
Math. Struct. in Comp. Science (1999), vol. 9, pp. 367–401. Printed in the United Kingdom

c© 1999 Cambridge University Press

From λ to π; or, Rediscovering continuations

D A V I D E S A N G I O R G I

INRIA-Sophia Antipolis, 2004 Rue des Lucioles, B.P. 93,

06902 Sophia Antipolis, France.

Email: davide.sangiorgi@inria.fr.

Received 7 June 1998, revised 30 March 1999

We study the relationship between the encodings of the λ-calculus into π-calculus, the

Continuation Passing Style (CPS) transforms, and the compilation of the Higher-Order

π-calculus (HOπ) into π-calculus. We factorise the π-calculus encodings of (untyped as well

as simply-typed) call-by-name and call-by-value λ-calculus into three steps: a CPS transform,

the inclusion of CPS terms into HOπ and the compilation from HOπ to π-calculus. The

factorisations are used both to derive the encodings and to prove their correctness.

1. Introduction

The λ-calculus describes sequential computations. The π-calculus naturally describes paral-

lel computations. In the λ-calculus, computation is function application. In the π-calculus

computation is process interaction: two π-calculus processes that know a given name can

use it to interact with each other; names themselves may be exchanged in communications.

By viewing function application as a special form of process interaction, the λ-calculus

functions can be represented as π-calculus processes. Encodings of call-by-name and

call-by-value λ-calculus evaluation strategies into π-calculus have been given by Milner

(1992).

In functional languages, a continuation is a parameter of a function that represents

the ‘rest’ of the computation. Functions taking continuations as arguments are called

functions in Continuation Passing Style (CPS functions). Continuations are widely used:

for programming, as an implementation technique and for giving denotational semantics.

There is a very large literature of functional programming study in transformations of

functions into CPS functions. They are called CPS transforms. The best known are the

CPS transforms for call-by-name and call-by-value λ-calculus in Plotkin’s seminal paper

Plotkin (1975).

The π-calculus is the paradigmatic first-order (or name-passing) process calculus. The

Higher-Order π-calculus (HOπ) is a process calculus whose operators are the same as the

π-calculus, but the objects exchanged in communications are built out of processes, rather

than names. HOπ is therefore a higher-order (or process-passing) process calculus. Despite

this difference, HOπ can be faithfully compiled down into π-calculus (Sangiorgi 1992a;

Sangiorgi 1998a).

In this paper we study the relationship between the encodings of the λ-calculus into

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 368

Fig. 1. The derivatives of the π-calculus encodings of λN and λV .

π-calculus, the CPS transforms, and the compilation of HOπ into π-calculus. We factorise

the π-calculus encodings of call-by-name and call-by-value λ-calculus into three steps: a

CPS transform, the inclusion of CPS terms into HOπ and the compilation from HOπ to

π-calculus. This programme is summarised in Figure 1, where: λN and λV are the call-

by-name and call-by-value λ-calculi; CV and CN are the call-by-value and call-by-name

CPS transforms of Plotkin (1975); CPSV and CPSN are languages of CPS λ-terms, which

are the target languages of the two CPS transforms; H is the injection of these CPS

languages into HOπ; and C is the compilation from HOπ to π-calculus. We work out

a similar factorisation using uniform CPS transforms, which only differ in the clauses

for application – the clauses for λ-abstraction and variables are the same. We thus derive

π-calculus encodings which have the same uniformity properties, and which can be easily

modified so as to obtain an encoding of the call-by-need strategy.

We then apply the same schema of Figure 1 to (simply-)typed λ-calculi. For this, we

extend the translations of terms to translations of types. Understanding how λ-calculus

types are transformed by the π-calculus encodings is not entirely obvious. In λ-calculi,

types are assigned to terms, and provide an abstract view of their behaviour. In contrast,

in the type systems for the π-calculus, types are assigned to names and hence reveal very

little about the behavioural properties of the processes.

Several CPS transforms appear in the literature, and the schema of Figure 1 can

probably be repeated for many of them. The CPS transforms of Plotkin (1975) are those

that, in our view, yield the simplest and most robust π-calculus encodings. The π-calculus

encodings and their correctness results that we present are not new (the encodings and

the results about typed calculi have not been presented elsewhere, but they are hinted at

in Pierce and Sangiorgi (1996)). What is new is the way in which the encodings and their

correctness are derived.

We use CPS transforms to obtain π-calculus encodings of λ-calculi and prove their

correctness. Sometimes it is also possible to go the other way round to exploit the

factorisation to understand, and reason about, the CPS transforms. For instance, the

adequacy of the CPS transforms can be derived from that of the π-calculus encodings.

Overview of paper. Sections 2–4 contain background material on the π-calculus, HOπ,

and the compilation of HOπ into π-calculus. In Section 5 we review the syntax, the

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 369

Table 1. The π-calculus

Grammars:

a, b, . . . x, y, z Names

Values

v, w := a names

Processes

P , Q, R := 0 nil

| P |P parallel

| νa P restriction

| !P replication

| a(x). P input

| av output

reduction rules, and the call-by-name and call-by-value reduction strategies for the untyped

λ-calculus. In Sections 6 and 7 we develop Figure 1, for untyped λ-calculi, using the CPS

transforms of Plotkin (1975). In Section 8 we do the same, but starting from uniform CPS

transforms. In Section 9 we study typed λ-calculi.

2. The π-calculus

Syntax. The grammar of the π-calculus is given in Table 1. 0 denotes the inactive process.

An input-prefixed process a(x). P waits for a value v at a and then continues as P {v/x}.
An output process av emits value v at a. A parallel composition P1 |P2 is to run two

processes in parallel. A restriction νa P makes name a local, or private, to P . A replicated

process !P stands for a countable infinite number of copies of P . We use an asynchronous

subset of the original π-calculus (Milner 1992), where outputs have no continuation and

there are no operators of summation and matching, because it is sufficient for encoding

the λ-calculus; in this paper ‘π-calculus’ will mean this calculus.

We use σ to range over substitutions; for any expression E, we write Eσ for the result

of applying σ to E, with the usual renaming convention to avoid captures. We assign sum

and parallel composition the lowest precedence among the operators. Substitutions have

precedence over the operators of the language.

An input prefix a(b). P and a restriction νb P are binders for name b, and give rise

in the expected way to the definitions of free and bound names, and the definition of

α-conversion. Symbol ‘=’ denotes equality up to α-conversion. We identify α-equivalent

processes. In statements, we always assume that bound names of the expressions of the

statements (processes, actions, etc.) are fresh, that is, they are different from the other

bound and free names of the expressions in the statement; we say that a name a is fresh

for an expression E to mean that a does not appear E. We write fn(E) and bn(E) for,

respectively, the free and bound names of E, and n(E) for all names in E (free and bound).

A context is a process expression with a single occurrence of a hole [·] in it. We abbreviate

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 370

νa νb P as (νa, b)P . In νb (ab | b(y). Q) and νb (ab | !b(y). Q), due to the restriction on b,

the output at a must be consumed before the inputs at b; to highlight the ordering, we

abbreviate these expressions as a(b). b(y). Q and a(b). !b(y). Q, respectively. We use a tilde

to represent tuples of expressions. With some abuse of notation, we sometimes view Ẽ

both as a tuple and a set. We extend notations to tuples componentwise.

Reduction semantics. Following Milner (1991), the one-step reduction relation−→ of the

calculus exploits the auxiliary relation ≡ of structural congruence to bring the participants

of a potential communication into contiguous positions. The structural congruence relation

≡ is the least congruence on processes that is closed under these rules:

1 Abelian monoid laws for parallel composition:

P |Q ≡ Q |P , P | (Q |R) ≡ (P |Q) |R, P | 0 ≡ P ;

2 νp 0 ≡ 0, νp νq P ≡ νq νp P ;

3 (νp P) |Q ≡ νp (P |Q), if p not free in Q;

4 !P ≡ P | !P .

The one-step reduction P −→ Q is the least relation closed under these rules:

R-Com
av | a(x). Q −→ P |Q{v/x} R-Par

P −→ P ′

P |Q −→ P ′ |Q

R-Res
P −→ P ′

νa P −→ νa P ′
R-Eqv

P ≡ P ′ −→ Q′ ≡ Q
P −→ Q

.

For any name a, the observation predicate ↓a denotes the possibility for a process of

immediately sending a message along a. Thus, P ↓a holds if P has a particle av that is not

underneath an input prefix, and not in the scope of a restriction on a. We write =⇒ for

the reflexive and transitive closure of −→, and P ⇓a if there is P ′ such that P =⇒ P ′ ↓a.
We also write P ⇓ to mean that P ⇓a for some a.

Behavioural equivalences. We define behavioural equality using the notion of barbed

congruence (Milner and Sangiorgi 1992). Barbed congruence can be defined on any

calculus possessing a reduction relation −→, and observability predicates ↓a for each

channel a. Barbed congruence is the congruence induced by barbed bisimulation. The

latter equates processes that can match each other’s reductions and, at each step, are

observable on the same channels. We define barbed congruence on a generic process

calculus L that has reduction and observation relations as above. An L relation is a

relation on the processes of L.

Definition 2.1. (Strong barbed bisimilarity and congruence) An L relation R is an L
strong barbed bisimulation if P RQ implies

1 if P −→ P ′, there is Q′ such that Q −→ Q′ and P ′ RQ′,
2 for each channel a, P ↓a iff Q ↓a,
and the converse of (1) on the transitions from Q. Two L processes P and Q are

strongly barbed bisimilar (in L), written L . P ∼̇Q, if P RQ for some L strong barbed

bisimulation R.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 371

Two L processes P ,Q are strongly barbed congruent (in L), written L . P ∼ Q, if, for

each context C in L, we have L . C[P] ∼̇C[Q].

When there is no ambiguity on what the calculus L is, we may abbreviate L . P ∼̇Q
as P ∼̇Q, and L . P ∼ Q as P ∼ Q. The weak versions of barbed bisimilarity and

congruence are defined by replacing the strong transitions −→ with the weak transitions

=⇒, and the predicates ↓a with ⇓a. We write ≈ for weak barbed congruence; we sometimes

just call it barbed congruence. Weak barbed congruence is the semantic equality we are

mainly interested in.

2.1. Extensions and types

Some conventions and notation for typed calculi. In typed π-calculi, type environments are

finite assignment of types to names. Γ, ∆ range over type environments; S, T over types. A

typing judgement Γ ` P asserts that process P is well-typed under the type assumptions

Γ, and Γ ` v : T that value v has type T under the type assumptions Γ. (We may regard

Γ ` P as an abbreviation for Γ ` P : �, where � is the type of all processes; we will

use � for defining the Higher-Order π-calculus in Section 3.) When we deal with several

typed calculi, to avoid ambiguity, we sometimes add the name of the calculus to typing

judgements; thus we write L . Γ ` P to mean that the typing judgement Γ ` P holds in

the calculus L.

