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SUMMARY
A work cell with multiple robots increases manufacturing
flexibility and productivity. Robots in the work cell
equipped in a sparse area usually share a motion path,
resources and workspace. In this paper, an embedded
Markov chain model for a multi-robot system that has a
common workspace is constructed on the basis of the
concept of a multi-processor system. With the presented
model, we measure the performance of error recovery
schemes under different workloads and analyze the sensitiv-
ity of the execution time with respect to the robot speed. We
verify the presented model with an experimental multi-robot
work cell. This study is useful in evaluating the performance
of a robotic work cell and presents a guide for designing a
complex work cell.

KEYWORDS: Multi-robot system; Markov chain model; Error
recovery.

1. INTRODUCTION
A robotic work cell with multiple robots can accomplish
complex tasks that a single robot cannot manage. Recently,
there have been increasing research and demand for a multi-
robot system because of this benefit. Research issues for
multi-robot systems include collision avoidance, task plan-
ning, communication and performance evaluation.1–4

Currently, robots perform simple and repetitive tasks such
as assembly, welding and material handling, but the
appearance of new computer technology, sensors and vision
systems has enabled the robots to perform more complex
tasks with flexibility and intelligence. The more flexibility
and intelligence a robotic system has, the more difficult is
the prediction of the behavior of the system. Therefore,
modeling and performance evaluation is essential for
designing a robotic work cell.

Petri net, the Markovian model, the queueing network
and the finite state machine are widely used to model a
robotic work cell, and many researches have been reported.
A brief review of recent studies is as follows. Petri net is
regarded as established methodology for the modeling of
flexible manufacturing systems (FMS).5 Based on Petri net,
an algorithm of automatic robot assembly planning is
presented.6 Robinson7 modeled and measured the perform-
ance of the robotic facility that consists of computers,
robots, sensors and a vision system. In a stochastic Petri net,
the firing time is an exponentially distributed random
variable. Using a stochastic Petri net, Zhou8 modeled a

resource sharing manufacturing system, and implemented a
deadlock free control system. Lima9 proposed the inter-
pretation of two distinct Petri net types, a generalized
stochastic Petri net for task quantitative performance
evaluation and an ordinary Petri net for task qualitative
performance evaluation. The quantitative performance eval-
uation concerns time-related properties and qualitative
performance evaluation concerns properties such as bound-
edness, properness and liveness. Lima applied his model to
visual servoing and track following. The time-related
properties such as execution time can be measured with the
model that is based on a timed Petri net.10 Sensor data and
robot languages can be represented by a Petri net. Lee11

integrated local sensors of multiple mobile robots with the
AND/OR logic of a Petri net. Suh12 proposed a Petri net-
type graphical robot language to represent parallelism and
synchronization of a multi-robot system. In a colored Petri
net, each individual token associates information. Zuberek13

used a colored Petri net to model the FMS, where the token
indicates parts and the color indicates scheduling policies.

The Markovian model is a versatile tool for the precise
performance analysis of small systems, and it is known that
stochastic Petri nets are semi-Markov or Markov processes.
Gopalakrishna14 analyzed the sensitivity of throughput of
failure-prone FMSs with the Markovian model.

The queueing network is applicable for the analysis of
large scale FMSs. Aras15 proposed a hierarchical multi-
processor computer architecture to process robot sensory
information, and the performance was analyzed using
queueing networks.

The supervisory control of a system that is modeled with
a finite state machine is a new research area. Brandin16

modeled a robotic work cell that consists of conveyor belts,
robots, programmable logic controllers (PLC) and vision
systems, and he constructed a real-time supervisory con-
troller. Park17 constructed a fault tolerant supervisory
controller for the work cell that consists of arc welding
robots and conveyor belts.

As reviewed above, studies of measuring performance of
a manufacturing system with robots are abundant, but they
consider the robot as a part of the manufacturing system.
Compared to other manufacturing systems, a multi-robot
system has a few distinct features. First, the performance of
the system depends on configuration; second, each robot is
assigned a different workload for each task; and finally, we
can adjust the speed of the robot simply by changing the
program, so the analysis of sensitivity with respect to robot
speed is important. Lee18 used the concept of a multi-
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computer processor to model a multi-robot system and
evaluated its performance. He presented three interconnec-
tion methods for a multi-robot system and modeled a robot
failure recovery for each method, but he did not consider
collision and interference between robots. Robots in the
work cell equipped in a sparse area usually share motion
paths, resources and workspace, and they affect each other.
In particular, error occurrence in one robot brings the
retardation of other robots through the common workspace.
This fact has hardly been considered in previous studies.

