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Viscoplastic fluids do not flow unless they are sufficiently stressed. This property can
be exploited in order to produce novel flow features. One example of such flows
is viscoplastically lubricated (VPL) flow, in which a viscoplastic fluid is used to
stabilize the interface in a multi-layer flow, far beyond what might be expected for
a typical viscous–viscous interface. Here we extend this idea by considering the
encapsulation of droplets within a viscoplastic fluid, for the purpose of transportation,
e.g. in pipelines. The main advantage of this method, compared to others that involve
capillary forces is that significantly larger droplets may be stably encapsulated,
governed by the length scale of the flow and yield stress of the encapsulating
fluid. We explore this set-up both analytically and computationally. We show that
sufficiently small droplets are held in the unyielded plug of a Poiseuille flow (pipe
or plane channel). As the length or radius of the droplets increases, the carrier fluid
eventually yields, potentially breaking the encapsulation. We study this process of
breaking and give estimates for the limiting size of droplets that can be encapsulated.

Key words: complex fluids, drops and bubbles, materials processing flows

1. Introduction

Fluid encapsulation is the process of entrapping one substance within another.
Typical functions of encapsulation are to isolate an aggressive component from the
environment and/or deliver one component it to a particular receptor (Loscertales et al.
2002). This could be beneficial in processes involving transportation, coating, site-
specific drug delivery, medical imaging as well as food, cosmetic and pharmaceutical
product manufacturing (Gref et al. 1994; Cohen et al. 2001; Hillery, Lloyd &
Swarbrick 2001; Zuidam & Nedovic 2010). Various techniques of encapsulation
are proposed in the literature, e.g. Lister (1989), Ganan-Calvo (1998), Cohen et al.
(2001), Loscertales et al. (2002), Jaworek (2008), Zhao et al. (2011) and Windbergs
et al. (2013), but it is not our intention to review these here. A common feature of
many current techniques is that they are limited to droplet sizes governed by capillary
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forces, i.e. short length scales. Instead here we propose a method of encapsulation
focused at macro-scale droplets, independent of capillary forces.

Yield stress (viscoplastic) fluids have the property that they do not deform unless
a given yield stress (τ̂Y) is exceeded. If the deviatoric stress is below the yield stress,
the fluid acts like a rigid solid, resisting deformation. While in some flows this
leads to unwanted features, e.g. Roustaei, Gosselin & Frigaard (2014), in other cases
yield stress behaviour can be exploited in order to produce novel and beneficial
flow features. One example of such flows, that we generalize here, is termed
viscoplastically lubricated (VPL) flow, in which a yield stress fluid is used to stabilize
the interface in a multi-layer flow; see Frigaard (2001), Moyers-Gonzalez, Frigaard
& Nouar (2004), Huen, Frigaard & Martinez (2007), Hormozi, Wielage-Burchard &
Frigaard (2011b,c), Hormozi, Martinez & Frigaard (2011a) and Hormozi & Frigaard
(2012). The main focus is pressure-driven duct flows in which a viscoplastic fluid
adjacent to the wall lubricates a centrally positioned viscous fluid. By controlling the
relative flow rate of the two fluids we can ensure that the yield stress is larger than
the interfacial shear stress by a finite amount. This results in a finite unyielded region
around the central fluid, preserving stability. Both linear and nonlinear stability results
have been established, for Newtonian and non-Newtonian core fluids; see Frigaard
(2001), Moyers-Gonzalez et al. (2004), Moyers-Gonzalez, Frigaard & Nouar (2010),
Hormozi et al. (2011b) and Hormozi & Frigaard (2012). Experimental studies have
used viscous, shear-thinning and viscoelastic core fluids; see Huen et al. (2007) and
Hormozi et al. (2011c).

The idea of encapsulation stems from these studies. We have looked to extend
the VPL concept in different ways. For example, recently in Hormozi, Dunbrack &
Frigaard (2014) we have introduced periodic perturbations to the flow rates of initially
stable VPL flows, resulting in stable patterned interfaces. In Hormozi et al. (2011b)
we have experimented numerically with different injection novel configurations in
order to advect encapsulated ‘letters’ and ‘write’ in the flow. In this paper we expand
this idea by considering the encapsulation of a regularly spaced stream of droplets
evenly spaced within the plug region of a yield stress fluid flowing along a uniform
duct. The main focus is to determine the size of droplets that can be encapsulated
in this way, without yielding the encapsulating plug, for both plane channel and pipe
configurations. Of course if instead of droplets, neutrally buoyant solid particles are
transported, the particles are indistinguishable from the plug and exert no stress. On
the other hand, transported droplets perturb the stress field in the encapsulating plug,
ultimately breaking the plug for large droplets.

In the absence of fluid motions there are many studies of settling (or rise) in
stationary yield stress fluid whereby the yield stress holds a particle (droplet or
bubble) stationary until a certain critical buoyancy stress is exceeded. Thus, particles
and bubbles below a certain size are held in suspension. Critical yield numbers are
known for many symmetric particle geometries, e.g. spheres, cylinders, ellipsoids, and
can be computed with care; see Beris, Tsamopoulos & Armstrong (1985), Roquet
& Saramito (2003), Tokpavi, Magnin & Jay (2008) and Putz & Frigaard (2010).
There are similar studies that address the onset of bubble propagation; see Dubash
& Frigaard (2004, 2005), Tsamopoulos et al. (2008) and Dimakopoulos, Pavlidis
& Tsamopoulos (2013). In both cases the yield stress fluid yields locally to the
particle (bubble) and in the Stokes regime propagates slowly with yielded fluid being
displaced from in front of the particle (bubble) to behind. There are many interesting
studies focusing on moving particles and droplets, determining drag coefficients etc.,
e.g. Beris et al. (1985), Beaulne & Mitsoulis (1997), Blackery & Mitsoulis (1997),
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Liu, Muller & Denn (2002), De Besses, Magnin & Jay (2003), Mitsoulis (2004) and
Tokpavi et al. (2008).

As far as viscous droplets are concerned, there are fewer studies. For example,
Potapov et al. (2006) computed the motion and deformation of a single droplet in
a Bingham fluid under gravity. They reported approaching a quasi-steady state after a
relatively large transient period. The transient period and velocity magnitude depend
strongly on the Bingham number. They also observed stationary flows for sufficiently
large Bingham numbers. Holenberg et al. (2013) experimentally studied the fall of
a Newtonian drop inside an otherwise stagnant Bingham fluid. Using a combined
PTV and particle image velocimetry (PIV) technique, they determined the approximate
position of the plug interface as well as the effects of the wall on the sedimentation
velocity.

Interaction of multiple droplets or bubbles in a viscoplastic medium has also
recently received attention (Liu, Muller & Denn 2003; Potapov et al. 2006; Singh &
Denn 2008; Lavrenteva, Holenberg & Nir 2009; Holenberg et al. 2013). In particular,
Liu et al. (2003) reported that travelling particles in a viscoplastic medium exhibit
negligible interaction unless they are in close proximity (less that four sphere radii).
Potapov et al. (2006) examined the interaction of two drops falling under gravity
in a Bingham fluid. For the case of two similar drops, they showed that within the
proximity range defined in Liu et al. (2003), the drops tend to approach to each other
and coalesce. More interestingly, Singh & Denn (2008) found in their simulations
that in certain arrangements, a group of bubbles can rise under conditions where a
single bubble is unable to move. In the context of our study, the proximity distance
of Liu et al. (2003) is relevant in that we also will determine a droplet spacing above
which the droplets do not influence one another. However, note that our droplets do
not yield the encapsulating fluid, so the connection with the above studies is via
locality of the stress field rather than the velocity field.

