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The Stefan problem is coupled with a spatially inhomogeneous and anisotropic Gibbs—
Thomson condition at the phase boundary. We show the long-time existence of weak solutions
for the non-degenerate Stefan problem with a spatially inhomogeneous and anisotropic
Gibbs-Thomson law and a conditional existence result for the corresponding degenerate
Stefan problem. To this end, approximate solutions are constructed by means of variational
problems for energy functionals with spatially inhomogeneous and anisotropic interfacial
energy. By passing to the limit, we establish solutions of the Stefan problem with a spatially
inhomogeneous and anisotropic Gibbs-Thomson law in a weak generalised BV -formulation.
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1 Introduction

The Stefan problem models phase transitions in materials. To allow for superheating and
undercooling, the Stefan problem is coupled with a geometrical condition at the phase
boundary, the so-called Gibbs—Thomson law. This condition takes surface tension effects
into account such that the temperature may differ from the melting temperature at the
phase boundary. The Gibbs-Thomson law states that the system is in thermodynamic
equilibrium.

The classical Gibbs—Thomson law accounts for isotropic surface tension effects. In this
case, the temperature at the interface is proportional to the mean curvature. In many
applications, however, such as the solidification of alloys, the surface energy density is
spatially inhomogeneous and anisotropic, i.e. the density depends on the position in space
and on the local orientation of the interface. This means that the Stefan problem with
a generalised Gibbs-Thomson law has to be considered (see, for instance [21,22] for a
thermodynamic derivation). The temperature at the interface is then related to a spatially
inhomogeneous and anisotropic mean curvature.

Heat conduction in materials often takes place on a much faster time scale than the
evolution of the interface. Therefore, a quasi-static version of the Stefan problem, the
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so-called degenerate Stefan problem, is often used to describe melting and solidification
processes.

To formulate the Stefan problem with Gibbs—Thomson law, let (0, T) be a given time
interval, Q < R" be a bounded domain with Lipschitz boundary and Q7 := (0, T) x Q.
The phase field variables are the temperature

MIQT—>IR

and a phase function
X . .QT — ]R,
where the liquid phase is represented by the set {(t,x) € Qr : y(t,x) = 1} and the solid
phase by the set {(¢,x) € Qr : y(t,x) = 0}.
The (non-degenerate) Stefan problem with isotropic Gibbs—Thomson law is formally
described by

6,(u+x) —Au=f in Qr, (1.1)
u=H on [, (1.2)

where f : Qr — IR is a given heat source, H : ' — R is the mean curvature and I
denotes the phase boundary.

The degenerate Stefan problem models an infinite fast heat flow in the material, i.e. (1.1)
is replaced by

Oy—Au=f in Qr. (1.3)

For a general theory of the Stefan problem, we refer to [20,27,33]. Global existence
results for the non-degenerate Stefan problem with isotropic Gibbs—Thomson law in
a weak (generalised) BV -formulation are shown in [25,26,29] and with anisotropic
Gibbs-Thomson law in [19a]. For the degenerate Stefan problem, existence of classical
solutions locally in time has been proven by Chen, Hong and Yi [8] and by Escher
and Simonett [11,12]. An existence result for global solutions of the degenerate problem
can be found in [7], where the limit of a modified Cahn—Hilliard model is considered.
However, the isotropic Gibbs—Thomson law is only fulfilled in a rather weak and complex
formulation. Using the theory of varifolds, Roger [30] established long-time existence
of solutions of the degenerate Stefan problem with isotropic Gibbs—Thomson law in
a weak generalised BV -formulation. In contrast to the classical Stefan problem, global
weak solutions of the Stefan problem with Gibbs—Thomson law have sharp interfaces
but are highly non-unique as discussed in [25]. Uniqueness of classical solutions for the
degenerate and non-degenerate Stefan problem with Gibbs—Thomson law is established
in [8,10,23]. In addition, it is shown in [10] that the free boundary is an analytic function
in space and time.

The BV-formulation of the degenerate and non-degenerate Stefan problem with iso-
tropic Gibbs—Thomson law was introduced by Luckhaus and considered for the non-
degenerate problem in [25,26] and for the degenerate problem in [24] (see also [19] for a
multi-phase version): The temperature and the phase function

u € up+L*0, T; H(Q)), up € H(0, T; H(Q)), and  y € L*(0,T;BV(Q;{0,1}))
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satisfy for the non-degenerate problem

/ (u+ )0 +/ 1(0)£(0) =/ VuVé — f& forall £ e CX([0,T) x Q), (1.4)
Qr Q

Qr Qr

for the degenerate problem
/ 10:¢ +/ %(0)E(0) = / Vuvé — f& forall £ € CX([0,T) x Q) (1.5)
Qr Q Qr Qr

and for both problems

V 0 . n
/ / < \Vy| Vf\Vﬂ ué- Vo )IV |dt =0 forall ¢ € CX(Qr;R"). (1.6)

In this BV -setting, global solutions for the non-degenerate case are obtained in [25,26]
by an implicit time discretisation method. The time discrete approximations y" and u"
converge to weak solutions of (1.1) and (1.2). In particular, the exclusion of loss of surface

area in the limit, i.e.
fim [ 921 = [ 192, (1.7)
h—0 Qr Qr

arises in a natural way from the discrete minimum problem.

For the degenerate system, i.e. (1.3) and (1.2), property (1.7) is in general not satisfied.
However, assuming (1.7), existence of global solutions can be shown in the BV -setting
(see [24]). Conditions of the form as in (1.7) are typical for such kind of geometric
problems and have been applied to several other geometric problems (see [4,5,19,24,28]).

In this paper, we study the degenerate and non-degenerate Stefan problem with spatially
inhomogeneous and anisotropic Gibbs—Thomson law. This generalised Gibbs—Thomson law
results from an inhomogeneous and anisotropic surface energy, i.e.

/ o(x,v)dA"!,
r

where v is the outer unit normal of the liquid phase, #"1 is the (n — 1)-dimensional
Hausdorff measure and ¢ is an anisotropy function satisfying Assumption A 2.1 (see
Section 2.1). The corresponding generalised Gibbs—Thomson law at the phase boundary
reads as

u=H, on I’ (1.8)
with
Hy =Vr-0,(x,v) + 0 x(x,v)v,
where Vr denotes the tangential gradient of I' and o is the first partial derivative of o
with respect to the variable s.

The aim of this work is to show existence of weak solutions for the Stefan problem
with spatially inhomogeneous and anisotropic Gibbs—Thomson law and existence of weak
solutions for the corresponding degenerate problem assuming a condition similar to (1.7).
The results of [19a, 24-26] are generalised.

Our main results are under suitable assumptions as follows.
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Theorem 1.1 Let Q <= R”" be a bounded domain with Lipschitz boundary, ¢ be an an-
isotropy function satisfying Assumption A 2.1 (see Section 2.1) and f € L*(Qr). Fur-
thermore, let up € HY0,T;HY(Q)) and the initial data uy € HY(Q) N L¥(Q) and
x0 € BV(Q;{0,1}) be given. Then, there exist functions y € L*(0,T;BV(Q;{0,1})) and
u € (up + L*0, T; HL(Q))) N L*(0, T'; L)) that are solutions of

/ (M+X)6zf+/ 2(0)£(0) =/ VuVé— [ f¢& forall & e CH0,T)*xQ), (19)
Qr Q Qr

Qr

and

T
/ / (vt NWVE(L )+ 0x(ov(E, ) - E(t,) — () VEE) 0, v(2, )
0 Q

—u(t,) E(t,-) - v(t, )|\ Vy(t,)dt =0 for all ¢ € CHQr;R") with v = —‘z—y“l. (1.10)

If, in addition, Q is a bounded domain with C'-boundary then (1.10) even holds for all
Ee CYQr;IR") with & -vg =0 on 0Q, where vg is the outer unit normal of 0Q.