We distinguish between object (or value) types and subject types. The former are the

types of the values that may be communicated; the latter are the types of the names along

which these values are communicated. In the π-calculus, subject types are also object

types; in the Higher-Order π-calculus of Section 3, by contrast, object and subject types

are distinct. In typed calculi, a restricted name is annotated with a type, as in (νa : T)P ,

and b̄(a : T).P ; the type T is a subject type, which is omitted when not important. A

type environment Γ is closed if Γ is an assignment of subject types to names. We write

x̃ : T to mean that each x ∈ x̃ has type T ; and Γ ` P , Q to mean that both Γ ` P and

Γ ` Q hold. Substitutions map names onto values of the same type.

Polyadicity. In the polyadic π-calculus, tuples of names can be communicated. For this,

the following production is added to the grammar of values:

Values

v := 〈ṽ〉 tuples.

Having added a constructor for values, we need a corresponding destructor. A destructor

can be added as a new process construct. In the case of tuples, however, it is convenient

to decompose a value by means of pattern matching in the input prefix, thus adopting

the polyadic form of input a(x̃). P .

In an untyped polyadic π-calculus there can be run-time errors due to arity mismatch

on communication. These errors can be avoided by assigning types to names. We call

polyadic π-calculus the calculus with channel types, recursive types, and product types

(Milner 1991; Vasconcelos and Honda 1993; Pierce and Sangiorgi 1996; Turner 1996).

Channel types are the only subject types, and are of the form]T ; product types are of

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 372

the form T1 × . . . × Tn for n > 0; recursive types are of the form µX. S , where X is a

type variable and X must be guarded in S , that is, underneath at least a type construct

different from recursion. For instance T × S is the type of a pair, whose first component

has type T and the second type S; a name a with type](T1 × . . . × Tn) may only carry

n-tuples of values, where the i-th value has type Ti. Throughout the paper, we regard

a recursive type as an abbreviation for its infinite unfolding. Notations, definitions and

results for the monadic π-calculus generalise to the polyadic π-calculus in the obvious

way.

i/o types. Frequently in π-calculus, one wishes to distinguish between the capability of

using a name in input or in output. For this, channel types are refined by introducing the

types iT and oT , with the following informal meaning:

— oT is the type of a name that may be used only in output and that carries values of

type T ;

— iT is the type of a name that may be used only in input and that carries values of

type T .

The channel type]T gives, by contrast, both the input and the output capabilities. For

instance, a type a :](i S ×oT), says that name a can be used both in input and in output,

and that any message at a carries a pair of names. Moreover, the first component of

the pair can be used by the recipient only to input values of type S , the second only to

output values of type T . One of the reasons why i/o types are useful is that they give

rise to subtyping: type annotation i gives covariance, o gives contravariance, and] gives

invariance. Moreover, since a tag] gives more freedom in the use of a name, for each

type T we have]T < iT and]T < oT .

We call], i,o the i/o tags, and]T , i T and oT the i/o types. For readability,

we sometimes use brackets with i/o types, as in o(T). We also occasionally use these

notations for i/o types:

— (T)− is the type obtained from T by cancelling the outermost i/o tag.

— (T)←] is the type obtained by replacing the outermost i/o tag in T with].

— For I ∈ {], o, i}, we write T _ IS for I(S × T).

For instance, (i S)− is S , and (i S)←] is]S . Both for (T)− and for (T)←], we unfold T first

if its outermost construct is recursion.

Linearity. Further refinements of the i/o types are linear types (Kobayashi et al. 1996).

We do not present this type system here, as it is mentioned in very few places in this

paper. We only recall that linearity allows us to say that a name may be used to perform

a reduction at most once.

Types and behavioural equivalences. In a typed calculus the processes being compared

must obey the same typing and the contexts in which they are tested must be compatible

with this typing. A (Γ/∆)-context is a context that, when filled in with a process obeying

typing ∆, becomes a process obeying typing Γ. Below is the typed version of barbed

congruence for a calculus L.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 373

Definition 2.2. (Strong barbed congruence) Let ∆ be a typing, with L . ∆ ` P ,Q. We say

that processes P ,Q are strongly barbed congruent (in L) at ∆, written L(∆) . P ∼ Q, if,

for each closed type environment Γ and (Γ/∆)-context C , we have L . C[P] ∼̇ c[Q].

Again, weak barbed congruence at ∆ is defined by replacing ∼̇ with ≈̇, and ∼ with ≈
in Definition 2.2. When there is no ambiguity on what the calculusL is, we may dropL,

and abbreviate L(∆) . P ≈ Q as P ≈4 Q. We write P ≈4 Q (or L(∆) . P ≈ Q) without

recalling the assumption that P and Q are well-typed in ∆. We also omit ∆ if it is clear,

and just write P ≈ Q. The same conventions apply to strong barbed congruence.

Here are some simple facts about behavioural equivalences of typed π-calculi that we

shall use.

Lemma 2.3.

1 ≡⊆∼Γ⊆≈Γ;

2 (νx : T)(x(y). P | x̄v) ≈Γ (νx : T)(P {v/y});
3 (νx : T)(!x(y). P |Q) ∼Γ Q, if x not free in Q.

Abstractions. In the encodings of the λ-calculus into the π-calculus described in the

paper, the encoding of a λ-term is parametric on a name, that is, it is a function from

names to π-calculus processes. We call such expressions abstractions, and use F,G to range

over them. An abstraction with parameters ã and body P is written (ã).P . An abstraction

(ã).P is a binder for ã of the same nature as the input prefix b(ã).P . Indeed, the input

b(ã). P may be seen as constructed by juxtaposition of the name b and the abstraction

(ã).P . Accordingly, if F is the abstraction (ã).P , we sometimes write b F for the process

b(ã).P . We use the following abbreviations for abstractions: if F is (a).P , then b(c̃)F

stands for b(c̃, a).P , and Fc stands for P {c/a} – the actual parameter c substitutes the

formal parameter a in the body P of F . We extend typed barbed congruence to (monadic)

abstractions; F ≈Γ;T G means that Fc ≈Γ,c:T Gc, for all c such that Γ, c : T ` Fc, Gc.

3. The Higher-Order π-calculus

Starting from the constructs for concurrency of the π-calculus, we move to higher-order

by allowing values built out of processes. We thus obtain the Higher-Order π-calculus

(HOπ). As in the untyped π-calculus, names are the only values that are exchanged

among processes, so in the untyped HOπ abstractions, that is, parametrised processes,

are the only values. We have already introduced abstractions in the π-calculus, where

we presented them as a convenient syntactic notation for representing the encodings of

λ-terms. The role of abstractions is important in HOπ, as they can be used as values and

exchanged in communications.

When an abstraction (x).P is applied to an argument w, it yields the process P {w/x}.
Application is the destructor for abstractions. The application of an abstraction v to a

value v′ is written v〈v′ : T 〉, where T is the type of v′. (The type annotation is to ensure

that the typing derivation of a process is unique, which will facilitate the encoding of

HOπ into π-calculus. Alternatively, the annotation could be in the binder of abstractions,

as is common in λ-calculi; our choice keeps the syntax of abstraction closer to that of

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 374

input.) At the level of types, adding parametrisation means adding arrow types, so that

an abstraction (x).P has type T → �, where � is the type behaviour, that is the type of

all processes.

Summarising, with respect to the grammar of the π-calculus, that of HOπ has the

following additional productions: the grammar of values has the production (x).P for

abstractions; the grammar of processes the production v〈w : T 〉 for application; in typed

HOπ, the grammar of object types always include the production T → � for arrow types.

But, by contrast with π-calculus, subject types are not also object types. Both in v〈w : T 〉
and in T → �, type T is an object type. The operational semantics has an additional rule

for when an abstraction meets an application:

R-App
((x). P)〈v : T 〉 −→ P {v/x} .

If P is a HOπ process and the proof of the derivation of P −→ P ′ uses rule R-App, then

we write P −→β P
′, and say that P β-reduces to P ′; =β is the equivalence induced by

−→β . Barbed congruence is defined on HOπ as in Definition 2.2.

Remark 3.1. In HOπ, no expression reduces to a value, therefore we need not specify a

reduction strategy for value expressions. The right-hand side of an arrow type is always

the behaviour type �; allowing nesting of arrow types on the right, as in T1 → T2 → �
(which would mean allowing nesting of abstractions such as (x). (y).P), would lead us

towards issues of reduction strategies. HOπ does not have reduction to values because it

is conceived for studying and understanding basic issues of processes that may exchange

higher-order values; reduction strategies for value expressions is an orthogonal issue

(which can be studied in the λ-calculus).

4. Compiling process-passing into name-passing

The process-passing features of HOπ can be faithfully coded up using name-passing. We

show this for HOπ→�,µ,unit, the HOπ calculus in which the object types are arrow types,

recursive types, unit type (in HOπ→�,µ,unit there is also the channel type]T , needed for

typing channels; but channels may not be passed around as values); the target language

is πi/o,µ,unit, the π-calculus with i/o types, recursive types, unit type.

In the encoding, the communication of an abstraction v is translated as the commu-

nication of a private name that acts as a pointer to (the translation of) v and which the

recipient can use to trigger a copy of (the translation of) v, with appropriate arguments.

For instance, if v is (x).R, process ā v is translated into the process νy(āy | !y(x).C[[R]]); a

recipient of the pointer y can use it to activate as many copies of C[[R]] as needed. How-

ever, when translating ā v, if v is a name or the unit value, then v is also a π-calculus value

and therefore v can be directly sent along a; in this case we say that v is π-transmittable.

Output and application are translated in a similar way, which reveals the similarity be-

tween the two constructs. The compilation modifies types: a channel used in HOπ to

exchange processes becomes, in π-calculus, a channel used for exchanging other names.

The compilation is defined on types, type environments, values and processes in Table

2. We only translate well-typed expressions. The translation of an expression is annotated

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 375

with a typing environment and (for higher-order values) a type under which that expression

is well-typed. Thus C[[P]]Γ is defined if HOπ→�,µ,unit .Γ ` P , and C[[v]]Γ;T if HOπ→�,µ,unit .

Γ ` v : T . These annotations are used for assigning the appropriate types to the names

introduced by the compilation. Note that, by the notations for abstraction, an expression

C[[(x). P]]Γ;Ty is the result of applying the abstraction C[[(x). P]]Γ;T to name y, that is, the

process C[[P]]Γ,x:T {y/x}.
Proposition 4.1. For all P , v,Γ, T and a fresh for Γ, we have

1 HOπ→�,µ,unit . Γ ` P implies πi/o,µ,unit . C[[Γ]] ` C[[P]]

2 HOπ→�,µ,unit . Γ ` v : T → � implies πi/o,µ,unit . C[[Γ]], a : C[[T]] ` C[[v]]Γ;T→�a.

Lemma 4.2. (Adequacy of C) Suppose HOπ→�,µ,unit . Γ ` P . Then P ⇓a iff C[[P]]Γ ⇓a, for

all a.

Encoding C agrees with the behavioural equivalences of HOπ and π-calculus. Full

abstraction for similar encodings are studied in Sangiorgi (1992a), Sangiorgi (1998a); here

we report two (much simpler) results that are sufficient for our needs in the paper:

Lemma 4.3. Suppose HOπ→�,µ,unit . Γ ` P ,Q. If P =β Q, then πi/o,µ,unit(C[[Γ]]) .C[[P]]Γ ≈
C[[Q]]Γ.