In this paper, we develop an embedded Markovian model
to describe the multi-robot system that has a common
workspace, and mathematically analyze the effect that one
robot has on other robots. The effect of the interference
depends on the operation scheme. With the presented
model, we measure the performance of the error recovery
scheme of a robotic work cell. Here, we evaluate the
performance of a robotic work cell with two measures, viz.
completion time and reliability. This study is applicable to
the performance evaluation of a robotic work cell and
presents a guide for designing a complex one.

The organization is as follows: Section 2 presents a
modeling of a multi-robot system. In Section 3, several fault
recovery schemes of a multi-robot system in a common
workspace and numerical examples are presented. Then,
Section 4 presents experimental results to verify the
presented model. Failure recovery schemes are discussed in
Section 5 as an extended study of Lee’s18 work. Finally,
conclusions and future aims are presented in Section 6.

2. MODELING OF MULTI-ROBOT SYSTEM
The use of multi-robots in a common workspace increases
robot utility and productivity, but we have to consider
collision between robots. To avoid collision between them,
we detect collision and calculate a collision-free trajectory
for each robot.1 However, this approach is restricted because
it is hard to calculate the path of each robot. In practice, the
mutual exclusion method is widely used. Here, on the basis
of the concept of the multi-processor system, we construct
an embedded Markov chain model for a multi-robot system
that has a common workspace. The Markovian model is an
appropriate method for precise performance analysis, but
the state space becomes intractably large as the system size
increases. Typically, the number of robots that share a
common workspace is 2 or 3, because of spatial constraints,
even though the whole work cell is large.

2.1 Multi-robot system configuration
Tsai19 classified multi-robot motions into simultaneous
motion, coordinated motion and overlap motion. The
simultaneous motion and the coordinated motion are
applicable to complex tasks that a single robot cannot
accomplish. Moving one part by two robots is an example.
On the other hand, the overlap motion doesn’t need to
operate robots tightly together. The overlap motion
increases productivity because robots accomplish various
tasks without changing programs or tools. Here, we
concentrate on the overlap motion for our multi-robot
system model. This system has the following features:

(i) Robots have a common workspace.
(ii) Each robot operates independently.
(iii) At each instant of time, only one robot operates in the

common workspace to avoid collision.
(iv) Robots are assigned to different task loads respec-

tively.

To model the above system, we divide the workspace into
two areas, the exclusive workspace and the common
workspace. A work cell that consists of two robots is shown
in Figure 1, where the shaded area indicates the common
workspace.

The robotic work cell consists of robots and an external
controller. The controller coordinates the operation of
robots. The PLC and the workstation are widely used as
controllers. Notations are as follows:

Notation 1:

R: The number of robots which share the common
workspace

job: One operation in the exclusive workspace + a
successive operation in the common workspace

Cv: Job vector, Vector of number of jobs which are
allocated to each robot

Definition 1:

• Average Execution Time, uk: Average time for robot k to
finish one job.

• Average Execution Rate With Interference, �*k: Average
rate at which robot k finishes a job when robot k is
interfered with by other robots that share common
workspace.

• Average Execution Rate Without Interference, �k: Aver-
age rate at which robot k finishes a job if robot k is not
interfered with by other robots.

• Average Completion Time, T: Average time taken to finish
all of the allocated jobs

• Average Completion Time Without Interference, Ts:
Average time taken to finish all the allocated jobs if robots
do not have a common workspace.