The above existence result for the non-degenerate system is based on an implicit time
discretisation method. In this case, we obtain for the time discrete approximations y",
h > 0, the following generalised property of (1.7):

Vxh
lim [ o(x,v")|Vy"| :/ o, IVyl, V=t (1.11)
h=0 Jor Qr V"

Under this condition, we are also able to show existence of weak solutions for the
degenerate problem.

Theorem 1.2 Let Q < IR" be a bounded domain with Lipschitz boundary, ¢ be an anisotropy
function satisfying Assumption A 2.1 (see Section 2.1) and f € L*(Qr). Furthermore, let
up € WHY0,T;HY(Q)) and the initial datum yo € BV(Q;{0,1}) be given. If condition
(1.11) (see Section 4 for the definition of y") is satisfied then there exist functions y €
L7(0, T;BV(Q;{0,1})) and u € up + L*(0, T ; H}(Q)) that are solutions of

/ 70:& + / 72(0)E(0) = / VuvVe — fé forall ¢ € CH[0,T) x Q), (1.12)
Qr Q Qr

Qr

and

T
/ / (a6, DV-E(E ) 0x( 06, ) - E(07) — v(t,) - VE(E) 0 v(5,))
0 Q

—u(t,") E(t,7) - v(t, )| V(t, ) dt =0  for all ¢ € CHQr,R") with v =——="-. (1.10)

If, in addition, Q is a bounded domain with C'-boundary then (1.10) even holds for all
& e CHQr,R") with & - vg =0 on dQ, where vq is the outer unit normal of 0.
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A major task of the proof of the existence results for both problems has been to assure
convergence of the approximate terms, which arise from the spatially inhomogeneous
character of the interfacial energy. To handle this convergence problem, we work with
slicing and indicator measures and methods of geometric measure theory. We choose the
notion of a generalised total variation for BV -functions. Our results are based on weak
convergence theorems for homogeneous functions of measures, on geometric properties
for anisotropic surface energies and on approaches of [18].

The paper is organised as follows: In Sections 2.1-2.2, we introduce some notation
and the assumptions. Then, we state some properties for anisotropy functions and slicing
and indicator measures (see Sections 2.3-2.4). In Section 3, we establish a suitable weak
formulation of the Stefan problem with spatially inhomogeneous and anisotropic Gibbs—
Thomson law in a generalised BV -setting. Section 4 is devoted to time-incremental min-
imisation problems for energy functionals with spatially inhomogeneous and anisotropic
interfacial energy. We construct time discretised solutions for (1.9), (1.10) and (1.12), (1.10),
respectively. Arguments similarly to [24-26] are only sketched. Finally, we pass to the limit
in the time discretised problems, cf. Sections 5.1-5.3, and prove Theorems 1.1 and 1.2 in
Section 5.4.

2 Preliminaries

If not otherwise mentioned, we assume that 2 < R” is a bounded domain with Lipschitz
boundary. The first and second partial derivatives of a function with respect to the
variables s and p are abbreviated by f and f,.

We begin with stating the hypotheses for the anisotropy function o.

2.1 Anisotropy function

Assumption A 2.1 The anisotropy function ¢ : Q x R" — [0,+00) satisfies the following
properties:

(i) o€ C(Q xR,
0y, 0, € C(Q xRMN{0}),
ap € C(Q x R™\{0}).

(ii) o is 1-homogeneous in the second variable, i.e. a(x,1p) = Aa(x,p) for all p € R" and
any 2 > 0.

(iii) There exist constants A1 > 0 and 1, > 0 such that

Mpl < o(x,p) < blpl  forall x€Q and all p € R".

(iv) o is convex as a 1-homogeneous function in the following sense: There exists a constant
do > 0 such that

Top(X,0)q " q = dolg?
Sfor all x € Q and all p,g € R" withp-q=0, |p| = 1.
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Note that ¢ is not differentiable at 0 € R". However, if we set 66, =0 and go, = 0 at
0 € R" for g € C!(Q) with g = 0 in some neighbourhood of 0, then the expressions ¢ 7,
and g o, are well defined and continuous at 0.

2.2 Generalised total variation

To handle the spatially inhomogeneous and anisotropic Gibbs—Thomson law, we use the
notion of the generalised total variation of BV -functions introduced in [1].

Let g : @ x R" — [0,+00) be a continuous anisotropy function fulfilling (ii) and (iii) of
Assumption A 2.1. Then, the dual function ¢* : @ x R" — [0, +o00) is given by

a(x,p)

For any f € BV(Q) the generalised total variation of f (with respect to ¢) in Q is defined

by
[ 9t = sup { [ saivnaxin e Kg«z)},
Q Q

where K,(Q) = {n € CHQ,R") : ¢*(x,n(x)) < 1 for ae. x € Q}. The generalised total
variation can be represented by an integral formula in terms of the measure |Vf|, cf. [1,2]:

6" (x,q) =sup{q-p:peR" a(x,p) <1} = sup{ a-p ‘p € ]R”\{O}}. (2.1

c = 5 N 2.2
/Q VS| /Q o(x,vy) [Vf] 2.2)

where vy(x) = —%(x) for |Vfl]-a.e. x € Q.

We remark, fQ IVfl, is L'(Q) lower semi-continuous on BV (Q).

2.3 Properties of anisotropy functions

In the sequel, we take advantage from the following properties for anisotropy functions,
cf. [6,9,16].

Lemma 2.2 Let o be an anisotropy function satisfying Assumption A 2.1. Then, there exist
constants C; > 0 and Cy > 0 such that for all x € Q, vi,v2 € $"~! and all p, p1, p2 € R"\{0}
the following properties are fulfilled:

(i)

a,(x,p) p=0(x,p),  a,(x,p) p=07"(x,p), (23)

(ii)
a(x,v1) — 0 p(x,v2) - vi = Ci|v; — vz\z, (2.4)

(iii)
o, p(x,v1) — 0 5(x,v2)| < Ca|vi — va, (2.5)

(iv)
0,(x,2p) = 0 p(x,p) for 4 >0, (2.6)
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(v)
G(X, G,*p(xa Pl)) = G*(X,, a,p(xs pZ)) = 1. (27)

(vi)
a(x,p)a’)(x,s,0,,(x,p)) = p, o’ (x,p) o p(x,5,0,(x,p)) = p. (2.8)

Anisotropy can be visualised by the Wulff shape W that varies in our situation with
xeQ:

W(x)={qeR":0"(x,q) < 1}.

The Wulff shape W is convex and its boundary can be expressed as follows:
W (x) = {0 p(x,7) : ¥ € S" 1}, x € Q.

The outer unit normal at the point ¢,(x,¥) on 0W(x) is ¥. For more details on this topic,
we refer to [16,22].

