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Abstract
Let p be a prime with p =1 (mod 4). Gauss first proved that 2 is a quartic residue modulo p if and
only if p = x? + 64y? for some x,y € Z and various expressions for the quartic residue symbol (%)4 are
known. We give a new characterisation via a permutation, the sign of which is determined by (%)4. The

permutation is induced by the rule x — y —x on the (p — 1)/4 solutions (x,y) to x> +y? =0 (mod p)
satisfying l <x <y <(p-1)/2.

2020 Mathematics subject classification: primary 11A15; secondary 05A05, 11A07.

Keywords and phrases: quartic residue, permutation, class number.

1. Introduction

For an odd prime p, an integer a with (a, p) = 1 is called a quartic or biquadratic
residue modulo p provided x* = a (mod p) is solvable. Clearly a is a quartic residue
if and only if a»~"/4 =1 (mod p). We need only consider p = 1 (mod 4), since for
p = 3 (mod 4), the quartic residues coincide with quadratic residues.

Concerning quartic residuacity of 2 modulo p, we may further assume p = 8n + 1
so that (1%) = 1. Then the quartic residue symbol (1—2))4 = =1 is determined by the
congruence (1—27)4 = 2(=D/4% (mod p).

It was observed by Euler and first proved by Gauss [5] via the law of quartic
reciprocity (see [2, 7]) that

2
(—) =1 & p=x"+64y> forsomeux,yceZ.
pla

Barrucand and Cohn [1] proved several more equivalences:
2 1+ V2
(—1)"(—) -1 = (—\/_) S 1 e (<)o
az p
& p=d® +32b* forsomea,beZ
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& p=c*>-32d* forsomec,d € Z with|c| = 1 (mod 4)
e p=e> +16f> withe, f € Zand (-1)“""?e — 1 = 4f (mod 8).
(1.1)

Here, h(—4p) is the class number of Q(+/—p) and V2 denotes any integer x satisfying
x?> =2 (mod p). (A simple proof for the last three expressions can be found in [10].)
Hasse [6] obtained a simple expression via the class number of Q(+/—2p):

(%)4 = (-DICEA, (1.2)

(Note that (1.2) is related to (1.1) because h(—4p) + h(—8p) = 4n (mod 8) by [9,
Proposition 2].) Lehmer [8] modified the argument of Gauss’ lemma to prove

R R

Let F,, denote the finite field with p elements. The Legendre symbol (£) can be
defined as the sign of the permutation of F, sending x — ax by Zolotarev’s theorem
(see [3, 4]). Our aim is to find a simple permutation, the sign of which is determined
by the quartic residuacity of 2 modulo p.

Assume p = 1 (mod 4) from now on. For such primes, there are nontrivial solutions
to x> + y*> = 0 (mod p) in F,. Moreover, for any x with 1 <x < (p — 1)/2, there exists
aunique y with 1 <y < (p — 1)/2 such that (x, y) is a solution. So there are (p — 1)/4
essentially different solutions. For example, for p = 29, we need only consider seven
pairs (x,y) with 1 <x <y <(p-1)/2:

(1,12), (2,5), 3,7), (4,10), (6,14), (8,9), (11,13). (1.3)

Observe that the difference of the two numbers in any pair always gives the first
component of another pair, that is, 12—-1=11, 13-11 =2, 5-2 =3 and so on.
This observation leads to the following theorem.

= 0 (mod 2).

THEOREM 1.1. Let p be a prime with p = 1 (mod 4). Set
A={a,a)€eZxXZ :a>+a*=0(@mod p), l<a<a<(p-1)/2. (1.4)
Then we can define a permutation yr,, of A by the rule a — @ — a applied to the first
component.
The theorem implies
. 1 .
Z a= Z (a—a)—i Z a.
(a,a)eA (a,a)eA (a,a)eA

However, {1,2,...,(p — 1)/2} is partitioned into (p — 1)/4 pairs in A. Thus

(p=1)/2 P2 -1
Z (a+a)= Z X = A
(a,a)eA x=1

Thus we immediately obtain the next corollary.
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COROLLARY 1.2. We have

2 2

p -1 . _p -1
Z a= and Z a= .
(a,a)eA et (a,a)eA 12

We now study the sign of y,. Let {x}, as usual denote the least nonnegative residue
of x modulo p. Seti = {Hi’; _11)/ 2 x}p so that i = =1 (mod p) by Wilson’s theorem.

We define Uy = {£1, +i}. Then F;/(LQ is a cyclic group of order (p — 1)/4 and
multiplication by i -1 induces a permutation ¥, of this quotient group. As an
example, for p = 29 again, i = {14! },9 = 12. Thus ¥,9 is obtained from multiplication
by 11 and can be illustrated by its action on cosets as follows:

1 11 2 3 4 6 8
12 13 5 7 10 14 9
1707016 7 Y24 T Y220 T Y19 T Vas( T Y20
28 18 27 26 25 23 21

Comparing this with (1.3), we see that the permutation i, shows the behaviour
of certain representatives in the cosets under ¥,. This is because for any pair
(a,a) € A, we have @ = +ia (mod p). Hence the rule of i, can be considered as
a +— {+(+i — 1)a},. However, all the four possibilities +(i + 1) are in the same coset
in F,/U,, which implies that ¢, induces ¥}, in the quotient group. Hence they have
the same sign.