Fig. 1. Multi-robot system.
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2.2 Modeling of a multi-robot system that has the common
workspace
In the work cell, each robot requests the controller’s
permission before it enters the common workspace in order
to avoid collision. The controller admits the robot if the
common workspace is empty. If the robot’s operations are
not synchronized, the robot experiences queue time before it
enters the common workspace.20 The average execution
time uk, k � (1, R) is changed when one of the robots in the
work cell finishes an assigned task. Let �i denote the time
duration from the (i-1)th instant at which one of the robots
in the system finishes, to the ith instant at which the next
robot finishes, then

T = �
i

�i (2.1)

The average completion time T is estimated from the
following steps:

Algorithm 1:

Step 1:
i = 0
X0 = {x1, . . . , xR} = Cv, the number of jobs to be
executed

Step 2:
If the number of remaining jobs is not zero

i = i+1
Calculate uk, k�(1, R)
�i = min(xk · uk)

k�(1,R ), xk · uk > 0

Xi = {(x1 ��i/u1)
+ , . . . , (xR ��i /uR)+ }, the num-

ber of remaining jobs
Repeat step 2

Else

T =�
k

�k

End

For the case of a work cell with two robots A and B, and Job
vector {CA, CB}, T is obtained as:

T =
CB

��B

+ (CA �
CB

��B

��A)
1

�A

if
CA

��A

>
CB

��B

(2.2)

=
CA

��A

+ (CB �
CA

��A

��B)
1

�B

otherwise

2.3 Calculation of average execution time
If the number of jobs is sufficiently large and robots that
share the common workspace are not many, we can
approximate uk with the steady state average value, or
throughput. To calculate uk, k � ( 1, R ), the following
assumptions are made:

Assumption 1:

(i) Each robot enters the common workspace with
exponential distribution, parameter �k for robot
k.

(ii) The distribution of time that each robot spends in
the common workspace is known.

PDF Gk(x), pdf gk(x), average ḡk for robot k

where gk is the operation time of robot k in the
common workspace plus processing time of the
external controller.

(iii) Other robots are not admitted until the robot that
is in the common workspace completes the task.

Assumption (i) is necessary in order not to have an infinite
number of states when we build a Markov chain model. It is
a reasonable assumption if the robot enters the common area
uniformly through the work time.
The average execution time uk is obtained as follows.

• With interference between robots:

uk =
1

��k

=
1
�k

+ wk (2.3)

• Without interference:

uk =
1
�k

=
1
�k

+ ḡk (2.4)

Here, wk is the operation time of robot k in the common
workspace plus the waiting time, and wk, �k are functions of
the schemes of controlling robots.

To calculate uk, we drive an embedded Markov chain
model for the system.21,22 We select the time when any robot
departs from the common workspace or arrives at an empty
common workspace. System states are given by the state of
the common workspace at that time. The feasible states of a
work cell that consists of robot A and B has, are shown in
Table I. S(k) indicates that robot k, k � (A,B) finishes the
operation successfully and departs from the common
workspace, and E(k) indicates that robot k arrives at an
empty common workspace. Usually, an external controller
determines the states. Table II shows the states of the work
cell with robots A,B and C, where the controller checks the
request in the order of A,B,C.

These states are embedded Markov chains and satisfy the
following stationary equation.

� · P = � (2.5)

Table I. System states for the work cell with robots A and B.

State Action State of common workspace

�1 : S(A) 0
�2 : S(B) 0
�3 : S(A) B
�4 : S(B) A
�5 : E(A) A
�6 : E(B) B
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where � = {�i} is the limiting probability of the Markov
chain, satisfying ∑� i = 1, and P is the state transition matrix.
We define the index sets.

Ik : Index set of all states, which indicate that robot k is
in the exclusive workspace.

Jk : Index set of all states, which indicate that robot k is
in the common workspace.

Lk : Index set of all states, which indicate that robot k
moves out from the common workspace at the
instant.

For example, from Table I, IA = {�1, �2, �3, �6}, JA = {�4,
�5}, LA = {�1, �3}

The average operation time that robot k spends in the
common workspace is obtained as follows.23

wk = �
i�Ik

�
j�Jk

�i · pi j�
i, j

�i · pi j

E[Dk (i, j)] (2.6)

E[Dk(i,j)] is the average operation time of robot k in the
common workspace plus the average waiting time. Let
m(i,j) denote average time to go from state i to state j, and
Sk be the time to arrival at the common workspace of robot
k during the time interval m(i,j).

