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Abstract. An element a in a ring R is left annihilator-stable (or left AS) if, whenever
Ra + l(b) = R with b ∈ R, a − u ∈ l(b) for a unit u in R, and the ring R is a left AS ring if
each of its elements is left AS. In this paper, we show that the left AS elements in a ring
form a multiplicatively closed set, giving an affirmative answer to a question of Nicholson
[J. Pure Appl. Alg. 221 (2017), 2557–2572.]. This result is used to obtain a necessary and
sufficient condition for a formal triangular matrix ring to be left AS. As an application, we
provide examples of left AS rings R over which the triangular matrix rings Tn(R) are not left
AS for all n ≥ 2. These examples give a negative answer to another question of Nicholson
[J. Pure Appl. Alg. 221 (2017), 2557–2572.] whether R/J(R) being left AS implies that R
is left AS.

2010 Mathematics Subject Classification. Primary 16U60, 16E50, 19A13

1. Introduction. Throughout, rings are associative with unity. An element a in a
ring R is left uniquely generated (or left UG) if, whenever Ra = Rb, a = ub for a unit u in
R, and the ring R is a left UG ring if each of its elements is left UG. In [10], a left UG
element is called an element with the left unique generator property. The study of left UG
rings was initialed in 1949 by Kaplansky [9] in his work on matrices admitting diagonal
reduction and has been continued by a number of authors; see, for instance, [1, 2, 3, 4, 7,
10, 11, 13, 15]. Left UG rings are closely related to directly finite rings, unit-regular rings,
internal cancellation property, and stable range one property.

Kaplansky [9] gave some first known examples of left UG rings: any ring whose zero
divisors are contained in its Jacobson radical (e.g., domains and local rings) [9, Lemma
2.1], commutative principal ideal rings and commutative artinian rings, and the matrix
rings over a left Hermite domain [9, Theorem 3.8]. Commutative UG rings, under the
name of associate rings or strongly associate rings, have been extensively discussed in
[1, 2, 3, 6, 15]. For example, every commutative ring is embeddable in a commutative UG
ring by [15, Theorem 14]; every commutative p.p. ring is UG by [1, Theorem 11]. Khurana
and Lam [10, Theorem 6.2] showed that every regular element in a ring is unit-regular
iff every regular element in the ring is left UG and, independently, Marks [11, Theorem]
proved that a regular ring is unit-regular iff it is left UG. An earlier result of Hartwig and
Luh [7, Theorem 2B], generalizing the two results, states that a regular element a in a ring
R is unit-regular iff, whenever Ra = Rb with b unit-regular, a = ub for a unit u in R. In
[13], Nicholson introduced left annihilator-stable (or left AS) elements and rings as natural
generalizations of elements and rings with left stable range 1. By [13], every left AS ring
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is directly finite, and the matrix rings Mn(R) are left AS in case R/J(R) is unit-regular
and idempotents lift modulo the Jacobson radical of R. Various characterizations of left
AS rings were obtained in [4, Corollary 4.4] and [13, Theorem 5]. Particularly, Canfell [4,
Corollary 4.4] showed that a ring is left AS iff it is left UG. Thus, Marks’ Theorem [11,
Theorem] can be restated as follows: a regular ring is unit-regular iff it is left AS. The
element-wise version of this result is obtained by Nicholson [13, Lemma 24]: an element
in a ring is unit-regular iff it is regular and left AS.

This paper is a continuation of the study of left AS elements and left AS rings.
Section 2 is mainly about properties of left AS elements. Though left AS and left UG are
not equivalent element-wise, a UG element does represent a sort of annihilator-stability: an
element b ∈ R is left UG iff whenever Ra + l(b) = R with a ∈ R, a − u ∈ l(b) for a unit u.
In Section 2, we show that the left AS elements in a ring form a multiplicatively closed set,
giving an affirmative answer to a question of Nicholson [13]. Using this result, we estab-
lish a necessary and sufficient condition for a formal triangular matrix ring to be left AS in
Section 3 and further produce examples of left AS rings R over which the triangular matrix
rings Tn(R) are not left AS for all n ≥ 2. These examples give a negative answer to another
well-motivated question of Nicholson [13] whether R/J(R) being left AS implies that R is
left AS. While it remains open whether R being a commutative UG ring implies that R[[t]]
is UG, our concluding result shows that there exists a UG ring R such that R[[t]] is not UG.

