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Abstract

Let p be a prime with p ≡ 1 (mod 4). Gauss first proved that 2 is a quartic residue modulo p if and
only if p = x2 + 64y2 for some x, y ∈ Z and various expressions for the quartic residue symbol ( 2

p )4 are
known. We give a new characterisation via a permutation, the sign of which is determined by ( 2

p )4. The
permutation is induced by the rule x �→ y − x on the (p − 1)/4 solutions (x, y) to x2 + y2 ≡ 0 (mod p)
satisfying 1 ≤ x < y ≤ (p − 1)/2.
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1. Introduction

For an odd prime p, an integer a with (a, p) = 1 is called a quartic or biquadratic
residue modulo p provided x4 ≡ a (mod p) is solvable. Clearly a is a quartic residue
if and only if a(p−1)/4 ≡ 1 (mod p). We need only consider p ≡ 1 (mod 4), since for
p ≡ 3 (mod 4), the quartic residues coincide with quadratic residues.

Concerning quartic residuacity of 2 modulo p, we may further assume p = 8n + 1
so that ( 2

p ) = 1. Then the quartic residue symbol ( 2
p )4 = ±1 is determined by the

congruence ( 2
p )4 ≡ 2(p−1)/4 (mod p).

It was observed by Euler and first proved by Gauss [5] via the law of quartic
reciprocity (see [2, 7]) that

( 2
p

)
4
= 1 ⇐⇒ p = x2 + 64y2 for some x, y ∈ Z.

Barrucand and Cohn [1] proved several more equivalences:

(−1)n
( 2

p

)
4
= 1 ⇐⇒

(1 + √2
p

)
= 1 ⇐⇒ (−1)h(−4p)/4 = 1

⇐⇒ p=a2 + 32b2 for some a, b ∈ Z
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⇐⇒ p=c2 − 32d2 for some c, d ∈ Z with |c| ≡ 1 (mod 4)

⇐⇒ p=e2 + 16 f 2 with e, f ∈ Z and (−1)(e−1)/2e − 1 ≡ 4 f (mod 8).
(1.1)

Here, h(−4p) is the class number of Q(
√−p) and

√
2 denotes any integer x satisfying

x2 ≡ 2 (mod p). (A simple proof for the last three expressions can be found in [10].)
Hasse [6] obtained a simple expression via the class number of Q(

√
−2p):

( 2
p

)
4
= (−1)h(−8p)/4. (1.2)

(Note that (1.2) is related to (1.1) because h(−4p) + h(−8p) ≡ 4n (mod 8) by [9,
Proposition 2].) Lehmer [8] modified the argument of Gauss’ lemma to prove

( 2
p

)
4
= 1 ⇐⇒

∣∣∣∣∣
{
1 ≤ x ≤ p − 1

4
:
( x

p

)
= −1

}∣∣∣∣∣ ≡ 0 (mod 2).

Let Fp denote the finite field with p elements. The Legendre symbol ( a
p ) can be

defined as the sign of the permutation of Fp sending x �→ ax by Zolotarev’s theorem
(see [3, 4]). Our aim is to find a simple permutation, the sign of which is determined
by the quartic residuacity of 2 modulo p.

Assume p ≡ 1 (mod 4) from now on. For such primes, there are nontrivial solutions
to x2 + y2 ≡ 0 (mod p) in F∗p. Moreover, for any x with 1 ≤ x ≤ (p − 1)/2, there exists
a unique y with 1 ≤ y ≤ (p − 1)/2 such that (x, y) is a solution. So there are (p − 1)/4
essentially different solutions. For example, for p = 29, we need only consider seven
pairs (x, y) with 1 ≤ x < y ≤ (p − 1)/2:

(1, 12), (2, 5), (3, 7), (4, 10), (6, 14), (8, 9), (11, 13). (1.3)

Observe that the difference of the two numbers in any pair always gives the first
component of another pair, that is, 12 − 1 = 11, 13 − 11 = 2, 5 − 2 = 3 and so on.
This observation leads to the following theorem.

