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Abstract
Given a monoidal category C with an object J, we construct a monoidal category C [J∨] by freely adjoin-
ing a right dual J∨ to J. We show that the canonical strong monoidal functor � :C →C [J∨] provides
the unit for a biadjunction with the forgetful 2-functor from the 2-category of monoidal categories with
a distinguished dual pair to the 2-category of monoidal categories with a distinguished object. We show
that � :C →C [J∨] is fully faithful and provide coend formulas for homs of the form C [J∨](U,�A) and
C [J∨](�A,U) for A ∈C andU ∈C [J∨]. IfN denotes the free strict monoidal category on a single generat-
ing object 1, then N[1∨] is the free monoidal category Dpr containing a dual pair −�+ of objects. As we
have the monoidal pseudopushout C [J∨]�Dpr+N C , it is of interest to have an explicit model of Dpr: we
provide both geometric and combinatorial models. We show that the (algebraist’s) simplicial category �
is a monoidal full subcategory of Dpr and explain the relationship with the free 2-category Adj containing
an adjunction. We describe a generalization of Dpr which includes, for example, a combinatorial model
Dseq for the free monoidal category containing a duality sequence X0 � X1 � X2 � . . . of objects. Actually,
Dpr is a monoidal full subcategory of Dseq.
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1. Introduction
From the higher categorical point of view, dual objects in monoidal categories are a special case
of adjoint morphisms in bicategories and so the concept basically goes back to the counit-unit
definition of adjunction due to Kan (1958). The special case was made explicit for different uses by
Kelly (1972) and Saavedra Rivano (1972). A symmetric monoidal category in which every object
has a dual, Kelly called compact and Saavedra Rivano called rigid. Much later, without the sym-
metry requirement and so requiring both left and right duals, Joyal–Street (Joyal and Street 1988)
used the term autonomous.

This project began by our seeking a construction which freely adjoined dual objects to a given
monoidal category C with some chosen objects to have the duals. The existence was not in doubt.
We wanted the construction to be sufficiently explicit for us to prove various properties of it and
its relationship to C . While considering this, we came across the work of A. Delpeuch (2019) in
which he uses the string diagrams as in the unpublished work (Joyal and Street 1988) of A. Joyal
and the second author to construct the free autonomous (rigid) monoidal category AutonC on
C : all objects are given duals. He proves that the canonical functor C →AutonC is fully faithful.
This was also one of our observations.
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Since our constructions and techniques are quite different from those of Delpeuch (2019), we
feel they should be of independent interest. Moreover, we deal with situations where fewer duals
are adjoined than in AutonC and we instigate the study of general Hom sets in such categories.
We shall now describe the contents of this paper in more detail.

After a brief review in Section 2 of duality for objects in a monoidal category and associated
string diagrams, we describe in Section 3 a geometric model of the free monoidal category Dpr
containing a dual pair−�+. The objects are words in the symbols− and+while the morphisms
are string diagrams.We should think of these morphisms as in normal form since, when the string
diagrams are composed via vertical stacking, the result must be reduced to normal form by tugging
(that is, by applying the snake identities).

The goal of Section 4 is to present a non-skeletal combinatorial model of Dpr. The objects are
pairs (M, S) where M is a finite linearly ordered set and S is a subset; we think of M as the set of
positions for the letters − and + in the word and S tells where there is a +. Morphisms (A, B) :
(M, S)→ (N, T) consist of subsets A⊆M and B⊆N, which tell the positions in the domain that
are joined to positions in the codomain by a string; there are conditions on (A, B).

In Section 5, we show that the (algebraist’s) simplicial category� is a monoidal full subcategory
of Dpr and explain the relationship with the free 2-category Adj containing an adjunction.

As an interlude, in Section 6, we generalize the construction of Dpr to include, for example,
a combinatorial model Dseq for the free monoidal category containing a duality sequence X0 �
X1 � X2 � . . . of objects.

Section 7 constructs the free monoidal category C [J∨] adjoining a right dual to a given object
J in a monoidal category C . Section 8 proves the universal property. Sections 9 proves that
the canonical strong monoidal functor � : C →C [J∨] is full by appealing to the details of the
construction. Section 10 proves that � :C →C [J∨] is faithful by using a more transcendental
argument. Section 11 provides formulas for some homs in C [J∨] other than those coming from
C . In Section 12, we demonstrate that adjoining a dual corresponds to taking a pseudopushout
with Dpr. In Section 13, we explain how our results extend to K-linear categories. In Section 14,
we discuss the link between our results and the principle of autonomization.

2. Dual Pairs
For the definition of monoidal category V (also called tensor category) see Eilenberg and Kelly
(1966), Lane (1971), Joyal and Street (1991). We use I for the tensor unit and ⊗ for the binary
tensor product.Wewill make use of the fact that everymonoidal category ismonoidally equivalent
to a strict monoidal category (that is, one in which the associativity and unitality isomorphisms
are identities).

For a linearly ordered setM= {m1 <m2 < · · ·<mk} and Xm ∈ V for allm ∈M, we put⊗
m∈M

Xm = Xm1 ⊗ Xm2 ⊗ . . .⊗ Xmk .

Duality for objects in V was defined in Saavedra Rivano (1972), Kelly (1972), Joyal and Street
(1988). We will make use of the string diagrams for monoidal categories as explained in Joyal and
Street (1988, 1991) except that we will read from top to bottom rather than left to right or bottom
to top.

A right dual for an object X of V is an object Y equipped with morphisms ε : X⊗ Y→ I and
η : I→ Y ⊗ X, called counit and unit, such that the composites

X X⊗η−−→ X⊗ Y ⊗ X ε⊗X−−→ X and Y η⊗Y−−→ Y ⊗ X⊗ Y Y⊗ε−−→ Y (1)

are identities. As this is a special case of adjunction in a bicategory, we use the notation X � Y
and call this a dual pair. Here are the string diagrams expressing that the composites in (1) are
identities.

https://doi.org/10.1017/S0960129520000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000274


750 K. Coulembier et al.

= =
εε

η η

XX Y
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Y

Y

X

Y

(2)

When there is no ambiguity, we denote counits by cups ∪ and units by caps ∩. So (1) becomes
the more geometrically “obvious” operation of pulling the ends of the strings as in (3). These are
sometimes called the snake equations.

= =

X X Y

Y X

Y

X
Y

(3)

Dualities tensor. If X � Y and Z �W, then X⊗ Z �W ⊗ Y ; the counit and unit are the nested
cups and nested caps as shown in (4).

X YZ W

XY ZW
(4)

In particular, if X � Y , then X⊗n � Y⊗n with counit and unit given by n nested cups and n nested
caps.

If X � Y and A� B in V , recall that morphisms A→ X and Y→ B are mates if they are
exchanged under the bijection V (A, X)∼= V (Y , B).

We remind the reader that duals invert.

Proposition 1 (Day and Pastro 2008; Joyal and Street 1988; Saavedra Rivano 1972). Suppose
X � Y is a dual pair in a monoidal category A . If σ : S⇒ T :A → V is a monoidal natural trans-
formation between strong monoidal natural transformations, then the components σX and σY of σ
are invertible. Indeed, σ−1X is the mate of σY and σ−1Y is the mate of σX under the dualities SX � SY
and TX � TY.

A morphism (u, v) : (X, Y , ε, η)→ (X1, Y1, ε1, η1) of dual pairs in V consists of morphisms
u : X→ X1 and v : Y1→ Y in V such that ε1 ◦ (u⊗ 1)= ε ◦ (1⊗ v); see (5). In fact, u and v are
mates under the dualities so determine each other. This defines a monoidal category DpV of dual
pairs in V .