The following lemma is an essential tool for constructing suitable approximations of the
Cahn-Hoffman vector o, cf. [18]. This auxiliary result is utilised to prove convergence
of the time discretised solutions.

Lemma 2.3 (cf. [18]) Let 6 be an anisotropy function satisfying Assumption A 2.1. Then,
there exists a constant C > 0 such that

Clop(x,v) —pl* < o(x,v)—p-v

Sor all x € Q, v € ™! and all p € R"\{0} with ¢*(x,p) < 1.

2.4 Slicing and indicator measures

We outline some properties on slicing and indicator measures, which are required in the
limit process of the discrete spatially inhomogeneous and anisotropic Gibbs—Thomson
law. For details we refer to [3,13-15].

Let ©® be a finite, non-negative Radon measure on © x R". The canonical projection
onto Q is denoted by T, i.e.

n(E) := O(E xIR")
for each Borel set E = Q.

Proposition 2.4 (cf. [3]) For m-a.e. point x € Q, there exists a Radon probability measure
Ay on RR" such that

(i) the mapping x — [p. f(x,y)dix(y) is © measurable,
(i) [oure f(X,2)dO(x,y) = [o([gs F(x,¥)dix(y))dn(x)  (Fubini’s decomposition)

for every continuous and bounded function f : Q2 x R" — R.
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Let i be an R"-valued measure on Q with polar decomposition dft = odu. Then, the
indicator measure of [u is the finite, non-negative Radon measure ® on Q x §"~! defined
by

(6. f) = /Q £, ) du(x)

for every continuous and bounded function f : Q x R" - R. If E = Q is a set with finite
perimeter, i.e.

per(E) = / IVye| < oo, «g : characteristic function of E,
Q
then the indicator measure of Vyg has the form

(0,f) = f(x, —ve(x))dA"(x), vg : unit outer normal of E,
O'E
where 0"E is the reduced boundary of E, cf. [3,17].
Proposition 2.5 (cf. [3,15]) Let {fy}ren be a sequence of R"-valued measures on Q with
polar decompositions djy, = oy duy, and suppose that [y — [t weakly* with i = ou. Then,
there exists a subsequence {k;}jcn and a non-negative Radon measure @, = 1, ® AY on
Q x "1, J% being probability measures, such that

(i) O, =, ® 5“,<]_(X) — Oy =1y, ® AL weakly”, 0y Dirac mass,
(ii) px, = mo, weakly®,
(iii) Ty > .

Moreover, for every f € C.(2 x R")

lim £ (e o, (0)dps, = / £ (%, 7)d0.0(x,7)
Q QxS—1

j—>OO
-/ ( f(x,y)dfli?(y)> s (3)
Q Sn—l

3 Weak and strong formulations

In this section, we show that (1.10) is in fact a weak formulation of the spatially
inhomogeneous and anisotropic Gibbs—Thomson law (see (1.8)). This weak generalised
BV-formulation also includes a boundary condition for the interface with the outer
boundary.

Theorem 3.1 Let Q be a bounded domain with C'-boundary, I' be a C*-hypersurface and
let O consists of a finite number of C'-(n — 2)-dimensional surfaces. If (y,u) is a solution
of (1.9) and (1.10) or (1.12) and (1.10) then the following conditions are satisfied:

(i) Inhomogeneous and anisotropic Gibbs—Thomson law
ox(xv(t) - v(t) + Vi - op(x,v(t) =u(t) on I'(t) A" Deoqe. for ae. tc(0,T),

where V denotes the tangential gradient of I .
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(ii) Force balance condition
o p(x,v(t)) - vo(t) =0 on dr (t)NoQ #"-ae. for ae.t € (0,T),
where vg is the outer unit normal of 0Q.

Proof We consider (1.10) and take test functions of the structure & = v on I', where 5
is an arbitrary function of C!(Q2r;R). For the first and third summand of the area part
of (1.10), we derive

/ / ) - VE(t) 6p(x, v(1)) dAa" Nty dt = / / Vi(t) - o,(x, v(t)) dA" o) dt
I()
an

/ / a(x, v(t))V-E(t)dA" (1) dt
0 I'(t)

T

=/ / v(t) - (Vi(e) - v(2) + (1) Vv(0) 0 p(x, v (1) doA"~ (1) dt
0 Jr(
T

) /0 o 1O = Vron(0) - 0,06 v(t) A" () dt

T
. n—1
+A Ammmmuwumm>wm¢% (0)d,

where x(t) = Vppv(t) is the mean curvature. Applying the divergence theorem on
manifolds yields

T T
/ / Vrwn(t) - ap(x,v(t)) dA#" (t) dt + / / n(t) Vi op(x,v(t) dA" (1) dt
0 r(r 0 ()
T
=/‘/ Vi (1(1) 0.5, V(1)) do" (1)
0 Jr
T
=/‘/JWM®wAnWDme%“%ML
0 Jr
We infer
T
/ / (o (e V(OV-E() — v(1) -V E(0)o 5, (1)) do™ 1)
0 It
T
= / / n(t) Ve o p(x,v(t) d#" " (t)dt
0 Jr
Since n € C!(Q1) was arbitrary, we end up with

o x(x,v(t)) - v(t) + Vo p(x,v(t) = u(t)

on I'(t) #" '-ae. for ae. t € (0, T).

To (ii): We choose arbitrary functions ¢ € C'(Q7;R") with £(t) - vo(t) = 0 on 0Q for
ae. t € (0,T) and an orthonormal basis ty(t) = 7, (t), 72(t), ..., T,—1(t) of the tangent
space T I'(t), where tp(t) is the outer unit normal of OI'(t). Then, using the Einstein
sum convention, we may express ¢ in the form ¢ = n,v + n,,7;. Applying the divergence
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theorem on manifolds leads to

T
/ / a(x,v(O)V- (1, (0)7;(1)) doA" (1) dt
/ / o5, V()1 (1) dA (1)
- / / Vi (6 (1)) - 15, (0)5(0) A (1) d
o Jro
T
. n—1
+ /0 /r ([)cr(x,v(t))r/rj(t)v(t)Vrj(t)v(t)d% (1) dt.
Since (V(n,7;))"v = —(Vv)T (i1,7;), we have
T
/0 /F 0 V0100 0 5 (0 4 )
T
— / / (n:,(1)7;(0) - Vv (D)o p(x,v(1) dA" (1) dt
0o Jro
Thus, we get for (1.10) the following representation:
T
/ / (0o v (O)V-E(0) + 0. (1)) - £(0)
0o Jru
d n— 1 d _ d n—1 d
(1) VEW) 0 e () 1) de //F( N (0) de
T
/ / (0006 (0) - T (0) + 5 v(0) 1ep (1) dA2(0) i
o Jorq
T
+ / IOV 00 (x v (1)) dA™ (1) d
0o Jrw
T
- /0 [ T 0) = V0o v0) - (1 051 0) o0

T
/ 0 X, (), (E)v( t)V‘cj(t)v(t)d%”_l(t)dt
0o Jr

T
+/ o—x 1) dA" (1) dt—/ / u(t) ny()dA" "Nty dt = 0.
0 I

+

Since

T
/ / (L0 1 (0 10) 0,050 < 0) ™ 30) o
T
_ / / E(0((0.p (6 V(1)) - V(D)7 (1) — v(O)(0p (v (1)) - 71 (1)) dA" (1) d,
o Jorw

we obtain by choosing suitable variations in the neighbourhood of points of oI’

(ap(x,v(0)) - v(1)Tr (1) = (0,,(x, V(1)) - 71 (1)) v(2) = (1) v 1)
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with
1(t) = [(o,p(x,v(1) - v())Tr () — (0,5(x, v(1)) - 71 (1)) v(2)]
on I'(t) #" '-ae. for ae. t € (0, T). It follows

Ivo-tr =0 p(x,v) v, Ivg -v=—0,(x,v) 1r, vo 1;=0 forje{2..,n—1}
on I'(t) #" '-ae. for ae. t € (0, T). This shows

op(x,v) - va = (0,(x,v) - v)(v - va) + (0,(x,v) - 1) (t; - va)
= (—(a,p(x,v) V)@ p(x,v) - Tr) + (0,5(x,v) - 1) (0 p(x, V) - v))/]
0

on I'(t) #" '-ae. for ae. t € (0, T). O

We remark that the dependence of ¢ on x has no influence on the boundary condition at
intersections of the interface with the outer boundary.

