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Abstract

A solution to the problem of Gaussian beam scattering by a circular perfect electric conductor
coated with eccentrically anisotropic media is presented. The incident Gaussian beam source
is expanded as an approximate expression in the simple form with Taylor’s series. The trans-
mitted field in the anisotropically coated region is expressed as an infinite summation of Eigen
plane waves with different polar angles. The unknown coefficients of the scattered fields are
obtained with the aid of the boundary conditions. The addition theorem for cylindrical func-
tions is applied to transfer from the local coordinates to the global ones. The infinite series can
be truncated under the prerequisite of achieving the solution convergence. Only the case of
transverse-electric polarization is discussed. The similar formulation of transverse-magnetic
polarization can be obtained by adopting a similar method. Some numerical results are pre-
sented and discussed. The result is in agreement with that available as expected when the
eccentric geometry comes to the concentric one.

Introduction

Solutions to the problem of electromagnetic scattering by cylindrical structures have been
investigated theoretically in many papers [1, 2]. As regard to the scattering problem by
anisotropic-coated conducting objects, an analytical solution of plane wave scattering by a cir-
cular perfect electromagnetic conductor cylinder coated with anisotropic media was presented
in [3]. The incidence wave discussed in the aforementioned papers is limited to plane waves.
With the development of laser sources and the tremendous expansion of their application,
there has been a growing interest in the study of scattering by various particles illuminated
by a Gaussian beam. For example, a two-dimensional beam is scattered by a cylinder buried
below a slightly rough surface; scattering of a Gaussian beam from a row of cylinders with rect-
angular cross-section is studied in [4]; internal and near-surface electromagnetic fields for a
uni-axial anisotropic cylinder illuminated with a Gaussian beam is discussed in [5].

The problem of scattering of a Gaussian beam by a circular perfect electric conductor
(PEC) cylinder coated with eccentric anisotropic media is treated in this paper, which is an
expansion of our previous works [6, 7]. There are a limited number of papers that treat the
eccentric geometry (i.e. [8]). To the best of our knowledge, a circular PEC cylinder coated
with an eccentric anisotropic shell illuminated by a Gaussian beam has not yet been discussed.
Different from the expression of a 2D Gaussian beam in conventional analysis [9, 10], a sim-
pler expression presented by Kozaki [11] is employed in this paper. In order to solve the
boundary condition, the addition theorem for cylindrical functions is applied to transfer
from the local coordinates to the global ones. Only the case of transverse-electric polarization
is considered and the similar formulation of transverse-magnetic polarization can be obtained
by adopting a similar method.

Formulation

As can be seen from Fig. 1, a cross-section of an infinitely long conducting circular cylinder
coated with an eccentric anisotropic shell is shown. Three rectangular coordinate systems
and one cylindrical coordinate system are defined, the z-axis which is common to these
coordinate systems is not plotted. The global coordinate system (x, y) and the local coord-
inate system (xc, yc) are defined. The radii of cylinders are denoted by a and b, their axes
are fixed at origins Oc and O, respectively. A Gaussian beam source which is located at
(x1 = −r0, y1 = 0) is incident on the circular cylinder, making an angle θ0 clockwise with
respect to the negative x-axis.
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Transmitted wave

In the expressions for the electromagnetic fields, the time depend-
ence exp ( jωt) is omitted throughout. Consider a homogeneous
anisotropic medium characterized by the following permittivity
and permeability tensors in the XcOcYc coordinate frame:

��1 =
1xx 1xy 0
1yx 1yy 0
0 0 1zz

⎡
⎣

⎤
⎦, ��m =

mxx mxy 0
myx myy 0
0 0 mzz

⎡
⎣

⎤
⎦. (1)

The magnetic field in the annular region (part II) can be
expressed in the local coordinates (xc, yc) as follows [12]

Hz(rc, uc) =
∑1
n=−1

j−n
∑1

m=−1
[c(1)m F(1)

nm(rc, uc)+ c(2)m F(2)
nm(rc, uc)],

(2)

where

F(1)
nm(rc, uc) =

∫2p
0

Jn(k(j)rc)e
j[nuc+(m−n)j]dj, (3)

F(2)
nm(rc, uc) =

∫2p
0

Yn(k(j)rc)e
j[nuc+(m−n)j]dj, (4)

where c(1)m and c(2)m are unknown coefficients, Jn[k(ξ)ρc] and Yn[k
(ξ)ρc] are the Bessel functions of the first and second kind,
respectively.