Finally, moving to large numbers of particles, bubbles or droplets we enter the
realm of yield stress suspensions, foams and emulsions. Recent work has addressed
the question of estimating the bulk yield stress of a yield stress suspension, according
to the fraction of the dispersed phase. Theoretical developments in Chateau, Ovarlez &
Trung (2008) agree reasonably well with the experimental results of Ovarlez, Bertrand
& Rodts (2006) and Mahaut et al. (2008), see also Ovarlez et al. (2006), Coussot
et al. (2009), Vu, Ovarlez & Chateau (2010) and Ovarlez et al. (2012). Of course, in
dealing with suspensions the dispersed phase length scale is much smaller than that
of the bulk flow, unlike here where the droplets are of the flow dimension and we
focus on a continuous stream.

An overview of our paper is as follows. In § 2 we present the problem under study
and derive the governing equations in dimensionless form. For simplicity we start with
the plane channel geometry. Section 3 considers slender droplets, showing that the
yield surface is barely perturbed by the presence of the droplets. In § 4 we compute
the flow around an iso-dense droplet, determining the mechanisms of yielding as
droplets grow too large for the encapsulation, and finding the maximal droplet size.
Section 5 explores the effects of a density difference on the encapsulation process. In
§ 6 we generalize the foregoing results for plane channel encapsulation to the more
practical pipe geometry. The paper closes with a summary and discussion in § 7.

2. Physical problem
We consider the flow of an infinite train of regularly spaced two-dimensional

droplets downwards in an infinite vertical plane channel of width 2R̂. The droplets
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Plug

Yielded layers

FIGURE 1. (Colour online) Geometry of the encapsulated droplet train.

are considered to be Newtonian and are encapsulated within a viscoplastic carrier fluid,
which for simplicity we model as a Bingham fluid. Both fluids are incompressible
and the areal flow is 2R̂Û0, i.e. the mean velocity along the channel is Û0. The
droplets are spaced a distance l̂ apart, each centred at x̂ = kl̂ + Ûp t̂ : k ∈ Z and have
boundaries (interfaces) described by

ŷ=±ĥ(x̂− kl̂− Ûp t̂), (2.1)

where ĥ(0)= Ĥ. The length of the droplets is 2L̂ and we denote the aspect ratio of
the droplet by δ = Ĥ/L̂. The physical set-up is shown schematically in figure 1. In
this paper we adopt the convention of denoting all dimensional variables with a ‘hat’,
i.e. ·̂, and all dimensionless variables without.

In the absence of the droplets the velocity of the carrier fluid adopts a uniform
symmetric Poiseuille profile, which in the case of a Bingham fluid contains an
unyielded ‘plug’ region in the channel centre, of width 2yy,0R̂ that translates with
speed Ûp; see § 2.1 below. Our objective in this paper is to understand when this plug
region may encapsulate a fluid droplet without the plug yielding. In other words, we
consider the situation in which the droplet is ‘frozen’ into the plug, and consequently
the interface between the droplet and carrier fluid does not deform. Where we refer
to encapsulation we specifically mean that the droplet is held in an unyielded plug
region. Much of the paper concerns the study of when this situation may hold for a
given droplet size and shape: a rudimentary analysis is given below in § 2.3.

We shall consider flows that are periodic in x̂ and symmetric with respect to the
channel centreline ŷ= 0. We scale all lengths with R̂, velocities with Û0 and deviatoric
stresses with µ̂Û0/R̂, where µ̂ is the plastic viscosity of the carrier fluid. The pressure
is scaled as follows:

p̂= p̂0 + ρ̂ĝx̂+ µ̂Û0

R̂
p, (2.2)

i.e. p is the dimensionless modified pressure, subtracting off the static pressure ρ̂ĝx̂
and a possibly time-dependent pressure p̂0(t̂).

It is assumed that the distance between droplets l̂ is large enough for the carrier
fluid to assume its undisturbed uniform Poiseuille profile between droplets, in which
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the plug moves with speed Ûp. We explore effects of varying l̂ later. To fully exploit
the symmetry of the problem, we translate to a moving frame as follows:

(x, y)=
(

x̂− Ûp t̂

R̂
,

ŷ

R̂

)
, (2.3a)

t= Ûp t̂

R̂
, (2.3b)

(u, v)=
(

û− Ûp

Û0
,
v̂

Û0

)
. (2.3c)

In the moving frame, we consider the flow to be steady and due to periodicity
consider only the domain: (x, y) ∈ [−l/2, l/2] × [−1, 1], where l = l̂/R̂. The
droplet–encapsulating fluid interface is given by y = ±h(x) with h(0) = H = Ĥ/R̂
and where h(x)= 0 for |x|> L= H/δ = L̂/R̂. The scaled equations of motion in the
carrier fluid are

0= ∂u
∂x
+ ∂v
∂y
, (2.4a)

Re
(

u
∂u
∂x
+ v ∂u

∂y

)
=−∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
, (2.4b)

Re
(

u
∂v

∂x
+ v ∂v

∂y

)
=−∂p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
, (2.4c)

where the constitutive relations are

τij =
(

1+ B
γ̇

)
γ̇ij ⇐⇒ τ > B, (2.5a)

γ̇ = 0 ⇐⇒ τ 6 B. (2.5b)

Here γ̇ =
√
γ̇ 2

xy + γ̇ 2
xx, is the rate of strain, τ =

√
τ 2

xy + τ 2
xx, is the deviatoric stress, and

γ̇xy = γ̇yx = ∂u
∂y
+ ∂v
∂x
, (2.6a)

γ̇xx =−γ̇yy = 2
∂u
∂x
=−2

∂v

∂y
. (2.6b)

Two dimensionless groups are defined above: Re= ρ̂Û0R̂/µ̂ is the Reynolds number
and B= τ̂Y R̂/µ̂Û0 is the Bingham number. The latter denotes the ratio of yield stress
to viscous stress in the flow.

At the walls of the channel no-slip conditions are satisfied and at x=±l/2 the flow
is fully developed and adopts the Poiseuille profile:

u(x,±1)=−up,0, v(x,±1)= 0, (2.7a)
u(±l/2, y)=UP(y)− up,0, v(±l/2, y)= 0. (2.7b)
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Here UP(y) denotes the fully developed plane Poiseuille profile, which has
dimensionless plug speed up,0; see § 2.1. Note that by virtue of the scaling, in
the translating coordinates the dimensionless velocity satisfies, at each x,∫ 1

−1
u(x, y)dy= 2(1− up,0). (2.8)

Within the droplet the scaled equations of motion are

0= ∂u
∂x
+ ∂v
∂y
, (2.9a)

φRe
(

u
∂u
∂x
+ v ∂u

∂y

)
=−∂p

∂x
+m

∂2u
∂x2
+m

∂2u
∂y2
+ χ, (2.9b)

φRe
(

u
∂v

∂x
+ v ∂v

∂y

)
=−∂p

∂y
+m

∂2v

∂x2
+m

∂2v

∂y2
. (2.9c)

Here φ= ρ̂d/ρ̂ is the density ratio (ρ̂d is the density of the droplet), m= µ̂d/µ̂ is the
viscosity ratio (µ̂d is the viscosity of the droplet), and χ is a dimensionless group:

χ = (ρ̂d − ρ̂)ĝR̂2

µ̂Û0
. (2.10)

Clearly χ represents the ratio of buoyant stresses to viscous stresses; χ can be thought
of as the inverse of a Stokes number.