=u v (5)

A monoidal category is called autonomous when every object has a left and a right dual. The
terms rigid and compact are all used in the literature to mean the existence of duals. The free
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autonomous monoidal category on any autonomous tensor scheme was described geometrically
in Joyal and Street (1988). The free autonomousmonoidal category on anymonoidal category was
described geometrically in Delpeuch (2019). Here we are interested in combinatorial descriptions
of related free monoidal structures.

3. Geometric Model of Dpr
Our interest here is in the free monoidal category Dpr containing a duality pair of objects. A
presentation of this in terms of tensor schemes (in the sense of Joyal and Street 1991) takes the
generating tensor scheme to have two objects − and + and two morphisms ε : −+→∅ and
η :∅→+− and subjects them to the snake equations. The objects of Dpr are therefore elements
of the free monoid {−,+}∗ on the two symbols− and+. As strings, each morphism consists of a
sequence of nested cups on the domain word, a sequence of nested caps on the codomain word,
and lines between the remaining symbols in the words without any crossings of lines, cups, or
caps. The cups in the domain are directed from − to +, the caps in the codomain are directed
from + to −, and the lines are directed either from a − in the domain to a − in the codomain or
from a + in the codomain to a + in the domain. Diagram (6) is an example of a morphism from
−−+++−+− to+++−−−; diagrams (7) and (8) give other examples.

−+ −

−−−

−− + +

+ + +

+

(6)

Composition is performed by vertical stacking followed by employing the snake equations to
straighten out the snaking into cups, caps, and lines. For example, the composable morphisms

(−++−−−+−−++ )−→ (+−−+−−−++−+ )−→ (+−++−−− )

as shown stacked vertically in (7) have composite as shown in (8).
− + − − − − −

− − − − − −

− − − −

+ + + +

+ + + + +

+ + +

(7)

− + − − − − −

− − − −

+ + + +

+ + +

(8)
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Remark 2. The string diagrams we have described are in “normal form.” Composition is done by
vertical stacking and then moving to normal form. Readers requiring a geometric model which
accommodates the diagrams arising from vertical stacking of the normal diagrams per se should
see Joyal and Street (1988). Winding numbers are involved.

Remark 3. These string diagrams and their composition are much like those of the Temperley–
Lieb algebra (Temperley and Lieb 1971) except that their directed nature prohibits the creation
of loops. They are also particularly non-tangled tangles as occurring in Yetter (1988) and
Shum (1994).

4. Combinatorial Definition of Dpr
A subsetK of an ordered setM is an intervalwhen a� b� c and a, c ∈K imply b ∈K. For a, c ∈M,
we have the interval [a, c]= {b ∈M : a� b� c}.

Let S be a subset of a linearly ordered set M and let K be a finite interval in M. We say that
K is an S-cup [respectively, S-cap] when K has even cardinality and S∩K is a final [respectively,
initial] segment of K containing exactly half of the elements of K. Notice that, if K and L are both
S-cups or both S-caps and K ∩ L �=∅, then either K ⊆ L or L⊆K.

Suppose M and S are as above and a ∈M. We write a∪ for the element of M for which the
interval [a, a∪] in M is an S-cup. Such an element a∪ may not exist but it will if M is a union of
S-cups and a /∈ S. Similarly, we write a∩ for the element ofM for which the interval [a, a∩] inM is
an S-cap.

Example. IfM= {m1 <m2 <m3 <m4}, S= {m3,m4}, thenm∪1 =m4 andm∪2 =m3.

Suppose H ⊆M and x, x′ ∈M. A sequence

x= x0, x1, . . . , xn = x′

is said to be snaking in H out of x into x′ when xi ∈H for 0< i< n and either xm+1 = x∪m or
xm+1 = x∩m for 0�m< n. We write x�H x′ when such a sequence exists.

If M and N are linearly ordered sets and A⊆M, B⊆N are subsets of the same cardinality
#A= #B, then there is a unique order-preserving bijection A→ B; we call a ∈A and b ∈ B cobbers
when they correspond under this bijection.

We now describe a monoidal category Dpr which is equivalent to the geometric version
of Section 3. An object (M, S) consists of a finite linearly ordered set M and a subset S⊆M. Of
course, we can also think of such an object as a function χS :M→{−.+} for which S is the inverse
image of+.

A morphism (A, B) : (M, S)→ (N, T) in Dpr consists of subsets A⊆M and B⊆N such that

(i) #A= #B,
(ii) for all cobbers a ∈A and b ∈ B, a ∈ S if and only if b ∈ T,
(iii) A′ =M\A is a union of S-cup intervals inM,
(iv) B′ =N\B is a union of T-cap intervals in N.

The identity morphism of (M, S) is (M,M) : (M, S)→ (M, S).
The composite

(M, S) (E,F)−−→ (P,U)= ((M, S) (A,B)−−−→ (N, T) (C,D)−−−→ (P,U))
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is defined by

E= {x ∈A : the cobber y ∈ B of x has y�B′∩C′ y′ with y′ ∈ C}
∪ {x′ ∈A : the cobber y′ ∈ B of x′ has y�B′∩C′ y′ with y ∈ C}

and

F= {z ∈D : the cobber y ∈ C of z has y�B′∩C′ y′ with y′ ∈ B}
∪ {z′ ∈D : the cobber y′ ∈ C of z′ has y�B′∩C′ y′ with y ∈ B}.

The intersection of the two sets whose union gives the definition of E contains precisely those
x ∈A whose cobber y ∈ B is also in C. The intersection of the two sets whose union is F contains
precisely those z ∈D whose cobber y ∈ C is also in B. The sets E and F have the same cardinality:
the cobber in F of an x ∈ E in the first set of the union is the cobber in D of the y′ ∈ C, while the
cobber in F of an x′ ∈ E in the second set of the union is the cobber in D of the y ∈ C.

The complement E′ of E is a union of S-cups; indeed, we have the disjoint union
E′ =A′ ∪ {x, x′ ∈A : the cobbers y, y′ ∈ B of x, x′ have y�B′∩C′ y′}.

Similarly,

F′ =D′ ∪ {z, z′ ∈D : the cobbers y, y′ ∈ C of z, z′ have y�B′∩C′ y′}.

Proposition 4. A morphism (A, B) : (M, S)→ (N, T) in Dpr is invertible if and only if A=M,
B=N.

The tensor product for Dpr is defined by componentwise ordinal sum which we denote
by+. So

(M, S)⊗ (M1, S1)= (M+M1, S+ S1) and (A, B)⊗ (A1, B1)= (A+A1, B+ B1).
We write n for the ordinal {0, 1, . . . , n− 1}. The unit for this tensor product is I= (0,∅).

We shall now distinguish a dual pair in Dpr.We have two objects−= (1,∅) and+= (1, {0}) of
Dpr. Then −⊗+= (2, {1}) and +⊗−= (2, {0}). Put ε= (∅,∅) : −⊗+→ I and η= (∅,∅) :
I→+⊗−. It is an easy exercise in the definition of composition in Dpr to see that the composites
(1) (with X=− and Y =+) are identities. So−�+.

Every object of Dpr is uniquely isomorphic to one of the form (n, S). For every finite linearly
ordered setM, we have (M,∅)� (M,M) in Dpr by tensoring−�+ #M times.

Let us call elementary those morphisms in Dpr of the form

(∅,∅) : (M, S)→ (N, T)
whereM and N are not both empty.

Proposition 5. Every morphism of Dpr is uniquely of the form
f1 ⊗ e1 ⊗ f2 ⊗ e2 ⊗ . . .⊗ ek−1 ⊗ fk

where f1, . . . , fk are invertible morphisms and e1, . . . , ek−1 are elementary morphisms.