The tangential component of the electric field in the annular
region (part II) can be expressed as

jvgEc
u = − 1rcrc (uc)

∂Hc
z

∂rc
+ 1ucrc (uc)

1
rc

∂Hc
z

∂uc

[ ]
, (5)

where

1rcrc (uc) = 1+ + 1− cos 2uc + s+ sin 2uc,

1ucrc (uc) =−s− + s+ cos 2uc − 1− sin 2uc.
(6)

1+= 1
2
(1xx + 1yy),

s+= 1
2
(1xy + 1yx).

(7)

Incident and scattered waves

Consider the case where a beam source (e.g. a horn antenna) is
located at x1 =−r0 as illustrated in Fig. 1. The z-component of
the magnetic field of the incident Gaussian beam source is
expressed in the global coordinate system (x, y) as follows [11]

Hinc
z (x1 = −r0, y1) = e−b2y21 , (8)

where

b2 = a20 + jb20, (9)

where 1/|β| corresponds to the beamwidth of the incident wave.
The parameters a0, b0 are determined from the distributions of
amplitude and phase.

The incidence beam can be expressed as following [11]

Hinc
z (x1, y1) = 1

2



p

√
b

∫1
−1

e(−a2/4b2)−j(x1+r0)







k20−a2

√
−jay1da. (10)

For polar coordinates (ρ, θ), equation (10) can be expressed as:

Hinc
z (r, u) =

∑1
n=−1

j−ne jnuJn(k0r)A
h
n, (11)

where

Ah
n � Ah

n1 =
e−jk0r0








1− jZ0

√ e−((n/k0)b)
2/(1−jZ0), (12)

where Z0 = (2β2r0)/k. This expression is valid for |(βλ)2| < 0.3 and
b/λ < 3.0. For (b/λ)≅ (3 ∼ 5), an improved representation must be

Fig. 1. Geometry of the problem.
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used:

Ah
n � Ah

n2

= Ah
n1 1− 2

b

k0









1− jZ0

√
( )4

n2 + 4
3

b

k0









1− jZ0

√
( )6

n4 + . . .

[ ]
.

(13)

Meanwhile, the scattered magnetic field in the free space
region (part III) is expressed as

Hs
z(r, u) =

∑1
n=−1

Bnj
−nH(2)

n (kr)e jnu, (14)

where Bn are unknown coefficients.
The tangential component of the electric field can be written

in the global coordinate system (x, y) as follows:

Einc
u (r, u) = j





m0

10

√ ∑1
n=−1

Anj
−nJ ′n(kr)e jn(u+u0), (r ≥ b), (15)

Es
u(r, u) = j





m0

10

√ ∑1
n=−1

Bnj
−nH(2)

n
′
(kr)e jnu, (r ≥ b). (16)

Boundary conditions
(1) Boundary Conditions on the Core Surface:

Assume the surface of the conducting circular cylinder is repre-
sented by ρc = a, the electric field vanishes on the surface of the
conducting circular cylinder, the boundary condition can be writ-
ten as

Ec
u(rc, uc) = 0, (rc = a). (17)

i.e.

∑1
m=−1

[c(1)m E(11)
nm (a)+ c(2)m E(12)

nm (a)] = 0, (18)

where

E(11)
nm (a) =− j





10
m0

√ ∫2p
0

k(j)
vg

e j(m−n)j

× j1rcrc (j)J
′
n(k(j)a)−

n1ucrc (j+ p/2)

k(j)a
Jn(k(j)a)

[ ]
dj,

(19)

E(12)
nm (a) =− j





10
m0

√ ∫2p
0

k(j)
vg

e j(m−n)j

× j1rcrc (j)Y
′
n(k(j)a)−

n1ucrc (j+ p/2)

k(j)a
Yn(k(j)a)

[ ]
dj.

(20)

(1) Boundary Conditions on the External Surface: The tangential
components of the electric and magnetic fields are continu-
ous on the surface of anisotropic-free space, the boundary
conditions can be expressed as

Hc
z = Hinc

z + Hs
z , (r = b), (21)

Ec
u = Einc

u + Es
u, (r = b). (22)

This requires that the fields be expressed in terms of the
XcOcYc coordinate frame be translated to the XOY coordinate
frame using the addition theorem for cylindrical functions,
i.e. [13]:

Jn(k(j)rc)e
jnuc =

∑1
m=−1

Jm(k(j)r)Jm−n(k(j)r0)e
j[mu−(m−n)w0]

(r . r0),

(23)

Yn(k(j)rc)e
jnuc =

∑1
m=−1

Ym(k(j)r)Jm−n(k(j)r0)e
j[mu−(m−n)w0]

(r . r0).

