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Space plasmas are known to be out of (local) thermodynamic equilibrium, as observations
show direct or indirect evidences of non-thermal velocity distributions of plasma
particles. Prominent are the anisotropies relative to the magnetic field, anisotropic
temperatures, field-aligned beams or drifting populations, but also, the suprathermal
populations enhancing the high-energy tails of the observed distributions. Drifting
bi-Kappa distribution functions can provide a good representation of these features and
enable for a kinetic fundamental description of the dispersion and stability of these
collision-poor plasmas, where particle–particle collisions are rare but wave–particle
interactions appear to play a dominant role in the dynamics. In the present paper we derive
the full set of components of the dispersion tensor for magnetized plasma populations
modelled by drifting bi-Kappa distributions. A new solver called DIS-K (DIspersion
Solver for Kappa plasmas) is proposed to solve numerically the dispersion relations of
high complexity. The solver is validated by comparing with the damped and unstable
wave solutions obtained with other codes, operating in the limits of drifting Maxwellian
and non-drifting Kappa models. These new theoretical tools enable more realistic
characterizations, both analytical and numerical, of wave fluctuations and instabilities in
complex kinetic configurations measured in-situ in space plasmas.

Key words: plasma waves, plasma instabilities, space plasma physics

1. Introduction

In collision-poor plasmas from the heliosphere, in-situ measurements of the velocity
distributions of particles reveal a variety of non-thermal features, such as suprathermal
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populations and anisotropies with respect to the magnetic field direction, mainly
anisotropic temperatures and field-aligned beams (Maksimovic et al. 2005; Marsch
2006; Wilson et al. 2019a). Physical mechanisms that can maintain these states of
non-equilibrium are mainly triggered by the small-scale (kinetic) wave turbulence and
fluctuations, which are also confirmed by observations (Alexandrova et al. 2013).
If resonant wave–particle interactions can preferentially energize plasma particles
leading to kinetic anisotropies (Isenberg & Vasquez 2019), stochastic acceleration by
plasma turbulence may generate more diffuse suprathermal populations enhancing the
high-energy tails of velocity distributions (Bian et al. 2014). The same wave–particle
interactions are also responsible for the excitation of instabilities (Wilson et al. 2013;
Bowen et al. 2020), or further relaxation of anisotropic particles under the diffusion
effect of the enhanced fluctuations (Bale et al. 2009; Tong et al. 2019). These fluctuations
are mainly powered by the solar outflows inducing large-scale perturbations and wave
turbulence, which are transported by the expanding solar wind, and decay nonlinearly
toward smaller (kinetic) scales where a perpetual exchange of energy between plasma
waves and particles ultimately takes place (Leamon et al. 1999; Verscharen, Klein &
Maruca 2019a, and references therein). Representative are not only the mechanisms of
resonant dissipation (damping) of waves leading to the heating of particles, but also the
instabilities that can transfer (free) energy from anisotropic and suprathermal particles to
waves and fluctuations (Lazar et al. 2019; Shaaban et al. 2019; Verscharen et al. 2019b;
Shaaban, Lazar & Schlickeiser 2021b).

Locally, small-scale fluctuations can be markedly enhanced by the kinetic instabilities,
sometimes rather than a turbulent cascade (Gary et al. 2016; Tong et al. 2019; Woodham
et al. 2019). However, in the absence of energetic events (e.g. flares or coronal mass
ejections) the wave fluctuations measured in-situ in space plasmas have wide bandwidths
and small amplitudes, such that, their properties and effects on particles can be addressed
in the frame of linear and quasilinear (known as QL) theories (Gary 1993; Gary et al. 2016;
Yoon 2017, 2019). However, if the fluctuations are a superposition of nonlinear structures
or fluid-like turbulent eddies, then linear and quasilinear theory do not apply. Revealing
these linear and quasilinear properties of waves and instabilities in the solar wind, already
perceived as a truly natural laboratory, has therefore acquired a special motivation. To
do that, we need to derive the dispersion and stability relations, and, implicitly, the
dielectric tensor of the plasma system relying directly on the shape of underlying velocity
distributions (Stix 1992). The observed velocity distributions of plasma particles combine
kinetic anisotropies, relative to the magnetic field direction, e.g. anisotropic temperatures
(Kasper et al. 2003; Štverák et al. 2008) or field aligned beams (Pilipp et al. 1987;
Marsch 2006), and suprathermal tails well reproduced by the Kappa distribution functions
(Pierrard & Lazar 2010; Lazar et al. 2017). The picture can be clarified by pointing out
the details in the velocity distributions. For instance, the electrons show a low-energy
core, well reproduced by a bi-Maxwellian distribution function, a suprathermal halo and
an electron strahl, both of them well described by bi-Kappa distribution functions with
relative drifts parallel to the magnetic field (Maksimovic et al. 2005; Lazar et al. 2017;
Wilson et al. 2019a,b). The relative drift between core and halo is in general modest
(Wilson et al. 2019a) allowing the incorporation of these two components by another
bi-Kappa, which is nearly bi-Maxwellian at low energies but decreases as a power law at
high energies (Vasyliunas 1968; Lazar et al. 2017). It is thus obvious that Kappa models,
including anisotropic variants like bi-Kappa, with or without relative drifts, are widely
invoked for their success in modelling the observed distributions, not only for electrons,
but also for protons and heavier ions (Collier et al. 1996; Pierrard & Lazar 2010; Mason &
Gloeckler 2012).
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Despite these observational evidences, in the dispersion and stability analysis the
velocity distributions are still reduced to idealized bi-Maxwellian representations
(Verscharen et al. 2019b; López et al. 2020; Shaaban & Lazar 2020; Shaaban et al. 2021a),
for which the dielectric tensor is already explicitly derived (Stix 1992). In the context of
drifting bi-Kappa plasmas, the analysis so far is limited only to the propagation parallel
to the magnetic field (Shaaban, Lazar & Poedts 2018; Shaaban et al. 2020), because the
complete expression of the dielectric tensor, and, implicitly, the general dispersion relation
for an arbitrary direction of propagation, are not trivial, but rather complicated, and have
not been derived yet. Therefore, numerical solvers capable of resolving the full spectrum
of waves and instabilities of this configuration do not yet exist. In the present paper we
provide the full expression of the dielectric tensor and general dispersion relation for
magnetized plasma particles described by drifting bi-Kappa distribution functions. Thus
it becomes possible for an advanced analysis to characterize, in a more realistic manner,
the dispersion and stability of plasma populations revealed by the in-situ observations. For
instance, the suprathermal halo, and strahl electrons carrying the main heat flux in the
solar wind (Lazar et al. 2020a), whose evolution with increasing the heliospheric distance
(Hammond et al. 1996; Maksimovic et al. 2005) are expected to be controlled by the
self-generated instabilities (Verscharen et al. 2019b; Jeong et al. 2020; López et al. 2020;
Micera et al. 2020).

