lq)2 = 0

where the composition of ,  has  parts of 2 and  parts equal
to 4, and  has  parts of 2 and  of 4. We consider  in the first
sum because the term  in the first infinite product of (3) means that 2 is
always part of the composition.

n − 2 c (n − 2) r s
c (n) p q c (n − 2)

x2

For example, if , for the composition of 6, , in the first
infinite product of (1), we have the series:

n = 8 2 + 4

2a (1) (a (2))2 + 2a (1) (a (3))2 +  … = −
2
π6 ∑

i < j

1
i2j4

,

while for the composition of 8, , in the second product, we have:2 + 4 + 2

2b (1) (b (2))2 2b (3) + 2b (1) (b (3))2 2b (4) +  … =
1024

π8 ∑
i < j < k odd

1
i2j4k2

.
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