(In the above lemma, i/o types are necessary; the lemma is not true if all types iT and

oT are replaced by the less informative channel type]T .)

Lemma 4.4. Suppose HOπ→�,µ,unit . Γ ` P ,Q. If πi/o,µ,unit(C[[Γ]]) . C[[P]]Γ ≈ C[[Q]]Γ, then

HOπ→�,µ,unit(Γ) . P ≈ Q.

4.1. Extensions

The compilation and the above results can be extended to calculi with richer type

structures, for instance with products and linearity. If we have linear types, so that we

know that the argument w of expressions x̄ w and v〈w : T 〉 is used at most once, then in

the clauses of Table 2 no replications are needed before yC[[w]]Γ;T . A linear type of HOπ

can be translated into a linear type of π-calculus. However, the linearity information can

be ignored in the translation, without affecting the results of Lemmas 4.3 and 4.4. For

this reason, in this paper we shall not use linear types in the π-calculus.

5. The λ-calculus

The basic operators of the λ-calculus, in its pure form, are λ-abstraction and application.

Letting x and y range over the set of λ-calculus variables, the set Λ of λ-terms is defined

by the grammar

M := x | λx.M | M1M2.

We omit the definitions of α-conversion, free variable, substitution, etc. We identify α-

convertible terms, and therefore write M = N if M and N are α-convertible. A λ-term

is closed if it contains no free variables. The set of free variables of a term M is written

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 376

Table 2. The compilation of HOπ into π-calculus (In this table we abbreviate all

expressions C[[E]] as [[E]].)

Translation of types:

[[]T]]
def
=][[T]] [[T → �]] def

= o[[T]]

[[unit]]
def
= unit [[µX.T]]

def
= µX. [[T]] [[X]]

def
= X

Translation of type environments:

[[6]]
def
= 6

[[Γ, x : T]]
def
= [[Γ]], x : [[T]]

Translation of higher-order values:

[[(x). P]]Γ;T def
= (x). [[P]]Γ,x:S if T = S → �

[[y]]Γ;T def
= (x). ȳx

Translation of processes:

(we say that a value v is π-transmittable if v is a name or the unit value; and we assume that y is

a fresh name)

[[v〈w : T 〉]]Γ def
=

[[v]]Γ;T→�w if w is π−transmittable

(νy : [[T]]←])([[v]]Γ;T→�y | !y[[w]]Γ;T)

if w is not π−transmittable

[[v̄w]]Γ def
=

v̄w if w is π−transmittable

(νy : [[T]]←])(v̄y | !y[[w]]Γ;T)

if w is not π−transmittable and Γ ` v :]T

[[z(x). P]]Γ def
= z[[(x). P]]Γ;T if Γ ` z :]T

[[P |Q]]Γ def
= [[P]]Γ | [[Q]]Γ [[0]]Γ def

= 0

[[(νx : T)P]]Γ def
= (νx : [[T]])[[P]]Γ,s:T [[!P]]Γ def

= ![[P]]Γ

fv(M). The subset of Λ containing only the closed terms is Λ0. To avoid too many

brackets, we assume that application associates to the left, so that MNL should be read

(MN)L, and that the scope of a λ extends as far as possible to the right, so that λx. MN

should be read λx. (MN). We also abbreviate λx1. · · · . λxn.M to λx1 · · · xn.M, or λx̃.M if

the length of x̃ is not important. We follow Barendregt (1984) and Hindley and Seldin

(1986) in notation and terminology for the λ-calculus. The basic computational step of

the λ-calculus is β-reduction:

β
(λx.M)N −→M{N/x} .

The following rules of inference allow us to replace a β-redex by its contractum in any

context:

µ
M −→M ′

MN −→M ′N
ν

N −→ N ′

MN −→MN ′
ξ

M −→M ′

λx.M −→ λx.M ′
.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 377

Table 3. The rules for a λ-calculus congruence

µ
M = M′

MN = M′N ν
N = N′

MN = MN′ ξ
M = M′

λx.M = λx.M′

Refl
M = M

Sym
M = N

N = M
Trans

M = N N = L

M = L

The rules β, µ, ν, ξ define the full β-reduction, written −→β; its reflexive and transitive

closure is =⇒β . The λβ theory, also called the formal theory of β equality, is defined by

the axiom
β

(λx.M)N = M{N/x}
plus the axiom and inference rules for congruence in Table 3. We write λβ ` M = N if

M = N can be proved in the λβ theory. We give names to some special λ-terms:

I
def
= λx. x Ω

def
= (λx. xx)(λx. xx).

Reduction strategies for the λ-calculus. A reduction strategy specifies which β-redexes

in a term may be contracted. Formally, a reduction strategy R is defined by fixing a

reduction relation −→R ⊆ Λ×Λ that we will usually write in infix notation. The reflexive

and transitive closure of −→R is =⇒R . We say that M is an R-normal form (R-nf) if there

is no N such that M −→R N; and that R has an R-normal form if there is a R-nf N

such that M =⇒R N. We also write M ⇓R N if M =⇒R N ↓, and M ⇓R if M ⇓R N for

some N. A notion of reduction gives rise to a λ-theory when one adds the rules that turn

the reduction relation into a congruence relation. The full β reduction is itself a strategy.

Important strategies in programming languages are call-by-name and call-by-value.

Call-by-value. In the call-by-value (or eager) strategy, the argument N of a function is

reduced to a value before the redex is contracted. The values of the untyped call-by-value

λ-calculus are the functions (that is, the λ-abstractions) and, on open terms, the variables

(it makes sense that variables be values because in call-by-value substitutions replace

variables with values – not arbitrary terms – and therefore the closed terms obtained by

substitution from a variable are closed values):

Values V := λx.M | x M ∈ Λ.

The one-step call-by-value reduction relation −→V ⊆ Λ × Λ is defined by the rule µ plus

the two rules:

βv
(λx.M)V −→V M{V/x} νv

N −→V N
′

(λx.M)N −→V (λx.M)N ′
.

Examples of call-by-value reductions are

(λx. I)Ω −→V (λx. I)Ω −→V . . .

(λx. xx)(II) −→V (λx. xx)I −→V II −→V I

(λxy. x)z(II) −→V (λy. z)(II) −→V (λy. z)I −→V z.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 378

Call-by-value is based on the βv rule. The λ-theory induced by this rule is the λβv theory,

also called the formal theory of βv equality, defined by the axiom

βv
(λx.M)V = M{V/x}

plus the inference rules in Table 3. A correct semantics of call-by-value should (at least)

validate the equalities of λβv.

Call-by-name. The call-by-name strategy always choses the leftmost redex, but reduc-

tions stop when a constructor is at the top. On open terms, the call-by-name strategy also

stops on terms with a variable in head position, that is, terms of the form xM1 . . .Mn.

This is because, intuitively, we need to know what the variable is instantiated to in

order to decide what reduction to do next. The one-step call-by-name reduction relation

−→N⊆ Λ × Λ is defined by the rules β and µ. Reduction is deterministic: the redex is

always at the extreme left of a term. Examples of call-by-name reductions are

(λx. I)Ω −→N I

(λx. xx)(II) −→N (II)(II) −→N I(II) −→N II −→N I

(λxy. x)z(II) −→N (λy. z)(II) −→N z.

Since call-by-name is based on the β rule, the λ-theory induced by call-by-name is the

same as λβ. Therefore a correct semantics of call-by-name should (at least) validate the

equalities of λβ.

Interpreting λ-calculi into π-calculus. All of the translations of λ-calculus strategies into

π-calculus that we shall present have two common features:

— Function application is translated as a form of parallel combination of two processes,

the function and its argument, and β-reduction is modelled as an interaction between

them.

— The encoding of a λ-term is parametric over a name. This name is used by (the

translation of) the λ-term to interact with the environment, and corresponds to the

continuation argument of a CPS function.

For simplicity, we adopt the convention that λ-calculus variables are also π-calculus

names.

6. The interpretation of call-by-value

In this section we develop the left-hand part of the diagram of Figure 1. The π-calculus

encoding of call-by-value λ-calculus (λV) is obtained in three steps, the first of which is

the call-by-value CPS transform of Plotkin (1975).

Step 1: The call-by-value CPS transform. The call-by-value CPS transform, CV, trans-

forms functions of λV into CPS functions. In its definition, the translation of values uses

the auxiliary translation function C∗V (which will be particularly useful when considering

types). We call a term C∗V[V] a CPS-value. The transform is presented in Table 4. Its

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 379

definition introduces a new variable, the continuation variable k, that represents contin-

uations and that has to be kept separate from the other variables. In the π-calculus

encodings, and in typed versions of the CPS transform, the continuation variable and

the other variables will have different types. (In the definition of CV we also use special

symbols v, w for the formal parameters of continuations. The distinction between these

variables and ordinary variables is, however, somewhat artificial because the former may

be instantiated by the latter.)

First we explain informally how the CPS transform works. The CPS image of a λ-term

L immediately needs a continuation. When a continuation is provided, L is reduced to

a value, and this value (more precisely, its CPS-value) is passed to the continuation.

Therefore if L is itself a value, it can be passed directly to the continuation. If, however,

L is an application MN, the following happens. First M is evaluated with continuation

λv.Cv[[N]](λw. vwk). When M becomes a function, say λx.M1, this function is passed to

the continuation, and the body of the continuation is evaluated. This means evaluating

N with continuation λw. vwk{C∗V[λx.M1]/v}. When N in turn becomes a value V , this

value is passed to the continuation, and the body of the continuation is evaluated. This

body is the term (vwk){C∗V[V]/w}{C∗V[λx.M1]/v}, that is (λx.CV[[M1]])C∗V[V]k. This term

reduces to CV[[M1]]{C∗V[V]/x}k, which is the same as CV[[M1{V/x}]]k. The reduction of

CV[[M1{V/x}]]k continues and, at the end, the value that M1{V/x} reduces to is passed

to k. Note that the flow of control of λV on application is correctly mimicked: first the

operator M of the application is evaluated, then the argument N is evaluated, and finally

the two derivatives of M and N are contracted.

To help understanding of the behaviour of application, we report below the details of

how a βv reduction

(λx.M1)V −→V M1{V/x}
is simulated. We use the call-by-name reduction −→N for the target CPS terms, but we

could just as well have chosen call-by-value, since these strategies coincide on CPS terms

(see Remark 6.3).

CV[[(λx.M1)V]]k (1)

=
(
λk.CV[[λx.M1]](λv.CV[[V]](λw. vwk))

)
k

−→N CV[[λx.M1]](λv.CV[[V]](λw. vwk))

= λh. hC∗V[λx.M1](λv.CV[[V]](λw. vwk))

−→N (λv.CV[[V]](λw. vwk))C∗V[λx.M1]

−→N CV[[V]](λw.C∗V[λx.M1]wk)

= λh. hC∗V[V](λw.C∗V[λx.M1]wk)

−→N (λw.C∗V[λx.M1]wk)C∗V[V]

−→N C∗V[λx.M1]C∗V[V]k

= (λx.CV[[M1]])C∗V[V]k

−→N CV[[M1]]{C∗V[V]/x}k
=CV[[M1{V/x}]]k.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 380

Table 4. The call-by-value CPS transform (In this table we abbreviate

CV[[M]] as [[M]] and C∗V[V] as [V].)