At the interface between droplet and carrier fluid the velocity and the traction are
continuous:

JτntK= 0 at y=±h(x), (2.11a)
J−p+ τnnK= 0 at y=±h(x). (2.11b)

Here the subscripts n and t on the deviatoric stress components refer to directions
resolved normal and tangential to the interface. Note that we neglect capillary forces
in the formulation above, as the aim is to study encapsulation via yield stress effects
on a macro-scale. In § 7 we discuss capillary effects and their comparison to the yield
stress.

2.1. The plane Poiseuille solution UP(y)
The plane Poiseuille flow solution for a Bingham fluid is straightforwardly resolved.
In the fixed frame of reference the velocity is given by

UP(y)=


up,0 if |y|6 yy,0,

up,0

[
1− (|y| − yy,0)

2

(1− yy,0)2

]
if |y|> yy,0.

(2.12)

The plug velocity is given by

up,0 = B
2yy,0

(1− yy,0)
2, (2.13)
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i.e. ÛP= Û0up,0. The position of the yield surface is found from the requirement that
the mean velocity is unity (recall here we have scaled with Û0). This leads to the
following cubic Buckingham equation:

y3
y,0 −

(
3+ 6

B

)
yy,0 + 2= 0. (2.14)

It is not hard to show that this equation has a single root yy,0(B) ∈ (0, 1), easily
computed numerically. We find that yy,0(B) increases monotonically and exhibits the
following asymptotic behaviour:

yy,0 ∼


B
3
− B2

6
as B→ 0,

1−
√

2
B1/2
+O(B−1) as B→∞.

(2.15)

The dimensionless yield surface position yy,0 is sometimes called the Oldroyd
number and can be used in place of B as a dimensionless group describing the base
flow.

2.2. Inertial effects and the droplet flow
As discussed above, the aim of our study is to understand situations under which there
may exist a droplet fully encapsulated in the unyielded plug of the encapsulating fluid.
What we consider below neglects inertial effects. We now examine this assumption.

First, with respect to the droplet flow, for any droplet that is fully encapsulated
within the plug the velocity at the interface satisfies (u, v)= 0, as we have subtracted
off the plug velocity. If we consider these conditions as the boundary conditions for
the droplet domain, the droplet flow problem effectively decouples from that of the
carrier fluid. Using these conditions, the droplet flow has the (unique) Stokes flow
solution (u, v)= 0, everywhere within the droplet, with

p= χx+ const. (2.16)

The trivial solution also solves the steady inertial problem. Assuming that the plug
remains unyielded we may even consider time-dependent solutions for the droplet. As
there is no driving force for the flow within the droplet, an energy stability analysis
would show that any transients in the droplet decay to zero like ∼exp(−φRe/m)t,
which is the usual viscous decay time scale of the droplet. There is no bound needed
on the size of the initial condition from the perspective of the decay bound. However,
transients within the droplet would induce stresses within the plug and hence the
a priori assumption of an unyielded plug could fail for sufficiently large initial
conditions. Nevertheless, it is apparent that the trivial solution is likely to be stable
for a reasonable range of Re > 0 and we therefore consider this to represent the
droplet solution.

Since the fluid in the droplet is Newtonian, the trivial solution (u, v)= 0, implies
vanishing of the shear stresses within the droplet. Equation (2.11) therefore simplifies
to the following stress conditions to be satisfied by the Bingham fluid at the interface:

τnt = 0, at y=±h(x), (2.17a)
−p+ τnn =−χx+ const., at y=±h(x). (2.17b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.81


Macro-size drop encapsulation 489

Assuming symmetry and locating the droplet at the origin, we may consider the
constant on the right-hand side of (2.17b) to be zero.

For the carrier fluid in the absence of the droplet, the Poiseuille flow solution is
valid up to large Re, when the flow destabilizes due to turbulent transition. Departures
from this solution in the droplet flow solution are likely to be associated with
perturbation of the streamlines in the vicinity of the droplet. Conditions (2.17) are
satisfied at the interface, which results in a perturbation of the stress field within the
plug. This in turn may perturb the yield surface from its uniform value yy,0 and the
perturbed yield surface may then induce a velocity perturbation from the Poiseuille
flow solution. If we suppose that the aspect ratio of the streamline perturbation is
characterized by a parameter ε then the inertial terms in the x-momentum equation
have size εRe and those in the y-momentum equation have size ε3Re. We may
consider the inertial terms to be small if εRe� 1, which we show below to be the
case.

2.3. Why large droplets yield the plug
It might at first appear that the plug may sustain any droplet of size h(x) < yy,0, since
the rigid motion of the uniform plug around the droplet allows the droplet to translate
at uniform speed along the channel. However, this reasoning neglects the effects of
the droplet on the stress field. We consider two simple examples that suggest how
the stresses may act to break the plug region for sufficiently large droplets.

First let us consider an iso-dense droplet (χ = 0; see § 5 below for χ 6= 0). We have
seen that the undisturbed flow (no droplets) is the Poiseuille flow of § 2.1 above, in
which the frictional pressure gradient satisfies

∂p
∂x
=− B

yy,0
. (2.18)

Now let us introduce a droplet within the plug region, at x=0 in the translating frame.
If the droplet translates uniformly, the shear stresses in the droplet are zero and the
pressure in the droplet is simply p= const. (chosen to be zero). In contrast, within the
yielded layer of the carrier fluid we have p=−Bx/yy,0, varying by ∼2BL/yy,0 along
the length of the droplet.

The stresses within the unyielded plug are indeterminate in a yield stress fluid.
Stress continuity implies that the tangential stress must vanish at the interface,
whereas the total normal stress must balance the constant droplet pressure. We
see that the pressure imbalance between the droplet and the yielded layer of the
encapsulating fluid is of size ∼BL/yy,0, which must somehow be absorbed by the
deviatoric stresses within the plug region. Consequently, a simple order of magnitude
estimate for the length of droplet that can be sustained by a viscoplastic fluid is
simply

yy,0 & L. (2.19)

Putting this into dimensional terms we have

τ̂Y

ĜR̂
&

L̂

R̂
⇒ τ̂Y

Ĝ
& L̂, (2.20)

where Ĝ is the frictional pressure gradient of the uniform Poiseuille flow. Since yy,0<1
we see that (2.19) is fundamentally a restriction on droplet area (equivalently volume
in three dimensions), i.e. we expect that LH < yy,0.
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A second example considers the tangential stress distribution. Consider a droplet
with slowly varying height (|∂h/∂x| � 1), encapsulated inside the plug region. Inside
the plug the stress distribution is undetermined, but has to satisfy the momentum
equations in (2.4). Assuming the yield surface is approximately yy,0, we might linearly
approximate

τxy ≈−B
y− h

yy,0 − h
, (2.21)

i.e. satisfying the stress conditions at the droplet and yield surface. Ignoring the x-
variation of h, from (2.4b) we find that p − τxx = −Bx/(yy,0 − h) within the plug.
Outside the plug we have p = −Bx/yy,0, and imposing continuity of normal stress
across the yield surface:

−Bx/yy,0 = p− τyy = p+ τxx ⇒ τxx = Bx
2

h
yy,0(yy,0 − h)

. (2.22)

Now observe that for fixed x, as yy,0 − h→ 0, |τxx|→∞, i.e. suggesting that droplet
widths may not approach arbitrarily close to the plug width.