4 The discretisation

The proofs of the existence theorems are based on minimisation problems, cf. [19a, 24, 26].
For the degenerate problem, we choose an energy functional, which is similar to [24].
However, for the non-degenerate problem, we introduce an energy functional, which differs
from [19a, 26].

Let (0, T) be the time interval of interest with discretisation fineness h = %, M €
N. For f and up in Theorems 1.1 and 1.2, respectively, we choose discretisations f”
and u}y such that f* and u), are constant on the intervals ((k — 1)h,khl.k = 1,..., M,
and f" — f in L*Qr) and ul) — up in L*0,T;H (Q)) as h — 0. We also may
assume that the boundary values of up are extended in Q such that Aup(t) = 0 for
ae. te(0,T).

Now, we construct iteratively time discrete solutions y" and u” for time steps h > 0. To
this end, we consider the following two minimisation problems in each time step:

Degenerate Stefan problem

Minimise Z" : BV(2;{0,1}) —» R,
h h h h
Tl = [ IVals + 5 VoV(v —up(1)) — [ yup(), (4.1)
Q Q Q
where v € H(Q) is the weak solution of

1=t —h)=h(Av+ @), v=ub(t)e. (4.2)

Note that (4.2) is the implicit time discretisation of (1.3) for y = ¥/(t) and v = u'(t).
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Non-degenerate Stefan problem

Minimise " : BV(Q;{0,1}) —

ENy) = /m\a /VvV(v—uD(t /v —/(v+y (4.3)

where v € H'(Q) is the weak solution of

vty — 7"t —h) —u't—h)=h(ov+ @), v=ub(O)e. (4.4)
Note that (4.4) is the implicit time discretisation of (1.1) for y = "(t) and v = u"(¢).
Lemma 4.1 There exists a minimiser y" € BV(2;{0,1}) of Z".

Proof Let {yx}ren, 1k € BV(2;{0,1}), be a minimising sequence and {vy}ken be the
corresponding sequence of weak solutions of (4.2). In view of Auf, = 0, we estimate

h
fﬁl(Xk)>/§2\VXk|a+§/Q|V ve — up(1))] _/|

The uniform boundedness of {y}en; in L*(2; {0, 1}) and the BV (Q)-compactness imply
that there exists a subsequence (still denoted by {y}ken) such that

=% in LAQ) and  j € BV(Q;{0,1}).
In addition, by the uniform boundedness of {vy}ren in H'() and by (4.2) we derive
nw—bd in HYQ),

where © is the weak solution of (4.2) for y = %. From this property and the lower
semi-continuity of [, [Vyls, we conclude that } is a minimiser of & h, O

Lemma 4.2 There exists a minimiser y" € BV (Q;{0,1}) of .

Proof Let {yx}ken, xx € BV(2;{0,1}), be a minimising sequence and {v;jren be the
corresponding sequence of weak solutions of (4.4). Due to Aul, =0, we have

h 1
Fiwr = [ 1, +5 [V —ub@)P+ 5 [ o= [ (ul+ Db,
Q Q Q Q

Since {yk}ken; is uniformly bounded in L*(Q2;{0,1}) and in BV({Q), there exists a sub-
sequence (still denoted by {yx jren) with

— % in L*Q) and  j € BV(Q;{0,1}).

Moreover, the uniform boundedness of {vx}ren in H'(Q) implies that there exists a
subsequence (still denoted by {y }ken) with

o — b in HY(Q).
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Since
/(Xk — )k —vp) = —/(Uk —u)? — h/ V(e —v)l* >0, as kI — oo,
Q Q Q

we conclude

w—b in HYQ),
where ¥ is a weak solution of (4.4) for y = . This property and the lower semi-continuity
of fg |Vyl, assures that ¥ is a minimiser of &. O

From the minimisation procedure, we obtain iteratively y" and u" (1" is the weak solution
of (4.2) and (4.4), respectively, for y = ") at the time steps t = kh, k = 0,..., M. We
extend y" and u" by y"(t) = y"(kh) and u"(t) = u"(kh) for t € (k — 1)h,kh], k = 1,..., M,
and abbreviate afl’g(t) = gm%f*h) for a function g.

Next, we establish weak formulations of the Euler-Lagrange equations for #" and
&", which are connected to (1.8) and (1.10), respectively. To determine the first variation
of the spatially inhomogenecous and anisotropic interfacial energy, we fall back on the
following variational property, cf. [18]

Lemma 4.3 Let @ : [—19,79] X G — G be a family of diffeomorphisms of G onto itself with
G=Q or G=Q.If g € BV(Q;{0,1}) then

d o
= [ v,

=0

= / <0'(<1')(r, x), ¥ (7, x)vg(x)) tr <6q§é(r,x)) + 0 x(D(1,x), P (1, x)vg(x)) - diq')(r, X)
Q p Y T
+0,((1, %), #(1,X)v5(x)) - (P, X))_Tvg(X)) IVg(x)l,
=0
where tr denotes the trace, ¥(t,x) = |det®(t,x)|(Px(t,x))" T and v, = —% for

|Vgl-a.e. x € Q.

Note that if M is an n x n—matrix then Id + nM, n € R, is invertible for || sufficiently
small. In addition,

det(Id +nM) = 1 +nte(M) + L (trM)? — tr(M?)) + O(n),

and
(Id+ M)~ =1d —yM + > M?* + 0(»>).

Theorem 4.4 Let Q be a domain with Lipschitz boundary. Further, let Assumption A 2.1

be satisfied. If y"(t) € BV(Q;{0,1}) is a minimiser of F! or &" and v = u'(t) is the
corresponding weak solution of (4.2) and (4.4), respectively, then

/Q (G (E DV E0)F 0x(o V(0 ) - EC) = VPt ) - VEC) 0 6 DIV, )
- /Q W1, ) EC) (e IV )] = 0 (4.5)

Jor all & € CHQ,R"), where v/(1) = — Y40
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If. in addition, Q is a bounded domain with C'-boundary then (4.5) even holds for all
&€ CP(Q;R™) with & -vg =0 on 0Q, where vq is the outer unit normal of 0.

Proof Let ¢ € CL(Q;R") and consider
D(x ;1) =x+1E(x) (4.6)

for x € Q and 7 € R. Then, @(- ;1) is a diffecomorphism of Q onto itself if || is sufficiently
small. Via the above diffeomorphism, we define

a6 x) = 7"t 07 (x ;7).