THEOREM 1.1. Let p be a prime with p ≡ 1 (mod 4). Set

A := {(a, ã) ∈ Z × Z : a2 + ã2 ≡ 0 (mod p), 1 ≤ a < ã ≤ (p − 1)/2}. (1.4)

Then we can define a permutation ψp of A by the rule a �→ ã − a applied to the first
component.

The theorem implies ∑
(a,ã)∈A

a =
∑

(a,ã)∈A
(ã − a) =

1
2

∑
(a,ã)∈A

ã.

However, {1, 2, . . . , (p − 1)/2} is partitioned into (p − 1)/4 pairs in A. Thus
∑

(a,ã)∈A
(a + ã) =

(p−1)/2∑
x=1

x =
p2 − 1

8
.

Thus we immediately obtain the next corollary.
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COROLLARY 1.2. We have
∑

(a,ã)∈A
a =

p2 − 1
24

and
∑

(a,ã)∈A
ã =

p2 − 1
12

.

We now study the sign of ψp. Let {x}p as usual denote the least nonnegative residue
of x modulo p. Set i = {∏(p−1)/2

x=1 x}p so that i2 ≡ −1 (mod p) by Wilson’s theorem.
We define U4 = {±1,±i}. Then F∗p/U4 is a cyclic group of order (p − 1)/4 and

multiplication by i − 1 induces a permutation Ψp of this quotient group. As an
example, for p = 29 again, i = {14! }29 = 12. Thus Ψ29 is obtained from multiplication
by 11 and can be illustrated by its action on cosets as follows:

↪→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
12
17
28

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

11
13
16
18

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
5
24
27

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
7

22
26

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4
10
19
25

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
14
15
23

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

8
9

20
21

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�→

Comparing this with (1.3), we see that the permutation ψp shows the behaviour
of certain representatives in the cosets under Ψp. This is because for any pair
(a, ã) ∈ A, we have ã = ±ia (mod p). Hence the rule of ψp can be considered as
a �→ {±(±i − 1)a}p. However, all the four possibilities ±(i ± 1) are in the same coset
in F∗p/U4, which implies that ψp induces Ψp in the quotient group. Hence they have
the same sign.

THEOREM 1.3. For a prime p ≡ 1 (mod 4), define i = {∏(p−1)/2
x=1 x}p andU4 = {±1,±i}.

Then the sign of ψp in Theorem 1.1 is equal to that of Ψp, the permutation of F∗p/U4
induced by x �→ (i − 1)x. Further

sign (ψp) = sign (Ψp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)n

( 2
p

)
4

if p = 8n + 1,

1 if p = 8n + 5.

In other words, ψp is an odd permutation only in two cases:

(i) p ≡ 1 (mod 16) and 2 is a quartic nonresidue modulo p;
(ii) p ≡ 9 (mod 16) and 2 is a quartic residue modulo p.

Now consider the mapping ã �→ a + ã. As in the argument before Theorem 1.3, it
induces the same permutation Ψp. In view of Theorem 1.1, (a, ã) is sent by ψp to either
(ã − a, a + ã) or (ã − a, p − (a + ã)), depending on which one belongs to A. This gives
the next corollary.

COROLLARY 1.4. For an integer x, determine ‖x‖p as the unique integer such that 0 ≤
‖x‖p < p/2 and ‖x‖p ≡ ±x (mod p). Then the permutation ψp of A sends ã to ‖a + ã‖p
applied to the second component.

Theorems 1.1 and 1.3 will be proved in the next two sections, respectively.
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2. Proof of Theorem 1.1

Let i be defined as in Theorem 1.3 so that i2 ≡ −1 (mod p) and let ‖x‖p be as in
Corollary 1.4. Clearly ‖x‖p = ‖ − x‖p and ‖xy‖p = ‖ ‖x‖py ‖p. Define

Vp :=
{
1 ≤ x ≤ p − 1

2
: x < ‖ix‖p

}
.

Clearly |Vp| = (p − 1)/4. For each a ∈ {1, . . . , (p − 1)/2}, we set ã := ‖ia‖p. In view of
the definition of A in (1.4), we have {(a, ã) : a ∈ Vp} = A.