Call-by-value values V := λx.M | x
[[V]]

def
= λk. k[V]

[[MN]]
def
= λk. [[M]](λv. [[N]](λw. vwk))

[x]
def
= x

[λx.M]
def
= λx. [[M]]

All but the last reduction can be regarded as administrative reductions, because they do

not correspond to reductions of the source terms. The last reduction can be regarded as

a proper reduction, because it corresponds directly to the reduction on the source terms.

The call-by-value CPS transform maps λ-terms onto a subset of the λ-terms. The closure

of that subset under β-conversion gives the language CPSV of the call-by-value CPS:

CPSV
def
= {A : ∃M ∈ Λ with CV[[M]] =⇒β A}.

We call the terms of CPSV the CPS terms.

The first theorem shows that on CPS terms, β- and βv-redexes coincide.

Theorem 6.1. (Indifference of CPSV on reductions) Let M ∈ CPSV and let N be any

subterm of M. For all N ′, we have N −→N N ′ iff N −→V N
′.

Proof. Below we shall give a grammar, Grammar (3), that generates all CPS terms. It is

immediate to check that on terms generated by that grammar, β-redexes and βv-redexes

coincide, because all arguments of functions are values of λV (abstractions and variables).

Essentially as a consequence of Theorem 6.1, we obtain the following Theorem.

Theorem 6.2. (Indifference of CPSV on λ-theories) For all M,N ∈ CPSV, we have

λβ `M = N iff λβv `M = N.

Proof. The implication from right to left holds because a βv-redex is also a β-redex.

We consider the implication from left to right. Since full β-reduction =⇒β is confluent,

λβ ` L1 = L2 implies that there is L3 such that L1 =⇒β L3 and L2 =⇒β L3. When L1

and L2 are CPS terms, L3 is also a CPS term. By Theorem 6.1, all β-redexes contracted in

the reductions L1 =⇒β L3 and L2 =⇒β L3 are also βv-redexes. Hence λβv ` L1 = L2.

Remark 6.3. These indifference properties allow us to take either call-by-name or call-by-

value as the reduction strategy and the λ-theory on CPS terms. We choose the call-by-name

versions, because they are simpler.

The next two theorems are about the correctness of the CPS transform. The first shows

that the computation of a λ-term is correctly mimicked by its CPS image. The second

shows that the CPS transform preserves βv-conversion.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 381

Theorem 6.4. (adequacy for CV) Let M ∈ Λ0.

1 If M =⇒V V , then CV[[M]]k =⇒N kC∗V[V] (note that the term kC∗V[V] is a N-nf, that

is, a normal form for call-by-name).

2 The converse: if CV[[M]]k =⇒N N and N is a N-nf, then there is a call-by-value value

V such that M =⇒V V and N = kC∗V[V].

This theorem can be proved by going through an intermediate CPS transform obtained

from the original one by removing some administrative reductions. Doing so is useful

because administrative reductions complicate the operational correspondence between

source and target terms of the CPS transform. This is made clear by considering the

open term xx: this term is not reducible (it is a V-nf), but its image CV[[xx]]k has 5

(administrative) reductions.

Theorem 6.5. (Validity of the β-theory for Cv) Let M,N ∈ Λ. If λβv ` M = N, then

λβ ` CV[[M]] = CV[[N]].

Proof. [sketch] First one shows that if M =⇒V N, then λβ ` CV[[M]] = CV[[N]]. Then

one concludes the proof using the fact that βv is confluent.

The converse of Theorem 6.5 fails. For instance, if

M
def
= Ωy = (λx. xx)(λx. xx)y (2)

N
def
= (λx. xy)Ω = (λx. xy)((λx. xx)(λx. xx)),

then λβ ` CV[[M]] = CV[[N]] holds, but λβv `M = N does not.

The statements on the correctness of the CPS transform complete Step 1 of the left-hand

part of Figure 1.

Step 2: From CPSV to HOπ. The next step is to show that, modulo the different syntax

for abstraction and application, the terms of CPSV are also terms of HOπ. To do this, we

present a grammar that generates all CPSV terms, and show that the terms generated by

this grammar are also terms of HOπ.

The grammar has four non-terminals, for principal terms, continuations, CPS-values, and

answers. Principal terms are abstractions on continuations; they describe the images of the

λ-terms under the CPS transform. CPS-values correspond, intuitively, to the values of λV ;

they are used as arguments to continuations. Answers are the results of computations:

what we obtain when we evaluate a principal term applied to a continuation. Answers

are the terms in which computation (β-reductions) takes place.

continuation variable k (3)

ordinary variables x, . . .

answers P := KV |VVK |AK
CPS-values V := λx. λk. P | x

continuations K := k | λx. P
principal terms A := λk. P

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 382

Remark 6.6. In the grammar for CPS-values, the production λx. λk. P can be simplified

to λx. A, but the expanded form is better for the comparison with HOπ below.

Remark 6.7. Having only one continuation variable guarantees that the continuation

occurs free exactly once in the body of each abstraction λk. P . (When working up to

α-conversion, the continuation variable k may be renamed, but the linearity constraint on

continuations remains.)

The relationships among the four categories of non-terminals in Grammar (3) can be

expressed using types. Assuming a distinguished type � for answers, the types TV , TK and

TA of CPS-values, continuations and principal terms are

TV
def
= µX.

(
(X → (X → �)→ �)) (4)

TK
def
= TV → �

TA
def
= TK → �.

The type judgements for the terms M generated by Grammar (3) are of the form

Γ `M : T (5)

where T ∈ {TV , TK, TA, �} and Γ is either x̃ : TV or x̃ : TV , k : TK , for some x̃ with

x̃ ⊆ fv(M). We shall see in Section 9 that there is a general schema for translating type

judgements on λ-terms to type judgements on the CPS-images of the λ-terms, and that

the schema applies also to untyped λ-calculus.

Remark 6.8. To be precise, we should include some linear information in the types (4) in

order to show the linear usage of continuations. In the step of encoding into the π-calculus,

these linear information allow us to avoid some replication operators. We do not show the

linear types for the following reasons: the linear information is already highlighted in (3)

by the syntactic separation between continuation and ordinary variables; linearity is not

fundamental (the simplification on replications in the π-calculus is pretty straightforward

and could anyway be omitted), linear types are not needed in the final π-calculus encoding

(linearity can be ‘forgotten’ when translating types, see the discussion in Section 4.1).

All CPS terms are indeed generated by Grammar (3):

Proposition 6.9. If M ∈ CPSV, then M is a principal term of Grammar (3).

Proof. The set of principal terms includes the set {CV[[M]] : M ∈ Λ} and is closed

under β-conversion.

It is easy to see that the set of terms generated by Grammar (3) is, essentially, a

subset of HOπ terms. To be precise, answers may be regarded as HOπ processes, and

CPS-values, continuations, and principal terms as HOπ abstractions. Recall from Section

3 that the grammar of (polyadic) HOπ requires that abstractions be either variables

or parametrised processes. CPS-values, continuations, and principal terms of Grammar

(3) are indeed of this form, if we read P as a ‘process’, and we uncurry a CPS-value

λx. λk. P to λ(x, k). P and an answer VVK to V 〈V ,K〉 (correspondingly, in Table 4,

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 383

Table 5. The encoding of λV into the π-calculus

V[[λx.M]]
def
= (p). p(y). !y(x)V[[M]]

V[[x]]
def
= (p). px

V[[MN]]
def
= (p). νq

(
V[[M]]q | q(v). νr(V[[N]]r | r(w). v〈w, p〉)

)

C∗V[λx.M] becomes λ(x, k).CV[[M]]k, and in the translation of MN, the term λw. vwk

becomes λw. v〈w, k〉). It is therefore straightforward to define the injection H from the

terms of Grammar (3) to HOπ. On terms, modulo this uncurrying, the injection rewrites

λ-abstractions into HOπ abstractions, and λ-applications into HOπ applications (with the

obvious type annotations in applications, given by (4) and the translation of types). The

injection is the identity on (uncurried) types; thus

H[[TV]]
def
= µX.

(
(X × (X → �))→ �). (6)

We haveH[[�]]
def
= �, which explains the abuse of notation whereby the same symbol � is

used for the type of answers of Grammar (3) and for the type of processes of HOπ. The

image of H is a HOπ language that has recursive and product types.

The proofs of the following lemmas are straightforward.

Lemma 6.10. Suppose that M is a term generated by Grammar (3), and that Γ ` M : T

for Γ and T as in (5). Then H[[Γ]] ` H[[M]] :H[[T]].

As a corollary of Lemma 6.10, if M ∈ Λ with fv(M) ⊆ x̃, then

x̃ :H[[TV]] ` H[[CV[[M]]]] :H[[TA]] = (H[[TV]]→ �)→ �. (7)

We recall that if P ,Q are HOπ processes, then P −→β Q and P =β Q denote β-reduction

and β-convertibility in HOπ, respectively (Section 3).

Lemma 6.11. For all terms M of Grammar (3), if M −→N M ′, then H[[M]] −→β =β

H[[M ′]]. Conversely, if H[[M]] −→β P , then there is M ′ such that M −→N M ′ and

P =β H[[M]].

(In the lemma above, the use of =β is due to the uncurrying that is used in the injec-

tion H.)

Corollary 6.12. For all terms M,N generated by Grammar (3), λβ ` M = N implies

H[[M]] =β H[[N]].

Proof. Since =⇒β is confluent, λβ ` M = N holds iff there is some L such that

M =⇒β L and N =⇒β L. Therefore, by Lemma 6.11, H[[M]] =β H[[L]] =β H[[N]].

This concludes the second step of the left part of Figure 1.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 384

Step 3: Compilation C. The third and final step for the left-hand part of Figure 1 is

from HOπ to π-calculus. This step is given by the compilation C from HOπ to π-calculus

of Section 4.

Composing the steps. Composing the three steps, from λV to CPSV, from CPSV to

HOπ, and from HOπ to π-calculus, we obtain the encoding V of λV into π-calculus in

Table 5. To be precise, the encoding V[[M]] of a λ-term M is obtained as follows (we can

omit the type environment index in C, for M is untyped and therefore all free variables

are translated in the same way):

V[[M]]
def
= C[[H[[CV[[M]]]]]].

The encoding V uses two kinds of name:

— Location names (p, q, r) that are used as arguments of the encodings of λ-terms. These

names correspond to the continuation variable of the CPS Grammar (3).

— Value names (x, y) that are used to access values. These names correspond to the

ordinary variables of the CPS Grammar (3).

(As V[[M]] is an abstraction, we recall these notations for abstractions from Section 2.1:

if V[[M]] is (q). Q, then y(x)V[[M]] is y(x, q). Q, and V[[M]]r is Q{r/q}.) The encoding of

an application MN at location p is a process that first runs M at some location q. When

M signals that it has become a value v, the argument N is run at some location r; names

q and r are private, to avoid interference from the environment. When N also signals

that it has become a value w, the application occurs: the pair 〈w, p〉 is sent at v. This

communication is the step that properly simulates the βv-reduction of λV ; the previous

communications were ‘administrative’ (exactly as happens in the CPS transform – see

Section 6). The second argument of the pair 〈w, p〉 is the location where the final result

of MN will be delivered. The first argument is a pointer to the value that N has reduced

to, or the value itself if this value is a variable.