Proof. Take any morphism (A, B) : (M, S)→ (N, T) of Dpr. Then we can write A=K1 +K2 +
. . .Kk and B= L1 + L2 + . . . Lk where the Ki are intervals in M which are maximal as subsets
of A, the Lj are intervals in N which are maximal as subsets of B, and if a ∈Ki in A has cobber
b ∈ Lj in B then i= j. For 1� i< k, let Ei ⊆A′ consist of all the elements between Ki and Ki+1 and
let Fi ⊆ B′ consist of all the elements between Li and Li+1; not both are empty or else Ki and Ki+1
or Li and Li+1 would intersect. Then we have fi : (Ki, S∩Ki)→ (Li, T ∩ Li) and ei : (Ei, S∩ Ei)→
(Fi, T ∩ Fi) as desired.
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For monoidal categories A and V , write StMong(A , V ) for the groupoid of strong monoidal
functors fromA to V andmonoidal natural isomorphisms. Recall (from around (5)) the category
DpV of dual pairs in V . Write DpgV for its subcategory consisting of all the objects but only the
invertible morphisms.

Proposition 6. For any monoidal category V , the functor
StMong(Dpr, V )−→DpgV , � �→ (�−��+)

is an equivalence of groupoids.

Proof. Take a dual pair X � Y in V . Define Dpr �−→ V on objects by

�(M, S)=
⊗
m∈M

Zm

where Zm = X for m /∈ S and Zm = Y for m ∈ S. Define � to take invertible morphisms (see
Proposition 4) of Dpr to identity morphisms in V . In accord with the desire for � to be a
strong monoidal functor, a nested cup I→ (M, S) with #M= 2h must be taken to the counit of
X⊗h � Y⊗h. A nested cap (N, T)→ I with #N = 2k must be taken to the unit of X⊗k � Y⊗k. The
effect of� on a general morphism is then forced by Proposition 5. The fact that� preserves com-
position follows from the snake equations for the dual pairs X⊗k � Y⊗k. Clearly the functor of the
Proposition takes this� to X � Y .

5. Relationship to the Free Adjunction
The 2-category freely generated by an adjunction was first considered in Auderset (1974) with an
explicit model Adj described in Schanuel and Street (1986). The 2-category Adj has two objects
which we will now denote by 	 and 
. The hom category Adj(	, 	) is the usual algebraist’s �: the
objects are the finite ordinals n= {0, 1, . . . n− 1} and the morphisms order-preserving functions.
The hom category Adj(
, 
) is the category��,⊥: the objects are the non-empty ordinals n and the
morphisms order-preserving functions which preserve first and last elements. The hom category
Adj(	, 
) is the category ��: the objects are the non-empty ordinals n and the morphisms order-
preserving functions which preserve last elements. The hom category Adj(
, 	) is the category�⊥:
the objects are the non-empty ordinals n and the morphisms order-preserving functions which
preserve first elements. Composition is described in Schanuel and Street (1986); in particular, the
composition functor

Adj(	, 	)×Adj(	, 	)−→Adj(	, 	)
is ordinal sum, the tensor product of the monoidal category�; and composition

Adj(
, 
)×Adj(
, 
)−→Adj(
, 
)
is the result of transporting ordinal sum across the duality�op ���,⊥, n �→ n+ 1.

For a monoidal category A , we write�A for the one object bicategory whose hom category is
A and whose composition is the tensor product ofA . In particular, we have the bicategory�Dpr
which contains the adjunction−�+. Therefore, there is a pseudofunctor

� :Adj−→�Dpr (9)
taking the generating adjunction in Adj to−�+.

In order to study the image of�, we distinguish some objects of Dpr.We call (M, S) alternating
when, for all consecutive elements a, b ∈M, we have a ∈ S if and only if b /∈ S. Notice that any S-cup
or S-cap in such anM can only have cardinality 0 or 2.
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Let us look at the effect of� on the endomorphism hom of 	 ∈Adj. This is a strong monoidal
functor�	,	 :�→Dpr. The object n of� is taken to the alternating object (2n, Evn) where Evn =
{0, 2, . . . , 2n− 2} consists of the even elements of 2n. The surjection σi : n+ 1→ n in �, which
identifies i and i+ 1, is taken to (dei, 2n+ 2) : (2n+ 2, Evn+1)→ (2n, Evn) where dei is obtained
from 2n+ 2 by deleting 2i+ 1 and 2i+ 2. The injection ∂i : n→ n+ 1 in�, which does not have
i in its image, is taken to (2n, fai) : (2n, Evn)→ (2n+ 2, Evn+1) where fai is obtained from 2n+ 2
by deleting 2i and 2i+ 1.

∂2 : 4−→ 5σ2 : 5−→ 4

+ − + − + − +−

+ − + − + − + − +−+ − + − + − +−

+ − + − + − + − +−

(10)

We define� on generalmorphisms of� using the following notation fromLack and Street (2014).
For each morphism ξ :m→ n in�, we put

ξ� = {i ∈m− 1 : ξ (i)= ξ (i+ 1)} and ξ r = {j ∈ n : j /∈ imξ}.
Notice that ξ� =∅means that ξ is injective and ξ r =∅means that ξ is surjective. In general, ξ is
determined by (ξ�, ξ r). We have that�(ξ )= (Aξ , Bξ ) : (2m, Evm)→ (2n, Evn) is defined by

A′ξ = {2i+ 1, 2i+ 2 : i ∈ ξ�} and B′ξ = {2j, 2j+ 1 : j ∈ ξ r},
where, as before, the primed sets denote the appropriate complements. The restricted possibility
for cups and caps in alternating objects means that every morphism (2m, Evm)→ (2n, Evn) must
be of the form (Aξ , Bξ ) for some ξ :m→ n in �. So the functor �	,	 :�→Dpr is fully faithful.
A similar analysis applies to the other three hom categories of Adj yielding:

Proposition 7. The pseudofunctor� (9) is locally fully faithful.

We can say this differently if Dpr is given and Adj is to be obtained. Take the free category J
on the directed graph

•
−

�� �,
+

��

regarded as a locally discrete 2-category. Then Adj is obtained by factoring the 2-functor J →
�Dpr, which takes the morphisms − to − and + to +, into a 2-functor J →Adj which is
bijective on both objects and 1-morphisms, and a functor Adj→�Dpr which is locally fully
faithful.

6. Interlude on Iterated Duals
Let� denote a set equipped with a partial endofunction σ :�⇀� such that

a. σ s= σ t implies s= t;
b. σ ns= s for some s implies n= 0.

Let�∗ be the set of words s= s1s2 . . . sk in the alphabet�.
The goal in this section is to define the free monoidal category D(�, σ ) containing the elements

of � as objects in such a way that s� σ s for all s ∈� on which σ is defined. First we give some
examples.
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Example. 0. � arbitrary and σ with empty domain. Then D(�, σ ) is the free monoidal category
(discrete�∗) on the set�.

1. �= {−,+}, σ−=+ and σ+ undefined. Then D(�, σ )=Dpr as in Section 4.
2. �=N and σn= n+ 1 for all natural numbers n. Then D(�, σ ) is the free monoidal category

Dseq containing a duality sequenceX0 � X1 � X2 � . . . of objects. Equally, D(�, σ ) is the free
right autonomous monoidal category Dseq generated by a single object. A geometric model
can be derived as in Section 3. The objects are words of natural numbers and composition
leads to diagrams of the form shown in (11) for morphisms

2→ 2 4 3 1 0 2 3 1 2→ 2 4 3.

3. �=Z and σn= n+ 1 for all integers n. Then D(�, σ ) is the free autonomous monoidal
category on a single generating object. Equally, D(�, σ ) is the free monoidal category Dseq
containing a doubly infinite string of object dualities · · · � X−2 � X−1 � X0 � X1 � X2 � . . . .

4. Consider an arbitrary set � with an element J ∈�, such that σ is only defined on J, and set
� :=�\{σ J}. Then D(�, σ ) is C [J∨] as defined in Section 7 for C :=�∗.