Then,

E[Dk(i, j)] = E[Rk(i, j)] + E[F( j, Lk)] (2.7)

E[F( j, Lk)] = �
l � L k

pjl E[F(l, Lk )] + �
l

pjl E[m( j, l)]

(2.8)

E[Rk(i, j)] = � ∞

0

1�P[m(i, j)�Sk ≤ t]

1�P[m(i, j)�Sk ≤ 0]
dt (2.9)

3. FAULT RECOVERY SCHEMES OF THE
MULTI-ROBOT SYSTEM
Robot errors are classified into fault and failure.17

Definition 2:

• Fault: Abnormal state that we can return to the normal
state

• Failure: Abnormal state which is not a fault

This paper treats fault recovery and failure recovery of a
multi-robot system separately.

3.1 Fault recovery scheme
A robot repeats or aborts the operation when a fault occurs.
Abortion is to abandon the faulty operation and to execute
the next operation. The process of abortion is as follows.

• Execution → Fault → Fault recovery

Here, fault recovery includes such operations as removing
misplaced parts. To repeat is to re-execute the operation.
The process of repeating is as follows:

• Execution → Fault → Fault recovery → Re-execution

The recovery process of the repeat scheme includes
removing the misplaced part, re-gripping the part and so
on.

Suppose that a robot succeeds with the probability pk and
a fault occurs with the rate (1-pk) in the common workspace
and the time distribution is as follows.

• Execution time in the exclusive workspace: average
1/�k

• Execution time in the common workspace: pdf gk(x),
average ḡk

• Recovery time distribution: pdf rk(x), average r̄k

For the abortion scheme, the total operation time distribu-
tion in the common workspace can be expressed by g�k and
the system states are the same as in Table I, where g�k is
obtained as:

g�k(x) = pk gk(x) + (1�pk)gk(x)�rk(x) (3.1)

We classify the repeat scheme into exhaustive repeat
(repeat-I) and preemptive repeat (repeat-II). The exhaustive
repeat indicates that a robot repeats the task until the job is
successful, and the preemptive repeat indicates that the fault
recovery operation has a lower priority than the normal
operation and robots recover faults only when the common
workspace is empty. For the repeat-I scheme, system states
are the same as in Table I and g�k is obtained as:

g�k (x) = pk · gk (x)� �∞
i = 0

(1�pk )i (rk(x)�gk(x))(i) (3.2)

In equation (3.2), (i) indicates an i-tuple convolution.
System states for the repeat-II scheme with 2 robots are
shown in Table III. In Table III, F(k) indicates that a fault
occurred on robot k, and k� indicates that robot k is in fault
and needs a fault recovery operation.

3.2 Numerical example of the fault recovery scheme
A work cell consists of two robots, robot A and robot B. The
time distribution is as follows.

Table II. System states for the work cell with robots A, B and C.

�1 : S(A) 0
�6 : S(B) A
�11 : S(B) AC

�2 : S(B) 0
�7 : S(B) C
�12 : S(C) AB

�3 : S(C) 0
�8 : S(C) A
�13 : E(A) A

�4 : S(A) B
�9 : S(C) B
�14 : E(B) B

�5 : S(A) C
�10 : S(A) BC
�15 : E(C) C
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Robot A:
�A = 1/30 (1/sec)
operation time distribution in the common workspace:

constant 11 sec
fault recovery time distribution (abortion):

exponential distribution with
parameter 1/15

fault recovery time distribution (repeat ):
exponential distribution with
parameter 1/25

fault rate: 0.05

Robot B:
�B = 1/25 (1/sec)
operation time distribution in the common workspace:

constant 15 sec
fault recovery time distribution (abortion):

exponential distribution with
parameter 1/25

fault recovery time distribution (repeat ):
exponential distribution with
parameter 1/35

fault rate: 0.1

The number of jobs is (a) (20, 40), (b) (30, 30), (c) (40, 20).
Table IV shows T, Ts, � and �� for the abortion, repeat-I,
repeat-II and repeat-III schemes. The repeat-III scheme is a
tentative scheme in which robot A recovers the fault with
the abortion scheme and robot B does so with the exhaustive
scheme. The average completion time depends on the
number of jobs and the fault recovery scheme. For example,
from Table IV, if the load of robot B is smaller than for robot

A, the repeat-II scheme is more efficient than the repeat-I
scheme.