Finally, if we assume the distributions (2.21) and (2.22), on combining with the
yield criterion (τ = B) we predict that the plug yields along y=±yy(x):

yy(x)− h
yy,0 − h

≈
√

1− x2

4

(
1

yy,0 − h
− 1

yy,0

)2

. (2.23)

Thus, also x is limited in such a stress distribution, i.e. |L|< 2yy,0(yy,0− h)/h, in order
for the plug to remain unyielded around the droplet, or LH < 2yy,0(yy,0 − h).

The above two simple examples represent extremes of behaviour, indicating simply
that we may expect limits on the size of encapsulated droplets. In practice the stress
distributions within the unyielded plug can be any that satisfy the Stokes equations
and boundary conditions.

3. Small slender droplets: h(x)∼ δ� 1

A common class of flows for which it is possible to construct analytical solutions is
that in which the streamlines are nearly one-dimensional. In the problem considered,
non-uniformity only arises from the droplet shape and hence we look at droplets
of small aspect ratio (H/L = δ � 1). However, the analysis above leading to (2.19)
suggests that (iso-dense) droplets cannot be encapsulated if L is larger than yy,0.
Combined with the requirement of δ � 1 implies that H ∼ δ � 1, i.e. we consider
small slender droplets.

Assuming h(x)∼O(δ), we develop an asymptotic approximation to the flow in the
case that δ� 1. Evidently, we expect that the axial velocity will have a similar size
to that of the droplet-free flow and the appropriate scale for y remains the channel
half-width. On the other hand, since the shear stress is zero at y= h(x), this suggests
an O(δ) perturbation of the stress field, which may induce velocities v ∼ δ. In order
to balance the mass conservation equation, a rescaling of x is needed. Therefore, we
consider the following rescaling:

xδ = X, y= Y, u=U, v = δV, pδ = P. (3.1a−e)

The deviatoric stresses are rescaled according to the velocity scales and implied strain
rate components. This type of scaling leads to an approximation based on the yielded

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.81


Macro-size drop encapsulation 491

flow region and driven by the flow geometry. In the case of thin films, it is known
that a naïve approximation of this type can lead to inconsistent results; see Lipscomb
& Denn (1984). However, methods have been developed to correct this inconsistency
in various geometries, e.g. Walton & Bittleston (1998), Balmforth & Craster (1999),
Frigaard & Ryan (2004) and Putz, Frigaard & Martinez (2009).

Using (3.1), the governing equations become

0= ∂U
∂X
+ ∂V
∂Y
, (3.2a)

0=−∂P
∂X
+ δ2 ∂τXX

∂X
+ ∂τXY

∂Y
, (3.2b)

0=−∂P
∂Y
+ δ2 ∂τXY

∂X
+ δ2 ∂τYY

∂Y
, (3.2c)

where we have for the moment ignored the inertial terms (of leading order O(δRe)
in (3.2b)). The rescaled deviatoric stress components are τXY = τxy and τxx = δτXX .
The constitutive relations are similar to (2.5) except with τ =

√
τ 2

XY + δ2τ 2
XX and γ̇ =√

γ̇ 2
XY + δ2γ̇ 2

XX:

γ̇XX = 2
∂U
∂X
, γ̇XY = ∂U

∂Y
+ δ2 ∂V

∂X
. (3.3a,b)

Also note that γ̇xy= γ̇XY , γ̇xx= δγ̇XX . Adopting a regular perturbation expansion in δ
of form

(P,U, V)= (P0,U0, V0)+ δ(P1,U1, V1)+ δ2(P2,U2, V2)+ · · · (3.4)

we find the following expressions for the deviatoric stress components in yielded parts
of the flow:

τXY =
[
∂U0

∂Y
+ B sgn

(
∂U0

∂Y

)]
+
[
δ
∂U1

∂Y

]
+O(δ2), (3.5a)

τXX = 2

1+ B∣∣∣∣∂U0

∂Y

∣∣∣∣
 ∂U0

∂X
+O(δ). (3.5b)

Assuming the above scaling, our periodic domain becomes X ∈ [−lδ/2, lδ/2],
Y ∈ [−1, 1], although we may consider only Y > 0 through symmetry. The droplet
occupies X ∈ [−Lδ,Lδ]= [−H,H] and Y ∈ [−h(X), h(X)). No-slip boundary conditions
are satisfied at the walls. In parts of the channel where there is a droplet, the two
conditions (2.17a) and (2.17b) are satisfied at Y = ±h(X). In terms of the rescaled
variables these become

τXY − δ2 2τXXhX

1+ δ2h2
X
= 0, (3.6a)

P+ δ2 (1− δ2h2
X)τXX + 2τXYhX

1+ δ2h2
X

= χX, (3.6b)

where hX is the derivative of h(X) with respect to X. Ignoring the tip of the droplet
X → ±H, we may assume that |hX| ∼ O(1). Assuming that the droplet remains
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encapsulated in the plug region of the flow, the stresses remain indeterminate within
the plug, away from the interface.

In order to apply these conditions to deriving a perturbation solution we need
at least to understand the order of magnitude of the stress components. The scales
we have used are derived from the yielded region, where they are determined by
the velocity scales and a leading-order shear flow balance for the frictional pressure
gradient. As we enter the unyielded plug, the scaling for P and τXY is likely to
remain valid. However, in long thin geometries it is known that as the plug yields,
the extensional stresses within the plug become of the same order as the shear
stresses, i.e. this is the yielding mechanism. Examples of this feature can be found
in e.g. Walton & Bittleston (1998), Balmforth & Craster (1999), Frigaard & Ryan
(2004) and Putz et al. (2009). Therefore, although the leading-order terms in (3.6a)
and (3.6b) are clear:

τXY,0 = 0 at Y =±h(X), (3.7a)
P0 = χX at Y =±h(X), (3.7b)

at first order there may be some adjustment as we become close to breaking the plug:

τXY,1 − 2δτXX,0 = 0 at Y =±h(X), (3.8a)
P1 + δτXX,0 = 0 at Y =±h(X). (3.8b)

3.1. O(1) solution in the yielded region
At leading order (3.2) and (3.5) lead to

0= ∂U0

∂X
+ ∂V0

∂Y
, (3.9a)

0=−∂P0

∂X
+ ∂τXY,0

∂Y
, (3.9b)

0=−∂P0

∂Y
. (3.9c)

We consider only Y > 0, as the flow is symmetric about the centreline. Integrating the
X-momentum equation and satisfying (3.7a) gives

∂U0

∂Y
+ B sgn

(
∂U0

∂Y

)
= ∂P0

∂X
(Y − h). (3.10)

The leading-order position of the yield surface is denoted Y = yy, which is found by
equating the shear stress to the yield stress:

∂P0

∂X
(Yy − h)= B sgn

(
∂U0

∂Y

)
=−B. (3.11)

Integrating once more gives the velocity:

U0(Y)=


up − up,0 if |Y|6 yy,

up

[
1− (|Y| − yy)

2

(1− yy)2

]
− up,0 if |Y|> yy.