For convenience, we use the same ψp for the mapping a �→ ã − a with domainVp.
It suffices to prove that ψp is a permutation of Vp. First we show that ψp(Vp) ⊆ Vp.
As ã = ‖ia‖p, we partitionVp into V1 ∪ V2, where

V1 := {a ∈ Vp : ã = {ia}p} and V2 := {a ∈ Vp : ã = p − {ia}p}.

For a ∈ V1, we have a < ã = {ia}p ≤ (p − 1)/2 and hence

ψp(a) = {ia}p − a = {(i − 1)a}p.

Furthermore, as i2 ≡ −1 (mod p),

‖iψp(a)‖p = ‖i(i − 1)a)‖p = ‖(i + 1)a‖p.

To show ψp(a) ∈ Vp, we need to verify

{(i − 1)a}p < ‖(i + 1)a‖p. (2.1)

If {(i + 1)a}p > p/2, then

{(i − 1)a}p < {ia}p = ã < {(i + 1)a}p.

Thus

{(i + 1)a}p + {(i − 1)a}p = 2{ia}p = 2ã < p.

Then (2.1) holds since

‖(i + 1)a‖p = p − {(i + 1)a}p > {(i − 1)a}p.

If {(i + 1)a}p < p/2, then (2.1) is also true since

‖(i + 1)a‖p = {(i + 1)a}p = {2a + (i − 1)a}p = 2a + {(i − 1)a}p > {(i − 1)a}p.

Therefore, ψp(V1) ⊆ Vp. Using a similar argument, ψp(V2) ⊆ Vp. Thus it suffices
to show that ψp is an injection to prove the theorem.

Assume, on the contrary, there exist distinct a1, a2 ∈ Vp such that ψp(a1) = ψp(a2).
If a1, a2 ∈ V1, then a1 � a2 (mod p) and {(i − 1)a1}p = {(i − 1)a2}p, which is evidently
impossible. Similarly, a1, a2 ∈ V2 is impossible. So we may assume that a1 ∈ V1 and
a2 ∈ V2, that is, ã1 ≡ ia1 (mod p) and ã2 ≡ −ia2 (mod p). Then

(i − 1)a1 ≡ ψp(a1) = ψp(a2) ≡ (−i − 1)a2 ≡ i(i − 1)a2 (mod p).
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It follows that

a1 ≡ ia2 ≡ −ã2 (mod p),

which contradicts the fact that 1 ≤ a1, ã2 ≤ (p − 1)/2.
Thus ψp is an injection and the proof is complete.

3. Proof of Theorem 1.3

Since F∗p is cyclic, F∗p/U4 is also a cyclic group and of order (p − 1)/4. Let the
order of the coset of 1 + i be m. Then Ψp is composed of (p − 1)/4m disjoint cycles of
length m. Thus

sign (ψp) = (−1)(m−1)(p−1)/4m. (3.1)

Now we divide the discussion into five cases.

Case (i): p ≡ 1 (mod 16) and 2 is a quartic residue modulo p.

Case (ii): p ≡ 9 (mod 16) and 2 is a quartic nonresidue modulo p.

In these two cases,

[(1 + i)(p−1)/8]4 ≡ (−4)(p−1)/8 ≡ (−1)(p−1)/82(p−1)/4 ≡ 1 (mod p),

which implies (1 + i)(p−1)/8 ∈ U4. Hence (p − 1)/8 is divisible by m and ψp is even
from (3.1).

Case (iii): p ≡ 1 (mod 16) and 2 is a quartic nonresidue modulo p.

Case (iv): p ≡ 9 (mod 16) and 2 is a quartic residue modulo p.

In these two cases,

[(1 + i)(p−1)/8]4 ≡ (−4)(p−1)/8 ≡ (−1)(p−1)/82(p−1)/4 ≡ −1 (mod p).

Therefore, (1 + i)(p−1)/4 ∈ U4 while (1 + i)(p−1)/8 � U4. In other words, m, a factor of
(p − 1)/4, does not divide (p − 1)/8. So q = (p − 1)/4m must be odd while m is even.
Thus ψp is odd from (3.1).

Case (v): p ≡ 5 (mod 8). Now m must be odd since it divides (p − 1)/4 from the
definition. Thus sign ψp = 1 in view of (3.1). The proof is complete. �
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