A NEW CHARACTERISATION FOR QUARTIC RESIDUACITY OF 2 CHAO HUANG[®] and HAO PAN[®]

(Received 6 September 2021; accepted 14 January 2022; first published online 14 March 2022)

Abstract

Let *p* be a prime with $p \equiv 1 \pmod{4}$. Gauss first proved that 2 is a quartic residue modulo *p* if and only if $p = x^2 + 64y^2$ for some $x, y \in \mathbb{Z}$ and various expressions for the quartic residue symbol $(\frac{2}{p})_4$ are known. We give a new characterisation via a permutation, the sign of which is determined by $(\frac{2}{p})_4$. The permutation is induced by the rule $x \mapsto y - x$ on the (p - 1)/4 solutions (x, y) to $x^2 + y^2 \equiv 0 \pmod{p}$ satisfying $1 \le x < y \le (p - 1)/2$.

2020 Mathematics subject classification: primary 11A15; secondary 05A05, 11A07.

Keywords and phrases: quartic residue, permutation, class number.

1. Introduction

For an odd prime p, an integer a with (a, p) = 1 is called a quartic or biquadratic residue modulo p provided $x^4 \equiv a \pmod{p}$ is solvable. Clearly a is a quartic residue if and only if $a^{(p-1)/4} \equiv 1 \pmod{p}$. We need only consider $p \equiv 1 \pmod{4}$, since for $p \equiv 3 \pmod{4}$, the quartic residues coincide with quadratic residues.

Concerning quartic residuacity of 2 modulo p, we may further assume p = 8n + 1 so that $(\frac{2}{p}) = 1$. Then the quartic residue symbol $(\frac{2}{p})_4 = \pm 1$ is determined by the congruence $(\frac{2}{p})_4 \equiv 2^{(p-1)/4} \pmod{p}$.

It was observed by Euler and first proved by Gauss [5] via the law of quartic reciprocity (see [2, 7]) that

$$\left(\frac{2}{p}\right)_4 = 1 \iff p = x^2 + 64y^2 \text{ for some } x, y \in \mathbb{Z}.$$

Barrucand and Cohn [1] proved several more equivalences:

$$(-1)^{n} \left(\frac{2}{p}\right)_{4} = 1 \iff \left(\frac{1+\sqrt{2}}{p}\right) = 1 \iff (-1)^{h(-4p)/4} = 1$$
$$\iff p = a^{2} + 32b^{2} \quad \text{for some } a, b \in \mathbb{Z}$$

The first author is supported by the National Natural Science Foundation of China (Grant No.11971222). The second author is supported by the National Natural Science Foundation of China (Grant No.12071208). © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

C. Huang and H. Pan

$$\iff p = c^2 - 32d^2 \quad \text{for some } c, d \in \mathbb{Z} \text{ with } |c| \equiv 1 \pmod{4}$$
$$\iff p = e^2 + 16f^2 \quad \text{with } e, f \in \mathbb{Z} \text{ and } (-1)^{(e-1)/2}e - 1 \equiv 4f \pmod{8}.$$
(1.1)

Here, h(-4p) is the class number of $\mathbb{Q}(\sqrt{-p})$ and $\sqrt{2}$ denotes any integer *x* satisfying $x^2 \equiv 2 \pmod{p}$. (A simple proof for the last three expressions can be found in [10].) Hasse [6] obtained a simple expression via the class number of $\mathbb{Q}(\sqrt{-2p})$:

$$\left(\frac{2}{p}\right)_4 = (-1)^{h(-8p)/4}.$$
(1.2)

(Note that (1.2) is related to (1.1) because $h(-4p) + h(-8p) \equiv 4n \pmod{8}$ by [9, Proposition 2].) Lehmer [8] modified the argument of Gauss' lemma to prove

$$\left(\frac{2}{p}\right)_4 = 1 \iff \left| \left\{ 1 \le x \le \frac{p-1}{4} : \left(\frac{x}{p}\right) = -1 \right\} \right| \equiv 0 \pmod{2}.$$

Let \mathbb{F}_p denote the finite field with p elements. The Legendre symbol $(\frac{a}{p})$ can be defined as the sign of the permutation of \mathbb{F}_p sending $x \mapsto ax$ by Zolotarev's theorem (see [3, 4]). Our aim is to find a simple permutation, the sign of which is determined by the quartic residuacity of 2 modulo p.