Also reported here is a new generalized Dispersion Solver for Kappa-distributed
plasmas (abbreviated DIS-K), which implements the new dispersion tensor and
numerically resolves the dispersion and (in)stability properties for all directions of
propagation with respect to the magnetic field. Chronologically speaking, the first
numerical solvers were built for Maxwellian plasmas, such as WHAMP (Roennmark 1982)
and PLADAWAN (Viñas, Wong & Klimas 2000), or the more recent variants, PLUME
(Klein & Howes 2015) and NDHS (Verscharen & Chandran 2018). Progress has also been
made for other models, such as the Kappa distribution, which introduces new analytical
and numerical challenges. Of major importance were the detailed studies of the new
dispersion function for Kappa distributions (Summers & Thorne 1991; Mace & Hellberg
1995), on which most of the codes developed later are based. Initially, efforts were
dedicated to unmagnetized plasmas or reduced configurations in magnetized plasmas, such
as electrostatic approximation or parallel propagation (Hellberg & Mace 2002; Lazar &
Poedts 2009; Viñas et al. 2017). Earlier approaches to describe perpendicular and oblique
propagation (Summers, Xue & Thorne 1994; Cattaert, Hellberg & Mace 2007; Basu
2009) have more recently been complemented by rigorous mathematical calculations of
the general dielectric tensor providing compact and closed forms of its components (Liu
et al. 2014; Gaelzer & Ziebell 2016; Gaelzer, Ziebell & Meneses 2016; Kim et al. 2017).
A relatively recent numerical implementation of the dielectric tensor for non-drifting
bi-Kappa plasmas is DHSARK (Astfalk, Görler & Jenko 2015), a pioneer solver for
studying kinetic electromagnetic instabilities (Astfalk 2018). Other similar codes (not
named yet) were also developed in the last few years, in order to extend the spectral analysis
in bi-Kappa plasmas (Lazar et al. 2019; López et al. 2019), and pave the way for a more
elaborated tool, as our new solver DIS-K. In this paper we present the first numerical
results obtained with this solver, which is capable of resolving more complex dispersion
relations for plasma populations with drifting bi-Kappa populations, and the full spectrum
of stable or unstable modes, of any nature, e.g. electrostatic or electromagnetic, periodic
or aperiodic.

Our paper is organized as follows. In § 2 we start by introducing the general (linear)
dispersion tensor, and the drifting bi-Kappa parameterization for a plasma of electrons
and ions. Explicit expressions of the newly derived components of the dispersion tensor are
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presented in § 3. We also show the agreement with different limit cases, e.g. Maxwellian,
and non-drifting bi-Kappa, from previous studies. In § 4 we solve numerically the
dispersion relation for some illustrative cases specific to these limits, which allows us
to compare with the previous results and test our numerical solver. Finally, our results are
summarized in § 5.

2. Theoretical formalism

Space plasmas are subject to multiple sources of inhomogeneities and temporal
variations, such as wave turbulence, the interaction of fast and slow streams, or even
the solar wind expansion. However, to describe the small-scale wave fluctuations and
instabilities we can assume these plasmas are sufficiently homogeneous, especially
because linear and quasilinear theories seem to explain quite well the kinetic properties of
plasma particles revealed by in-situ observations (Kasper et al. 2003; Štverák et al. 2008;
Verscharen et al. 2019a). These are waves and instabilities which mainly depend on the
nature of particle velocity distributions, and their analysis requires a kinetic approach.