The robot speed can be adjusted by changing the
program. In a common workspace, it is reasonable that all
robots operate with maximum speed, in order not to
interfere with other robots. The robot with the longest
completion time, say robot k, determines the total comple-
tion time of the work cell. Therefore, in order to reduce the
completion time of a system, robot k has to operate at a
maximum speed in the whole area. For the work cell that
consists of two robots with a common workspace and
satisfies Assumption 1, the total completion time does not
depend on �j , j ≠ k, even though the execution time of robot
k depends on �j. The proof is shown in Property 1. The
abortion, repeat-I and repeat-III schemes belong to this
class. For the case of the repeat-II scheme, that is not
generally true.

Property 1: A work cell consists of robot A and B, and the
job vector to be executed is Cv, Cv = { M,N }. Suppose that
the work cell satisfies Assumption 1 and M · uA ≥ N · uB,
that is, robot B finishes the work faster than robot A. Then,
the average completion time T does not depend on �B, the
operation speed of robot B in the exclusive workspace.

Proof: From the states in Table I and equation (2.6), by
letting Di,j = E[DA(i,j)], it follows that

wA � ḡA =

�1 · p1,5 · D1,5 + �2 · p2,5 · D2,5 · �3 · p3,4 · D3,4 + �6 · p6,4 · D6,4

�1 · p1,5 + �2 · p2,5 + �3 · p3,4 + �6 · p6,4

� ḡA

Table III. System state for the repeat-II scheme.

�1 : S(A) 0
�6 : S(A) B*
�11 : S(B*) A
�16 : F(B*) B*
�21 : F(A*) B A*
�25 : E(A) A

�2 : S(B) 0
�7 : S(B) A
�12 : S(B*) A*
�17 : F(A) BA*
�22 : F(A*) B*A*
�26 : E(B) B

�3 : S(A*) 0
�8 : S(B) A*
�13 : F(A) A*
�18 : F(A) B*A*
�23 : F(B*) AB*

�4 : S(B*) 0
�9 : S(A*) B
�14 : F(B) B*
�19 : F(B) AB*
�24 : F(B*) A*B*

�5 : S(A) B
�10 : S(A*) B*
�15 : F(A*) A*
�20 : F(B) A*B*

* : fault occurred on that robot

Table IV. Comparison of the completion times.

Scheme Job set �A �A* �B �B* T (sec) Ts (sec)

Abortion
(a)
(b)
(c)

0.0240 0.0214 0.0235 0.0222
1751.0
1398.6
1767.4

1700
1275
1670

Repeat-I
(a)
(b)
(c)

0.0233 0.0198 0.0220 0.0205
1891.0
1508.9
1863.9

1822.2
1366.7
1715.8

Repeat-II
(a)
(b)
(c)

0.0233 0.0202 0.0220 0.0204
1893.4
1485.5
1848.2

1822.2
1366.7
1715.8

Repeat-III
(a)
(b)
(c)

0.0240 0.0203 0.0220 0.0208
1873.2
1474.6
1818.1

1822.2
1366.7
1670.0

No fault
(a)
(b)
(c)

0.0244 0.0225 0.0250 0.0238
1642.0
1325.9
1703.9

1600
1230
1640
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=
�3 + �6

�4 + �5

·� ∞

0

1�e��As dGB(s)

·� ∞

0

1� � ∞

0

GB(t + s) · �Ae��As ds

1� � ∞

0

GB(s) · �Ae��As ds

dt

=
�3 + �6

�4 + �5

· C =

1
�A

+ wA

1
�B

+ wB

· C, C is constant w.r.t �B

so, � 1

�B

+ wB � 1�

1
�A

+ ḡA

1
�A

+ wA

=C

Suppose that the speed of robot B is changed from �B to �B�
and the average completion times are T, T� respectively.
Then, T�T� = N · C�N · C = 0 �

We can find the optimal load distribution ratio to obtain
the minimal completion time for a load distribution
problem. The ratio with the minimal average completion
time depends on the fault recovery scheme. Table V shows
ratios to obtain the minimal average completion time, and
Figure 1 shows the average completion time with respect to
the load ratio, where the load ratio is the proportion of the
load of robot A to the total load. The work cell with a
common workspace has a different optimal load distribution

ratio from that of a work cell without a common
workspace.

4. EXPERIMENTAL RESULT
The experimental robotic work cell consists of three robots
as shown in Figure 3, and each robot is connected to a PLC
and a supervisory PC. We perform an experiment on two
robots among them. Each robot works in the exclusive
workspace and the common workspace under the control of
the PLC, and executes the program shown in Figure 4 for
one job. Figure 5 shows the workspace of each robot.