Remark 6.13. In Table 5, the inputs at location names (q and r) are not replicated because,

in the step of translation from HOπ to π-calculus, we take into account the linearity

constraint on continuations (see Remark 6.7) and therefore adopt the optimisation of

Section 4.1. As discussed in Section 4.1, linear types are, however, not needed in the

π-calculus.

For the sake of readability, the translation of Table 5 is not annotated with types.

Types, in particular i/o types, are, however, introduced in the compilation from HOπ

to π-calculus, and are needed for the correctness of the compilation (Remark 6.17). The

π-calculus translation of type H[[TV]] in (6) is the recursive type

Val
def
= µX. (o(X × oX)).

We do not need the i tag on types, because both location and trigger names that are

communicated may only be used by a recipient for sending. Below is the π-calculus

translation of λV , including the type annotations for restricted names. We recall that if T

is a π-calculus type, then (T)←] is the type obtained by replacing the outermost i/o tag

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 385

in T with], possibly after unfolding T if its outermost construct is recursion.

V[[λx.M]]
def
= (p). p(y : (Val)→]). !y(x)V[[M]]

V[[x]]
def
= (p). px

V[[MN]]
def
= (p). (νq :](Val))(V[[M]]q | q(x). (νr :](Val)) (V[[N]]r | r(y). x〈y, p〉)) .

Types Val and o (Val) are, respectively, the types of free trigger and free location names

of processV[[M]]p. These types change the outermost tag to] on names local toV[[M]]p,

thus becoming, respectively, (Val)←] and](Val).

The translation of (7) into π-calculus gives the following lemma.

Lemma 6.14. Suppose fv(M) ⊆ x̃. Then x̃ : Val, p : o (Val) ` V[[M]]p.

From the correctness of the 3 steps from which encoding V has been derived, we get the

two corollaries below.

Corollary 6.15. (Adequacy of V) Let M ∈ Λ0. Then M ⇓v iff V[[M]]p ⇓, for any p.

Proof. The result follows from Theorem 6.4, Lemma 6.11 and the operational correct-

ness of the encoding of HOπ into the π-calculus (Lemma 4.2 and its extensions, Section

4.1).

Corollary 6.16. (Validity of λβv theory for V) Suppose fv(M,N) ⊆ x̃, and let H
def
= x̃ :

Val; o(Val). If λβv `M = N, then V[[M]] ≈H V[[N]].

Proof. The result follows from Theorem 6.5, Corollary 6.12 and (the appropriate exten-

sion of) Lemma 4.3.

The counterexample to the converse of Theorem 6.5 implies also that the converse of

Corollary 6.16 is false.

Remark 6.17. (Effect of i/o types on behavioural equivalences) In the relation of barbed

congruence of Corollary 6.16, the presence of i/o types is important. The result would

not hold if each i/o type I T (for I ∈ {i, o,]}) were replaced by the (less informative)

channel type]T . As a counterexample, take M
def
=(λx. (λy. x))λz. z and N

def
= λy. (λz. z).

With a βv-conversion, M reduces to N. However, without i/o types, V[[M]]p and V[[N]]p

could be distinguished – (see Sangiorgi 1992a page 128).

By Corollary 6.16, we know that if M −→V M ′, then V[[M]] and V[[M ′]], are be-

haviourally indistinguishable. One might like, however, to see how the reduction of λV is

simulated in the π-calculus:

V[[(λx.M)λy.N]]p (8)

= νq(q̄(z). !z(x)V[[M]] | q(z). νr(r̄(u). !u(y)V[[N]] | r(u). z̄〈u, p〉))
−→∼ (νr, z)(!z(x)V[[M]] | r̄(u). !u(y)V[[N]] | r(u). z̄〈u, p〉)
−→∼ (νu, z)(!z(x)V[[M]] | !u(y)V[[N]] | z̄〈u, p〉)
−→∼ (νu, z)(V[[M]]p{u/x} | !z(x)ν[[M]]| !u(y)V[[N]])

∼ (νx) (V[[M]]p) | !x(y)V[[N]])

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 386

Table 6. The call-by-name CPS transform (In this table

we abbreviate CN[[M]] as [[M]] and C∗N[V] as [V].)

call-by-name values V := λx.M

[[x]]
def
= λk. xk

[[V]]
def
= λk. k[[V]]

[[MN]]
def
= λk. [[M]](λv. v[[N]]k)

[λx.M]
def
= λx. [[M]]

where the occurrences of ∼ indicate the application of the laws of structural equivalence

and the laws of Lemma 2.3. We have that (νx)(V[[M]]p | !x(y)V[[N]]) ≈ V[[M{N/x}]]p.
The proof of this is simpler than, but similar to, the proof of Lemma 4.3.

Remark 6.18. The results on the CPS transform, notably Theorems 6.4 and 6.5, have

been used to derive results about the correctness of the π-calculus encoding. But we can

also use the factorisation of Figure 1 in the opposite direction. For instance, developing

(8) above, we can give a direct proof of Corollary 6.15, and from this, Lemma 6.11, and

Lemma 4.2, we can derive the adequacy of the CPS transform (Theorem 6.4). Similarly,

from Corollary 6.16 and Lemma 4.4 we can prove a weaker version of Theorem 6.5,

saying that if λβv ` M = N, then CV[[M]] and CV[[N]] are behaviourally equivalent as

terms of λN. (As behavioural equivalence on λN, we can take barbed congruence, using

⇓N as the only observability predicate.)

7. The interpretation of call-by-name

In this section we develop a π-calculus encoding of call-by-name λ-calculus. The approach

is similar to that for call-by-value in Section 6.

Step 1: The call-by-name CPS. Table 6 shows the call-by-name CPS transform of

Plotkin (1975) – in fact, a rectified variant of it (see the notes in Section 10). How a β

reduction

(λx.M)N −→N M{N/x}
is simulated in the transform (as in call-by-value, we choose to take call-by-name for

the reduction relation on the images of the CPS, but these terms are evaluation-order

independent: see Theorem 7.1):

CN[[(λx.M)N]]k

−→N CN[[λx.M]](λv. vCN[[N]]k)

= (λk. (kC∗N[λx.M]))(λv. vCN[[N]]k)

−→N (λv. vCN[[N]]k)C∗N[λx.M]

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 387

−→N C∗N[λx.M]CN[[N]]k

= (λx.CN[[M]])CN[[N]]k

−→N CN[[M]]{CN[[N]]/x}k.
In general, CN[[M]]{CN[[N]]/x}k is not equal to CN[[M{N/x}]]k, because CN does not

commute with substitution. The two terms are, however, β-convertible; indeed CN[[M]]

{CN[[N]]/x}k =⇒β CN[[M{N/x}]]k.
Closing the images of the transform under β-reduction gives the language CPSN of the

call-by-name CPS:

CPSN
def
= {A : ∃M ∈ Λ with CN[[M]] =⇒β A}.

When there is no ambiguity, we call the terms of CPSN the CPS terms.

The theorems below are the call-by-name versions of Theorems 6.1–6.5. They show the

indifference of the CPS terms to the choice between call-by-name and call-by-value, and the

correctness of the CPS transform. Theorem 7.3 is slightly weaker than the corresponding

result for call-by-value. The reason is that, as illustrated above, CN commutes with

substitution only up to β-conversion. In contrast, Theorem 7.4 is stronger than the

corresponding result for call-by-value: it asserts a logical equivalence rather than an

implication.

Theorem 7.1. (Indifference of CPSN on reductions) Let M ∈ CPSN and let N be any

subterm of M. For all N ′, we have N −→N N ′ iff N −→V N
′.

Theorem 7.2. (Indifference of CPSN on λ-theories) For all M,N ∈ CPSN, we have

λβ `M = N iff λβV `M = N.

Theorem 7.3. (Adequacy of CN) Let M ∈ Λ0.

1 If M =⇒N V where V is a call-by-name value, then there is an N-nf N such that

CN[[M]]k =⇒N N and λβ ` N = kC∗N[V].

2 The converse, that is, if CN[[M]]k =⇒N N and N is an N-nf, then there is a call-by-name

value V such that M =⇒N V and λβ ` N = kC∗N[V].

Theorem 7.4. (Validity of the β-theory for CN) Let M,N ∈ Λ. Then λβ ` M = N iff

λβ ` CN[[M]] = CN[[N]].

Step 2: From CPSN to HOπ. The grammar below generates all terms of CPSN. The

intuitive meaning of the various syntactic categories in the grammar is the same as for the

call-by-value Grammar (3). The main differences are the addition of the value variable v,

representing the parameter of continuations, and the splitting of the set of answers into

the sets P1 and P2. These modifications are made in order to capture the linear use of the

parameters of continuations within the grammar (dropping linearity we would have the

CPS language of Table 8). As in the call-by-value grammar, there is only one continuation

variable k because continuations are used linearly.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 388

Table 7. The encoding of λN into the π-calculus

N[[λx.M]]
def
= (p). p(v). v(x)N[[M]]

N[[x]]
def
= (p). xp

N[[MN]]
def
= (p). νq

(N[[M]]q | q(v). νx(v〈x, p〉. !xN[[N]])
)

continuation variable k (9)

ordinary variables x, . . .

value variable v

answers P := P1 |P2

P1 := KV |VAK |AK
P2 := vAK

CPS-values V := λx. λk. P1

continuations K := k | λv. P2

principal terms A := λk. P1 | x.
Using � as the type of answers, the types TV , TK and TA of CPS-values, continuations,

and principal terms are

TV
def
= µX. (((X → �)→ �)→ ((X → �)→ �)) (10)

TK
def
= TV → �

TA
def
= TK → �.

The value variable v has the type TV of the CPS values. The typing judgements for the

terms generated by the grammar are as expected, given these types.

Proposition 7.5. If M ∈ CPSN, then M is also a principal term of Grammar (9).

Proof. One can show that the set of principal terms includes the set {CN[[M]] : M ∈ Λ}
and is closed under β-conversion.

The injection H, from the terms generated by Grammar (9) to HOπ, is defined as for

the call-by-value Grammar (3), and similar results hold:

Lemma 7.6. Suppose M is a term generated by Grammar (9), and Γ `M : T . Then also

H[[Γ]] ` H[[M]] :H[[T]].

Therefore, if M ∈ Λ with fv(M) ⊆ x̃, then

x̃ :H[[TA]] ` H[[CN[[M]]]] :H[[TA]] = (H[[TV]]→ �)→ �. (11)

Lemma 7.7. For all terms M of Grammar (9), we have if M −→N M ′, then H[[M]]

−→β =β H[[M]]′. Conversely, if H[[M]] −→β P , then there is M ′ such that M −→N M ′
and P =β H[[M ′]].

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 389

Corollary 7.8. For all terms M, N generated by Grammar (3), λβ ` M = N implies

H[[M]] =β H[[N]].

Step 3: Compilation C. This step is given by compilation C of HOπ into π-calculus.