2.1. General dispersion relation
Without loss of generality we assume Cartesian coordinates (x, y, z) with the z axis parallel
to the magnetic field B, and with the wavevector k in the (x–z) plane, such that

k = k⊥ x̂ + k‖ ẑ, (2.1)

where ‖,⊥ are defined with respect to the magnetic field direction. From the
Vlasov–Maxwell equations one can derive the general expression of the dispersion relation
(Stix 1992)

Λ · E = 0 (2.2)

in terms of the electric field of the wave fluctuation E(k, ω) and the dispersion tensor
Λ. For arbitrary (but still gyrotropic) velocity distribution functions Fa(v⊥, v‖) of plasma
species of sort a (e.g. a = e, p, i for electrons, protons and ions, respectively) the
components of the dispersion read as follows:

Λij(k, ω) = δij − c2k2

ω2

(
δij − kikj

k2

)

+
∑

a

ω2
pa

ω2

∫
dv

∞∑
n=−∞

Vn
i Vn∗

j

ω − k‖v‖−nΩa

(
ω − k‖v‖

v⊥

∂Fa

∂v⊥
+ k‖

∂Fa

∂v‖

)

+ B̂iB̂j

∑
a

ω2
pa

ω2

∫
dv v‖

(
∂Fa

∂v‖
− v‖

v⊥

∂Fa

∂v⊥

)
. (2.3)

Here

V n = v⊥
nJn(b)

b
ê1 − iv⊥J′

n(b)ê2 + v‖Jn(b)ê3, B̂ = B/B = ê3, b = k⊥v⊥
Ωa

, (2.4a–c)

where Jn(b) is the Bessel function with J′
n(b) its first derivative, i is the imaginary unit,

c is the speed of light, ωpa = √
4πnaq2

a/ma is the plasma frequency, Ωa = qaB0/(mac)
the gyrofrequency, qa the charge, ma the mass and na the number density of species a,
respectively.
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2.2. Drifting bi-Kappa distribution
For magnetized plasma particles in space environments, realistic models able to reproduce
the main departures from thermal equilibrium, i.e. anisotropies and suprathermal
populations, are drifting bi-Kappa velocity distribution functions

Fa(v⊥, v‖) = 1
π3/2

1
α2

⊥aα‖a

Γ (κa + 1)

κ
3/2
a Γ (κa − 1/2)

[
1 + (v‖−Ua)

2

κaα
2
‖a

+ v2
⊥

κaα
2
⊥a

]−κa−1

, (2.5)

where κa is the power law index, Γ (x) is the Gamma function, Ua is the drift speed, and
the parameters α‖,⊥, known as the most probable speed (Vasyliunas 1968),

α‖a =
(

2kBT‖a

ma

)1/2

, α⊥a =
(

2kBT⊥a

ma

)1/2

, (2.6a,b)

correspond to the thermal speeds of the Maxwellian limit that approximately describe
the low-energy core out of the Kappa distribution (Lazar, Poedts & Fichtner 2015; Lazar,
Fichtner & Yoon 2016). Here kB is the Boltzmann’s constant. The thermal speeds are
related to the kinetic temperature through the second-order moment of the distribution,

T (κ)

‖a =
∫

dv(v‖−Ua)
2Fa(v⊥, v‖) = ma

2kB

2κa

2κa − 3
α2

‖a, (2.7)

T (κ)

⊥a =
∫

dv v2
⊥Fa(v⊥, v‖) = ma

2kB

2κa

2κa − 3
α2

⊥a, (2.8)

requiring κa > 3/2. These kinetic temperatures are greater than the corresponding
temperatures of the Maxwellian limit, introduced in (2.6a,b), through T‖,⊥ =
limκ→∞ T (κ)

‖,⊥ < T (κ)

‖,⊥.

3. Dispersion tensor

We substitute the drifting bi-Kappa distribution function (2.5) in the general expression
(2.3) of the dispersion tensor, and after integration obtain for each element of the
dispersion tensor the following expressions:

Λij =
⎛
⎝ D11 iD12 D13

−iD12 D22 iD23
D13 −iD23 D33

⎞
⎠

ij

, (3.1)

D11 = 1 − c2k2
‖

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

n2

λa

[
ξaZ(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂

∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a )

]
, (3.2)

D22 = 1 − c2k2

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

[
ξaW(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂

∂ζ n
a

W(1,1)

n,k (λa, ζ
n
a )

]
, (3.3)

D12 =
∑

a

ω2
pa

ω2

∞∑
n=−∞

n
[
ξa

∂

∂λa
Z(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂2

∂λa∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a )

]
, (3.4)

D13 = c2k⊥k‖
ω2

+ 2
∑

a

qa

|qa|
ω2

pa

ω2

√
T‖a

T⊥a

Ua

α‖a

∞∑
n=−∞

n√
2λa

ξaZ(1,2)
n,κ (λa, ζ

n
a )
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−
∑

a

qa

|qa|
ω2

pa

ω2

√
T‖a

T⊥a

∞∑
n=−∞

n√
2λa

[
ξa − Aa

(
ζ n

a + Ua

α‖a

)]
∂

∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ), (3.5)

D23 =
∑

a

ω2
pa

ω2

|qa|
qa

√
T‖a

T⊥a

√
λa

2

∞∑
n=−∞

[
ξa − Aa

(
ζ n

a + Ua

α‖a

)]
∂2

∂λa∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a )