(3.12)
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The leading-order plug velocity is given by

up = B
2(yy − h(X))

(1− yy)
2. (3.13)

In order to find yy, we impose the flow rate constraint across the channel, i.e.∫ 1

−1
U0dY = 2− 2up,0. (3.14)

Note that the leading-order velocity in the droplet is given by continuity at the
interface as U0 = up − up,0. Integrating across the channel gives

y3
y − yy

(
3+ 6

B

)
+ 2+ 6

h
B
= 0. (3.15)

This cubic equation is similar to (2.14) and gives yy as a function of h(X) and B.
It follows that up is also a function of both B and x. The dependence of up on X
via h(X) contradicts the idea that the plug region is rigid, i.e. this is the so-called
lubrication paradox of Lipscomb & Denn (1984). The inconsistency is resolved at first
order in δ.

3.2. O(δ) solution in the yielded layer
We focus here on the yielded layer of encapsulating fluid, avoiding the tricky issue
of the first-order momentum balance within the unyielded plug. The idea is to correct
the leading-order solution, to account for the varying plug speed predicted. In this,
we shall assume that yy(X) is an O(δ) approximation to the position of the true yield
surface at Y = yT . The X-momentum balance at first order in the yielded layer is

∂P1

∂X
= ∂

2U1

∂Y2
, (3.16)

which requires two boundary conditions. One of these is the no-slip condition (U1(Y=
1)= 0). The other condition can be obtained by noticing that U(X, yT)= 0 provided
that the spacing between droplets is long enough and the plug remains unyielded
(recall that we have subtracted the pure fluid plug velocity up,0 from the X-component
of velocity in translating to the moving frame). Therefore, the condition on U1 is
simply

≡U1(X, yy)= 1
δ
(up,0 − up(X))≡ η. (3.17)

This value is adopted for all Y < yy in order to correct the plug velocity. Below we
shall justify the fact that η=O(1). Note that we have imposed the condition at yy(X),
which is known, rather than at yT(X). However, assuming that yy(X)− yT(X)=O(δ),
the discrepancy due to imposing at yy(X) is only at second order.

We integrate (3.16), impose the two boundary conditions and then integrate the flow
rate constraint (

∫ 1
−1 U1dY = 0) to give

∂P1

∂X
=−6η

yy + 1
(yy − 1)3

(3.18)
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FIGURE 2. Contours of the X-component of velocity obtained by the perturbation solution;
H= 0.2, δ= 0.1 and B= 1: (a) leading-order U0(X, Y); (b) corrected velocity U0(X, Y)+
δU1(X,Y). Uncorrected yield surface position yy(X) marked with dashed line and corrected
yield surface yT(X) marked with solid line. Pressure gradient for both solutions is also
plotted.

and

U1(X, Y)=−η(Y − 1)(3Y + 3Yyy − 1− 4y2
y − yy)

(yy − 1)3
if Y > yy. (3.19)

Finally, we find yT by imposing zero shear rate at Y = yT and expanding about Y = yy

with respect to δ:

∂U0

∂Y
(X, yT)+ δ ∂U1

∂Y
(X, yT)= 0 H⇒ yT(X)= yy(X)− δ

∂U1

∂Y
(X, yy(X))

∂2U0

∂Y2
(X, yy(X))

. (3.20)

An example of the perturbation solution is plotted in figure 2(a), showing U0(X, Y)
and yY(X) for an elliptical droplet with H= 0.2 and δ= 0.1 at B= 1. Although H and
δ are relatively large here (i.e. for what might be considered asymptotic), the idea is
simply to amplify visually the features of the perturbation solution. Figure 2(b) shows
the corrected solution U0(X, Y)+ δU1(X, Y) and yT(X). The corresponding variations
in pressure gradients are also shown above each graph.

3.3. Size of the yield surface perturbation from yy,0 and effects of inertia
Having now derived an expression for yT(X) we wish to examine the size of the
yield surface perturbation from the Poiseuille flow yield surface, yy,0. As previously
discussed in § 2.2, it is this quantity that dictates the size of the inertial terms that
we have neglected so far.

We note that our perturbation solution has been derived under the assumption that
h(X)∼O(δ) and we now define h̄(X)= h(X)/δ. The calculation proceeds in two steps.
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First we examine the departure of yy from yy,0. We write yy= yy,0+ δξ1 and show that
ξ1 is order 1. Substituting both yy and h̄ into (3.15) and expanding in powers of δ:

O(1): y3
y,0 − yy,0(3+ 6/B)+ 2= 0, (3.21a)

O(δ): 3y2
y,0ξ1 − ξ1(3+ 6/B)+ 6

h̄
B
= 0, H⇒ ξ1 = h̄

1+ 0.5B(1− y2
y,0)
. (3.21b)

The first expression is simply the Buckingham equation (2.14), as expected. The
second expression defines ξ1. Now, since up is defined by yy and h, straightforward
expansion of (3.13) in powers of δ verifies that η=O(1), as has been claimed.

Secondly, we combine (3.20) and (3.21b):

yT(X)− yy,0 = δ

ξ1(X)−
∂U1

∂Y
(X, yy)

∂2U0

∂Y2
(X, yy)

 . (3.22)

Substituting the expressions for the derivatives of the perturbation velocity (following
considerable algebra) gives

yT − yy,0 = δ
[
ξ1 − yy,0 + 2

yy,0 − 1
[yy,0ξ1 + yy,0h̄+ ξ1 − h̄]

yy,0

]
+O(δ2) (3.23)

and then if we substitute for ξ1 from (3.21b), we find

yT − yy,0 = δh̄

B(yy,0 + 1)
(

y3
y,0 − yy,0

(
3+ 6

B

)
+ 2
)

yy,0(yy,0 − 1)(By2
y,0 − B− 2)

+O(δ2). (3.24)

We see that the leading-order term on the right-hand side vanishes due to (3.21a),
so that yT − yy,0 ∼ O(δ2). A similar exercise shows that U0 + δU1 = up,0(y) + O(δ2),
i.e. the velocity field is given to O(δ2) by the Poiseuille solution of the droplet-free
flow. To summarize, insertion of an O(δ) droplet within the plug region causes
only an O(δ2) perturbation in both the yield surface position and the velocity field.
However, the stress perturbation is of O(δ), as is the pressure gradient perturbation.
Additionally, the stress field within the unyielded plug region remains indeterminate.
To explore this surprising feature, figure 3 plots yT(X) and yy(X) for a range of
different (elliptical) droplets at B = 10. As we see, the corrected yield surface
position is nearly constant and coincides with yy,0 (equal to the end values of yy(X)).
Considering now the question of inertial effects, we see that for an O(δ) encapsulated
droplet as considered, the uniform Poiseuille flow gives an O(δ2) approximation to
the velocity field in the region of the droplet (as well as away from the droplet).
The yield surface perturbation is also of O(δ2). This suggest that the appropriate
variation in the streamlines away from the uniform Poiseuille solution in the presence
of an encapsulated droplet is in fact O(δ2) (instead of the O(δ) used to derive and
construct our perturbation approximation), and that consequently inertial effects may
be legitimately neglected for δ2Re� 1.
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FIGURE 3. Position of the yield surfaces yT(X) (solid line) and yy(X) (dashed line) for a
range of different (elliptical) droplets at B= 10. (a–c) L= 0.5, (d–f ) L= 0.75; and (a,d)
H = 0.05, (b,e) H = 0.1 and (c,f ) H = 0.2. Note that yy,0 is equal to the values of yy(X)
at the two ends. Due to the adopted scaling, all elliptic droplets are mapped to a circle
with radius of H.