Composing the steps. Composing the three steps, from λN to CPSN, from CPSN to

HOπ, and from HOπ to π-calculus, we obtain the encoding of λN into π-calculus in

Table 7.

The encoding uses three kinds of name: location names (p, q, r), trigger names (x, y), and

value names (v). Location names are arguments of the encoding, and are the counterpart of

the continuation variable of the CPS Grammar (9). Trigger names are pointers to λ-terms,

and are the counterpart of the ordinary variables of the CPS grammar. Value names are

pointers to values (more precisely, to CPS-values, in the terminology of Grammar (9)),

and are the counterpart of the value variable of the CPS grammar.

The difference between call-by-value and call-by-name is evident in the encoding of a

variable x: the corresponding π-calculus name x is used not as a value, as it was in the

translation of call-by-value, but as a trigger for activating a term and providing it with

a location. As a consequence, in the encoding of an application MN at location p, when

M signals that it has become function, it receives a trigger for the argument N, together

with the location p for interacting with the environment.

Remark 7.9. In the table, in the definitions of function and application, the inputs at v

and q are not replicated because of the linearity constraint on value variables and on the

continuation variable of Grammar (9) that, in the compilation of HOπ to the π-calculus,

enables us to adopt the optimisation of Section 4.1; we need a similar approval in the

call-by-value encoding, see Remark 6.13.

In the encoding of Table 7, we have omitted type annotations. Below is the complete

encoding, including types. The type

Trig
def
= µX. (o(o oX × oX)) (12)

is the translation into π-calculus of the type TV in (10).

N[[λx.M]]
def
= (p). p(v : (Trig)←]). v(x)N[[M]] (13)

N[[x]]
def
= (p). xp

N[[MN]]
def
= (p). (νq :](Trig))(N[[M]]q | q(v). (νx :]o(Trig)) (v〈x, p〉. !xN[[N]])

)
.

The translation of (11) into π-calculus gives

Lemma 7.10. Suppose fv(M) ⊆ x̃. Then x̃ : o o(Trig), p : o(Trig) ` N[[M]]p.

We also derive the following two results about the operational correctness of the

encoding.

Corollary 7.11. (Adequacy of N) Let M ∈ Λ0. Then M ⇓N iff N[[M]]p ⇓, for any p.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 390

Table 8. A uniform CPS transform (In this table

we abbreviate CU[[M]] as [[M]].)

[[x]]
def
= λk. xk

[[λx.M]]
def
= λk. k(λx. [[M]])

call-by-name application:

[[MN]]
def
= λk. [[M]](λv. v[[N]]k)

call-by-value application:

[[MN]]
def
= λk. [[M]](λv. [[N]](λw. v(λk. kw)k))

Proof. From Theorem 7.3, Corollary 7.7, and (the appropriate extension of)

Lemma 4.2.

Corollary 7.12. (Validity of λβ theory for N) Suppose fv(M,N) ⊆ x̃ and let H
def
= x̃ :

oo(Trig); o(Trig). If λβ `M = N, then N[[M]] ≈H N[[N]].

Proof. The result follows from Theorem 7.4, Lemma 6.12 and (the appropriate extension

of) Lemma 4.3.

By contrast, N does not validate rule η, namely

λx. (Mx) = M if x /∈ fv(M). (14)

Neither does the call-by-value encoding V satisfy η. These failures make sense, as η is

not operationally valid in either call-by-name or call-by-value λ-calculus.

8. A uniform encoding

The differences between the definitions of application in the π-calculus encodings of

call-by-name and call-by-value are inevitable – just because application is precisely where

these strategies differ. One may wonder, however, whether the definitions of abstraction

and variable need to differ too. In this section, we make some simple modifications to

these encodings to obtain new ones that differ only in the definitions of application.

We obtain the new encodings again by going through a CPS transform, an injection

into HOπ and the compilation of HOπ into π-calculus. We begin with the CPS transform.

Starting from the call-by-value and call-by-name transforms examined in the previous

sections (Tables 4 and 6), it is easy to give a CPS transform that is uniform for call-

by-value and call-by-name, in that it has the same clauses for abstraction and variables.

The call-by-value and call-by-name CPS have the same clause for abstractions; to obtain

a uniform CPS, it suffices to adopt the call-by-name CPS, and modify the definition of

application of the call-by-value CPS to compensate for the different clauses for variables.

(We cannot adopt the definition of variables of the call-by-value CPS transform because

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 391

Table 9. The uniform encoding of call-by-name, and

call-by-value

U[[λx.M]]
def
= (p). p(v). !v(x)U[[M]]

U[[x]]
def
= (p). xp

call-by-value application:

U[[MN]]
def
= (p). (νq)

(
U[[M]]q | q(v). νr(U[[N]]r|

r(w). νxv〈x, p〉. !x(r′). r′w)
)

call-by-name application:

U[[MN]]
def
= (p). (νq)

(U[[M]]q | q(v). νx v〈x, p〉. !xU[[N]]
)

it treats variables as values, and this is correct only when variables are always substituted

by values.)

The uniform CPS transform is given in Table 8. The associated grammar, which is

similar to that for the call-by-name CPS transform but lacks the constraint on linear

occurrence of value variables, is

continuation variable k

ordinary variables x, . . .

value variables v, w, . . .

answers P := KV |VAK |AK
CPS-values V := λx. λk. P | v

continuations K := k | λv. P
principal terms A := λk. P | x.

The types of the non-terminals of the grammar are the same as those of the call-by-

name CPS transform. With the usual injection on terms and on types, the terms generated

by this grammar and their types become a sublanguage of HOπ. Applying the compilation

of HOπ into π-calculus, we obtain the encodings given in Table 9. We omit the correctness

results, which are similar to those in Sections 6 and 7.

8.1. Call-by-need

Call-by-need is an implementation technique for call-by-name, which (in languages with-

out side effects) avoids the inefficiency problems caused by repeated evaluations of copies

of the argument of a function: the first time the argument is evaluated, its value is saved

in an environment; if needed subsequently, the value is fetched from the environment. In

this way, the evaluation of the argument is shared among all places where the argument

is used. Call-by-need is usually presented as a reduction strategy on graphs, where it is

easy to represent sharing of subterms.

As call-by-need is an implementation technique for call-by-name, its theory is related

to that of call-by-name. The sets of λ-terms that have a normal form under call-by-need

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 392

Table 10. The (core) simply-typed λ-calculus

Terms M := x | c | λx : T .M |MN c ∈ base constants

Types T := T1 → T2 | t t ∈ base types

Type environments Γ :=6 |Γ, x : T

Typing rules
Γ, x : S `M : T

Γ ` λx : S.M : S → T

Γ(x) = T

Γ ` x : T

Γ `M : S → T Γ ` N : S

Γ `MN : T

and call-by-name coincide; and two λ-terms are behaviourally equivalent in call-by-need

iff they are also behaviourally equivalent in call-by-name.

We can modify the clauses for application in Table 9 to obtain the clause for call-by-need

application:

U[[MN]]
def
= (p). (νq)

(U[[M]]q | q(v). νx v〈x, p〉. x(r). νq′(U[[N]]q′ | q′(w). (rw | !x(r′). r′w))
)
.

We can explain this clause as follows. When U[[M]]q becomes a function it signals that it

has on q, and receives a pointer x to the argument N together with the location p for the

next interaction. Now the evaluation of M continues. When the argument N is needed

for the first time, a request is made on x. Then U[[N]]r is evaluated and, when it becomes

a value, a pointer to this value instantiates w. This pointer is returned to the process that

requested N. When further requests for N are made, the pointer is returned immediately.

Thus, by contrast with call-by-name, in call-by-need the argument N of the application is

evaluated once.

It is not by chance that the call-by-need encoding is best derived from the uniform

encoding of Table 9, because call-by-need combines elements of the call-by-name and call-

by-value strategies. Indeed it can be defined as call-by-name plus sharing, but can also

be seen as a variant of call-by-value where the argument of an application is evaluated

at a different point. We do not show the correctness of the call-by-need encoding, for it

would require formally introducing the call-by-need system. See the notes of Section 10

for references.

9. Interpreting typed λ-calculi

In this section we show that the encodings of the previous section can be extended

to encodings of typed λ-calculi. To do this we have to define translations on types to

match those on terms. We analyse the case of the simply-typed λ-calculus in detail, and

discuss subtyping and recursive types. For studies of other type systems, see the notes of

Section 10.

The simply typed λ-calculus is presented in Table 10. For simplicity, we use only

constants of base types. As usual, the arrow type associates to the right, so T → S → U

should be read as T → (S → U). The reduction relation and the reduction strategies are

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 393

defined as for the untyped calculus; the only difference is that the set of values for a

reduction strategy also contains the constants. We call the typed versions of λV and λN

(simply-) typed call-by-value (λV→) and (simply-) typed call-by-name (λN→), respectively.

We add the same base constants and base types to HOπ and π-calculus, and repeat the

diagram of Figure 1, this time for λV→ and λN→. We show how to extend the encodings

of λV and λN (from Sections 6 and 7), and their correctness results, to take account of

types. The encodings in Section 8 can be extended similarly.

Lemma 9.1. In the simply-typed λ-calculus, for every Γ and M there is at most one T

such that Γ `M : T .

9.1. The interpretation of typed call-by-value

We begin with the left-hand part of Figure 1, which concerns λV→. We follow a schema

similar to that of Section 6, pointing out the main additions. As is usual when translating

typed calculi, the definition of CV (Table 4) on a term uses the type environment of the

term as an index to be able to put the necessary type annotations in the target term. We

shall not discuss these type annotations any further; they are determined by the definition

of CV on types, explained below. We have to add a clause for constants:

C∗V[c]Γ def
= c.

It is important to understand how the CPS transform acts on types. Recalling from

Section 6 that � is a distinguished type of answers (answers being the ‘results’ of CPS

terms), the call-by-value CPS-transform modifies the types of λV→-terms as follows:

CV[[T]]
def
= (C∗V[T]→ �)→ � (15)

C∗V[t]
def
= t if t is a base type

C∗V[S → T]
def
= C∗V[S]→ CV[[T]].

The translation of arrow types is sometimes called the ‘double-negation construction’

because, writing ¬T for T → �, we have

C∗V[S → T] = C∗V[S]→ ¬¬C∗V[T].

Type environments are modified accordingly:

CV[[6]]
def
= 6

CV[[Γ, x : S]]
def
= CV[[Γ]], x : CV[[S]].

and similarly for C∗V. The correctness of this translation of types is given in the following

Theorem.

Theorem 9.2. (Correctness of call-by-value CPS on types) If M ∈ Λ, then

Γ `M : T implies C∗V[Γ] ` CV[[M]]Γ : CV[[T]].

(It follows that for any value V ,

Γ ` V : T implies C∗V[Γ] ` C∗V[V]Γ : C∗V[T],

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 394

which shows the agreement between the definitions of the auxiliary function C∗V on terms

and on types.)