2 4 3 1 0 2 3 1 2

2 4 3

2

(11)

We now describe combinatorially the monoidal category D(�, σ ) in general.
The objects are the elements of�∗. To describe morphisms we need some more notation. Let

| − | :�∗ →N, s �→ k

take a word to its length. Put 〈k〉 = {1, 2, . . . , k}.
An interval I in 〈k〉 is an s-cup [respectively, s-cap] when it has even cardinality and sn = σ sm

[respectively, sm = σ sn] wheneverm< n are both in I and

#{x ∈ I : x�m} = #{x ∈ I : n� x}.
We put m∪ = n [respectively, m∩ = n] in this situation. We will use the definition of snaking and
cobbers as in Section 4.

A morphism (A, B) : s→ t in D(�, σ ) consists of subsets A⊆ 〈|s|〉 and B⊆ 〈|t|〉 such that

(i) #A= #B,
(ii) for all cobbers a ∈A and b ∈ B, sa = tb,
(iii) the complement A′ = 〈|s|〉\A is a union of s-cups in 〈|s|〉,
(iv) the complement B′ = 〈|t|〉\B is a union of t-caps in 〈|t|〉.

The identity morphism of s is (〈|s|〉, 〈|s|〉) : s→ s.
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The composite
(〈|s|〉 (E,F)−−→〈|u|〉)= (〈|s|〉 (A,B)−−−→〈|t|〉 (C,D)−−−→〈|u|〉)

is defined by
E= {x ∈A : the cobber y ∈ B of x has y�B′∩C′ y′ with y′ ∈ C}
∪ {x′ ∈A : the cobber y′ ∈ B of x′ has y�B′∩C′ y′ with y ∈ C}

and
F= {z ∈D : the cobber y ∈ C of z has y�B′∩C′ y′ with y′ ∈ B}
∪ {z′ ∈D : the cobber y′ ∈ C of z′ has y�B′∩C′ y′ with y ∈ B}.

The intersection of the two sets whose union gives the definition of E contains precisely those
x ∈A whose cobber y ∈ B is also in C. The intersection of the two sets whose union is F contains
precisely those z ∈D whose cobber y ∈ C is also in B. The sets E and F have the same cardinality:
the cobber in F of an x ∈ E in the first set of the union is the cobber in D of the y′ ∈ C while the
cobber in F of an x′ ∈ E in the second set of the union is the cobber in D of the y ∈ C.

The complement E′ of E is a union of s-cups; indeed, we have the disjoint union
E′ =A′ ∪ {x, x′ ∈A : the cobbers y, y′ ∈ B of x, x′ have y�B′∩C′ y′}.

Similarly,
F′ =D′ ∪ {z, z′ ∈D : the cobbers y, y′ ∈ C of z, z′ have y�B′∩C′ y′}.

The tensor product for D(�, σ ) is defined by juxtaposition s⊗ u= su on objects. Note that
|su| = |s| + |u| and so 〈|su|〉 is the ordinal sum 〈|s|〉 + 〈|u|〉. So

(s (A,B)−−−→ t)⊗ (u (C,D)−−−→ v)= (su (A+C,B+D)−−−−−−−→ tv).
The unit I for this tensor product is of course the word of length 0.
For each a ∈� at which σ is defined we have a duality a� σa in D(�, σ ) where we are identi-

fying elements of� with elements of�∗ as the one letter words. Put ε= (∅,∅) : a⊗ σa→ I and
η= (∅,∅) : I→ σa⊗ a. It is an easy exercise in the definition of composition in D(�, σ ) to see
that the composites (1) (with X= a and Y = σa) are identities. So indeed a� σa.

Proposition 8. The only invertible morphisms in D(�, σ ) are identities.

As in Section 4, we call elementary those morphisms in D(�, σ ) of the form
(∅,∅) : s→ u

where |s| and |t| are not both 0. Proposition 5 generalizes.

Proposition 9. Every morphism of D(�, σ ) is uniquely of the form
f1 ⊗ e1 ⊗ f2 ⊗ e2 ⊗ . . .⊗ ek−1 ⊗ fk

where f1, . . . , fk are identity morphisms and e1, . . . , ek−1 are elementary morphisms.

Proposition 10. For any strict monoidal category V and any family (Xa)a∈� of objects of V with
chosen dualities Xa � Xσa, there exists a unique strict monoidal functor � :D(�, σ )−→ V such
that�a= Xa for all a ∈� and�maps the dualities a� σa to the chosen dualities Xa � Xσa.

Remark 11. If a ∈� is in the domain of σ , then the monoidal full subcategory of D(�, σ ), whose
objects are the words in letters a and σa, is equivalent to Dpr.
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7. Construction ofC [J∨]
Let J be an object of the strict monoidal category C . In this section, we define a strict monoidal
category C [J∨] obtained by freely adjoining a right dual J∨ to J.

We start by describing the objects of C [J∨] and their tensor product, by introducing the corre-
sponding monoid. Every object in C [J∨] will be a finite product of elements in {J∨} ∪ obC . If we
think of the occurrences of J∨ in the product as separators between the other objects, an object in
C [J∨] will correspond to a finite ordered set of objects in C , so a function from a finite ordered
set to obC . This motivates our formal definition below.

We write [m] for the set {0, 1, . . . ,m} and ∂i : [m− 1]→ [m] for the order-preserving injective
function whose image does not contain i. Let G0 be the set of functions U : [m]→ obC . Objects
of C are identified with functions [0]→ obC . For another V : [n]→ obC , the “tensor product”
U ⊗V : [m+ n]→ obC is defined by

(U ⊗V)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ui for i<m

Um ⊗V0 for i=m

Vi−m for i>m.

(12)

We thus obtain a monoid (G0,⊗, I) since
I⊗U =U =U ⊗ I , (U ⊗V)⊗W =U ⊗ (V ⊗W).

We will already refer to elements of G0 as the “objects of C [J∨]”.
An object of C [J∨] of special interest is

J∨ : [1]→ obC , J∨0 = J∨1 = I.

Then we see that each object U of C [J∨] is uniquely decomposable in the form

U =U0 ⊗ J∨ ⊗U1 ⊗ J∨ ⊗ . . .⊗ J∨ ⊗Um (13)

with U0,U1, . . . ,Um ∈C .
Now we will describe a directed graph G = (G0, G1). We introduce two symbols

J ⊗ J∨ ε−→ I and I
η−→ J∨ ⊗ J.

For each morphism f : C→D of C , we introduce a symbol f̄ : C→D. These symbols ε, η, and
the f̄ will be called the primitive edges of G . The general edges of G are the whiskered primitive
edges: that is, those of the form

U ⊗A⊗V
U⊗p⊗V−−−−−→U ⊗ B⊗V (14)

where U,V ∈ G0, A
p−→ B is primitive, and the tensor in U ⊗ p⊗V is formal. For a general edge

(14) and T,W ∈ G0, define

T ⊗ (U ⊗ p⊗V)⊗W = (T ⊗U)⊗ p⊗ (V ⊗W)

where T ⊗U and V ⊗W are (tensor) products in G0.
In the free category FG on the graph G , if �= ak . . . a1 with ai ∈ G1, we put U ⊗ �⊗V =

(U ⊗ ak ⊗V) . . . (U ⊗ a1 ⊗V).
We introduce the following relations on morphisms of FG , where C,D, E, F ∈C and

U,V ,W, X, Y , Z ∈ G0:

(i) for f ∈C (C,D),

(E⊗ C⊗ F
�E⊗f⊗F)−−−−→ E⊗D⊗ F)∼ (E⊗ C⊗ F

E⊗f̄⊗F−−−−→ E⊗D⊗ F)
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(ii) for f ∈C (C,D), g ∈C (D, E),

(C
�1C−→ C)∼ (C 1C−→ C) and (C

�gf−→ E)∼ (C
f̄−→D

ḡ−→ E)

(iii) for all edges U a−→V ,W b−→ X of G ,

(U ⊗W a⊗W−−−→V ⊗W V⊗b−−→V ⊗ X)∼ (U ⊗W U⊗b−−→U ⊗ X a⊗X−−→V ⊗ X)

(iv) (J J⊗η⊗I−−−−→ J ⊗ J∨ ⊗ J (I⊗ε⊗J)−−−−→ J)∼ 1J
(v) (J∨ (I⊗η⊗J∨)−−−−−→ J∨ ⊗ J ⊗ J∨ J∨⊗ε⊗I−−−−→ J∨)∼ 1J∨
(vi) if �∼ �′ is any of the relations in (i)–(v), then

Y ⊗ �⊗ Z∼ Y ⊗ �′ ⊗ Z.