4. Order-unity iso-dense droplets: h(x)∼ δ ∼ 1

We now turn to order-unity droplets for which it is necessary to use computational
solution. Motivated by the asymptotic results, we proceed under the assumption that
the inertial terms may be small even for significant Re, i.e. that an encapsulated
droplet held within the plug will not significantly perturb streamlines outside of the
plug. We verify this assumption a posteriori from our numerical results. We also
consider that the droplet and encapsulating fluid have the same density, i.e. χ = 0.
As we consider a Stokes flow problem, we impose symmetry conditions at x = 0,
x=−l/2 and y= 0, and solve only for (x, y)∈ [−l/2, 0] × [0, 1]. In the encapsulating
fluid the Stokes equations are

0= ∂u
∂x
+ ∂v
∂y
, (4.1a)

0=−∂p
∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
, (4.1b)

0=−∂p
∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
. (4.1c)

The constitutive laws are (2.5) and (2.6).
The droplet domain is y6 h(x) and within the droplet the fluid is assumed to move

uniformly at the speed of the unyielded plug. Thus, we solve only in the encapsulating
fluid domain. The boundary conditions are

−p(0, y)+ τxx(0, y)= 0, v(0, y)= 0, y ∈ [H, 1], (4.2a)
u(x, 1)= 0, v(x, 1)= 0, x ∈ [−l/2, 0], (4.2b)
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−p(−l/2, y)+ τxx(−l/2, y)=Gl/2, v(−l/2, y)= 0, y ∈ [0, 1], (4.2c)
τxy(x, 0)= 0, v(x, 0)= 0, x ∈ [−l/2,−L], (4.2d)

τnt(x, h(x))= 0, −p(x, h(x))+ τnn(x, h(x))= 0, x ∈ [−L, 0]. (4.2e)

Note in (4.2b) that for simplicity we compute in a fixed frame of reference instead
of the moving frame, as translating by a constant up,0 can be imposed afterwards
with no loss of generality. By imposing (4.2c) instead of the uniform Poiseuille flow
we allow for the fact that the encapsulating fluid between droplets may not be fully
developed. Indeed, below we study the required droplet spacing parameter l, needed
for the droplets to be encapsulated. The parameter Gl/2 in (4.2c) is essentially the
pressure drop along the computational domain. Each computation involves an iteration
on G to ensure that the mean velocity is unity, i.e. we satisfy∫ 1

0
u(x, y)dy= 1, (4.3)

which has a unique solution due to the monotonicity of the flow rate with respect to
the pressure drop.

4.1. Computational algorithm and benchmarking
The intrinsic difficulty in computing viscoplastic fluid flows comes from the yield
stress, which implies an infinite effective viscosity in unyielded flow regions. Two
families of methods are commonly used to resolve this difficulty. Regularization
methods work by replacing the infinite viscosity with a very large finite value,
adjusting (2.5). Two of the more popular choices of effective viscosity are those of
Bercovier & Engleman (1980) and Papanastasiou (1987). A review of these methods
is given by Frigaard & Nouar (2005), in which the main drawbacks are explored. In
particular regularization methods do not guarantee stress convergence and may fail to
give the correct position of the yield surfaces. The potential errors are largest in flows
with long thin geometries; see e.g. Putz et al. (2009). For flows such as that here,
where we investigate whether or not the droplet is fully encapsulated in unyielded
fluid, regularization methods are unable to provide answers with certainty.

The alternative to regularization methods are algorithms such as the augmented
Lagrangian method of Fortin & Glowinski (1983) and Glowinski (1984). These
work with the formulation of the Stokes flow as a minimization problem, wherein
the functional to be minimized is non-differentiable due to the yield stress. The
minimization problem (which has a unique solution) is relaxed into a saddle-point
problem by introducing Lagrange multipliers. The Lagrangian functional is augmented
with stabilization terms and typically solved iteratively using an Uzawa-type algorithm.
A modern review of such methods is given by Glowinski & Wachs (2011). This is
the type of algorithm that we adopt and it is implemented within the C++ Finite
Element Method library Rheolef, written by P. Saramito and colleagues; see e.g.
Roquet & Saramito (2008). A particular feature of this implementation is the mesh
adaptivity, which focuses the mesh around the yield surfaces. Our implementation is
slightly modified in order to accommodate the droplet geometry, boundary conditions
and the iteration for G. Details of the implementation may be found in Putz et al.
(2009) and Roustaei & Frigaard (2013). Convergence bounds for the algorithm are
given by Roquet & Saramito (2008). In application we typically start with an initial
mesh scale, say d0≈ 0.02, that defines the size of the initial (relatively uniform sized)
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FIGURE 4. (Colour online) Mesh adaptation cycles for the case of B= 20, H = 0.1 and
L= 0.5, where we start with an initial mesh scale, d0≈ 0.02: (a) cycle 1, 3165 elements;
(b) cycle 2, 12 689 elements; (c) cycle 3, 21 425 elements; (d) cycle 4, 37 290 elements.
After the fourth cycle the typical mesh sizes are: in the plug 0.02; near the yield surface
0.001× 0.004; near the wall 0.002.

unstructured triangular mesh. This is refined successively, and typically four times
for our computations. Figure 4 shows cycles of the adaptation for one specific case.
After the fourth cycle the typical mesh sizes in the plug are ≈0.02, near the yield
surface ≈0.001× 0.004 and near the wall ≈0.002.

Starting with a smaller d0 results in a progressively smaller mesh at each step of
the adaptivity and hence a better converged solution. The effects of adaptivity on
convergence are also significant for the first few cycles. This is illustrated in figure 5
where we have compared the numerical results of the code for plane Poiseuille flow
with the exact solution from § 2.1. This shows that ‖eu‖ and ‖ep‖, defined

‖eu‖ = 1
Ncells

√∑
Ncells

|ucomp − uexact|2, (4.4a)

‖ep‖ = 1
Ncells

√∑
Ncells

(pcomp − pexact)2, (4.4b)

decay rapidly over the first few cycles of adaptation before levelling out, i.e. reducing
the error after four cycles requires a smaller initial mesh d0.