(24)

The magnetic field in the annular region (part II in Fig. 1) can
be expressed in the global coordinates (x, y) as follows

Hc
z(r, u) =

∑1
n=−1

j−n
∑1

m=−1
[c(1)m F(1)

nm(r, u)+ c(2)m F(2)
nm(r, u)], (25)

where

F(1)
nm(r, u) =

∑1
i=−1

e j[iu−(i−n)w0]
∫2p
0

Ji(k(j)r)Ji−n(k(j)r0)e
j(m−n)jdj,

(26)

F(2)
nm(r, u) =

∑1
i=−1

e j[iu−(i−n)w0]
∫2p
0

Yi(k(j)r)Ji−n(k(j)r0)e
j(m−n)jdj.

(27)

Applying the boundary conditions (21) and (22), two equa-
tions can be obtained as

∑1
n=−1

jl−ne−j(l−n)w0

∑1
m=−1

[c(1)m F(21)
nm (b)+ c(2)m F(22)

nm (b)]

= AlJl(kb)e
jlu0 + BlH

(2)
l (kb),

(28)

∑1
n=−1

jl−ne−j(l−n)w0
∑1

m=−1
[c(1)m E(21)

nm (b)+ c(2)m E(22)
nm (b)]

= AlJ
′
l(kb)e

jlu0 + BlH′(2)l (kb),

(29)
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where

F(21)
nm (b) =

∫2p
0

Jl(k(j)b)Jl−n(k(j)r0)e
j(m−n)jdj, (30)

F(22)
nm (b) =

∫2p
0

Yl(k(j)b)Jl−n(k(j)r0)e
j(m−n)jdj, (31)

E(21)
nm (b) =− j





10
m0

√ ∫2p
0

k(j)
vg

Jl−n(k(j)r0)e
j(m−n)j

× j1rr(j)J
′
l(k(j)b)−

l1ur(j+ p/2)
k(j)b

Jl(k(j)b)

[ ]
dj,

(32)

E(22)
nm (b) =− j





10
m0

√ ∫2p
0

k(j)
vg

Jl−n(k(j)r0)e
j(m−n)j

× j1rr(j)Y
′
l(k(j)b)−

l1ur(j+ p/2)
k(j)b

Yl(k(j)b)

[ ]
dj.

(33)

In order to obtain numerical results, the infinite series need to
be truncated under the prerequisite of achieving the solution con-
vergence. Truncating these equations for −N≤ n≤N and −N≤
m≤N, they can be formed in vectors and matrices, the unknown
coefficients can be obtained from these equations finally, and the
electromagnetic field can be calculated while the radar cross-

Fig. 2. H-polarization, bistatic radar cross-sections RCS dB, εxx = 1.5ε0, εyy = 2.5ε0, εxy
=−εyx = 3ε0, μzz = 1.5μ0, (r0/λ) = 3.0, ka = 1, kb = 2, ρ0 = 0, w0 = 0°, θ0 = 0°.

Fig. 3. H-polarization, bistatic radar cross-sections RCS dB, εxx = 4ε0, εyy = ε0, εxy = εyx
= 0, μzz = 2μ0, ka = π, kb = 2π, w0 = 0°, θ0 = 0°, (r0/λ) = 30.0, a0λ = 0.2, b0λ = 0.4.

Fig. 4. H-polarization, bistatic radar cross-sections RCS dB, εxx = 2ε0, εyy = ε0, εxy =
−εyx = ε0, μzz = 2μ0, ka = π, kb = 2π, w0 = 0°, θ0 = 0°, a0λ = 0.2, b0λ = 0.5, (ρ0/a) = 0.2.