Put C [J∨]=FG /∼ as a category. We write ��� :U→V for the equivalence class of a morphism
� :U→V in FG .

Put T ⊗ ���⊗W = �T ⊗ �⊗W�. We can write �a�⊗ �b� :U ⊗W→V ⊗ X for the equiva-
lence class of both sides of relation (iii), and this extends by composition to morphisms of FG
in place of a, b. It is because of (i), (ii), (iii), and (vi) that C [J∨] is strict monoidal under ⊗ with
unit I and the inclusion functor� :C →C [J∨], defined by�C= C,�f = �f̄ �, is strict monoidal.
By virtue of (iv) and (v), we have J � J∨ in C [J∨], and we will write the counit and unit as ε and η
rather than �ε� and �η�.

8. Universality ofC [J∨]
Let us define a 2-category sJ. The objects (C , J) are strict monoidal categories C equipped
with a distinguished object J ∈C . The 1-morphisms (F, φ) : (C , J)→ (C ′, J′) consist of a strict
monoidal functor F :C →C ′ equipped with an isomorphism φ : FJ ∼= J′ in C ′. The 2-morphisms
σ : (F, φ)⇒ (G,ψ) : (C , J)→ (C ′, J′) are monoidal natural transformations σ : F⇒G :C →C ′
such that ψ ◦ σJ = φ.

Let us also define a 2-category sJ∨. The objects (C , J,K, ε) are strict monoidal categories
C equipped with a distinguished duality J �K with its counit ε. The 1-morphisms (F, φ) :
(C , J,K, ε)→ (C ′, J′,K ′, ε′) consist of a strict monoidal functor F :C →C ′ equipped with an
isomorphism φ : FJ ∼= J′ in C ′; notice then that the mate of φ−1 is an isomorphism FK ∼=K ′. The
2-morphisms σ : (F, φ)⇒ (G,ψ) : (C , J,K, ε)→ (C ′, J′,K ′, ε′) are monoidal natural transforma-
tions σ : F⇒G :C →C ′ such that ψ ◦ σJ = φ.

There is a forgetful 2-functor sU : sJ∨→ sJ taking σ : (F, φ)⇒ (G,ψ) : (C , J,K, ε)→
(C ′, J′,K ′, ε′) to σ : (F, φ)⇒ (G,ψ) : (C , J)→ (C ′, J′).

Proposition 12. The 2-functor sU : sJ∨→ sJ has a left biadjoint whose value at (C , J) is
(C [J∨], J, J∨, ε). Moreover,� : (C , J)→ (C [J∨], J) is the component of the unit of the biadjunction.

Proof. Using (13) and the nature of the relations (i)–(vi), we will prove that restriction along �
defines an equivalence of categories

sJ∨((C [J∨], J, J∨, ε), (X ,H,K, α))� sJ((C , J), (X ,H)) (15)

which is surjective on objects. To prove this surjectivity, take a strict monoidal functor F :C →X
and φ : FJ ∼=H. Let β : I→K ⊗H be the unit corresponding to the counit α for the dualityH �K.
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Then α′ = α ◦ (φ ⊗K) and β ′ = (K ⊗ φ−1) ◦ β are counit and unit for a duality FJ �K. We can
define a graph morphism F′ : G →X by

U �→ FU0 ⊗K ⊗ FU1 ⊗K ⊗ . . .⊗K ⊗ FUm

ε �→ α′, η �→ β ′, f �→ Ff , (U, p,V) �→ F′U ⊗ F′p⊗ F′V

which we can immediately extend to a functor F̂ :FG →X by the universal property of the
domain free category. Relations (i)–(iii) and (vi) are preserved by F̂ since F is strict monoidal;
relations (iv)–(v) are preserved since α′ and β ′ are counit and unit for FJ �K. So a functor F̄ :
C [J∨]→X is induced. Notice that F′ is a monoid morphism on the monoids of vertices of G
and the underlying graph of X under tensor. With this, relations (iii) then imply that F̄ is strict
monoidal. By construction, we have F= F̄�. We also have φ : F̄J = FJ ∼=H.

It remains to prove that restriction along� gives the fullness and faithfulness required for (15).
Take (F, φ), (G,ψ) : (C [J∨], J, J∨, ε)→ (X ,H,K, ε) in sJ∨ and a monoidal natural transforma-
tion σ : F�⇒G� :C →X with ψ ◦ σJ = φ. We need to see that there is a unique σ̄ : (F, φ)⇒
(G,ψ) with σ̄�= σ .

Since σ̄ is to be monoidal and natural, we have commutativity of

FJ ⊗ FJ∨ Fε ��

σJ⊗σ̄J∨
��

I

1I
��

GJ ⊗GJ∨
Gε′

�� I

which shows that σ̄J∨ is forced to be the mate of σ−1J = φ−1 ◦ψ . With this, we are now forced
to put

σ̄U = σU0 ⊗ σ̄J∨ ⊗ σU1 ⊗ σ̄J∨ ⊗ . . .⊗ σ̄J∨ ⊗ σUm .
With this as definition, the monoidality condition is obvious and naturality at equivalence classes
of primitive morphisms is straightforward. We have the desired unique extension σ̄ .

Let us define a 2-category J. The objects (C , J) are monoidal categories C equipped with
a distinguished object J ∈ C . The 1-morphisms (F, φ) : (C , J)→ (C ′, J′) consist of a strong
monoidal functor F :C →C ′ equipped with an isomorphism φ : FJ ∼= J′ in C ′. The 2-morphisms
σ : (F, φ)⇒ (G,ψ) : (C , J)→ (C ′, J′) are monoidal natural transformations σ : F⇒G :C →C ′
such that ψ ◦ σJ = φ.

Predictably, we also define a 2-category J∨. It is the full sub-2-category of J consisting of those
objects (C , J) for which the distinguished object J has a right dual. Let U : J∨→ J be the inclusion
2-functor.

Corollary 13. The 2-functor U : J∨→ J has a left biadjoint whose value at (C , J) is (C [J∨], J).
Moreover,� : (C , J)→ (C [J∨], J) is the component of the unit of the biadjunction.

Proof. This is a standard consequence of Proposition 12 when dealing with flexible categorical
structures.

Remark 14. Consider the case where C is the free strict monoidal category on a single generat-
ing object; that is, it is the discrete category N with addition as tensor product. Take J to be the
natural number 1. We write N[1∨] for C [J∨] in this case. Objects of N[1∨] can be identified with
plane rooted trees of height at most 2 (in the sense of Batanin 1998) and having at least one edge
attached to the root. For example, the trees in (16) correspond to the function [1]→N given by
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0 �→ 2, 1 �→ 1, the function [1]→N given by 0 �→ 3, 1 �→ 2 and the function [2]→N, 0 �→ 2,
1 �→ 4 and 2 �→ 2. Tensor product in terms of rooted trees is as shown in diagram (16).

⊗ = (16)

Notice that N[1∨] and the skeletal version of the monoidal category Dpr have the same universal
property: strict monoidal functors from it into a strict monoidal category X are in bijection with
duality pairs in X . So the monoids of objects should be isomorphic. The monoid of objects of
this Dpr is the free monoid {−,+}∗ on two symbols. It is easy to see directly that the monoid
morphism γ : {−,+}∗ → obN[1∨] defined by

γ (− ) = γ (+ ) =

is bijective.