−2
∑

a

ω2
pa

ω2

|qa|
qa

√
T‖a

T⊥a

√
λa

2
Ua

α‖a

∞∑
n=−∞

ξa
∂

∂λa
Z(1,2)

n,κ (λa, ζ
n
a ), (3.6)

D33 = 1 − c2k2
⊥

ω2
+ 2

∑
a

ω2
pa

ω2

T‖a

T⊥a

(
1 − 1

2κa

)
U2

a

α2
‖a

+ 2
∑

a

ω2
pa

ω2

T‖a

T⊥a

U2
a

α2
‖a

∞∑
n=−∞

ξaZ(1,2)
n,κ (λa, ζ

n
a )

−
∑

a

ω2
pa

ω2

T‖a

T⊥a

∞∑
n=−∞

[
(ξa − Aaζ

n
a )

(
ζ n

a + 2
Ua

α‖a

)
− Aa

U2
a

α2
‖a

]
∂

∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ). (3.7)

Here we have used the following definitions (Gaelzer & Ziebell 2016; Gaelzer et al. 2016;
Kim et al. 2017):

Z(α,β)
n,κ (λ, ξ) = 2

∫ ∞

0
dx

xJ2
n(x

√
2λ)

(1 + x2/κ)κ+α+β−1
Z(α,β)

κ

(
ξ√

1 + x2/κ

)
, (3.8)

Y(α,β)
n,κ (λ, ξ) = 2

λ

∫ ∞

0
dx

x3Jn−1(x
√

2λ)Jn+1(x
√

2λ)
(1 + x2/κ)κ+α+β−1

Z(α,β)
κ

(
ξ√

1 + x2/κ

)
, (3.9)

W(α,β)
n,κ (λ, ξ) = n2

λ
Z(α,β)

n,κ (λ, ξ) − 2λY(α,β)
n,κ (λ, ξ), (3.10)

Z(α,β)
κ (ξ) = 1

π1/2κβ+1/2

Γ (κ + α + β − 1)

Γ (κ + α − 3/2)

∫ ∞

−∞
ds

(1 + s2/κ)−(κ+α+β−1)

s − ξ
, (3.11)

λa = k2
⊥α2

⊥a

2Ω2
a

, (3.12)

ξa = ω − k‖Ua

k‖α‖a
, (3.13)

ζ n
a = ω − k‖Ua − nΩa

k‖α‖a
, (3.14)

Aa = 1 − T⊥a

T‖a
. (3.15)

A list of the specific expressions required in (3.2)–(3.7) are provided in Appendices A
and B.

From (2.2), the dispersion relation for non-trivial solutions (E 	= 0) requires the
determinant of the dispersion tensor to satisfy det{Λ} = 0, which can be written explicitly
as

0 = D11D22D33 − D11D2
23 − D22D2

13 − D33D2
12 − 2D12D13D23. (3.16)

In order to optimize the performance of the dispersion solver, we can further simplify the
expressions of the dispersion tensor components in (3.2)–(3.7), to minimize the number
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of integrals that need to be performed. These components can be written as follows:

D11 = 1 − c2k2
‖

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

n2

λa
I11(λa, ζ

n
a ), (3.17)

D22 = 1 − c2k2

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

I22(λa, ζ
n
a ), (3.18)

D12 =
∑

a

ω2
pa

ω2

∞∑
n=−∞

nI12(λa, ζ
n
a ), (3.19)

D13 = c2k⊥k‖
ω2

+
∑

a

qa

|qa|
ω2

pa

ω2

√
T‖a

T⊥a

∞∑
n=−∞

n√
2λa

I13(λa, ζ
n
a ), (3.20)

D23 =
∑

a

|qa|
qa

ω2
pa

ω2

√
T‖a

T⊥a

√
λa

2

∞∑
n=−∞

I23(λa, ζ
n
a ), (3.21)

D33 = 1 − c2k2
⊥

ω2
+ 2

∑
a

ω2
pa

ω2

T‖a

T⊥a

(
1 − 1

2κa

)
U2

a

α2
‖a

+ 2
∑

a

ω2
pa

ω2

T‖a

T⊥a

∞∑
n=−∞

I33(λa, ζ
n
a ).

(3.22)

Now, each component of the dispersion tensor depends on a single integral of the form

I11(λa, ζ
n
a ) =

∫ ∞

0
dx

2xJ2
n(x

√
2λa)

(1 + x2/κa)κa+3/2
Hn

a(x), (3.23)

I22(λa, ζ
n
a ) =

∫ ∞

0
dx

2x
(

n2

λa
J2

n

(
x
√

2λa
)− 2x2Jn−1

(
x
√

2λa
)

Jn+1
(
x
√

2λa
))

(1 + x2/κa)κ+3/2
Hn

a(x),

(3.24)

I12(λa, ζ
n
a ) =

√
2
λa

∫ ∞

0
dx

x2Jn
(
x
√

2λa
) [

Jn−1
(
x
√

2λa
)− Jn+1

(
x
√

2λa
)]

(1 + x2/κ)κ+3/2
Hn

a(x), (3.25)