Furthermore,
V(LX)
VAN
We denote the weak solution of (4.2) and (4.4) for y = ¢(t) by u/(¢). Since "(t) = x(t)|:=0
is a minimiser of #! and &", respectively, we obtain

vf(t, x) =

d .
and Oz—(g’};(x’;(t))‘ v respectively.

d
0=—71(r0)| e _

dt

Next, we compute the above derivatives. Here, we take advantage from the following
properties of @:

(i) |det @ +(x;0)] = 1,
(i) @1 (P(x37)57) = (P(x37) 7,
(i) £ (P(x37) "m0 = —VE(X).

Lemma 4.3 gives

h —1(, .
& [o( -y D v oz o)
Q

VL (2 5 0))] 0

= /Q(G(X’V"(t))v & a6 V(1) &= V(D) VE a,(x v (0) VA (2)].

We abbreviate w'(t) = u/(t) — ull(t), w'(t) = u(t) — ul}(t) and utilise Auly(t) = 0.
Hence, the remaining parts of #! at y = y" can be re-written as

h
3 [ vilow o — o) - [ Zno

h
=5 [ 1wwor = [ Ao

h h
:EAW“m”_MMW+hAVWﬂ“—WmWWm+§AWmmw—ﬁﬁm%m
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h

=5 [ IV —wt0)P = [ Gho—omto+ / Vo / e
h

=5 [vido vl - [ oo+ [ oo+ [ e @)

Next, we compute the t-derivative of the first term in (4.7).
In the following, we denote by C > 0 some constant, which may differ from estimate to
estimate. Note that

‘ 2

g/ﬁ‘V(wg(t,z)—wh(t,z)) dz
:_/ (Xh(t,¢1(2;f))—xh(f Z)) <Wh(t ,z) — wht, Z)) iz
o ﬁ \/>
h h 2
Ca/g( (t@l(z\;%)) t,z > 5/( (t,z) (tz)) iz

for any 6 > 0 and some Cs > 0. In consequence, by Poincar€’s inequality

1 h —1 z: __h 7 2
T/Q‘V(wf(t,z)—w"(t,z))’zdzSC/Q(X (& & (’\/2) L )) Az (48)

N

for some constant C > 0.

Now, we show that the term on the right-hand side of (4.8) is uniformly bounded as
t — 0. Denoting Q(t) = {x € Q : y'(t,x) = 0} and Qi(t) = {x € Q : y(t,x) = 1}, we
estimate

/ (00 (257) — £'(6,2)dz
Q

= / ", @ (z57)) — 1, 2)ldz + / 't @7 (z30) — £(t,2)\dz
Qo(t) Q(t)

<271 (Qo(1); 1))\ Qo(t)] + |27 (Q1(1); 1)\ Qi (1)

<2 / V2 (t,2)| max [ &~ (z:7) — &(2:0)
Q zeQ

> / V7 (¢, 2)] max|x — (z; 7)
Q zeQ

<2 / IVy"(t, z)|t max |&(z)|
Q zeQ
<Cr

for some constant C > 0 (independent of t). Hence,
1 h h 2
. |V(wf(t,z)—w (t,z))| dz<C
Q

Furthermore, for any g € (2,2"] with 2" = n% if n >3 orany q € (2,00) if n =2, we
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obtain

h / \V(Wh(t,z) — w'(t,2)) *dz
TJa

"1, @7 (z;1)) — 41, 2)
2 NG

- ” 2, 7 (z37)) — ;{h(t,Z)’

= JT LT (Q)
<cLps (v

wh(t, z) — wh(t, z)
I ()

-0 for t — 0.

‘wf(t,z) —wh(t, z)

NG

H wh(t, z) — wh(t, z)

NG

<

dz

L1(Q)

L2(Q)

In consequence,

d \ 2
Eh/g\V(w?(z,z)—w’(x,z))| dz

=0T

= lim - h/ ’V h(t z) —wh tz))’ dz=0
=0
In addition,

d
& [ Aanta:

— / w8, ) (t, x)V-E(x)dx + / 1(t, x)Vu' (1, x)-E(x) dx
Q Q

=0

- /Q W(0) GOV, (49)

This shows the claim for #" since the remaining terms of (4.7) do not depend on .

To verify the claim for &", we observe

3 [ viow o - o) + 5 [ (o) - [ @o+ 2o

=3 [wwtor+ / (i) =5 [ wheo)” = [z

_ " h 2 wh h h n hyeyi2 1 hiy)2
2/QlV w,(t) — \ +h/ 2(t) — (t))Vw (t)+2/Q|Vw (1)] +2/Q(wf(t))

/(u’z)(z))z /m) b(0)

(i 2 hipy ok hepy hee h
/ V(1) — wh(0)] / (W) — (1)) w0 /Q (0 — 20w (1)

1 h
+§/Q( whe))? —5/9(u’i)(z))2+§A|th(t)|2—/szx¢(z)ug(t)
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_ ﬁ h h h h h h h
=3 /Q V(wko) —who) [ + 5 / (wh() = w'(0)” / w"(0)? / 7e(e (1)
+ /Q x”(t)wh(t)—% / / IVw (1), (4.10)

W[ VWi z) = wh(,2)) [P dz+ [ (whie,2) — whie, 2)) dz
/ v i
/Q (706, 871 (z57)) — 26, 2)) (Wh(2, 2) — wh(t, ) d,

we may use the same argumentation as before to derive

d
dt(h/g|V(w$(t,z)—wh(t,z))|2dz+/9|(wf(x,z)—wh(z,z))|2dz)

Due to (4.9), the assertion also follows for &! since the remaining terms of (4.10) do not
depend on .

If Q is a bounded domain with C'-boundary, we may choose a family of diffeomorph-
isms @(t, "), T € [—10,10], of Q onto itself given by the initial value problem

Since

=0.
=0

P(0,x) = x and D (1,x) = E(D(7, X)), x € Q,

with & € C1(Q;IR") and ¢ - vg = 0 on 0Q. Then, @ also fulfils the above properties (i)—(iii)
and |®(x;1) — @(x;0)| < tmax, g |E(x)[. Thus,

/Q(U(', VLDV - EC) + o1V (8) - EC) = V(8 7) - VEC) 0, (0" (8 IV (2, )]
— [ w20 v = 0
for all ¢ € C'(Q;R") with ¢ - vg = 0 on 0Q, as required. O

5 Convergence to solutions
5.1 The degenerate case

We are going to establish compactness of the discrete solutions ", h > 0, in L'(Qr)
similarly to [24].