9. Fullness of� : C → C [J∨]
Proposition 15. The inclusion functor� :C →C [J∨] is full.
Proof. Suppose � : C→D is a morphism in C [J∨] with C,D ∈C . If � has a representative path
that passes through no vertex with a J∨ factor, then relations (i), (ii), (iii) imply that �= �f � for
some f ∈C (C,D). The only way that factors J∨ can be created in vertices in the path is by using
the primitive edge η and the only way they can be removed is by using the primitive edge ε. So
suppose our path representing � has a vertex with a J∨ factor. Then there must be an edge in the
path of the form U ⊗V U⊗η⊗V−−−−−→U ⊗ J∨ ⊗ J ⊗V . In order that the created J∨ in the target can be
removed, the path must continue on as

U ⊗ J∨ ⊗ J ⊗V a⊗J∨⊗b−−−−→ X⊗ J ⊗ J∨ ⊗W X⊗ε⊗W−−−−−→ X⊗W.
However, using relations (ii) and (iii), we have

(X⊗ ε⊗W)(a⊗ J∨ ⊗ b)(U ⊗ η⊗V)
∼ (X⊗ ε⊗W)(X⊗ J ⊗ J∨ ⊗ b)(a⊗ J ⊗V)(U ⊗ η⊗V)
∼ (X⊗ b)(X⊗ ε⊗ J ⊗V)(X⊗ J ⊗ η⊗V)(a⊗V).

Invoking relation (iv), we are left with U ⊗V a⊗V−−→ X⊗ J ⊗V X⊗b−−→ X⊗W. By induction, any
path containing edges involving an η is related to one not involving any. We are back to the first
sentence of the proof. This proves� is full.

Remark 16. Relation (v) was not used in this proof.

10. Faithfulness of� : C → C [J∨]
Recall the bicategory Mod of categories and modules (called “bimodules” by Lawvere 2002
and “distributors” by Bénabou 1973) between them. The objects are small categories. The hom
categories are presheaf categories:

Mod(A ,B)= [Bop ×A , Set].
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Composition is tensor product of modules:

(N ⊗B M)(C,A)=
∫ B

M(B,A)×N(C, B).

The identity module of A will be denoted HA and is the hom presheaf: HA (A′,A)=A (A′,A).
All right liftings and right extensions exist in the bicategory Mod. For every functor F :A →B,
we obtain a module F∗ :A →B and a module F∗ :B→A with an adjunction F∗ � F∗ in the
bicategory Mod; we have

F∗(B,A)=B(B, FA) and F∗(A, B)=B(FA, B).

So then we have, for each category C , a closed monoidal category Mod(C ,C ); the tensor
product is ⊗C with unit HC . If C is monoidal, then each object C ∈C determines a functor
X⊗− :C →C and so a duality

(X⊗−)∗ � (X⊗−)∗
in the monoidal category Mod(C , C ). This leads to the Cayley functor

ϒ :C →Mod(C , C ) (17)

defined by

ϒX(Z, Y)= (X⊗−)∗(Z, Y)=C (Z, X⊗ Y),

while the effect on homs is the function

ϒ :C (X, X′)→
∫
Z,Y

[C (Z, X⊗ Y),C (Z, X′ ⊗ Y)]

takingX
f−→ X′ to the family of functionsC (Z, X⊗ Y)

C (Z,f⊗Y)−−−−−→C (Z, X′ ⊗ Y). Soϒ is faithful and
conservative.

We also have

ϒ∨X(Z, Y)= (X⊗−)∗(Z, Y)=C (X⊗ Z, Y)

and the duality

ϒX �ϒ∨X
in Mod(C , C ).

What is more, ϒ is strong monoidal. We have

ϒI(Z, Y)=C (Z, I⊗ Y)=HC (Z, Y)

and

(ϒX⊗C ϒY)(C, E)=
∫ D

(ϒY)(D, E)× (ϒX)(C,D)

=
∫ D

C (D, Y ⊗ E)× C (C, X⊗D)∼=C (C, X⊗ Y ⊗ E)

=ϒ(X⊗ Y).

By Corollary 13, there exists a strong monoidal functor

� :C [J∨]→Mod(C ,C ) (18)
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such that ��∼=ϒ and � preserves the duality J � J∨; so �J∨ =ϒ∨J and �η :HC ⇒ϒ∨J ⊗C ϒJ
is such that triangle (19) commutes for all X, Z ∈ obC .

C (X, Z)

J⊗−
����

���
���

���
�

�η
��
∫ Y

C (J ⊗ X, Y)×C (Y , J ⊗ Z)

∼=
������

����
����

����

C (J ⊗ X, J ⊗ Z)

(19)

Theorem 17. The inclusion functor� :C →C [J∨] is fully faithful.

Proof. Since ��∼=ϒ , the fact that ϒ is faithful implies � is too. We already know that � is full
by Proposition 15.

11. Coends for Some Homs ofC [J∨]
Some of the hom sets of C [J∨] can be expressed as iterated coends over C , namely, those which
hom into or out of an object of C .

Take objects U : [m]→ obC and V : [n]→ obC .
Form= n= 0, by Theorem 17, we have

C [J∨](U,V)∼=C (U0,V0). (20)
Form> 0, n= 0, there is a function∫ X∈C

C [J∨](U∂m, X⊗ J)×C (X⊗Um,V0)
ζm,0−−→C [J∨](U,V) (21)

taking the equivalence class of (U∂m
f−→ X⊗ J, X⊗Um

g−→V0) to the composite

U =U∂m ⊗ J∨ ⊗Um
f⊗1⊗1−−−−→ X⊗ J ⊗ J∨ ⊗Um

1⊗ε⊗1−−−−→ X⊗Um
g−→V0 =V.

Form= 0, n> 0, there is a function∫ Y∈C
C (U0,V0 ⊗ Y)× C [J∨](J ⊗ Y ,V∂0)

ζ0,n−−→C [J∨](U,V) (22)

taking the equivalence class of (U0
f−→V0 ⊗ Y , J ⊗ Y

g−→V∂0) to the composite

U =U0
f−→V0 ⊗ Y 1⊗η⊗1−−−−→V0 ⊗ J∨ ⊗ J ⊗ Y

1⊗1⊗g−−−−→V0 ⊗ J∨ ⊗V∂0 =V.
Form> 0, n> 0, there is a function∫ X,Y∈C

C [J∨](U∂m, X⊗ J)×C (X⊗Um,V0 ⊗ Y)× C [J∨](J ⊗ Y ,V∂0)

ζm,n−−→C [J∨](U,V)
(23)

taking the equivalence class of (U∂m
f−→ X⊗ J, X⊗Um

g−→V0 ⊗ Y , J ⊗ Y h−→V∂0) to the
composite

U =U∂m ⊗ J∨ ⊗Um
f⊗1⊗1−−−−→ X⊗ J ⊗ J∨ ⊗Um

1⊗ε⊗1−−−−→ X⊗Um
g−→V0 ⊗ Y

1⊗η⊗1−−−−→V0 ⊗ J∨ ⊗ J ⊗ Y 1⊗1⊗h−−−−→V0 ⊗ J∨ ⊗V∂0 =V .
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Notice that ζm,n (23) is definitely not surjective in general. For example, in the case of N[1∨]
as in Remark 14, the coend is empty for U =V = 1∨. More generally, for most morphisms of the
form f : J ⊗ X→ Y ⊗ J in C , the composite