We denote by J(R) and U(R) the Jacobson radical and the unit group of R, respectively.
For an element a in a ring R, l(a) is the left annihilator of a in R. An element a in a ring R
is regular if a = aba for some b ∈ R and is unit-regular if a = aua for some u ∈ U(R). The
ring R is (unit-) regular if every element in R is (unit-) regular.

2. Left AS elements. In this section, we compare left UG elements with left AS ele-
ments. As a main result, we show that the left AS elements in a ring form a multiplicatively
closed set, answering a question of Nicholson [13] in the affirmative. The following result
was proved by Canfell [4, Corollary 4.4] (also see [13, Theorem 5]).

THEOREM 2.1. [4] A ring is left UG iff it is left AS.

We recall a theorem of Marks [11, Theorem].

THEOREM 2.2. [11] A regular ring is unit-regular iff it is left UG

Thus, Theorem 2.2 can be restated as

COROLLARY 2.3. A regular ring is unit-regular iff it is left AS.

The next result of Nicholson [13], an element-wise version of Corollary 2.3, shows
the significance of left AS elements.

THEOREM 2.4. [13] An element a ∈ R is unit-regular iff it is regular and left AS.

As noticed by Nicholson [13], left UG and left AS are not equivalent for elements.
In fact, in the proof of [13, Theorem 6]

(
note that [13, Theorem 6] has been corrected in

[14]
)
, Nicholson gave a left AS element that is not left UG in a commutative ring. In [3,

Example 3.5(2)], the authors showed that in C(R), the ring of all continuous real-valued
functions on R, there is a UG element that is not AS.

In order to detect the relation between left UG and left AS, we give the following
definition.
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DEFINITION 2.5. An element b ∈ R is called left modified AS
(
or left MAS

)
if Ra +

l(b) = R, a ∈ R, implies a − u ∈ l(b) for some u ∈ U(R), and the ring R is left MAS if every
element in R is left MAS.

Obviously, a ring is left AS iff it is left MAS. Thus, the next statement may be viewed
as an element-wise version of Theorem 2.1.

PROPOSITION 2.6. An element b ∈ R is left UG iff b is left MAS.

Proof. (⇒). Let Ra + l(b) = R. Then Rab = Rb, so, by hypothesis, b = uab for some
u ∈ U(R), i.e., u−1b = ab. Thus, a − u−1 ∈ l(b). So b is left MAS.

(⇐). Let Ra = Rb. Then a = xb and b = ya where x, y ∈ R. So b = yxb or (1 − yx) ∈
l(b). Thus, Ryx + l(b) = R, and so Rx + l(b) = R. As b is left MAS, x − u ∈ l(b) for some
u ∈ U(R). Hence, a = xb = ub, i.e., b = u−1a. So, b is left UG.

We write Zr(R) for the right singular ideal of R and ureg(R) for the set of all unit-
regular elements in R. For convenience, let asl(R) be the set of all left AS elements in R.
Some notable properties of asl(R) are proved in [13, Example 13; Lemma 35]: (1) J(R) ∪
Zr(R) ∪ ureg(R) ⊆ asl(R); (2) asl(R) + J(R) = asl(R).

An element a ∈ R is called a left SR1 element if whenever Ra + Rb = R, b ∈ R, a − u ∈
Rb for a unit u in R (see [13]). Naturally, left SR1 elements are left AS. Motivated by the
result that the product of two SR1 elements is again SR1 [5, Lemma 17], the following
question is raised by Nicholson [13, Question 1]:

QUESTION 2.7. [13] Is the product of two left AS elements again left AS?

This question is answered in the affirmative. Noting that the product of two UG
elements need not be UG (see [3, Example 3.11]), the next result gives a surprising contrast.

THEOREM 2.8. If a, b ∈ R are left AS, then ab is left AS.

Proof. Assume that Rab + l(c) = R with c ∈ R. Then 1 = rab + x where r ∈ R and x ∈
l(c), so c = rabc. From Rab + l(c) = R, it follows that Rb + l(c) = R. Since b is left AS,
b − u ∈ l(c) for some unit u ∈ R. Thus, bc = uc, and so abc = auc and c = rabc = rauc.
Hence, 1 − rau ∈ l(c), so Rau + l(c) = R. Since a is left AS and u is a unit, au is left AS
by [13, Lemma 12]. It follows that au − v ∈ l(c) for a unit v in R. Thus, auc = vc. As
auc = abc, we obtain that abc = vc, i.e., ab − v ∈ l(c). Hence, ab is left AS.