Lemma 5.1 (Uniform bound) There exists a constant C > 0 (depending only on [, [V(0)l,,
llup|lwiio.1:m1 @) Ifll2@y)) such that

58 SUDic0 7) /Q VIO, + /Q Vi ()P < C. (5.1)
T

Proof We first like to mention that for weak solutions #i"(t), h > 0, of —Av = f"(t) with
v = ul(t)|ogq it holds

T
~h
/0 T (0) 2y de < Dy,
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where D; > 0 is some constant depending on ||up||w1i0,r.m1(@) and ||f|l2q,). In view of
Fh" () < Fh(y"(t — h)), we obtain

h
[+ 3 [ viww o - o)
Q Q
h -h h
< [we=nlo+3 [ Po@o-ubo)+ [ Go—ze—mubo
By Young’s and Poincaré’s inequality, we estimate
/Q V() + hDs / V(o) < / V2 (= W)y + D3I FHO1 By + BDs (o
MO+ [ 020 = 7= b0 (52)
with some constants D,, D3 > 0. Since

jh jh
/ / 07l (1) < / / Qun (D),
0 Q 0 Q

we obtain for k =1,2,...,j, j < M,
J
3 /Q () — 7'((k — D))y (k)
k=1
jh
- / / S (0t — ) + /Q 2 () i) — /Q 20 ()

jh
s
</ /\6 p () + 2||up|lr=,7:L1 @)
<

Dallupllwrro,r:L1 @)

where D4 > 0 is some constant.
Now, we take inequality (5.2) iteratively for t = kh, k € N, and sum over k = 1,2,..., ],
j < M, which leads to

/ V()]s + D> /Q

for some constants Ds > 0 and Dg > 0. Hence, the assertion is obvious. O

IVul(1))* < / IV2(0)],+Ds]If 113 @p) T Ds llupllwio,r:H1@)+Ds

i

The following lemma is used to control time differences of " (see [24]).

Lemma 5.2 ([24]) Let ¢ € BV() with ||¢||L~©0) < M for some constant M > 0. Then,
there exist constants C > 0 and py > 0 (depending only on Q and M) such that for all

P < po
n—1 C
/|¢|<p(/|wp|+czf ©09)) + lolli1@
Q Q P

Lemma 5.3 (Compactness in L'(Qr))

(i) (Compactness in space) The discrete solutions y", h > 0, are bounded in
LY0,T;BV(Q)).
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(ii) (Compactness in time, cf. [24])
The discrete solutions ", h > 0, fulfil

T—1
/ / 7+ 1) — 0] < Co4,
0 Q

for some C > 0.

In consequence,

P in L'(Qr) (5.3)

for a subsequence as h — 0.
Proof To (i): This property immediately follows from Lemma 5.1.

To (ii): Without loss of generality, we may assume t = kh and t = lh. From (4.2) and
Lemma 5.1, we infer

1"t + 1) — " (O)lg-1) = sup /(xh(t +1)—7"(t))g ’
Q

lgllgg 01 =1
t+t h o he h
— ap / /X (s)—x'(s )gds
lellyg o=t 1/t Je h
t+1 h _ h(e
< / x'(s)—x"(s—h) s
t h H-(Q)

2

. t+1 \
<12 (/ (uh(s)n%,,(m+||fh(s)||§2(m)> <Cri. (54)

Choosing p = t/# in Lemma 5.2 shows (ii).
We infer from (i) and (ii) that {}"} is relatively compact in L'(Q7) (cf. [31,32]), ie.
there exists a subsequence {3 }en; such that

-y in LYQr).

5.2 The non-degenerate case

To pass to the continuous problem, we first establish a priori estimates for u" and .

Lemma 5.4 (Uniform bound) There exists a constant C > 0 (depending only on fg lu(0)|2,
Jo IV2O)e, lupllmio.r:m@). Ifl20r)) such that

ess supldo,n( /Q (W) + |V~/’(t))) + /Q Vu'(6)* < C (5.5)
and
T
/0 10, (1) + 2" (O < C. (5.6)
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Proof Equation (4.4) yields

h h 2 1 h h

= |V(v—uD(t))| = (v+y—u(t—h)—y"(t—h)) v uD f t)v uD
2 Jo "2 /o

(5 7)

Utilising (5.7), & can be re-written in the following form:

/ Vil + / (W't — )+ 7t — h) + hf"(0) (0 — b (1))

=5 [+ ne=ubo) +5 [ 7= [e+nio

/ Vil + / W' — B+ 2" — B) + hf"(0) (0 — ub (1)
—E/Qqu(t) Z/Q (v + (1))

Note that

6= )= [ 1920 Wl = 560 == o) — o)
1
w3 | £oho—upo)+ 5 [ @ - [@o+ 2o mio
= [ 92—+ 5 [ =)0 o)
1
=3 [0+ =m0 =3 [ 7=, (58)

where #"(t) is the weak solution of

v—u"(t—h) = h(Lv+ (1)), v=ul(O)|sq. (5.9)

Due to &M(;"(t)) < &M (t — h)), we conclude

2
(10 0) = 61G = 1)

Wty — 4t —
= [ 0w = v =) - [ EOEE D

+ / Wt — )+ ey m O = B0
Q

h
_/ (uh(t) e . o) — 7(e h))upl,)(t) <0. (5.10)
Q h h
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Multiplying (4.4) by (u/(t) — ul(t)) gives

uh(t) - Zh(t - h) uh(t) . uh([) - Zh(t - h) u?)(t) + Xh(t) - ;{lh(t - h) (uh(t) _ M}b(t))
—/ﬁvw%o—umﬁﬂk+/fﬁo@%o—uﬂoy (5.11)
Q Q

In addition, testing (5.9) with (&"(t) — u(¢)) yields

PO =) ) e

l/w (i) — wh(0) P + /fh i (1). (5.12)

Adding (5.11) and (5.12) shows

—/ |V (uh(r) — /|V (i (0) — uly(0) +/f’1 — 2up (1) + (1))

”’(t)—uh(t— h)

ﬁ((uh(t) — "t — hy(1) + (8(8)” = (£ — Wi (1)

—(u"(t) — 2uM(t — by + 2" (1)) ulp(t) + h O "y (u' () — u (1))

%(( "0))? = (u (t—h))z— "t — ) (u" (1) — (1)

—(u"(¢) — 2uM(t — by + 8" (0))uly (£) + O 1 () (" (1) — ulh(1))). (5.13)

Moreover, adding (5.10) and (5.13) leads to

2
E/ Wﬂ@“—WfU—WO—Q/Gﬂ@Hmwm+ﬂwm
H/a "ulp (1) (u (e — h) + £t — ))+/ (1)) = (u"(t = h))*

h

Q

<—/owwm—%mW+wm%%wﬂmm+z/ﬂm@m%wﬂm.
Q Q

From (4.4), we deduce

18(6) = " ()17 20) < 12"(6) = 2" (& = B[ 2 118 (8) — (D) | 2@y — BIIV (8" (2) — u"(6)) 11720

and therefore,

Hﬁh(f) - uh(t)HU(Q) < Hxh(t) - Xh(t — 120

Hence, we obtain

/Q 0@ = up )] < N Ollz@llr"(©) = 2" = 1)l 20

+ Collf"(OlF20) + 011" (€) — uh (O},
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for any 6 > 0 and some Cs > 0. Note that

t
—h, h 2 2
/0 /Q 07y (5) < 10sup e

By means of Poincaré’s and Young’s inequality, we finally establish

T
esssup,e(oj)( / ((uh(t))2+|vxh(x)\)) + / / Vi () Pdx dt
Q 0 Q
< cl( /Q V20)], + /Q |u<0)2+||uD||%,1(0,T;H1(Q))+|f|iz(9ﬂ) eS

where Cy, C; > 0 are some constants and (5.5) is established.
Due to (4.4), we obtain for n € H}(Q) with Il o) < 1

1/2
/afh(uh(t)ﬁLxh(t))n < (/ (Ve (@0))* + If”(t)|2)> -
Q Q
From (5.5), we infer

T
/0 107" (u"(0) + £ () -1 < C3

for some constant C; > 0. O

Next, we take advantage from an L'-bound for fractional time derivatives of y" and u"
(see [25,26]), which ensures compactness of " and u" in L1(Q7).