X⊗ J∨ η⊗1⊗1−−−−→ J∨ ⊗ J ⊗ X⊗ J∨
1⊗f⊗1−−−−→ J∨ ⊗ Y ⊗ J ⊗ J∨ 1⊗1⊗ε−−−−→ J∨ ⊗ Y

will not be in the image of ζm,n.
We claim that ζm,n is invertible when eitherm or n is 0.
Let us look at the case of ζ0,n. We begin by relating its domain to the functor � of (18). If A ∈C

andW : [p]→C in C [J∨], then

(�W)(A, I)
= (�W0 ⊗C �J∨ ⊗C �W1 ⊗C �J∨ ⊗C . . .⊗C �Wp)(A, I)
= (ϒW0 ⊗C ϒ

∨J ⊗C ϒW1 ⊗C ϒ
∨J ⊗C . . .⊗C ϒWp)(A, I) (24)

∼=
∫ Y1...Yp∈C

C (A,W0 ⊗ Y1)×C (J ⊗ Y1,W1 ⊗ Y2)× · · · ×C (J ⊗ Yp,Wp)

where the last step involves the coend form of the Yoneda Lemma and Wp ⊗ I=Wp. Define the
function

ζ0,� : �W(A, I)−→C [J∨](A,W) (25)

to be the composite of the isomorphism (24) with the function which takes the equivalence
class of

(A
f0−→W0 ⊗ Y1, J ⊗ Y1

f1−→W1 ⊗ Y2, . . . , J ⊗ Yp
fp−→Wp)

to the composite ζ0,�[f0, f1, . . . , fp] :=

A
f0−→W0 ⊗ Y1

1⊗η⊗1−−−−→W0 ⊗ J∨ ⊗ J ⊗ Y1
1⊗1⊗f2−−−−→W0 ⊗ J∨ ⊗W1 ⊗ Y2→ . . .

1⊗η⊗1−−−−→W∂p ⊗ J∨ ⊗ J ⊗ Yp
1⊗fp−−→W.

It is clear that the above is well defined, and, moreover, the functions (25) are the components of
a natural transformation

C [J∨]

�̃ ����
���

���
��

� �� Mod(C ,C )

EvI		���
���

���
����

ζ0,�

[C op, Set]

(26)

where �̃W =C [J∨](�−,W) and EvIM=M(−, I).

Theorem 18. The natural transformation ζ0,� in (26) is invertible.

Proof. We will show that the composite ζ ′0,� :=

C [J∨](A,W) �−→
∫
X,Z

[C (X,A⊗ Z), �W(X, Z)]∼=
∫
Z
�W(A⊗ Z, Z) EvI−→ �W(A, I)

is the inverse to ζ0,�. The composite

C [J∨](A,W)
ζ ′0,�−→ �W(A, I)

ζ0,�−→C [J∨](A,W)
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is natural inW and so, by Yoneda, is determined by the value at the identity ofW =A under the
composite

C [J∨](A,A)
ζ ′0,�−→C (A,A)

ζ0,�−→C [J∨](A,A).
The composite takes 1A to itself yielding ζ0,� ◦ ζ ′0,� = 1C [J∨](A,W).

We now look at the composite

�W(A, I)
ζ0,�−→C [J∨](A,W)

ζ ′0,�−→ �W(A, I)
as transported across the isomorphism (24). (Abusing notation, we use the same symbols for the
transported functions.) This is performed by applying � to the morphism ζ0,�[f0, f1, . . . , fp] which
involves morphisms in the image of � and the morphism η in C [J∨]. Making use of ��=ϒ ,
strong monoidality of � and the value of � on η as given by (19), we see with some effort that
ζ ′0,�ζ0,�[f0, f1, . . . , fp]= [f0, f1, . . . , fp], as required.

It may be helpful for us to give more detail in the case p= 1 to indicate what is involved in
general. We need to show that the composite∫ Y∈C

C (A, B⊗ Y)×C (J ⊗ Y , C)
ζ0,1−−→C [J∨](A, B⊗ J∨ ⊗ C) �−→

∫
X,Z

[
C (X,A⊗ Z),

∫ Y1,Y2
C (X, B⊗ Y1)×C (J ⊗ Y1, Y2)×C (Y2, C⊗ Z)

] ∼=−→
∫
Z

∫ Y1
C (A⊗ Z, B⊗ Y1)× C (J ⊗ Y1, J ⊗ C⊗ Z) EvI−→

∫ Y∈C
C (A, B⊗ Y)× C (J ⊗ Y , C)

is the identity. (It is actually possible in this p= 1 case to use Yoneda to check only that, taking
A= B⊗ Y and J ⊗ Y = C, the equivalence class of (1A, 1C) goes to itself. However, this possibility

is not fully available for p> 1.) Take [A
f−→ B⊗ Y , J ⊗ Y

g−→ C] in the domain. Under ζ0,1 it goes to

the composite A
f−→ B⊗ Y 1⊗η⊗1−−−−→ B⊗ J∨ ⊗ J ⊗ Y

1⊗1⊗g−−−−→ B⊗ J∨ ⊗ C. So the component of the
natural transformation �ζ0,1[f , g] at (X, Z) is the composite

C (X,A⊗ Z)
C (1,f⊗1)−−−−−→C (X, B⊗ Y ⊗ Z) �(1⊗η⊗1)−−−−−−→∫ Y1,Y2

C (X, B⊗ Y1)×C (J ⊗ Y1, J ⊗ Y2)×C (Y2, Y ⊗ Z)
∼=−→

∫ Y1
C (X, B⊗ Y1)×C (J ⊗ Y1, J ⊗ Y ⊗ Z)

1×C (1,g⊗1)−−−−−−−→
∫ Y1

C (X, B⊗ Y1)×C (J ⊗ Y1, C⊗ Z)

which, using (19), corresponds to the element

([A⊗ Z
f⊗1−−→ B⊗ Y ⊗ Z, J ⊗ Y ⊗ Z

g⊗1−−→ C⊗ Z])Z
of ∫

Z

∫ Y1
C (A⊗ Z, B⊗ Y1)×C (J ⊗ Y1, J ⊗ C⊗ Z).

The component at the index Z= I is our original [A
f−→ B⊗ Y , J ⊗ Y

g−→ C].
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Corollary 19. The morphism ζ0,n (22) is invertible for all n> 0.

Proof. Using Theorem 18 twice, we obtain isomorphisms
∫ Y∈C

C (U0,V0 ⊗ Y)×C [J∨](J ⊗ Y ,V∂0)

∼=
∫ Y∈C

C (U0,V0 ⊗ Y)× �(V∂0)(J ⊗ Y , I)

∼=
∫ Y ,Y ′∈C

(�V0)(U0, Y)× (�J∨)(Y , Y ′)× �(V∂0)(Y ′, I)
∼= �(V0 ⊗ J∨ ⊗V∂0)(U0, I)∼= �V(U0, I)
∼=C [J∨](U,V)

whose composite is ζ0,n.

Similarly, we have functions �U(I,A)→C [J∨](U,�A) which are the components of a natural
isomorphism

C [J∨]

�†
����

���
���

��
� �� Mod(C ,C )

Ev′
I		���

���
���

����
ζ�,0

[C , Set]op

(27)

where�†W =C [J∨](W,�− ) and Ev′
I
M=M(I,−).

12. C [J∨] fromN[1∨]� Dpr
We use the notation of Remark 14. The (bicategorical) initial object of J is (N, 1) while that of J∨
is (N[1∨], 1). For any (C , J) ∈ J∨, we write J∨ for a choice of right dual for J.

Binary (bicategorical) coproduct in J will be denoted by

(C , J) in1−→ (C +N D , J) in2←− (D ,K).

We point out that, if either J ∈ C or K ∈D has a right dual, then J ∈ C +N D has a right dual.

Proposition 20. For each object (C , J) ∈ J, there is an equivalence

(C [J∨], J)� (N[1∨]+N C , 1)

in J∨.

Proof. Take (X ,K) ∈ J∨. We have pseudonatural equivalences

J∨((N[1∨]+N C , 1), (X ,K))
� J((N[1∨]+N C , 1), (X ,K))
� J((N[1∨], 1), (X ,K))× J((C , J), (X ,K))
� 1× J((C , J), (X ,K))� J((C , J), (X ,K))
� J∨((C [J∨], J), (X ,K)).