Remark 9.3. Schema (15) is also useful for understanding the types of the CPS images

of the untyped λV in (4), because the untyped λ-calculus can be described as a typed

λ-calculus in which all terms have the recursive type

T
def
= µX. (X → X). (16)

To apply the type translation to (16), we just need to add the clauses for type variables

and for recursion to those in (15):

C∗V[X]
def
= X C∗V[µX.T]

def
= µX.C∗V[T]. (17)

The translation of type T in (16) is then

C∗V[T] = µX. (X → (X → �)→ �),
which is precisely type TV in (4). Moreover

CV[[T]] = (C∗V[T]→ �)→ �
= (TV → �)→ �
= TA.

The grammar of CPS terms is obtained from Grammar 3 by adding a production for

constants to those defining CPS-values. The relationship between the CPS grammar and

HOπ is as in the untyped case, both on terms and on types. That is, modulo a modification

of the syntax and some uncurrying, the CPS grammar generates a sublanguage of HOπ.

Thus Theorem 9.2 can also be read as a result about the encoding of λV→ into HOπ.

Finally, we apply the compilation C of HOπ terms and types into π-calculus terms and

types, and obtain the encoding of λV→ into typed π-calculus in Table 11, and the results

below about its correctness. Apart from type annotations, the translation of terms is the

same as for the untyped calculus, with the addition of the clause for translating constants.

Recalling that (T)− is the type obtained from T by cancelling the outermost i/o tag, and

therefore (V[[T]])− is oV∗[T], the translation of Theorem 9.2 into π-calculus gives the

following corollary.

Corollary 9.4. (Correctness of V on types) Let M be a term of a simply typed λ-calculus.

Then

Γ `M : T implies V∗[Γ], p : (V[[T]])− ` V[[M]]Γp.

The results for the encoding of untyped λV , namely validity of βv-rule and adequacy

(Corollary 6.16 and 6.15), remain valid for the typed calculus, with the necessary modifi-

cations to the statements to take account of types. For instance, Corollary 6.16 becomes

the following Corollary.

Corollary 9.5. (Validity of βv theory) Suppose that Γ ` M : T and Γ ` N : T , and let

H
def
= V∗[Γ]; (V[[T]])−. If λβv `M = N then V[[M]]Γ ≈H V[[N]]Γ.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 395

Table 11. The encoding of λV→ into π-calculus (In this table we abbreviate V[[M]]

as [[M]], and for a type or type expression E, we abbreviate V∗[E] as [E] and

V[[E]] as [[E]].)

Translation of types:

[[T]]
def
= oo[T]

[t]
def
= t t ∈ base types

[S → T]
def
= [S]_ [[T]] = o([S]× o[T])

Translation of type environments:

[[6]] = [6]
def
= 6

[[Γ, x : S]]
def
= [[Γ]], x : [[S]]

[Γ, x : S]
def
= [Γ], x : [S]

Translation of terms:

[[λx : S.M]]Γ def
= (p). p(y : [S → T]←]). !y(x)[[M]]Γ,x : S

[[x]]Γ def
= (p). px

[[c]]Γ def
= (p). pc

[[MN]]Γ def
=

(p). (νq :][S → T])
(
[[M]]Γq | q(x). (νr :][S])([[N]]Γr | r(y). x〈y, p〉))

where in the clause for abstraction, T is the unique type such that Γ ` λx : S.M : T , and,

similarly, in the clause for application, S → T is the unique type such that Γ `M : S → T

(these types are unique by Lemma 9.1).

Remark 9.6. The types of π-calculus names used for the encoding of untyped λV in

Section 6 agree with those used for λV→ in this section, when we view the untyped

λ-calculus as a typed λ-calculus where the only type is µX.X → X (Remark 9.3). From

(17), the translation of recursive types and type variables of λV into π-calculus is

V∗[X]
def
= X V∗[µX.T]

def
= µX.V∗[T].

Therefore type Val of Section 6 is precisely V∗[µX. (X → X)], so Lemma 6.14 can be

presented thus: if fv(M) ⊆ x̃, then

x̃ :V∗[µX. (X → X)], p : (V[[µX. (X → X)]])− ` V[[M]]x̃:µX. (X→X)p.

Remark 9.7. (Subtyping) In typed λ-calculi with subtyping, the arrow type is contravariant

in the first argument and covariant in the second. The i/o tag o is a contravariant

type constructor. In the translation of an arrow type S → T , component V∗[S] is in

contravariant position, because it is underneath an odd number of o tags; in contrast

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 396

V∗[T] is in covariant position, because it is underneath an even number of o tags.

Therefore the π-calculus translation of types correctly explains the subtyping rule for

arrow type. As a consequence, the translation of this section can be extended to one of

λV→ with subtyping.

9.2. The interpretation of typed call-by-name

The work presented for call-by value can be repeated for call-by-name. We only show

how the CPS modifies types, and the analogue of Theorem 9.2 and Corollary 9.4.

CN[[T]]
def
= (C∗N[T]→ �)→ �

C∗N[t]
def
= t if t is a base type

C∗N[S → T]
def
= CN[[S]]→ CN[[T]].

Theorem 9.8. (Correctness of call-by-name CPS on types) Let M ∈ Λ. Then

Γ `M : T implies CN[[Γ]] ` CN[[M]]Γ : CN[[T]].

A corollary is that for every value V of λN→,

Γ ` V : T implies CN[[Γ]] ` C∗N[V]Γ : C∗N[T].

The final encoding of types, type environments and terms of λN→ into π-calculus is

given in Table 12.

Corollary 9.9. (Correctness of N on types) Let M be a term of a simply typed λ-calculus.

Then

Γ `M : T implies N[[Γ]], p : (N[[T]])− ` N[[M]]Γp.

10. Historical notes

The standard references on the classical theory of the λ-calculus (the sensible theory) are:

Barendregt (1984), and Hindley and Seldin (1986). The textbooks: Gunter (1992), Hindley

(1997), and Mitchell (1996) contain detailed presentations of typed λ-calculi and PCF.

The term ‘continuation’ is due to Strachey and Wadsworth (1974), who used them

to give semantics to control jumps. See Reynolds (1993) for a history of the discovery

of continuations and CPS transforms. For continuations in denotational semantics, see

Gordon (1979), Schmidt (1986) or Tennent (1991). For continuations as a programming

technique, see Friedman et al. (1992). For the use of CPS transform in compilers, see

Appel (1992), where the language is ML, or Friedman et al. (1992), where the language

is Scheme. The call-by-value CPS transform of Table 4 is due to Fischer (1972) (of which

a more complete version is Fischer (1993)). The call-by-name CPS transform of Table 6

is that of Plotkin (1975), based on work by Reynolds (such as Reynolds (1972); however,

we have adopted the rectification in the clause for variables due to Hatcliff and Danvy

(1997) (Plotkin’s translation for variables was CN[[x]]
def
= x; the rectification is necessary

for the left-to-right implication of Theorem 7.4 to hold).

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 397

Table 12. The encoding of λN→ into the π-calculus (In this table we abbreviate

N[[M]] as [[M]], and for a type or type expression E, we abbreviate N∗[E] as [E]

and N[[E]] as [[E]].)

Translation of types:

[[T]]
def
= oo[T]

[t]
def
= t t ∈ base types

[S → T]
def
= [[S]]_ [[T]] = o([[S]]× o[T])

Translation of type environments:

[[6]] = [6]
def
= 6

[[Γ, x : S]]
def
= [[Γ]], x : [[S]]

[Γ, x : S]
def
= [Γ], x : [S]

Translation of terms:

[[λx : S.M]]Γ def
= (p). p(v : [S → T]←]). v(x)[[M]]Γ,x:S

[[x]]Γ def
= (p). xp

[[c]]Γ def
= (p). pc

[[MN]]Γ def
=

(p). (νq :][S → T])
(
[[M]]Γq | q(v). (νx :][S → T])(v〈x, p〉. !x[[N]]Γ)

)
where in the clause for abstraction, T is the unique type such that Γ ` λx : S.M : T , and,

similarly, in the clause for application, S → T is the unique type such that Γ `M : S → T .

Theorems 6.1–6.4 and 7.1–7.3, on CPS terms and CPS transforms, are proved in Plotkin

(1975). (The assertions of these theorems is actually slightly different from Plotkin’s, but

the content and the proofs are similar.) Plotkin also presents counterexample (2) to the

converse of Theorem 6.5. We did not find in the literature grammars for the terms of

the CPS transforms (Grammars (3), (9), (14)) but grammars related to ours are found in

Ogata (1998), which compares cut elimination of certain logics and CPS transforms, and

Sabry and Felleisen (1993), which gives the language of an optimised version of Fischer’s

call-by-value CPS. We also did not find in the literature the uniform CPS transform of

Table 8.

The relationship between types of λ-terms and types of their CPS images was first

noted by Meyer and Wand (1985). Other important papers on types and CPS are Murthy

(1992), Harper and Lillibridge (1993) and Harper et al. (1993). Theorem 9.2 is due to

Meyer and Wand. The translation of arrow types is sometimes called ‘double-negation

construction’ after Murthy (1992). The transformation of types for the call-by-name CPS

and Theorem 9.8, are by Harper and Lillibridge (1993), who follow what Meyer and

Wand had done for call-by-value.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 398

Connections among functions, continuations and message-passing are already well

visible, though (as far as we know) not formally stated, in Carl Hewitt’s works on actors

Hewitt (1977); Hewitt et al. 1973; Hewitt and Baker (1977). The analogy between Milner’s

encodings of λ-calculus into π-calculus and the CPS transforms was noticed by several

people, and was first partly formalised by Boudol (1997) and Thielecke (1997). Boudol

compares encodings of call-by-name and call-by-value λ-calculus into, respectively, the

blue calculus and the π-calculus. He noticed that, for either strategy, if the CPS transform

is composed with the encoding of (call-by-name) λ-calculus into the blue calculus, then

the results can be read as the standard encoding of that λ-calculus strategy into the

π-calculus. Thielecke introduces a CPS calculus, similar to the intermediate language in

Appel’s compiler Appel (1992). He shows that this CPS calculus has a simple translation

into the π-calculus and that, if Plotkin’s CPS transforms are formulated in the CPS

calculus, their translations into the π-calculus yield an encoding similar to Milner’s

Milner (1992). In this paper we go further, in that the encodings of both call-by-name

and call-by-value λ-calculus into the π-calculus are factorised using the CPS transforms,

and the compilation C of HOπ into π-calculus, for both untyped and typed λ-calculi.

One of the reasons for working out the factorisations in detail is to be able to derive the

correctness of the π-calculus encodings (on terms as well as on types) from those of the

CPS transforms and of the compilation of HOπ into π-calculus.

Translations of functions into process calculi have been given by Kennaway and Sleep

(1982), Leth (1991), Thomsen (1990) and Boudol (1989). Robin Milner’s work on functions

as π-calculus processes Milner (1992) is a landmark in the area. Milner’s encodings are,

essentially, those of Sections 6 and 7. (In the encoding of call-by-value, our clause for

variable is simpler, which is possible because we use i/o types – see Remark 6.17; in

call-by-name, Milner’s encoding does not have output particles at p and q of Table 7,

which we need because we use asynchronous π-calculi and asynchronous behavioural

equivalence; in a synchronous barbed congruence input prefixes are also observable.)