Assume $p \equiv 1 \pmod{4}$ from now on. For such primes, there are nontrivial solutions to $x^2 + y^2 \equiv 0 \pmod{p}$ in \mathbb{F}_p^* . Moreover, for any *x* with $1 \le x \le (p-1)/2$, there exists a unique *y* with $1 \le y \le (p-1)/2$ such that (x, y) is a solution. So there are (p-1)/4 essentially different solutions. For example, for p = 29, we need only consider seven pairs (x, y) with $1 \le x < y \le (p-1)/2$:

$$(1, 12), (2, 5), (3, 7), (4, 10), (6, 14), (8, 9), (11, 13).$$
 (1.3)

Observe that the difference of the two numbers in any pair always gives the first component of another pair, that is, 12 - 1 = 11, 13 - 11 = 2, 5 - 2 = 3 and so on. This observation leads to the following theorem.

THEOREM 1.1. Let *p* be a prime with $p \equiv 1 \pmod{4}$. Set

$$A := \{ (a, \tilde{a}) \in \mathbb{Z} \times \mathbb{Z} : a^2 + \tilde{a}^2 \equiv 0 \pmod{p}, \quad 1 \le a < \tilde{a} \le (p-1)/2 \}.$$
(1.4)

Then we can define a permutation ψ_p of A by the rule $a \mapsto \tilde{a} - a$ applied to the first component.

The theorem implies

$$\sum_{(a,\bar{a})\in A} a = \sum_{(a,\bar{a})\in A} (\tilde{a} - a) = \frac{1}{2} \sum_{(a,\bar{a})\in A} \tilde{a}.$$

However, $\{1, 2, \dots, (p-1)/2\}$ is partitioned into (p-1)/4 pairs in A. Thus

$$\sum_{a,\tilde{a})\in A} (a+\tilde{a}) = \sum_{x=1}^{(p-1)/2} x = \frac{p^2 - 1}{8}.$$

Thus we immediately obtain the next corollary.

COROLLARY 1.2. We have

$$\sum_{(a,\tilde{a})\in A} a = \frac{p^2 - 1}{24} \quad and \quad \sum_{(a,\tilde{a})\in A} \tilde{a} = \frac{p^2 - 1}{12}.$$

We now study the sign of ψ_p . Let $\{x\}_p$ as usual denote the least nonnegative residue of *x* modulo *p*. Set $i = \{\prod_{x=1}^{(p-1)/2} x\}_p$ so that $i^2 \equiv -1 \pmod{p}$ by Wilson's theorem.

We define $\mathcal{U}_4 = \{\pm 1, \pm i\}$. Then $\mathbb{F}_p^*/\mathcal{U}_4$ is a cyclic group of order (p-1)/4 and multiplication by i-1 induces a permutation Ψ_p of this quotient group. As an example, for p = 29 again, $i = \{14\}_{29} = 12$. Thus Ψ_{29} is obtained from multiplication by 11 and can be illustrated by its action on cosets as follows:

$$\hookrightarrow \begin{cases} 1\\12\\17\\28 \end{cases} \mapsto \begin{cases} 11\\13\\16\\18 \end{cases} \mapsto \begin{cases} 2\\5\\24\\27 \end{cases} \mapsto \begin{cases} 3\\7\\22\\26 \end{cases} \mapsto \begin{cases} 4\\10\\19\\25 \end{cases} \mapsto \begin{cases} 6\\14\\15\\23 \end{cases} \mapsto \begin{cases} 8\\9\\20\\21 \end{cases} \mapsto$$

Comparing this with (1.3), we see that the permutation ψ_p shows the behaviour of certain representatives in the cosets under Ψ_p . This is because for any pair $(a, \tilde{a}) \in A$, we have $\tilde{a} = \pm ia \pmod{p}$. Hence the rule of ψ_p can be considered as $a \mapsto \{\pm (\pm i - 1)a\}_p$. However, all the four possibilities $\pm (i \pm 1)$ are in the same coset in $\mathbb{F}_p^*/\mathcal{U}_4$, which implies that ψ_p induces Ψ_p in the quotient group. Hence they have the same sign.

THEOREM 1.3. For a prime $p \equiv 1 \pmod{4}$, define $i = \{\prod_{x=1}^{(p-1)/2} x\}_p$ and $\mathcal{U}_4 = \{\pm 1, \pm i\}$. Then the sign of ψ_p in Theorem 1.1 is equal to that of Ψ_p , the permutation of $\mathbb{F}_p^*/\mathcal{U}_4$ induced by $x \mapsto (i-1)x$. Further

sign
$$(\psi_p)$$
 = sign (Ψ_p) = $\begin{cases} (-1)^n \left(\frac{2}{p}\right)_4 & \text{if } p = 8n + 1, \\ 1 & \text{if } p = 8n + 5. \end{cases}$

In other words, ψ_p is an odd permutation only in two cases:

- (i) $p \equiv 1 \pmod{16}$ and 2 is a quartic nonresidue modulo *p*;
- (ii) $p \equiv 9 \pmod{16}$ and 2 is a quartic residue modulo p.