We are also able to compare our computed results to the asymptotic solutions over
a range of small δ, e.g. fixed small H and varying L. This type of comparison verifies
that the errors of leading-order and corrected first-order solutions are O(δ) and O(δ2),
respectively. The range of δ tested is, however, limited since for very small H the
droplet becomes a cut in the encapsulating fluid, increasingly singular at the ends. On
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FIGURE 5. Code Validation: error of numerical results for channel Poiseuille flow
compared to the exact solution: E, B = 10; ♦, B = 20; A, B = 50. (a) Velocity and (b)
pressure.

the other hand for larger L the encapsulating plug region breaks. As an aside, we
mention that the plane Poiseuille flow velocity solution also gives an O(δ2) error when
compared to the computed velocity, and interestingly a numerically smaller error than
the corrected perturbation method.

4.2. Effects of droplet spacing
As we have already seen, the length of droplets has a significant effect on breaking of
the encapsulating plug. With a restriction on L, if one is interested in the throughput
of encapsulated droplets it is necessary to understand the effect of droplet spacing on
the breaking process. Figure 6 shows an example sequence of computations for which
the separation distance l− 2L drops below a critical value and the plug regions start
to yield. In this case, for l= 1.625 (figure 6a) the plug has broken whereas for larger
l an intact region exists. If the plug yields around the droplet the computed solution
remains valid as a solution to the Stokes flow, but in terms of an evolution problem
the interface is free to deform and we would expect this deformation to induce a
velocity field within the droplet.

Apart from the issue of plug breaking, a separate consideration is whether l is long
enough for the flow to become fully developed between the droplets. The method we
have chosen to study this compares the mean pressure gradient behind the drop with
the analytical solution for plane Poiseuille flow:

1p= pl − pL

l/2− L
, (4.5)

where pl and pL are the pressures at x=−l/2 and x=−L, respectively. For a range of
droplet shapes we observe that at sufficiently large l the encapsulation of the droplet
is intact and the 1p approaches the analytic value for a yield stress fluid (figure 7).
In fact 1p is always very slightly below the analytical value, due to a reduction very
close to x = −L, where presumably the fluid senses the presence of the droplet. As
a rule of thumb, if l is at least 2.5×max{2H, 2L} we have found that the pressure
drop values remain near constant.
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FIGURE 6. Example of the effects of droplet spacing for B = 20, H = 0.5 and L = 0.6:
(a) l= 1.625; (b) l= 1.8; (c) l= 2.5. The colour map shows the range of speeds in the
flow and grey areas show unyielded fluid.

1 2 3 41 2 3 4
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30(a) (b)

FIGURE 7. Variation in the pressure drop upstream of the droplet plotted versus a scaled
spacing between droplets. (a) B = 10: C, H = 0.45, L = 0.6; E, H = 0.55, L = 0.15; @,
H= 0.05, L= 0.75; ?, H= 0.25, L= 0.25; ♦, H= 0.375, L= 0.5. (b) B= 20:C, H= 0.5,
L= 0.6;E, H = 0.65, L= 0.2;@, H = 0.1, L= 0.9; ?, H = 0.25, L= 0.25; ♦, H = 0.375,
L= 0.5. The broken lines show the pressure drop for Poiseuille flow.

4.3. Encapsulation and failure
We have computed approximately 400 encapsulation flows, as described. These cover
the approximate ranges 5 < B < 200, 0.025 < H < 0.9, 0.025 < L < 1.25. Figure 8
illustrates some of the general trends observed. For each row of computations the
Bingham number is held constant. The left-hand column, (a,c,e) has L constant and
H varied; the right column (b,d,f ) has H fixed and variable L. The colourmap plots
the speed of the fluid, with the grey area denoting the unyielded plug. We observe
that there essentially are two different regimes of plug breaking:

Slender droplets: if the droplet aspect ratio δ = H/L is small (in other words the
length of the drop is much larger than its width) then the plug appears to yield
initially close to the two tips of the droplet (figure 8a,c,e).
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FIGURE 8. Speed distribution (u) as the droplet gets larger. Rows represent constant
Bingham number: (a,b) B= 5, (c,d) B= 20, (e,f ) B= 50. (a,c,e) H = 0.2 (slender drop)
and (b,d,f ) L= 0.5 (fat drop). (a) L= 0.55, 0.6, 0.65, 0.675 and 0.7 (from top to bottom
in the panel); (b) H = 0.3, 0.34, 0.375, 0.4 and 0.425; (c) L= 0.8, 0.85, 0.9, 0.925 and
1; (d) H = 0.5, 0.55, 0.575, 0.61 and 0.625; (e) L= 0.95, 1, 1.05, 1.15, 1.2 (f ) H = 0.6,
0.65, 0.69, 0.725 and 0.75.

Fat droplets: if the width of the droplet is similar to or larger than the length,
the plug appears to yield closer to x = 0, in the widest part of the droplet
(figure 8b,d,f ).
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This confirms that increasing either L or H will eventually yield the plug around the
droplet, as was suggested by the rudimentary analysis in § 2.3. The other remarkable
observation is that the yield surface position is approximately constant for the
simulations shown in figure 8, up to and directly after the plug breaks (although of
course with breaks after yielding). This implies that the stress distribution on the
outside of the plug is not greatly affected by plug breaking. Thus, the deduction from
the asymptotic analysis of the previous section, namely of a very small perturbation
of the yield surface due to the droplet, appears to be valid for a broader range of
aspect ratios δ =H/L.

To examine the breaking mechanism, we have plotted the various stresses in
figure 9 for one sequence of slender drops (B = 20, H = 0.2 and increasing L. The
first noticeable feature is that as L increases through the breaking transition the
distribution of stresses remains qualitatively similar. Thus, the breaking itself does
not affect the overall pattern of stresses, which are dominated primarily by changes
in droplet shape. Upstream and downstream of the droplet the stresses develop
relatively quickly (within a channel width) and adopt distributions close to fully
developed. The vertically oriented yielded regions (cracks?) coincide with a region
within which the shear stress is focused: τxy becomes large and negative near the tips
of the droplet. This is combined with significant extensional stresses τxx =−τyy. The
basic mechanism appears to be that outlined in § 2.3. In the absence of extensional
stresses, the pressure must transition from its shear-layer values to zero at the droplet
surface. This driving force is evidently larger at the tips of the droplet. One way of
reducing the burden on the change in p is by taking up a part of the pressure within
the extensional stresses. For example, on the interface where it is nearly flat the
normal stress condition is p = τyy and we can observe that |τyy| becomes significant,
changing sign towards the yield surface. In the centre of the droplets it appears that
the distribution of τxy is shifted upwards by h(x), but near to the ends of the droplet
the stresses adapt to the far field in a relatively narrow region.

The stress distributions in the case of fat droplets are illustrated in figure 10 for
B = 20, L = 0.7. Although the far fields are similar to the slender droplet, the
mechanism of breaking appears to be different. Again we have a transition as the
droplet size is increased (now H). Considering the second example in § 2.3 we might
expect that

∂τxy

∂y
∼O

(
B

yy −H

)
(4.6)

close to x = 0 (within a layer that is getting progressively shorter). If we suppose
that the pressure gradient is partly constrained by the far-field plane Poiseuille flow
pressure gradient, then we might expect that the y-derivative of τxy is balanced by
x-derivatives in τxx, which we observe in figure 10. The yielding appears to occur at
the ends of the central shear layer.