The experimental task is typical assembly and material
transporting. Each robot executes an assembly task in the
exclusive workspace and carries it to the common work-
space. In the common workspace, the operation times of
robot A and robot B are constant, 13.57 sec and 12.54 sec,
respectively. In the exclusive workspace, the average
operation time is 40.71 sec and 24.81 sec respectively, and
varies uniformly in the range of ±3 sec and ±2 sec. The
number of jobs is (50,20), (35,35), (25,45), (20,50). The
completion time T, estimated T and Ts are shown in Table
VI and Figure 6. To obtain T, we averaged the completion
time after four time experiments. The estimated value that is
obtained from Algorithm 1 is close to the experimental
result, even if the operation time in the exclusive workspace
is not an exact exponential distribution. The optimal load
distribution ratio is 0.4158, 0.4103 and 0.4076 for T,
estimated T and Ts respectively (Table VII).

5. FAILURE RECOVERY OF A MULTI-ROBOT
SYSTEM
A failure recovery method for a multi-robot system is to
have another robot take the place of the robot that fails.

Table V. Load distribution ratio with minimal average completion time.

Abortion Repeat-I Repeat-II Repeat-III No fault

With interference 0.4880 0.4920 0.4960 0.4920 0.4880
No interference 0.5040 0.5160 0.5160 0.5200 0.4920

Fig. 2. Average completion time with respect to load ratio.
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Lee18 proposed three interconnection methods for multi-
robot systems, a single processor system (SPS), a
hierarchically structured system (HSS) and a master slave
system (MSS). Ignoring the command transmission time
that is much smaller than the operation time, we find that the
HSS and MSS have the same properties. Here, we measure
the failure recovery performance of a multi-robot system
that has a common workspace. Let the total number of jobs

be C, and suppose that robots A and B fail with rates fA, fB

per job, respectively. We measure the performance with T,
PS, Pno and Tno, where PS is the probability that the work
cell fails and the assigned work is not accomplished, Pno is
the probability that no robot in the work cell fails and the
work is finished successfully, and Tno is the completion
time for this case.

5.1 Failure recovery of the SPS
The SPS is a system that operates only one robot at each
instant time as shown in Figure 7. The performance
measures PS, T, Pno and Tno can be obtained by following the
flow of Lee’s18 work since there is no queue time in the
common workspace.

5.2 Failure recovery of the HSS/MSS
A HSS/MSS consists of several robots that work independ-
ently and an external controller, as shown in Figure 8. Let

Fig. 3. Experimental multi-robot system.

GOSUB EXCLUSIVE
SIGNAL 1

10 IFSIG-1 GOTO 10
GOSUB COMMON
SIGNAL -1

Fig. 4. Robot program for one job.

Fig. 5. Workspace defined in the experiment.

Table VII. Systems utilized in the experiment.

Machine Spec

Robot (2 sets) SM3, Samsung electronic (Korea), Scara type Robot
Robot ArcMate, Daewoo-Fanuc (Korea), 6DOF Revolute type
PLC Master-K250, LG industrial system (Korea)
Main conveyor belt LG industrial system (Korea)
Sub conveyor belt (3 sets) LG industrial system (Korea)
Supervisory computer IBM compatible PC

Table VI. Comparison of the completion time.

Job set (50,20) (35,35) (25,45) (20,50)

T (sec) 2242.8 1952.0 1757.4 1938.0
Estimated T (sec) 2223.6 1961.0 1758.7 1929.9
Ts (sec) 2171.2 1899.8 1680.7 1867.5

T : Experimental result.
Estimated T : The completion time obtained from Algorithm 1.
Ts : The completion time without interference

Fig. 6. Comparison of the completion time under the various load
ratios.
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robots A and B be assigned for jobs CA, CB and CA +CB = C.
Then Pno, Tno is obtained as:

Pno = (1� fA )CA(1� fB)CB (5.1)

Tno =
CB

��B

+ (CA �
CB

��B

��A)
1

�A

if
CA

��A

>
CB

��B

(5.2)