As seen in the next section, Theorem 2.8, together with the other known properties of
left AS elements, is quite useful in constructing new examples of left AS rings. But directly
from Theorem 2.8, we see an important fact that asl(R) possesses an algebraic structure.

COROLLARY 2.9. For a ring R, asl(R) is a submonoid of the multiplicative
monoid (R, ·).

3. Going up and going down. Let B be a subring of A with 1B = 1A. As usual, it is
interesting to know if the left AS property is a going-up property or a going-down property,
that is, (1) if B is left AS, does it imply that every element of B is left AS in A? and (2) if
every element of B is left AS in A, does it imply that B is left AS?

By [15, Theorem 14], every commutative ring is embeddable in a commutative UG
ring. So, a subring of a left UG ring need not be left UG. Hence, a subring of a left AS ring
need not be left AS, and this shows that the left AS property is not a going-down property.

For the going-up, consider a more restrictive situation.
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QUESTION 3.1. Let B be a subring of A with 1B = 1A such that A = B + J(A). If B is
left AS, does it imply that every element of B is left AS in A?

It would be convenient to give examples of left AS rings if the anwser to Question 3.1
was in the affirmative. Meanwhile, Question 3.1 is related to another question of Nicholson
[13, Question 3]. A ring is clean if every element is the sum of an idempotent and a unit
(see [12]).

QUESTION 3.2. [13] If R/J(R) is left AS does it follow that R is left AS? What if R is
exchange? Clean?

Note that R has SR1 iff R/J(R) has SR1. Moreover, by [13, Corollary 19], if R/J(R) is
unit-regular and idempotents lift modulo J(R), then the matrix ring Mn(R) is left AS for all
n ≥ 1; in particular, R is left AS. Furthermore, every unit-regular ring is clean. So, Question
3.2 is well motivated.

To answer Questions 3.1 and 3.2, we first prove a necessary and sufficient condition
for a triangular matrix ring to be left AS as an application of Theorem 2.8.

THEOREM 3.3. Let A, B be rings and M be an (A, B)-bimodule. The following are
equivalent:

(1) The triangular matrix ring R :=
(

A M

0 B

)
is left AS.

(2)(a) Whenever (1 − a′a)r = 0 and (1 − a′a)x ∈ Ms, a, a′, r ∈ A, s ∈ B and x ∈ M,
there exists a unit u ∈ U(A) such that (1 − ua)r = 0 and (1 − ua)x ∈ Ms.

(b) B is left AS.

Proof. (1) ⇒ (2). Suppose that (1 − a′a)r = 0 and (1 − a′a)x ∈ Ms, where a, a′, r ∈
A, s ∈ B and x ∈ M . Let α =

(
a 0

0 1

)
and β =

(
r x

0 s

)
and write (1 − a′a)x = x′s with

x′ ∈ M . Then,

(
1 − a′a −x′

0 0

)
∈ l(β), and it follows that Rα + l(β) = R. As α is left AS,

there is a unit γ :=
(

u y

0 v

)
in R such that α − γ ∈ l(β). It follows that u is a unit in

A, (a − u)r = 0 and (a − u)x ∈ Ms. Hence, (1 − u−1a)r = 0 and (1 − u−1a)x ∈ Ms; so (2a)

holds.
It follows from [13, Theorem 3] that B is left AS.

(2) ⇒ (1). As

(
0 M

0 0

)
⊆ J(R), to show (1) it suffices to show that every α =

(
a 0

0 b

)
∈ R is left AS in R by [13, Lemma 35]. As

(
a 0

0 b

)
=

(
a 0

0 1

)(
1 0

0 b

)
, we only

need to show that both α1 :=
(

a 0

0 1

)
and α2 :=

(
1 0

0 b

)
are left AS in R by Theorem 2.8.
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Assume that Rα1 + l(β) = R where β =
(

r x

0 s

)
. Then, there exists

(
a′ x′

0 b′

)
∈ R

such that

0 =
⎛
⎝

⎛
⎝ 1 0

0 0

⎞
⎠ −

⎛
⎝ a′ x′

0 b′

⎞
⎠ α1

⎞
⎠ β

=
⎛
⎝ (1 − a′a)r (1 − a′a)x − x′s

0 −b′s

⎞
⎠ .