Fig. 5. The absolute value of the total magnetic field |Hz| near the scatterer. εxx = 2ε0,
εyy = ε0, εxy = εyx = 0, μzz = 2μ0, ka = π, kb = 2π, θ0 = 180°, (r0/λ) = 30.0, a0λ = 0, b0λ = 0,
(ρ0/a) = 0, w0 = 0°.
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section per unit length (RCS) can be written as:

s

l
(u, uinc) = 2

p

∑+1

n=−1
Bne

jnu

∣∣∣∣∣
∣∣∣∣∣
2

. (34)

Numerical results

In this section, the variations of RCS versus the eccentricity, the
distance between the laser and the scatterer are depicted; the
total field distribution around the scatterer is listed and discussed.
In order to check the validity and accuracy of the proposed
method and associated code, the angular distributions of RCS
are shown in Figs 2 and 3. A conducting circular cylinder covered
with an eccentric anisotropic shell approaches a concentrically

circular geometry in both cases. For the plane wave incidence
case [12, 14] in Fig. 2, both a0 and b0 are set to be zero, while
r0/λ = 3.0, ka = 1, kb = 2, ρ0 = 0, w0 = 0°, θ0 = 0°, N = 12. The ele-
ments in the permittivity tensor and the permeability tensor
are: εxx = 1.5ε0, εyy = 2.5ε0, εxy = −εyx = 3ε0, μzz = 1.5μ0. For the
Gaussian beam incidence case in Fig. 3, the parameters are:
εxx = 4ε0, εyy = ε0, εxy = εyx = 0, μzz = 2μ0, ka = π, kb = 2π, ρ0 = 0,
w0 = 0°, θ0 = 0°, r0/λ = 30.0, a0λ = 0.2, b0λ = 0.4, N = 15.The results
come into excellent agreement with those from [6] for the con-
centric geometry case.

Figure 3 also gives the effects of the different distance between
the conducting and the anisotropic cylinder shell, i.e. the influence
of the eccentricity on the values of RCS. This example consists of
media with x̂ and ŷ principal axes. Compared with the concentric
case, the graphics of non-concentric radar scattering are no longer
symmetrically distributed with the scattering angles. The maximum
values of RCS increase with the values of core eccentricity.

Figure 4 shows the effects of the distance between the laser
source and the circular cylinder. The parameters are: εxx = 2ε0,
εyy = ε0, εxy =−εyx = ε0, μzz = 2μ0, ka = π, kb = 2π, w0 = 0°, θ0 = 0°,
a0λ = 0.2, b0λ = 0.5, ρ0/a = 0.2, N = 15. The whole RCS decline
with the increase of the source distance.

Figures 5–8 show the absolute value of the total field near the
scatterer, the arrow indicates the direction of the incident wave.
Figures 5 and 6 represent two cases of magnetic field. It can be
seen that there is a similar figure in concentric and non-
concentric cases. The PEC acts as an impedance dielectric
medium for magnetic field, it carries the Gaussian beam from
the right to the anisotropic medium. Figures 7 and 8 represent
two cases of electric field. The role of PEC in magnetic field
and electric field is different. The tangential components of elec-
tric field vanish in PEC. The PEC acts like a mirror, blocking the
transmission of electric field.

Conclusion

In conclusion, a solution to the two-dimensional scattering of a
Gaussian beam by an anisotropic-coated eccentric conducting cir-
cular cylinder has been formulated in this paper, an approximate

Fig. 6. The absolute value of the total magnetic field |Hz| near the scatterer. εxx = 2ε0,
εyy = ε0, εxy = εyx = 0, μzz = 2μ0, ka = π, kb = 2π, θ0 = 180°, (r0/λ) = 30.0, a0λ = 0.3, b0λ = 0.4,
(ρ0/a) = 0.2, w0 = 0°.

Fig. 7. The absolute value of the total electric field |Eu| near the scatterer. εxx = 2ε0,
εyy = ε0, εxy = εyx = 0, μzz = 2μ0, ka = π, kb = 2π, θ0 = 180°, (r0/λ) = 3.0, a0λ = 0, b0λ = 0,
(ρ0/a) = 0, w0 = 0°.

Fig. 8 The absolute value of the total electric field |Eu| near the scatterer. εxx = 2ε0,
εyy = ε0, εxy = εyx = 0, μzz = 2μ0, ka = π, kb = 2π, θ0 = 180°, (r0/λ) = 3.0, a0λ = 0.3, b0λ = 0.4,
(ρ0/a) = 0.2, w0 = 0°.
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expression presented by Kozaki of a Gaussian beam is utilized to
treat the scattering problem. The addition theorem for cylindrical
functions is applied to transfer from the local coordinates to the
global ones. The result is in agreement with that available as
expected when the eccentric geometry comes to the concentric
one. The variations of RCS versus the eccentricity, the distance
between the laser and the scatterer, the total field distribution
around the scatterer are depicted and discussed in the numerical
results section. It is demonstrated that it is possible to achieve
large RCS values by choosing properly the eccentricity and the
thickness of the shell.
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