I13(λa, ζ
n
a ) = 4

∫ ∞

0
dx

xJ2
n(x

√
2λa)

(1 + x2/κa)κa+3/2
Kn

a(x), (3.26)

I23(λa, ζ
n
a ) = − 4√

2λa

∫ ∞

0
dx

x2Jn
(
x
√

2λa
) [

Jn−1
(
x
√

2λa
)− Jn+1

(
x
√

2λa
)]

(1 + x2/κa)κa+3/2
Kn

a(x),

(3.27)

I33(λa, ζ
n
a ) = 2

∫ ∞

0
dx

xJ2
n(x

√
2λa)

(1 + x2/κa)κa+3/2
Qn

a(x), (3.28)

with the following functions:

Hn
a(x) = −

(
1 − 1

4κ2
a

)
Aa + (ξa − Aaζ

n
a )√

1 + x2/κa

Z(1,2)
κ

(
ζ n

a√
1 + x2/κa

)
, (3.29)
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Kn
a(x) =

(
1 − 1

4κ2
a

)
ξa +

(
ζ n

a + Ua

α‖a

)
Hn

a(x), (3.30)

Qn
a(x) = ξa

(
1 − 1

4κ2
a

)(
ζ n

a + 2Ua

α‖a

)
+
(

ζ n
a + Ua

α‖a

)2

Hn
a(x). (3.31)

In this way, we only need to implement the modified plasma dispersion function Z(1,2)
κ . This

function can be directly evaluated using (B7) for integer values of κ , or (B1) for real values
of κ . Integrals in (3.23)–(3.28) are evaluated using an adaptive numerical quadrature based
in the routine QUADPACK (Piessens et al. 1983).

3.1. Maxwellian limit
In the limit κa → ∞ we recover the dispersion tensor for a drifting bi-Maxwellian plasma
(Stix 1992), by using the following limits:

lim
κa→∞

Z(α,β)

n,k (λa, ζ
n
a ) = Λn(λa)Z(ζ n

a ), (3.32)

lim
κa→∞

Y(α,β)

n,k (λa, ζ
n
a ) = Λ′

n(λa)Z(ζ n
a ), (3.33)

lim
κa→∞

(
1 + y2/κa

)−(κ+α) = e−y2
. (3.34)

Here Λn(x) = In(x)e−x, with In(x) the modified Bessel function, and Z(x) is the plasma
dispersion function for Maxwellian distributed plasmas (Fried & Conte 1961). Thus, the
elements of the dispersion tensor reduce to

D11 = 1 − c2k2
‖

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

n2

λa
Λn(λa)An, (3.35)

D22 = 1 − c2k2

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

(
n2

λa
Λn(λa) − 2λaΛ

′
n(λa)

)
An, (3.36)

D12 =
∑

a

ω2
pa

ω2

∞∑
n=−∞

nΛn(λa)An, (3.37)

D13 = c2k⊥k‖
ω2

+ 2
∑

a

qa

|qa|
ω2

pa

ω2

√
T‖a

T⊥a

∞∑
n=−∞

n√
2λa

Λn(λa)Bn, (3.38)

D23 = −2
∑

a

ω2
pa

ω2

|qa|
qa

√
T‖a

T⊥a

√
λa

2

∞∑
n=−∞

Λ′
n(λa)Bn, (3.39)

D33 = 1 − c2k2
⊥

ω2
+ 2

∑
a

ω2
pa

ω2

T‖a

T⊥a

Ua

α‖a

(
Ua

α‖a
+ 2ξa

)
+ 2

∑
a

ω2
pa

ω2

T‖a

T⊥a

∞∑
n=−∞

Λn(λa)Cn,

(3.40)

An = −Aa + (ξa − Aaζ
n
a )Z(ζ n

a ), (3.41)

Bn = ξa +
(

ζ n
a + Ua

α‖a

)
An, (3.42)
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Cn = ξaζ
n
a +

(
ζ n

a + Ua

α‖a

)2

An. (3.43)

These expressions are equivalent to those provided in Stix (1992, pp. 258–260).

3.2. Non-drifting bi-Kappa
For components (3.2)–(3.7) of the dielectric tensor, in the non-drifting limit Ua = 0 we
recover the results for bi-Kappa plasmas (Gaelzer et al. 2016; Kim et al. 2017),

D11 = 1 − c2k2
‖

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

n2

λa

[
ξaZ(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂

∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a )

]
, (3.44)

D22 = 1 − c2k2

ω2
+
∑

a

ω2
pa

ω2

∞∑
n=−∞

[
ξaW(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂

∂ζ n
a

W(1,1)

n,k (λa, ζ
n
a )

]
, (3.45)

D12 =
∑

a

ω2
pa

ω2

∞∑
n=−∞

n
[
ξa

∂

∂λa
Z(1,2)

n,κ (λa, ζ
n
a ) + Aa

2
∂2

∂λa∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a )

]
, (3.46)

D13 = c2k⊥k‖
ω2

−
∑

a

qa

|qa|
ω2

pa

ω2

√
T‖a

T⊥a

∞∑
n=−∞

n√
2λa

(
ξa − Aaζ

n
a

) ∂

∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ), (3.47)

D23 =
∑

a

ω2
pa

ω2

|qa|
qa

√
T‖a

T⊥a

√
λa

2

∞∑
n=−∞

(
ξa − Aaζ

n
a

) ∂2

∂λa∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ), (3.48)

D33 = 1 − c2k2
⊥

ω2
−
∑

a

ω2
pa

ω2

T‖a

T⊥a

∞∑
n=−∞

ζ n
a (ξa − Aaζ

n
a )

∂

∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ). (3.49)

4. Numerical results

In this section we present the results obtained with our new solver DIS-K, which
implements the new dispersion tensor for plasmas with drifting bi-Kappa distributions.
This solver can also be used for any of the bi-Maxwellian or non-drifting limits discussed
above.