That is, (1 − a′a)r = 0 and (1 − a′a)x ∈ Ms. By (2)(a), there exists u ∈ U(A) such
that (1 − ua)r = 0 and (1 − ua)x ∈ Ms. Write (1 − ua)x = ys with y ∈ M . Then γ :=(

u−1 −u−1y

0 1

)
is a unit in R and α1 − γ ∈ l(β). So α1 is left AS in R.

Assume that Rα2 + l(β) = R where β =
(

r x

0 s

)
. Then there exists

(
a′ x′

0 b′

)
∈ R

such that

0 =
⎛
⎝

⎛
⎝ 1 0

0 1

⎞
⎠ −

⎛
⎝ a′ x′

0 b′

⎞
⎠ α2

⎞
⎠ β

=
⎛
⎝ (1 − a′)r (1 − a′)x − x′bs

0 (1 − b′b)s

⎞
⎠ .

Thus, (1 − a′)r = 0 and (1 − a′)x ∈ Mbs. By (2)(a), there exists u ∈ U(A) such that
(1 − u)r = 0 and (1 − u)x ∈ Mbs. Write (1 − u)x = ybs with y ∈ M . Moreover, from (1 −
b′b)s = 0, we see that Bb + l(s) = B. Hence, by (2)(b), b − v ∈ l(s) for some v ∈ U(B). Now

γ :=
(

u yb

0 v

)
is a unit in R and α2 − γ ∈ l(β). So α2 is left AS in R.

COROLLARY 3.4. The upper triangular matrix ring Tn(Z) (n ≥ 2) is not left AS.

Proof. By [13, Theorem 30], it suffices to show that T2(Z) is not left AS. Considering
Theorem 3.3(2a) and considering a′ = 2, a = 3, x = 1 and s = 5 with A = B = M = Z, we
have (1 − 2 · 3) · 1 ∈ 5Z. That is,

(1 − a′a)x ∈ Ms.

We next see that a′ cannot be replaced by a unit u in A. Z has two units 1 and −1. If a′ = 1,
then −2 = (1 − a′a)x ∈ 5Z, a contradiction. If a′ = −1, then 4 = (1 − a′a)x ∈ 5Z, again a
contradiction. So, Theorem 3.3(2a) is not satisfied. Hence, T2(Z) is not left AS.

In the next example, we give a direct proof that T2(Z) is not left AS.

EXAMPLE 3.5. Let R = T2(Z). If p ∈ Z is a prime, then α :=
(

p 0

0 1

)
is not left AS

in R.
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Proof. We have Rα =
(

pZ Z

0 Z

)
. Take 1 < q ∈ Z such that

gcd
(
q, p(p2 − 1)

) = 1.

Let β =
(

0 1

0 q

)
∈ R. Then, l(β) =

⎧⎨
⎩

(
qn −n

0 0

)
: n ∈ Z

⎫⎬
⎭. As gcd(q, p) = 1, pZ + qZ =

Z, so Rα + l(β) = R.

We next show that for any unit γ =
(

x y

0 z

)
in R, α − γ /∈ l(β). Assume that α −

γ ∈ l(β). Then, 0 =
(

p − x −y

0 1 − z

)(
0 1

0 q

)
=

(
0 (p − x) − qy

0 q(1 − z)

)
. It follows that p −

x = qy. As γ is a unit in R, x = ±1. But, this would yield p − 1 = qy or p + 1 = qy in Z,
contradicting the choice of q. Hence, α − γ /∈ l(β) for any unit γ in R. So, α is not left AS
in R.

EXAMPLE 3.6. Let R =
(

Z2 M

0 Z

)
, where M is a (Z2, Z)-bimodule. Then, R is

left AS.

Proof. Since Z is left AS, by Theorem 3.3, it suffices to verify that whenever
(1̄ − a′a)r = 0 and (1̄ − a′a)x ∈ Ms, a, a′, r ∈ Z2, s ∈ Z and x ∈ M , we have (1̄ − a)r = 0
and (1̄ − a)x ∈ Ms. This is certainly the case if a′ = 1̄. So, we can assume that a′ = 0̄,
which implies that r = 0̄. Thus, (1̄ − a)r = 0, and x = (1̄ − a′a)x ∈ Ms. It follows that
(1 − a)x ∈ Ms.