Now consider the mapping $\tilde{a} \mapsto a + \tilde{a}$. As in the argument before Theorem 1.3, it induces the same permutation Ψ_p . In view of Theorem 1.1, (a, \tilde{a}) is sent by ψ_p to either $(\tilde{a} - a, a + \tilde{a})$ or $(\tilde{a} - a, p - (a + \tilde{a}))$, depending on which one belongs to A. This gives the next corollary.

COROLLARY 1.4. For an integer *x*, determine $||x||_p$ as the unique integer such that $0 \le ||x||_p < p/2$ and $||x||_p \equiv \pm x \pmod{p}$. Then the permutation ψ_p of *A* sends \tilde{a} to $||a + \tilde{a}||_p$ applied to the second component.

Theorems 1.1 and 1.3 will be proved in the next two sections, respectively.

C. Huang and H. Pan

2. Proof of Theorem 1.1

Let *i* be defined as in Theorem 1.3 so that $i^2 \equiv -1 \pmod{p}$ and let $||x||_p$ be as in Corollary 1.4. Clearly $||x||_p \equiv ||-x||_p$ and $||xy||_p \equiv ||x||_p y||_p$. Define

$$\mathcal{V}_p := \left\{ 1 \le x \le \frac{p-1}{2} : \ x < \|ix\|_p \right\}.$$

Clearly $|\mathcal{V}_p| = (p-1)/4$. For each $a \in \{1, \dots, (p-1)/2\}$, we set $\tilde{a} := ||ia||_p$. In view of the definition of A in (1.4), we have $\{(a, \tilde{a}) : a \in \mathcal{V}_p\} = A$.

For convenience, we use the same ψ_p for the mapping $a \mapsto \tilde{a} - a$ with domain \mathcal{V}_p . It suffices to prove that ψ_p is a permutation of \mathcal{V}_p . First we show that $\psi_p(\mathcal{V}_p) \subseteq \mathcal{V}_p$. As $\tilde{a} = ||ia||_p$, we partition \mathcal{V}_p into $V_1 \cup V_2$, where

$$V_1 := \{a \in \mathcal{V}_p : \tilde{a} = \{ia\}_p\}$$
 and $V_2 := \{a \in \mathcal{V}_p : \tilde{a} = p - \{ia\}_p\}.$

For $a \in V_1$, we have $a < \tilde{a} = \{ia\}_p \le (p-1)/2$ and hence

$$\psi_p(a) = \{ia\}_p - a = \{(i-1)a\}_p.$$

Furthermore, as $i^2 \equiv -1 \pmod{p}$,

$$||i\psi_p(a)||_p = ||i(i-1)a||_p = ||(i+1)a||_p$$

To show $\psi_p(a) \in \mathcal{V}_p$, we need to verify

$$\{(i-1)a\}_p < \|(i+1)a\|_p.$$
(2.1)

If $\{(i + 1)a\}_p > p/2$, then

$$\{(i-1)a\}_p < \{ia\}_p = \tilde{a} < \{(i+1)a\}_p.$$

Thus

$$\{(i+1)a\}_p + \{(i-1)a\}_p = 2\{ia\}_p = 2\tilde{a} < p.$$

Then (2.1) holds since

$$||(i+1)a||_p = p - \{(i+1)a\}_p > \{(i-1)a\}_p.$$

If $\{(i + 1)a\}_p < p/2$, then (2.1) is also true since

$$\|(i+1)a\|_p = \{(i+1)a\}_p = \{2a + (i-1)a\}_p = 2a + \{(i-1)a\}_p > \{(i-1)a\}_p.$$

Therefore, $\psi_p(V_1) \subseteq \mathcal{V}_p$. Using a similar argument, $\psi_p(V_2) \subseteq \mathcal{V}_p$. Thus it suffices to show that ψ_p is an injection to prove the theorem.

Assume, on the contrary, there exist distinct $a_1, a_2 \in V_p$ such that $\psi_p(a_1) = \psi_p(a_2)$. If $a_1, a_2 \in V_1$, then $a_1 \not\equiv a_2 \pmod{p}$ and $\{(i-1)a_1\}_p = \{(i-1)a_2\}_p$, which is evidently impossible. Similarly, $a_1, a_2 \in V_2$ is impossible. So we may assume that $a_1 \in V_1$ and $a_2 \in V_2$, that is, $\tilde{a}_1 \equiv ia_1 \pmod{p}$ and $\tilde{a}_2 \equiv -ia_2 \pmod{p}$. Then

$$(i-1)a_1 \equiv \psi_p(a_1) = \psi_p(a_2) \equiv (-i-1)a_2 \equiv i(i-1)a_2 \pmod{p}.$$

It follows that

$$a_1 \equiv ia_2 \equiv -\tilde{a}_2 \pmod{p},$$

which contradicts the fact that $1 \le a_1, \tilde{a}_2 \le (p-1)/2$.