Here we show a number of illustrative examples of stable and unstable solutions
obtained with the new solver DIS-K. As this is the first reported solver for drifting
bi-Kappa plasmas, for its testing we can choose only from the limit configurations
discussed above, and which can also be resolved by other solvers. As we know, DHSARK
(Astfalk et al. 2015) is programmed to derive the unstable electromagnetic solutions of
anisotropic plasma populations described by bi-Kappa distributions (Astfalk 2018). We
will use the aperiodic electron firehose instability, as described in Shaaban et al. (2019)
and López et al. (2019), as a first test case. We consider an anisotropic electron distribution
with T⊥e/T‖e = 0.5, and with β‖e = 8πneT‖e/B2

0 = 4.0, ωpe/Ωe = 100, θ = 50◦, κe = 4,
and protons are modelled using an isotropic Maxwellian distribution with βp = 4.0.
Figure 1 displays the unstable solutions obtained solving the set of equations presented
in § 3.2. Panel (a) shows the real part of the normalized frequency, ωr/Ωe versus the
normalized wave number ck/ωpe. As expected from the aperiodic nature of this instability,
the wave frequency is zero for the entire range of unstable modes. Panel (b) of this figure
shows the growth rate, γ /Ωe versus ck/ωpe, which coincides with that obtained using
DSHARK in Shaaban et al. (2019), plotted here with red dots. The solutions of both codes
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(a) (b)

FIGURE 1. Unstable solutions of the aperiodic electron firehose instability at θ = 50◦. In black
are the solutions obtained with the new code, DIS-K, while red dots are obtained with DSHARK.
Panel (a) shows the normalized (real) frequency, ωr/Ωe versus the normalized wavenumber
ck/ωpe, and panel (b) shows the normalized growth rate, γ /Ωe versus ck/ωpe.

show a perfect match for this case, validating our new solver DIS-K in the non-drifting
bi-Kappa limit, Ua = 0, discussed in § 3.2.

We now discuss damped solutions in order to test the analytical continuation of our
modified plasma dispersion function. Expression in (B1) for arbitrary κ or (B7) for integer
κ , already satisfy the Landau prescription, being analytically continuous through the entire
complex frequency plane (Summers & Thorne 1991; Mace & Hellberg 1995; Gaelzer &
Ziebell 2016). In this case we study a damped kinetic Alfvén wave (KAW) propagating at
highly oblique angles, θ = 88◦. We use βe = βp = 2.0, vA/c = 2.33 × 10−4 (or ωpe/Ωce =
100), where vA = B0/

√
4πnpmp is the Alfvén speed. In figure 2 we compare our results

with those obtained with another solver, NHDS (Verscharen & Chandran 2018) providing
solutions in the Maxwellian limit. Blue dots correspond to the solution obtained with
NHDS, while the black line is our solution in the Maxwellian limit, κp = ∞. We have
also included solutions for κp = 10 (green dot–dashed lines) and κp = 2 (red dotted lines),
to show the behaviour of our code in the Kappa regime. In the Maxwellian limit both
codes show a perfect agreement. For finite but large values of κp the solution is similar
to the Maxwellian case, but differences start appearing at large wavenumbers. Overall,
suprathermal particles reduce the damping of KAWs at large wavenumbers (Kim et al.
2018).

In the following, we test the drifting case. Now, DSHARK is not programmed to
solve the dispersion relation for drifting bi-Kappa distributions, and the NHDS solver
is only foreseen to operate with drifting bi-Maxwellian distributions, as described in
§ 3.1. Therefore, we have to settle for this limiting case. For this comparison we choose
conditions for the oblique whistler heat-flux instability, as described in López et al.
(2020). We consider a plasma composed of two electron populations, a dense central core
(subscript c) and a tenuous suprathermal beam (subscript b), with a relative drift along the
background magnetic field, with the following properties: nc/n0 = 0.95, nb/n0 = 0.05 are
the core and beam normalized number density, respectively, T‖b/T‖c = 4.0, T⊥j/T‖j = 1.0,
ωpe/Ωe = 100, βc = 8πn0Tc/B2

0 = 2.0 and Ub/c = 0.035 (or Ub/vA = 150). Figure 3
shows the dispersion relation obtained for θ = 60◦. This time we plot the solution obtained
using the NHDS solver as a blue dots. In the range of wavenumbers resolved we show both
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(a) (b)

FIGURE 2. The damped KAW solutions at θ = 88◦: blue dots are obtained with NHDS; those
obtained with the present code, DIS-K, are black lines for κp = ∞ (Maxwellian limit); green
dot–dashed line for κp = 10; red dotted line for κp = 2. Panel (a) shows ωr/Ωi versus ck/ωpi
and panel (b) γ /Ωi versus ck/ωpi.