We now give answers to both Questions 3.1 and 3.2.

THEOREM 3.7. (1) The answer to Question 3.1 is in the negative.
(2) There exists a ring R such that R/J(R) is left AS, but R is not left AS.
(3) If R is an exchange ring, then R is left AS iff R/J(R) is left AS.

Proof. (1) Let R =
(

Z Z

0 Z

)
. Then R = S + J(R), where S =

(
Z 0

0 Z

)
. Here S ∼=

Z × Z is left AS. But, the element

(
2 0

0 1

)
in S is not left AS in R by Example 3.5. Hence,

the answer to Question 3.1 is in the negative.

(2) Let R =
(

Z Z

0 Z

)
. Then J(R) =

(
0 Z

0 0

)
, so R/J(R) ∼= Z × Z is left AS. But R is

not left AS by Example 3.5.
(3) Since R is an exchange ring, R being left AS iff R having SR1 and, respecively,

R/J(R) being left AS iff R/J(R) having SR1 by Theorem 2.1 and [10, Theorem 6.5].
Moreover, it is known that R has SR1 iff R/J(R) has SR1, so it follows that R is left
AS iff R/J(R) is left AS.
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REMARK 3.8. Corollary 3.4 disproves [13, Theorem 36], [13, Lemma 37] and [13,
Theorem 38].

It is unknown whether every left AS ring is right AS (see [4, Remark 4.9], [10, p. 218],
[13, Question 4]). However, we have

THEOREM 3.9. A left AS element in a ring need not be right AS.

Proof. Let R = T2(Z) and α =
(

p 0

0 1

)
∈ R, where p ∈ Z is a prime. By Example 3.5,

α is not left AS in R. We next show that α is right AS in R.

Suppose that αR + r(β) = R, where β =
(

x y

0 z

)
in R. As αR =

(
pZ pZ

0 Z

)
, it fol-

lows from αR + r(β) = R that x = 0, and so β =
(

0 y

0 z

)
. Then α − I2 =

(
p − 1 0

0 0

)
∈

r(β). So, α is right AS in R.

It is open whether R being commutative UG implies that R[[t]] is UG (see [1, Question
21]). We end the paper by giving a UG ring R such that R[[t]] is not UG. Note that Mn(Z)

is a UG ring by [9, Theorem 3.8].

EXAMPLE 3.10. Let R = Mn(Z) (n ≥ 2). Then, R[[t]] is not left UG.

Proof. As Mn(Z)[[t]] ∼= Mn(Z[[t]]), it suffices to show that M2(Z[[t]]) (∼= M2(Z)[[t]])
is not left AS by Theorem 2.1 and [13, Theorem 30]. Hence, we can assume that n = 2.

Let α = a0 + a1t and β = b0 + b1t, where a0 =
(

7 0

0 1

)
, a1 =

(
0 −2

0 0

)
, b0 =

(
0 0

17 17

)
, and b1 =

(
1 1

0 0

)
, and let a =

(
5 0

0 1

)
. Then

(1 − αa)β = [(1 − a0a) − a1at](b0 + b1t)

= (1 − a0a)b0 + [(1 − a0a)b1 − a1ab0]t − a1ab1t2

= 0.

So , R[[t]]a + l(β) = R[[t]]. We next show that for any unit γ = r0 + r1t + · · · in R[[t]], a −
γ /∈ l(β). Assume that a − γ ∈ l(β). Then, it follows that (a − r0)b0 = 0 and (a − r0)b1 =
r1b0 with r0 a unit in R. Write r0 =

(
u1 u2

u3 u4

)
. From (a − r0)b0 = 0, it follows that u2 = 0

and u4 = 1. So r0 =
(

u1 0

u3 1

)
and u1 = ±1. Thus, from (a − r0)b1 = r1b0, it follows that

5 − u1 = 17k for some k ∈ Z. But this is impossible as u1 = ±1. Therefore, we have proved
that a is not left AS in R[[t]].

By Example 3.10, the ring Mn(Z)[[t]] (n ≥ 2) also satisfies Theorem 3.7(2).
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