Lemma 5.5 (Compactness in time, cf. [25,26]) Let Q <= R" be a bounded domain with
Lipschitz boundary. Furthermore, let

up € H'(Qr), ue L™(0,T;L*(Q)), u—up € L0, T,H)(Q)),
7 € L0, T;BV(2;{0,1}))

and
Ou+y) e L*0, T; H(Q)).

Then, there exists a constant C > 0 (depending on the above norms) such that

T—1 ‘
/ / 20+ 1) = 20)] 4 [+ 1) — ()] < e
0 Q

with 1/8, =13 — %,

Due to the a priori estimates and Lemma 5.5, we can select (weakly) convergent sub-
sequences as following.

Corollary 5.6 There exist

u € (up + LA0, T; Hy(Q))) N L™(0, T; L*(Q)), up € H'(Qr),
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and
x € L¥(0, T;BV(2;{0,1}))
such that

(i) u" — uin L*(0, T; H(Q)),
(ii) u" — u in LY(0, T; LY(Q)),
(i) " — y in L*(0, T; L*(Q)),
(iv) uh(t) = u(t) in LY(Q) for ae. t € (0, T),
(v) 7'(t) = %(t) in L2(Q) for ae. t € (0, T),

for some subsequence as h — co.

In the following lemma, we show that for the non-degenerate problem loss of surface area
is excluded in the limit.

Lemma 5.7 The functions x"(t), h > 0, fulfil for a.e. t € (0,T):

/Wﬁwfa/wwm as h— 0.
Q Q

Proof Since y(t) — y(t) in L*(Q) for a.e. t € (0, T), we immediately obtain
/ [Vx(t)|s < lim inf/ IVi'(t)l, forae. te(0,T)
Q h—0 Q

by the lower semi-continuity property of fQ V(1)
Now, we prove the opposite inequality. Since

M) < &M (),

we derive
h
[ (20, + 36007 + 519 W0 = dhio) = (0 + 0o
1 h
< / <|VX(I)|0 + 5(17}1(1))2 t3 V(@' (t) — )’ — (8"(0)+ A(ﬂ)”n(ﬂ) (5.14)

Q

where 9"(¢) is the weak solution of
b h s h
LoD HOZEUED L pp g i, o = e

Note that from (4.4), we conclude

_ph heey h —h h Hh
é(m (1) = Aum 2(0) (' (0) — /W () — ") .

In consequence,

|u"(£) — ﬁh(t)||L2(Q) < l7"(6) — 1Ol 2@) — 0 ash—0
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for ae. t € (0, T). We estimate

/9 (%uh(t) ~uh(0)ul0) - / (%ﬁh(t) — () (1)

+% /Q (I @] + ") (1) = 8" (O] = 0 as h—0,

< up (@)l 2@ lu" () — ")l |20

and

< ||Xh(f) — 1Ol2@) ||“%(f)\|u(9) -0 ash—0

/ (') — 20 (1)
Q

for ae. t € (0,T) since u'(t) — "(t) — 0, y"(t) — x(t) and ul(t) — up(t) in L*(Q) for
a.e. t € (0, T). In addition,

] / V(" (1) — (1)) — b / VG (1) — s (0)
Q

= ’ /Q (") = (@0 = (u'(t — ) + up(0)) (0"(2) — u"(0)) — hf" (1) (8" (2) — u (1))

— () = 2" (O)uby(t) + 2(6) () — 2" () u"(8) — 1"t — h) (B"() — u"(1)))

-0 as h—0

for a.e. t € (0, T). From (5.14), we conclude

/ Vi0)l, > limsup / VA0,
Q h—0 Q

for ae. t € (0,T). O

5.3 The spatially inhomogeneous and anisotropic Gibbs—Thomson law

Before we pass to the limit in the weak formulation of the discrete spatially inhomogeneous
and anisotropic Gibbs—Thomson law, we show some approximation properties.

Lemma 5.8 Suppose
/a( Ve DIV |—>/ WYL, h—o, (5.15)

for a.e. t € (0, T), where v = —Vy"/|Vy"| and v = —Vy/|Vyl.
Then, using the same notation as in Proposition 2.5:

(1) Jous1 0 (5)dOL(t,,) < [o a(v(5,))|Vi(t, )| for ae. t €(0,T).
(ii) There exists a sequence {gl}jen of functions gl € CH(Q), t € (0, T) such that

gl > a,v(t)  in L'(IV(t, )

for ae. t € (0,T).
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(iii) 22(t) = dy—yx) for |Vy(t)|-a.e. x € Q and ae. t € (0,T).

Proof To (i): Due to Proposition 2.5, we infer

/ g(’)d@m(t,’) < llmlnf/ (7(',') d@h/(t)'a.)
OxS1 J—%0 QxSr—1
=liminf | o(,v"(t,") [V (t,")|

o Jo
=/(’('av(fa‘))le(t,')l
Q

forae.t € (0, 7).

To (ii): Smooth approximations g/ for the Cahn-Hoffman vector o » can be constructed
as follows: Due to (2.2), there exists for every 6 > 0 and ae. t € (0, T) approximative
functions g’ € K, such that

/Q (0C,v(t,) =87 () v(t, ) V(e ) < 6%

Thus, by Lemma 2.3,

/|o ) — O IVt )] < €1

for some constant C; > 0 and a.e. t € (0, T). This implies the existence of a sequence
{glhien, g € CHQ;R"), with g} — a,(-,v(t,-)) in L'(|Vy(t,-)|) for ae. t € (0,T) since
0 > 0 may be chosen arbitrarily small.

To (iii): Since y"(t) — x(t) in L'(Q) for ae. t € (0, T) and limsup,_,, Jo V()| is
bounded for a.e. t € (0, T'), we obtain

Vi'(t) = V(1) weakly”

for a.e. t € (0, T). Hence, we can choose a set S = (0, T') of Lebesgue measure zero such
that y"(t) — y(t) in L'(Q) and Vy/(t) — Vy(t) weakly* for t € (0, T)\S.