=
CA

��A

+ (CB �
CA

��A

��B)
1

�B

otherwise

To obtain PS, we calculate PSjk, j,k � (A,B) first, where
PSjk is the probability that robot j fails with the subsequent
failure in robot k. Ckj(i), which appears in Lee’s18 work,
denotes the number of jobs that robot k finishes while robot
j executes i jobs. That is,

Ck j (i) = min �i
��k

��j

, Ck� (5.3)

Then, PSjk is obtained as:

PSjk = fj fk �Cj �1

i = 0
[(1� fj )

i (1� fk )int(Ckj(i+1))

�[C� i� int(Ckj (i+1))�1]

m = 0
(1� fk )m ] (5.4)

Therefore, PS becomes

PS = PSAB + PSBA (5.5)

In order to obtain T, we calculate the auxiliary variables, Pk

and Tk, first. Pk is the probability that robot k fails but the
work is accomplished by robot j, and Tk is the average
completion time for this case.
Then, Pk is obtained as:

Pk = fk(1� fj )
Cj �Ck �1

i = 0
(1� fk)

i (1� f j)
Ck � i (5.6)

And Tk is calculated as:

Tk = fk(1� fj )
Cj �Ck �1

i = 0
[(1� fk)

i (1� f j)
Ck � i Ak (i)]/Pk (5.7)

where,

Ak (i) = Ijk (i)(
Cj

��j

+ (i + 1�
Cj

��j

��k)
1
�k

)

+ (1� Ijk (i))� i + 1
��k

+
Cj �Cjk (i+1)

�j
�+

Ck � i
�j

Ijk (i) = 0 if Cjk (i + 1) < Cj

= 1 otherwise

Finally, the expected average completion time T is calcu-
lated as:

T =
Pno

Pno + PA + PB

Tno +
PA

Pno + PA + PB

TA +
PB

Pno + PA + PB

TB

(5.8)

5.3 Numerical example of the failure recovery scheme
Operation time distributions have the same parameters as
given in Section 3. The number of jobs is (d) 1000, (e) 3000,
(f) 5000, and the load distribution ratio is 1:1 for the HSS/
MSS. For the SPS, the fastest robot, robot B in this case,
takes full charge of the work and the slower one plays the
part of standby. Robot A and robot B fail with rates 0.0001
and 0.0002 per job, respectively. Table VIII shows T, PS,
Pno and Tno for the case of the SPS and HSS/MSS. We
have the same value of PS for the SPS and HSS/MSS but
different Pno depending on the failure rates of robots A and
B. If the failure rate of the faster robot is larger than that of
the slower one, the SPS has smaller Pno than the HSS/
MSS.

Fig. 7. SPS (Single Processor System).

Fig. 8. HSS (Hierarchically Structured System).
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6. CONCLUSION AND FUTURE WORK
In this paper, we build an embedded Markov chain model
for the robotic work cell that has a common workspace.
Robots in the work cell equipped in a sparse area affect each
other. In particular, error occurrence in one robot brings a
retardation of other robots through the common workspace.

For each fault recovery scheme, we measure the perform-
ance of the multi-robot system with an average completion
time. We can select the most efficient recovery method for
a given task as shown in Table IV, or we can find optimal
load distribution ratio for a load distribition problem as
shown in Table V. The work cell with a common workspace
has a different optimal load distribution ratio from that of
the work cell without a common workspace.

To recover the failure of one robot, the other robot takes
the place of the robot that fails. In terms of average
completion time, the HSS/MSS has a better performance
than the SPS, as shown in Table VIII. However the HSS/
MSS including N robots does not have N times as good a
performance due to interference between robots. The SPS
has larger Pno than HSS/MSS, if a large load is assigned to
the robot that has a small failure rate.

We use the embedded Markov chain model; therefore, in
the case that the operation time distribution in the exclusive
workspace does not approximate to an exponential distribu-
tion, we incur a modeling error. Deterministic distribution is
an example and in this case, even if Section 2.2 is still valid,
it is hard to drive the analytic model, therefore we need
other methods such as the timetable and experimental
measurements. However, the experiment in Section 4 shows
that the presented model is valid in general cases. We
measure the performance of the system with a mean value.
If robots that share the common workspace are many and
the number of jobs is few, we need transient analysis. In
future work, we need to extend this study to evaluate a
transient performance.
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