(a) (b)

FIGURE 3. The oblique whistler heat-flux instability at θ = 60◦: black lines are solutions
obtained with the present code, DIS-K; blue dots correspond to NHDS. Panel (a) shows ωr/Ωi
versus ck/ωpi and panel (b) γ /Ωi versus ck/ωpi.

damped and unstable modes. We can clearly observe the agreement between both codes,
in the real and imaginary parts of the frequency, for damped and unstable modes.

Finally, assuming the same plasma conditions, we explore the same instability under the
influence of suprathermal electrons, showing the results obtained with DIS-K for drifting
bi-Kappa electrons. Figure 4 shows, comparatively, three different cases. For comparison,
panel (a) shows the solution for drifting Maxwellian electrons, as in figure 3, but this
time for the entire range of angles of propagation. Panel (b) displays a new case, when
core electrons are modelled by a Kappa distribution with κc = 2, while the beam remains
Maxwellian (κb = ∞). Panel (c) shows the case when both, core and beam populations are
modelled by a Kappa distribution with the same kappa index, κc = κb = 2. We observe
that suprathermal electrons suppress the oblique whistler heat-flux instability. When the
core is Kappa distributed, the range of unstable angles and wavenumbers is reduced, as
well as the level of the unstable modes. The suppressing effect is even more prominent

https://doi.org/10.1017/S0022377821000593 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000593


12 R.A. López, S.M. Shaaban and M. Lazar

(a) (b) (c)

FIGURE 4. The oblique whistler heat-flux growth rates for all angles of propagation, and for
various core-beam configurations described in the text.

when both populations are Kappa distributed, reaching lower growth rates and shifting
to lower angles. We can identify some possible explanations of these inhibiting effects,
either in the core damping, which counteracts the strahl-driving of the oblique whistler
instability, but also by a change in resonance conditions (populations involved, etc.), in this
case, implying both Landau and cyclotron resonances. On the other hand, the enhanced
suprathermal tails reduce the effective excess of free energy in parallel (drifting) direction
(with increasing the tails the core and beam electrons tend to merge and combine with
each other, reducing the relative drift between them). Indeed, in the last case, we also
obtain unstable modes in parallel and quasi-parallel (low angles) directions, specific to
lower drifts.

5. Conclusions

We have presented the full set of components of the dielectric tensor for magnetized
plasma populations modelled by drifting bi-Kappa distributions. This extended dielectric
tensor has been implemented in a new dispersion solver, named DIS-K, and capable
of resolving the full spectrum of stable and unstable modes of these complex plasma
distributions. In order to validate our results and our code, we carried out illustrative cases
enabling comparison with limiting conditions, e.g. non-drifting bi-Kappa and drifting
bi-Maxwellian plasmas, resolved by the existing solvers. For comparison, the the aperiodic
electron firehose solutions driven by (non-drifting) bi-Kappa electrons are obtained with
DSHARK, and we found a perfect agreement for both the wavenumber dispersion of
the wave frequency and growth rate. The same remarkable agreement has been obtained
with the stable and unstable whistler-like modes triggered by drifting bi-Maxwellian
electrons populations and described by another solver, NHDS. We have also shown the
capabilities of our code to handle damped solutions, as shown for the KAW dispersion
curves, showing a perfect agreement when compared with NHDS in the Maxwellian
limit. Further, we have explored the influence of suprathermal electrons on the oblique
whistler heat-flux instability, showing that the instability is inhibited, i.e. growth rates are
diminished (and the range of unstable wavenumbers is reduced), when core and beam
electrons are modelled by drifting bi-Kappa distributions. We plan make this new code,
DIS-K, publicly available in the near future.
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These are new theoretical and numerical tools, which extend and improve the existing
capabilities of analysis of the wave fluctuations, stable or unstable modes, specific
to the complex particles configurations unveiled by the in-situ observations in space
plasmas. Thus, applications can be considered in the context of solar wind and planetary
environments, where all plasma species (electrons and ions) exhibit multiple drifting
components, namely, core, halo and strahl, populated by suprathermals and with intrinsic
anisotropies (i.e. anisotropic temperatures).
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Appendix A. Summary of necessary functions

Z(1,2)
n,κ (λa, ζ

n
a ) = 2

∫ ∞

0
dx

xJ2
n(x

√
2λa)

(1 + x2/κ)κ+2
Z(1,2)

κ

(
ζ n

a√
1 + x2/κ

)
, (A1)

∂

∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a ) = 2

∫ ∞

0
dx

xJ2
n(x

√
2λa)

(1 + x2/κ)κ+3/2
Z′(1,1)

κ

(
ζ n

a√
1 + x2/κ

)
, (A2)

Y(1,2)
n,κ (λa, ζ

n
a ) = 2

λa

∫ ∞

0
dx

x3Jn−1(x
√

2λa)Jn+1(x
√

2λa)

(1 + x2/κ)κ+2
Z(1,2)

κ

(
ζ n

a√
1 + x2/κ

)
, (A3)