From Proposition 2.5, we conclude that there exist a sequence {h;}en and a non-
negative Radon measure 0,.(t) = n,(t) ® A°(t) on Q x $"~!, t € (0, T)\S such that
(a) Oy(t) = IVihi(t) ® 5‘)11,-(1) — O4,(t) = n.(t) ® AL(t) weakly”, 6, Dirac mass,
(b) [V (0)] = mo(t)  weakly®,
(c) moo(t) = V()]
(d)

lim [ P V20l = [ Fode.x)
J=0J QxSr-1

=/ (/ F(x,y)dif(t,y))dﬂoo(t,x)
o \ Js

for any F € C.(2 x R") and all t € (0, T)\S.
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For any % € Q, we take r > 0 such that B(X,r) = {x e R" : |[x — X|| < r} € Q and set

Fo(x,y3t) = ®1(x)P2(y)lop(x, y) — gi(x)I%,

where @; € C.(Q) with 0 < ¢; < 1in Q and @; =1 in B(X,r) and &, € C.(IR") with
@y(y) =0 in {y € R" : ||y|| < h} for some h > 0, ®5(y) = 1 on S"! and g, € K,(Q).
Consequently, Fg(-, ;t) € C.(2 x IR"). Proposition 2.5 assures (modulo a subsequence)

/ <P1(>C)( / <I>z(y)lo,p(x,y)—gt(x)zdi;”(t,y))Vx(t,X)I
Q s
< /Q <1>1(X)< /S | %(y)la,p(x,y)—gr(X)zdif(t,y)>dnoo(t,X)
= lim / B (x)Po(v" (8, X))o (x, v (£, %)) — g (x) PV (2, %)
J70 Ja
< lim | 0,06 v"(t,x)) — g (x) PV (£, )| (5.16)
J70 Ja

for every t € (0, T)\S. Taking advantage from Lemma 2.3, we estimate

lim [ Clo,(xv"(t,x)) — g (%)} Vi (¢, x)|
Q

Jj—0
< tim [ (6 v0,%) — 00 V(6,0 V0, %)
J7% Jo
= [ (ot0.0) = ) (0. W,
< [ Jostxr(t0) = g0Vt ) (517)
Q

for every t € (0, T)\S, where C > 0 is some constant. Hence, (ii) combined with (5.16)
and (5.17) shows

/ amx)( L 1oste) = opterte aPaz, y)) VUt x) =0
for t € (0, T)\S. In particular
R ( L oate)y =gttt sz y)) VUt x) =0
for t € (0, T)\S. This implies, according to Lemma 2.2 (ii),
/SH [v(t, x) — y\4d/1‘f(t,y) =0 for |Vy(t)]-a.e. x € B(X,r) and t € (0, T)\S.
Hence, we obtain that A7 is a Dirac mass, i.e. AL(t) = dy—y,x), for |Vy(t)-a.e. x € B(X,r)

and r € (0, T)\S and the claim follows as X € Q was arbitrary. O
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Lemma 5.9 Let Q be a bounded domain with Lipschitz boundary and suppose Assumption A
2.1 is satisfied. If ¥"(t) € BV(R;{0,1}) is a minimiser of #" and condition (5.15) is satisfied,
or if ¥(t) € BV(Q;1{0,1}) is a minimiser of &", then

Il'llir(l)/g (O-('7 Vh(ty ))V : é(ta ) + G,X('s Vh(ts )) : é(ts ) - Vh(ts ) : Vé(l, ) G,p('7 Vh(t7 )))‘Vxh(ts )|
= /Q (O-(" V(t, ))V ' 6(% ) + G,X('a V([, )) ' 5(@ ) - V([, ) : Vé(ta ) O-,P('”)(ta )))lVX(ta )l

(5.18)

h 9
for all & € CHQr;R"), where v = _\gﬁ and v = _%'

If, in addition, Q is a bounded domain with C'-boundary then (5.18) is satisfied for
all £ € C'@Qr;R") with ¢ - vqg = 0 on 0Q, where vo is the outer unit normal of
0Q.

Proof In view of Lemma 5.8 (i), we have

/ 0%, 1) dO.o(t,x, v) < / o %, v(t, X)) V{1, )|
QxS Q

for a.e. t € (0,T). Since, by Lemma 5.8, A7(t) = dy—yy) for |Vy_(t)l-ae. x € Q and
ae. t € (0,T), we infer from Lemma 2.5

[ ototwonmrin= [ ([ axnazen ) v
= [ ([ stendizen) st in, o
o \Jsmi

< / o(x,1) Ot x, y),
QxSr-1

where g is the density of |Vy_| with respect to m,, and 0 < g(t,x) < 1 for n,-a.e. x € Q
and ae. t € (0,T). Consequently, as fSn_l a(x,y)dA¥(t,y) > 0 for me-ae. x € Q and
ae. t € (0,T), we deduce

g=1 and |Vy_|=mn, for my-ae. x€ Q andae. t€ (0, 7).
Moreover, @y, (t,2 x ") = [V;"(1)|(Q) converges to [V(1)|(Q) = O..(t,Q x §"!) for
ae. te€(0,7).

Next, we utilise the property that limj. 0,(5,2 X S™!) = O,(1,2 x $"') and
Oy, (t) = O(t) weakly”, ¢ € (0, T), implies

fim [ e d@ e = [ uny) 0.0
J720 JQxS-! QxSn-1
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for every continuous and bounded function u : @ x $"' — IR. We conclude

lim [ f(x,v"(t,x))|V7"(t,x)| = lim f(x,y)dOy,(t,x,y)
Q

Jj—oo J70 Joxsn1

- / F(6y) Oty x,y) = / £ et XDVl x)
QxS—1 Q

for every continuous and bounded function f : @ x "' —» R and ae. t € (0, T). Thus,
we infer

lim [ o (x,v"(t,x))V - &(t,x)|V¢"(t,x)] :/a(x,v(t,x))v-5(r,x)|vx(t,x)|
h—0 Jo Q

lim [ o (xv"(6,x)) - E(tx)Vi"(t,x)| = /Q o (x,v(5,x)) - E(1,%)|V(t, x)|

h—0 Jo
lim/ vi(r) - VE(t, x) a,p(x,vh(t))WXh(t, X)| = / v(t,x) - VE(t,x) o, (x,v(t, x))|V;{(t, X)|
h—0 Jo Q

for h — 0 and the claim is established by Lebesgue’s convergence theorem. O

5.4 Proofs of Theorems 1.1 and 1.2
Now, we are well prepared to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2 From Lemma 5.1 and Lemma 5.4, respectively, we conclude
W' —u in L2(0, T;H'(Q)) and »" -y in L*0, T:L*(Q)).
The weak compactness of L*(0, T'; H{(2)), in turn, implies
u € up + L2(0, T; H} (Q)).

To establish (1.12) and (1.9), respectively, we consider the time discretisation of the
diffusion equations, see (4.2) and (4.4), for y = y"(t) and v = u(t). Discrete integration of
the terms [, 0, ("¢ and o, 0, M(u" 4 y")¢ by parts and passing to the limit h — 0 in
(4.2) and (4.4) shows (1.12) and (1.9), respectively.

Now, we show (1.10). From (5.18) of Lemma 5.9, we derive the convergence of the
discrete curvature term to the corresponding expression in (1.10). In addition,

fim [ a0 200 VA = fim [ divte)e0) 2

- / div(u(t, ) £(6,9) 7(t,) = / u(t,) €t vt VL ).
Qr

Qr

Hence, the assertion follows. O

5.5 Conclusion

The Stefan problem with Gibbs—Thomson law has many applications in material sciences,
i.e. describing melting and solidification processes in materials. It has been addressed
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mathematically by several authors. For a realistic modeling, such as solidification of
alloys, it is quite important to take surface tension effects into account, which are spatially
inhomogeneous and anisotropic. In this work, we have presented existence results for
Stefan problems with spatially inhomogeneous and anisotropic Gibbs—Thomson law.
Previous results to this topic [19a, 24-26]) have been generalised. We like to mention that
in contrast to the isotropic case we cannot apply the Reshetnyak convergence theorem [3]
since we do not directly obtain the property [, [V"(t)] = [, |Vx(t)| as h — 0. To tackle
both inhomogeneity and anisotropy, we have used slicing and indicator measures and
methods of geometric measure theory.
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