The result now follows using the bicategorical Yoneda lemma (Street 1980).
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13. A Comment on Enriched Versions
For brevity we did not pursue the enriched version of our results. In this section, we briefly com-
ment on the K-linear setting, for a commutative ring K. We say that a category is monoidal
K-linear if it comes equipped with a K-linear and a monoidal structure where −⊗− is K-linear
in each variable.

Starting from a K-linear monoidal category C and J ∈C , Section 7 still gives us a monoid
(G0,⊗, I) and graphG = (G0, G1). Thenwe can form the freeK-linear categoryFKG on the graph.
Morphisms in FKG are formal K-linear combinations of morphisms in FG . We then consider
the same relations (i)–(vi) from Section 7 on FKG as we did on FG with only modification that
(i) needs to be extended to

E⊗ (λf +μg)⊗ F ∼ λE⊗ f̄ ⊗ F+μE⊗ ḡ ⊗ F,

for λ,μ ∈K and f , g ∈C (C,D). We then denote again by C [J∨] the corresponding quotient cat-
egory of FKG . That C [J∨] is K-linear monoidal such that the canonical strict monoidal functor
C →C [J∨] (which now is K-linear) satisfies the corresponding universal property follows exactly
as before. Also the proof of the fullness of C →C [J∨] carries over verbatim. The construc-
tions in Section 10 are written such that the enriched version is obtained by trivial replacement
of the category Set. In particular, Mod(C ,C ) can be defined as the category of functors from
C op ×C to the category of K-modules which are K-linear in each variable, or as K-linear func-
tors from C op ⊗K C . Consequently, C →C [J∨] is still fully faithful. Furthermore, the technique
in Section 11 shows for instance that we get an isomorphism of K-modules

∫ X∈C
C [J∨](U∂m, X⊗ J)⊗K C (X⊗Um,V)

∼=−→C [J∨](U,V),

for V ∈ obC and U : [m]→ obC .
Note that the definition of C [J∨] in general actually depends on whether we view C as a

K-linear category or not. For instance, if J has an endomorphism which is not a scalar multiple of
the identity, the set of morphisms I→ J∨ ⊗ J depends on which definition we use.

14. A Comment on Autonomization
We briefly justify our focus on the adjoining of one (right) dual. First, we can define C [∨J] simi-
larly to C [J∨] by adjoining a left dual. In particular, we can set C [∨J]= (C rev[J∨])rev, where−rev

denotes the reverse of a monoidal category, which switches the order of the tensor product. Using
the explicit model of our categories C [J∨] and via the principle of transfinite induction, we can
then construct an autonomous category from any strict monoidal category as a direct limit by
iteratively adjoining left and right duals.

It is instructive to break up the above procedure in two steps. In a first step, we can adjoin all
iterated left and right duals of a given object in a strict monoidal category. Just as in Section 12
one observes that this is actually a pseudopushout with respect to the free autonomous monoidal
category on a single object of Example 3 in Section 6. Now we can construct an autonomous
category from a small strict monoidal category C by iteratively adjoining (at once) all duals of a
given object along a well order on obC .

We denote the category obtained in the above procedure by AutonC . It follows from
Theorem 17 and standard techniques that the canonical monoidal functor C →AutonC is fully
faithful. Furthermore, by construction and Corollary 13, the functor C →AutonC is universal in
the sense that it yields an equivalence between the categories of strong monoidal functors from C
and AutonC to any autonomous monoidal category. All of the above remains true in the K-linear
setting.

https://doi.org/10.1017/S0960129520000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000274


768 K. Coulembier et al.

Acknowledgements. The authors gratefully acknowledge the support of Australian Research Council Discovery Grants
DE170100623 and DP190102432.

References
Auderset, C. (1974). Adjonctions et monades au niveau des 2-catégories. Cahiers de Topologie et Géométrie Différentielle

Catégoriques 15 3–20.
Batanin, M. A. (1998). Monoidal globular categories as a natural environment for the theory of weak n-categories. Advances

in Mathematics 136 39–103.
Bénabou, J. (1973). Les distributeurs, Univ. Catholique de Louvain, Séminaires de Math. Pure, Rapport No. 33.
Day, B. J. and Pastro, C. (2008). Note on Frobenius monoidal functors. The New York Journal of Mathematics 14 733–742.
Delpeuch, A. (2019). Autonomization of monoidal categories, 25 pp. see arXiv:1411.3827v3.
Eilenberg, S. and Kelly, G. M. (1966). Closed categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla,

1965), Springer-Verlag, Berlin, 421–562.
Joyal, A. and Street, R. (1988). Planar diagrams and tensor algebra (handwritten notes); see http://web.science.mq.edu.

au/∼street/PlanarDiags.pdf.
Joyal, A. and Street, R. (1991). The geometry of tensor calculus I. Advances in Mathematics 88 55–112.
Kan, D. M. (1958). Adjoint functors. Transactions of the American Mathematical Society 87 294–329.
Kelly, G. M. (1972). Many-Variable Functorial Calculus I, Lecture Notes in Mathematics, vol. 281, Springer-Verlag, Berlin,

66–105.
Lack, S. and Street, R. (2014). Triangulations, orientals, and skew-monoidal categories.Advances inMathematics 258 351–396.
(Bill) Lawvere, F. W. (2002). Metric spaces, generalized logic and closed categories. Reprints in Theory and Applications of

Categories 1 1–37; originally published as: Rendiconti del Seminario Matematico e Fisico di Milano 53 (1973) 135–166.
Lane, S. M. (1971). Categories for theWorking Mathematician, Graduate Texts inMathematics, vol. 5, Springer-Verlag, Berlin.
Saavedra Rivano, N. (1972). Catégories Tannakiennes, Lecture Notes in Mathematics, vol. 265, Springer-Verlag, Berlin.
Schanuel, S. and Street, R. (1986). The free adjunction. Cahiers de Topologie et Géométrie Différentielle Catégoriques 27 81–83.
Shum, M. C. (1994). Tortile tensor categories. Journal of Pure and Applied Algebra 93 57–110.
Street, R. (1980). Fibrations in bicategories. Cahiers de Topologie et Géométrie Différentielle 21 111–160.
Street, R. (1998). Braids among the groups. Seminarberichte aus dem Fachbereich Mathematik 63 (5) 699–703.
Temperley, N. and Lieb, E. (1971). Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical

problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 322 (1549) 251–280.

Yetter, D. N. (1988). Markov algebras. In: Birman, J. S. and Libgober, A. (eds.) Braids, Contemporary Mathematics, vol. 78,
American Mathematical Society, Providence, Rhode Island, 705–730.

Cite this article: Coulembier K, Street R and van den Bergh M (2021). Freely adjoining monoidal duals. Mathematical
Structures in Computer Science 31, 748–768. https://doi.org/10.1017/S0960129520000274

https://doi.org/10.1017/S0960129520000274 Published online by Cambridge University Press

https://arxiv.org/abs/1411.3827v3
http://web.science.mq.edu.au/~street/PlanarDiags.pdf
http://web.science.mq.edu.au/~street/PlanarDiags.pdf
https://doi.org/10.1017/S0960129520000274
https://doi.org/10.1017/S0960129520000274

	Freely adjoiningmonoidal duals
	Introduction
	Dual Pairs
	Geometric Model of Dpr
	Combinatorial Definition of Dpr
	Relationship to the Free Adjunction
	Interlude on Iterated Duals
	Construction of C[J]
	Universality of C[J]
	Fullness of : CC[J]
	Faithfulness of : CC[J]
	Coends for Some Homs of C[J]
	C[J] from N[1] Dpr
	A Comment on Enriched Versions
	A Comment on Autonomization