W(1,2)
n,κ (λa, ζ

n
a ) = n2

λa
Z(1,2)

n,κ (λa, ζ
n
a ) − 2λaY(1,2)

n,κ (λa, ζ
n
a ), (A4)

∂

∂ζ n
a

Y(1,1)

n,k (λa, ζ
n
a ) = 2

λa

∫ ∞

0
dx

x3Jn−1(x
√

2λa)Jn+1(x
√

2λa)

(1 + x2/κa)κa+3/2
Z′(1,1)

κ

(
ζ n

a√
1 + x2/κ

)
, (A5)

∂

∂ζ n
a

W(1,1)

n,k (λa, ζ
n
a ) = n2

λa

∂

∂ζ n
a

Z(1,1)
n,κ (λa, ζ

n
a ) − 2λa

∂

∂ζ n
a

Y(1,1)
n,κ (λa, ζ

n
a ), (A6)

∂

∂λa
Z(1,2)

n,κ (λ, ζ n
a ) = 2√

2λa

∫ ∞

0
dx

x2Jn(x
√

2λa)[Jn−1(x
√

2λa) − Jn+1(x
√

2λa)]
(1 + x2/κ)κ+2

× Z(1,2)
κ

(
ζ n

a√
1 + x2/κ

)
, (A7)
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∂2

∂λ∂ζ n
a

Z(1,1)

n,k (λa, ζ
n
a ) = 2√

2λa

∫ ∞

0
dx

x2Jn(x
√

2λa)[Jn−1(x
√

2λa) − Jn+1(x
√

2λa)]
(1 + x2/κ)κ+3/2

× Z′(1,1)

κ

(
ζ n

a√
1 + x2/κ

)
. (A8)

Appendix B. Some useful functions

The modified Z(α,β)
κ function can be calculated in terms of the hypergeometric function

as (Gaelzer & Ziebell 2016)

Z(α,β)
κ (ζ n

a ) = i
κβ+1

Γ (κ + α + β − 1)Γ (κ + α + β − 1/2)

Γ (κ)Γ (κ + α − 3/2)

× 2F1

[
1, 2(κ + α + β − 1); λ;

(
i
√

κ − ζ n
a

2i
√

κ

)]
. (B1)

Then, using
d
dz 2F1[a, b; c; z] = ab

c 2F1[a + 1, b + 1; c + 1; z], (B2)

we have

∂

∂ζ n
a

Z(α,β)
κ (ζ n

a ) = − 1
κβ+1

Γ (κ + α + β)Γ (κ + α + β − 1/2)

Γ (κ + α + β + 1)Γ (κ + α − 3/2)

× 2F1

[
2, 2(κ + α + β − 1) + 1; κ + α + β + 1;

(
i
√

κ − ζ n
a

2i
√

κ

)]
.

(B3)

Also, a useful expression is obtained from Gaelzer & Ziebell (2016):

Z′(α,β)

κ (ζ n
a ) = −2

[
Γ (κ + α + β − 1/2)

κβ+1Γ (κ + α − 3/2)
+ ζ n

a Z(α,β+1)
κ (ζ n

a )

]
. (B4)

We can obtain a simpler expression if κ is assumed integer, as in Summers & Thorne
(1991). Then we have

Z(α,β)
κ (ξ) = i

22(1−λ)κβ+1/2

Γ (λ− 1)2Γ (λ− 1/2)

Γ (κ + α − 3/2)Γ [2(λ− 1)]

(
κ + ξ 2

κ

)1−λ

×
{

1 −
(

i
√

κ + ξ

2i
√

κ

)λ−1 1
Γ (λ− 1)

λ−2∑
�=0

Γ [� + λ− 1]
Γ (� + 1)

(
i
√

κ − ξ

2i
√

κ

)�
}

. (B5)

Let us take a look to some particular values:

Z(1,1)
κ (ξ) = 2iπ1/2

κ3/2

κ!
Γ (κ − 1/2)

(
κ + ξ 2

κ

)−κ−1

{
1 − 1

κ!

(
i
√

κ + ξ

2i
√

κ

)κ+1 κ∑
�=0

(� + κ)!
�!

(
i
√

κ − ξ

2i
√

κ

)�
}

. (B6)
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Also, we are also interested in

Z(1,2)
κ (ξ) = 2iπ1/2

κ5/2

(κ + 1)!
Γ (κ − 1/2)

(
κ + ξ 2

κ

)−κ−2

{
1 − 1

(κ + 1)!

(
i
√

κ + ξ

2i
√

κ

)κ+2 κ+1∑
�=0

(� + κ + 1)!
�!

(
i
√

κ − ξ

2i
√

κ

)�
}

. (B7)

For the derivative, we have

Z′(1,1)

κ (ζ n
a ) = − iζ n

a

κ5/2

Γ (κ + 2)2Γ (κ + 3/2)

Γ (κ − 1/2)Γ (2κ + 3)

(
κ + (ζ n

a )2

4κ

)−κ−2
{

1 −
√

κ

iζ n
a

(
i
√

κ + ζ n
a

2i
√

κ

)κ+2

× 1
Γ (κ + 2)

κ+1∑
�=0

Γ (� + κ + 1)

Γ (� + 1)
(� − κ − 1)

(
i
√

κ − ζ n
a

2i
√

κ

)�
}

. (B8)
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