Thus ψ_p is an injection and the proof is complete.

3. Proof of Theorem 1.3

Since \mathbb{F}_p^* is cyclic, $\mathbb{F}_p^*/\mathcal{U}_4$ is also a cyclic group and of order (p-1)/4. Let the order of the coset of 1 + i be *m*. Then Ψ_p is composed of (p-1)/4m disjoint cycles of length *m*. Thus

$$\operatorname{sign}(\psi_p) = (-1)^{(m-1)(p-1)/4m}.$$
(3.1)

Now we divide the discussion into five cases.

Case (i): $p \equiv 1 \pmod{16}$ and 2 is a quartic residue modulo *p*.

Case (ii): $p \equiv 9 \pmod{16}$ and 2 is a quartic nonresidue modulo *p*.

In these two cases,

$$[(1+i)^{(p-1)/8}]^4 \equiv (-4)^{(p-1)/8} \equiv (-1)^{(p-1)/8} 2^{(p-1)/4} \equiv 1 \pmod{p},$$

which implies $(1 + i)^{(p-1)/8} \in \mathcal{U}_4$. Hence (p-1)/8 is divisible by *m* and ψ_p is even from (3.1).

Case (iii): $p \equiv 1 \pmod{16}$ and 2 is a quartic nonresidue modulo *p*.

Case (iv): $p \equiv 9 \pmod{16}$ and 2 is a quartic residue modulo *p*.

In these two cases,

$$[(1+i)^{(p-1)/8}]^4 \equiv (-4)^{(p-1)/8} \equiv (-1)^{(p-1)/8} 2^{(p-1)/4} \equiv -1 \pmod{p}.$$

Therefore, $(1 + i)^{(p-1)/4} \in \mathcal{U}_4$ while $(1 + i)^{(p-1)/8} \notin \mathcal{U}_4$. In other words, *m*, a factor of (p-1)/4, does not divide (p-1)/8. So q = (p-1)/4m must be odd while *m* is even. Thus ψ_p is odd from (3.1).

Case (*v*): $p \equiv 5 \pmod{8}$. Now *m* must be odd since it divides (p-1)/4 from the definition. Thus sign $\psi_p = 1$ in view of (3.1). The proof is complete.

Acknowledgements

We are deeply grateful to the anonymous referee, whose valuable suggestions enabled us to simplify our proof substantially. We would also like to thank Professor Zhi-Wei Sun for his guidance.

[5]

C. Huang and H. Pan

References

- [1] P. Barrucand and H. Cohn, 'Note on primes of type $x^2 + 32y^2$, class number and residuacity', *J. reine angew. Math.* **238** (1969), 67–70.
- [2] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums (Wiley, New York, 1998).
- [3] J. H. Conway, *The Sensual (Quadratic) Form*, Carus Mathematical Monographs, 26 (The Mathematical Association of America, Washington DC, 1997), 127–132.
- [4] R. E. Dressler and E. E. Shult, 'A simple proof of the Zolotareff–Frobenius theorem', Proc. Amer. Math. Soc. 54 (1976), 53–54.
- [5] C. F. Gauss, 'Theoria residuorum biquadraticorum, Commentatio prima', Comment. Soc. Reg. Gottingensis 6 (1828), 28 pages. [Collected Works, Volume 2, 65–92].
- [6] H. Hasse, 'Über die Klassenzahl des Körper $P(\sqrt{-2p})$ mit einer Primzahl $p \neq 2$ ', J. Number Theory **1** (1969), 231–234.
- [7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edn, Graduate Texts in Mathematics, 84 (Springer, New York, 1990).
- [8] E. Lehmer, 'Generalizations of Gauss's lemma', in: Number Theory and Algebra: Collected papers dedicated to Henry B. Mann, Arnold E. Ross, and Olga Taussky-Todd (ed. H. Zassenhaus) (Academic Press, New York, 1977), 187–194.
- [9] A. Pizer, 'On the 2-part of the class number of imaginary quadratic number fields', J. Number Theory 8 (1976), 184–192.
- [10] K. S. Williams, 'Note on a result of Barrucand and Cohn', J. reine angew. Math. 285 (1976), 218–220.

CHAO HUANG, Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China e-mail: DG1921004@smail.nju.edu.cn

HAO PAN, School of Applied Mathematics, Nanjing University of Finance and Economics Nanjing 210023, PR China e-mail: haopan79@zoho.com