THEOREM 1.3. For a prime p = 1 (mod 4), define i = {Hi’:ll)/z x}p and Uy = {£1, +i}.
Then the sign of Y, in Theorem 1.1 is equal to that of ¥}, the permutation of F,/ U,
induced by x — (i — 1)x. Further

2

(—1)“(—) ifp=8n+l,
P/a

1 ifp=8n+5.

sign () = sign (¥),) =

In other words, ¢, is an odd permutation only in two cases:

(1) p =1 (mod 16) and 2 is a quartic nonresidue modulo p;
(i) p =9 (mod 16) and 2 is a quartic residue modulo p.

Now consider the mapping @ — a + a. As in the argument before Theorem 1.3, it
induces the same permutation ‘¥';,. In view of Theorem 1.1, (a, @) is sent by i, to either
(@—a, a+a)or(a—a, p—(a+ a)),depending on which one belongs to A. This gives
the next corollary.

COROLLARY 1.4. For an integer x, determine ||x||, as the unique integer such that 0 <
lIxll, < p/2 and |Ix||, = +x (mod p). Then the permutation s, of A sends a to |la + al|,
applied to the second component.

Theorems 1.1 and 1.3 will be proved in the next two sections, respectively.
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2. Proof of Theorem 1.1
Let i be defined as in Theorem 1.3 so that i*> = —1 (mod p) and let ||| p be as in
Corollary 1.4. Clearly ||x]|, = || — xll, and [lxyll, = [l lxll,¥ [|,. Define
-1
V, = {1 <xsPoiac ||ix||p}.

Clearly ['Vp,| = (p —1)/4. Foreacha € {1,...,(p — 1)/2}, we set a := ||ial|,. In view of
the definition of A in (1.4), we have {(a,a) : a € V,} = A.

For convenience, we use the same ,, for the mapping a — @ — a with domain V,,.
It suffices to prove that i, is a permutation of V,,. First we show that y,(V,) € V,,.
As a = |lial|,, we partition V,, into V; U V,, where

Vii={aeV,:a={ia},} and V,:={aeV,: a=p-{ia},}
For a € V|, we have a < @ = {ia}, < (p — 1)/2 and hence
Yp(a) = liaty —a ={(i - Dajp.
Furthermore, as i> = —1 (mod D),
i p(@llp = 1lili = Dall, = [IG + Dall,.
To show y,(a) € V), we need to verify
{i = Da}, <|Ii + Dall,. 2.1
If {(i + Da}, > p/2, then
{(i — Da}, < fia}, = a < {(i+ Da},.

Thus

{(i + Da}, + {(i = Da}, = 2{ia}, = 2a < p.
Then (2.1) holds since

@+ Dall, = p = {(i + Da}, > {(i = Daj.
If { + Da}, < p/2, then (2.1) is also true since

(i + Dall, = {G + Da}, = {2a + (i = Da}, = 2a + {(i — Da}, > {(i = Da},.

Therefore, (V1) € V,. Using a similar argument, ,(V,) € V,,. Thus it suffices
to show that ¢, is an injection to prove the theorem.

Assume, on the contrary, there exist distinct ay, a, € V', such that y,(a1) = ¥ p(az).
If ai,a> € Vi, then a; # a; (mod p) and {(i — 1)a;}, = {(i — 1)a,},, which is evidently
impossible. Similarly, a;,a, € V, is impossible. So we may assume that a; € V| and
ap € V,, thatis, @, = ia; (mod p) and @, = —ia, (mod p). Then

(i = Day = yp(ar) = ¥p(az) = (=i — Das = i(i = 1az (mod p).
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It follows that
ay = ia; = —a; (mod p),

which contradicts the fact that 1 < ay,a, < (p—1)/2.
Thus ¢, is an injection and the proof is complete.

3. Proof of Theorem 1.3

Since F), is cyclic, F,/Uy is also a cyclic group and of order (p — 1)/4. Let the
order of the coset of 1 + i be m. Then ¥, is composed of (p — 1)/4m disjoint cycles of
length m. Thus

sign () = (=1)("Dp-Drm, 3.1)

Now we divide the discussion into five cases.
Case (i): p = 1 (mod 16) and 2 is a quartic residue modulo p.
Case (ii): p =9 (mod 16) and 2 is a quartic nonresidue modulo p.

In these two cases,

[(1 + )P~V = (4)P=DI8 = (C1yP=DB2P=DI4 = | (mod p),

which implies (1 +i)?~"/8 € U,. Hence (p — 1)/8 is divisible by m and ¥, is even
from (3.1).
Case (iii): p = 1 (mod 16) and 2 is a quartic nonresidue modulo p.
Case (iv): p =9 (mod 16) and 2 is a quartic residue modulo p.

In these two cases,
[+ i)(P—l)/8]4 = (_4)(P—1)/8 = (_1)(P—1)/82(P—1)/4 = —1 (mod p).

Therefore, (1 + i))?~V/* € U, while (1 + i)~/ ¢ U,. In other words, m, a factor of
(p — 1)/4, does not divide (p — 1)/8. So ¢ = (p — 1)/4m must be odd while m is even.
Thus ¢, is odd from (3.1).

Case (v): p=5 (mod 8). Now m must be odd since it divides (p — 1)/4 from the
definition. Thus sign i, = 1 in view of (3.1). The proof is complete. O
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