The uniform encoding in Section 8 is from Ostheimer and Davie (1993). Niehren (1996)

uses encodings of call-by-name, call-by-value and call-by-need λ-calculi into π-calculus to

compare the time complexity of the strategies.

Call-by-need was proposed by Wadsworth (1971) as an implementation technique.

Formalisations of call-by-need on a λ-calculus with a let construct or with environments

include Ariola et al. (1995), Launchbury (1993), Purushothaman and Seaman (1992) and

Yoshida (1993). A study of the correctness of the call-by-need encoding in Section 8 is

in Brock and Ostheimer (1995). Encodings of graph reductions, related to call-by-need,

into π-calculus are given in Boudol (1994) and Jeffrey (1993) but their correctness is not

studied.

Turner first established a relationship between the types of λ-calculus terms and those

of their encodings into π-calculus Turner (1996). He takes (variants of) Milner’s encodings

of the λ-calculus into the π-calculus and proves that for some of these encodings there

is a correspondence between principal types of the λ-terms and principal types of the

encoding π-calculus terms; the π-calculus used is the polyadic one, without i/o types, plus

polymorphism. Turner also extends Milner’s encodings to the polymorphic λ-calculus.

Using i/o types, as we have done in the paper, the relationship between λ-calculus and

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 399

π-calculus types is clearer and sharper, and can be easily extended to other type systems.

The work presented in Section 9 follows the schema of the interpretation Abadi and

Cardelli’s types object calculus Abadi and Cardelli (1996) into π-calculus in Sangiorgi

(1992b). Encodings of simply-typed λ-calculi are also given by Kobayashi (1998), to

illustrate the use of a type system guaranteeing absence of deadlocks.

An interesting question on encodings of λ-calculi into π-calculi is the characterisation

of the equivalence induced on λ-terms by the encodings: when are the encoding of two

λ-terms behaviourally equivalent π-calculus processes? The answer to this question is

known for the call-by-name encodings (Sangiorgi 1992b; Sangiorgi 1995; Boudol and

Laneve (1995)), but is unknown for call-by-value.

Acknowledgements. I am indebted to David Walker for detailed comments on a previous

draft of this paper. I also benefitted from discussions with Gérard Boudol, Femke Van

Raamsdonk, Christine Röckl and Hayo Thielecke.

References

Abadi, M. and Cardelli, L. (1996) A Theory of Objects, Monographs in Computer Science, Springer-

Verlag.

Ariola, Z., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995) A call-by-need λ-calculus.

In: Proc. 22th POPL, ACM Press.

Appel, A. (1992) Compiling with Continuations, Cambridge University Press.

Barendregt, H. (1984) The Lambda Calculus: Its Syntax and Semantics. Studies in Logic 103, North

Holland. (Revised edition).

Boudol, G. (1989) Towards a lambda calculus for concurrent and communicating systems. In:

TAPSOFT ’89. Springer-Verlag Lecture Notes in Computer Science 351 149–161.

Boudol, G. (1994) Some chemical abstract machines. In: Proc. REX Summer School/Symposium

1993. Springer-Verlag Lecture Notes in Computer Science 803.

Boudol, G. (1997) The pi-calculus in direct style. In: Proc. 24th POPL, ACM Press.

Boudol, G. and Laneve, C. (1995) λ-calculus, multiplicities and the π-calculus. Technical Report

RR-2581, INRIA-Sophia Antipolis. To appear in ‘Festschrift volume in honor of Robin Milner’s

60th birthday’, MIT Press.

Brock, S. and Ostheimer, G. (1995) Process semantics of graph reduction. In: Lee, I. and Smolka, S. A.

(eds.) Proc. CONCUR ’95. Springer-Verlag Lecture Notes in Computer Science 962 471–485.

Fischer, M. J. (1972) Lambda-calculus schemata. In: Proc. ACM conf. on Proving Assertions about

Programs 104–109.

Fischer, M. J. (1993) Lambda-calculus schemata. Lisp and Symbolic Computation 6 259–288.

Friedman, D. P., Wand, M. and Haynes, C. T. (1992) Essentials of Programming Languages,

McGraw-Hill Book Co., New York.

Gordon, M. J. C. (1979) The denotational description of programming languages, Springer-Verlag.

Gunter, C. A. (1992) Semantics of Programming Languages, MIT Press.

Harper, R., Duba, F. B. and MacQueen, D. (1993) Typing first-class continuations in ML. Journal

of Functional Programming 3 (4) 465–484.

Harper, R. and Lillibridge, M. (1993) Polymorphic type assignment and CPS conversion. Lisp and

Symbolic Computation 6 361–380.

Hatcliff, J. and Danvy, O. (1997) Thunks and the λ-calculus. Journal of Functional Programming 7

(3) 303–319.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

D. Sangiorgi 400

Hewitt, C. (1977) Viewing control structures as patterns of passing messages. Journal of Artificial

Intelligence 8 (3) 323–364.

Hewitt, C. and Baker, H. (1977) Laws for communicating parallel processes. In: 1977 IFIP Congress

Proceedings, IFIP 987–992.

Hewitt, C., Bishop, P., Greif, I., Smith, B., Matson, T. and Steiger, R. (1973) Actor induction and

meta-evaluation. In: ACM Symposium on Principles of Programming Languages, ACM 153–168.

Hindley, J. R. (1997) Basic simple type theory, Cambridge University Press.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinators and λ-calculus, Cambridge Uni-

versity Press.

Jeffrey, A. (1993) A chemical abstract machine for graph reduction. In: Proc. Ninth International

Conference on the Mathematical Foundations of Programming Semantics (MFPS ’93). Springer-

Verlag Lecture Notes in Computer Science 802.

Kennaway, J. R. and Sleep, M. R. (1982) Expressions as processes. In: ACM Conference on LISP

and Functional Programming, ACM 21–28.

Kobayashi, N. (1998) A partially deadlock-free typed process calculus. TOPLAS 20 (2) 436–482. A

preliminary version in Twelfth Annual IEEE Symposium on Logic in Computer Science 128–139.

Kobayashi, N., Pierce, B. C. and Turner, D. N. (1996) Linearity and the pi-calculus. In: Proc. 23rd

POPL, ACM Press.

Launchbury, J. (1993) A natural semantics for lazy evaluation. In: Proc. 20th POPL, ACM Press.

Leth, L. (1991) Functional Programs as Reconfigurable Networks of Communicating Processes, Ph.D.

thesis, Imperial College, University of London.

Meyer, A. R. and Wand, M. (1985) Continuation semantics in typed lambda-calculi. In: Parikh

R. (ed.) Proceedings of the Conference on Logic of Programs. Springer-Verlag Lecture Notes in

Computer Science 193 219–224.

Milner, R. (1991) The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-180, LFCS,

Dept. of Comp. Sci., Edinburgh Univ., October 1991. Also in: Bauer, F. L., Brauer, W. and

Schwichtenberg, H. (eds.) Logic and Algebra of Specification, Springer-Verlag.

Milner, R. (1992) Functions as processes. Mathematical Structures in Computer Science 2 (2) 119–141.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes (Parts I and II).

Information and Computation 100 1–77.

Milner, R. and Sangiorgi, D. (1992) Barbed bisimulation. In: Kuich, W. (ed.) 19th ICALP. Springer-

Verlag Lecture Notes in Computer Science 623 685–695.

Mitchell, J. C. (1996) Foundations for Programming Languages, MIT Press.

Murthy, C. (1992) A computational analysis of Girard’s translation and LC. In: 7th LICS Conf.,

IEEE Computer Society Press.

Niehren, J. (1996) Functional computation as concurrent computation. In: Proc. 23rd POPL, ACM

Press.

Ogata, I. (1998) Cut elimination for classical proofs as continuation passing style computation. In:

Proc. ASIAN ’98. Springer-Verlag Lecture Notes in Computer Science (to appear).

Ostheimer, G. K. and Davie, A. J. T. (1993) Pi-calculus characterizations of some practical lambda-

calculus reduction strategies. CS 93/14, University of St Andrews, Scotland.

Pierce, B. and Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Mathematical

Structures in Computer Science 6 (5) 409–454. (An extended abstract in Proc. LICS ’93, IEEE

Computer Society Press.)

Plotkin, G. D. (1975) Call by name, call by value and the λ-calculus. Theoretical Computer Science

1 125–159.

Purushothaman, S. and Seaman, J. (1992) An adequate operational semantics for sharing in lazy

evaluation. In: Krieg-Brückner, B. (ed.) ESOP ’92. Springer-Verlag Lecture Notes in Computer

Science 582 435–450.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

From λ to π; or, Rediscovering continuations 401

Reynolds, J. C. (1972) Definitional interpreters for higher order programming languages. ACM

Conference Proceedings 717–740.

Reynolds, J. C. (1993) The discoveries of continuations. Lisp and Symbolic Computation 6 233–248.

Sabry, A. and Felleisen, M. (1993) Reasoning about programs in continuation-passing style. Lisp

and Symbolic Computation 6 289–360.

Sangiorgi, D. (1992a) Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms, Ph.D. thesis CST-99-93, Department of Computer Science, University of Edinburgh.

Sangiorgi, D. (1992b) The lazy lambda calculus in a concurrency scenario. In: 7th LICS Conf.,

IEEE Computer Society Press 102–109.

Sangiorgi, D. (1995) Lazy functions and mobile processes. Technical Report RR-2515, INRIA-

Sophia Antipolis, 1995. To appear in ‘Festschrift volume in honor of Robin Milner’s 60th

birthday’, MIT Press.

Sangiorgi, D. (1998a) Asynchronous process calculi: the first-order and higher-order paradigms

(tutorial). To appear in Theoretical Computer Science.

Sangiorgi, D. (1998b) An interpretation of typed objects into typed π-calculus. Information and

Computation 143 (1) 34–73.

Schmidt, D. A. (1986) Denotational Semantics – A methodology for language development, Allyn and

Bacon.

Strachey, C. and Wadsworth, C. P. (1974) Continuations: A mathematical semantics for handling

full jumps. Technical Report Technical Monograph PRG-11, Oxford University Computer Lab-

oratory.

Tennent, R. D. (1991) Semantics of Programming Languages, Prentice Hall, New York.

Thielecke, H. (1997) Categorical Structure of Continuation Passing Style, Ph.D. thesis, University of

Edinburgh. Also available as technical report ECS-LFCS-97-376.

Thomsen, B. (1990) Calculi for Higher Order Communicating Systems, Ph.D. thesis, Department of

Computing, Imperial College, University of London.

Turner, N. D. (1996) The polymorphic pi-calculus: Theory and Implementation, Ph.D. thesis, Depart-

ment of Computer Science, University of Edinburgh.

Vasconcelos, V. T. and Honda, K. (1993) Principal typing schemes in a polyadic π-calculus. In: Best,

E. (ed.) Proc. CONCUR ’93. Springer-Verlag Lecture Notes in Computer Science 715.

Wadsworth, C. P. (1971) Semantics and pragmatics of the lambda calculus, Ph.D. thesis, University of

Oxford.

Yoshida, N. (1993) Optimal reduction in weak lambda-calculus with shared environments. In: Proc.

of FPCA’93, Functional Programming and Computer Architecture 243–252.

https://doi.org/10.1017/S0960129599002881 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002881