4.4. Perturbation of pressure
It is also insightful to quantify the perturbation of pressure as a result of insertion of
the droplet inside the plug region. Figures 9 and 10 indicate that the distribution of
the pressure perturbation is localized around the droplet positions. To quantify this we
define

φp = |1p{H,L}(−X, X)−1p{0,0}(−X, X)|
1p{0,0}(−1, 1)

, (4.7)
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FIGURE 9. Stress distribution as the droplet gets larger. B= 20, H = 0.2, and from top
to bottom in each panel L= 0.8, 0.85, 0.9, 0.925 and 1. (a) Speed; (b) pressure; (c) τxy;
(d) τxx; (e) σxx =−p+ τxx and (f ) σyy =−p+ τyy.

where 1p{H,L}(−X, X) is the pressure drop over the length [−X, X] computed with
an elliptic droplet of size H and L. Here X is selected as our computational length
(which is chosen to ensure the flow is fully developed between droplets; see the
discussion in § 4.2). Thus, 1p{0,0}(−X, X) represents the pressure drop over the same
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FIGURE 10. Stress distribution as the droplet gets larger. B= 20, L= 0.7, and from top
to bottom in each panel H= 0.5, 0.55, 0.575, 0.61 and 0.625. (a) Speed; (b) pressure; (c)
τxy; (d) τxx; (e) σxx and (f ) σyy.

length in an unperturbed Poiseuille flow. This difference is normalized by the pressure
drop 1p{0,0}(−1, 1), representing the pressure drop in Poiseuille flow over a length
equivalent to the channel width.
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FIGURE 11. Variation of pressure perturbation parameter φp with size of the droplet for
different Bingham numbers (E, B = 5; @, B = 20; A, B = 50). (a) Drops with varying
length and constant height (H = 0.2) and (b) drops with varying height and constant
length (L= 0.5). In each subplot the largest value of L or H corresponds to a case with a
yielded plug.

Figure 11(a,b) shows variation of φp with respect to the size of drop as well as
the yield stress (B). Note that in each of the subplots the largest value of L or H
that is illustrated corresponds to a case for which the plug yields. Figure 11(a) is
associated with slender drops where we see that the pressure perturbation is less than
1 % of the pressure scale (1p{0,0}(−1, 1)). However, the effect of droplet size is more
significant in the case of fat droplets; see figure 11(b). This is probably linked to the
different failure mechanisms observed already for slender and fat droplets. For droplets
that do not break the plug φp remains rather small. It is of course intuitive in both
cases that larger droplets lead to larger pressure perturbations. Equally, as remarked
earlier, although increasing B increases the ability of the plug to resist yielding it
also increases the frictional pressure drop, and hence the stress variation that must
be accommodated within the plug.

4.5. Maximum size of encapsulated droplets
By successively iterating with respect to H and L we are able to approximately
determine the limiting size of droplet that can remain encapsulated within the plug
region. Figure 12 shows the critical values in the (L,H)-plane for five different values
of Bingham number, B. This plot is the conclusion of approximately 400 different
simulations. For a given Bingham number, any drop lying below the associated curve
does not break the plug region. We see that for any Bingham number (no matter
how large) we have maximum values for the length and height of the droplet. The
maximum height is mostly limited by the plug width. Although there is no similar
simple physical limit for the maximum length, we still see that the growth of stresses
for long droplets yields the plug. In fact the shape of the curves at small H indicates
that for slender droplets the encapsulation becomes very sensitive to changes in the
length, i.e. small increases in the length can break the plug (see also figure 9a,c,e).

A last observation here is that the increase in size of droplet with B is much
less than linear. Therefore, just increasing the yield stress of the encapsulating fluid
does not allow correspondingly large droplets. The underlying reasons why seem
to be captured in the simple analysis of § 2.3. Long droplets break near the ends.
Breaking arises from the need to bridge the discrepancy between non-zero (frictional)
pressures in the yielded fluid layers and zero normal stress on the droplet surface.
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FIGURE 12. Maximum size of encapsulated droplets, computed for five different B: E,
B= 5;@, B= 10;A, B= 20; ♦, B= 50; , B= 200.

This discrepancy increases with L but also with B, i.e. the frictional pressure scales
like xB/yy,0. It is unclear what the asymptotic behaviour might be as B→∞. If we
assume that the pressure discrepancy provides the main stress scale for τ , we would
expect the limiting lengths to satisfy L∼O(yy,0)∼O(1− (√2/B1/2)) as B→∞, i.e. a
finite limit would be attained. This analysis may be too simplistic.

5. Encapsulation with fluids of different densities
We now explore the effect of allowing a density difference between the fluids.

Assuming the encapsulated fluid remains in steady rigid motion, the pressure field
within the droplet is p = χx + const., where we recall that χ = (ρ̂d − ρ̂)ĝR̂2/(µ̂Û0)
represents the competition between buoyant and viscous stresses. Considering the
preceding discussion and the simple analysis in § 2.3, an intuitive notion is that by
selecting χ = −B/yy,0 the pressure gradient in the droplet would match that in the
yielded fluid layers. This would eliminate the need for normal stress gradients across
the plug, and hence presumably reduce τ .

We test the above notion computationally. The code described earlier is adapted
by discretizing both the droplet and carrier fluid domains. The additional body force
term χ can be added to the droplet x-momentum equation (or instead −χ added to
the carrier fluid equations). Different fluid properties are assigned in each domain
(e.g. B = 0 is inside the droplet) and the Stokes flow solution is computed on both
domains simultaneously using the augmented Lagrangian algorithm described earlier.

Firstly, we address the question of whether the density difference might significantly
affect breaking of the plug region. Figure 13(a) shows the maximum height H before
the plug yields, for two droplets with different L at B=20. We observe that the shorter
droplet (L= 0.4) is relatively insensitive to χ , whereas the longer droplet (L= 1.75)
shows remarkable sensitivity. Sensitivity to L per se is to be expected as the effect
of χ naturally amplifies with x (or L), due to the channel orientation. We see that if
the droplet is heavier than the carrier fluid (χ > 0), encapsulation fails at a smaller
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FIGURE 13. B= 20. (a) Variation of maximum height (maximum H which does not break
the plug) for two different lengths of drop (@, L = 0.4 and E, L = 1.75) with density
difference (χ ). (b) Maximum size of drop for three different χ :E, = 20;@, χ = 0;A,
χ =−20.

size for the drop. On the other hand, for a lighter droplet (χ < 0) buoyancy tends to
stabilize the encapsulation, allowing larger drops to be successfully encapsulated. For
the case shown in figure 13(a), in which B= 20, we see that maximum size of the
drop happens at χ ≈ −27 to −28. This approximately coincides with the frictional
pressure gradient of the plane Poiseuille flow (for B= 20 we find ∂p/∂x=−B/yy,0≈
−27.8). Thus, the notion that selecting χ ≈ −B/yy,0 may provide an optimal size
of encapsulated droplet appears reasonable. Essentially, buoyancy acts to balance the
frictional pressure losses for χ > −B/yy,0, but on decreasing χ still further strong
buoyancy forces act to exert stress on the plug.

Note that although the normal stress discrepancy may be reduced for χ ≈−B/yy,0,
the tangential stresses in the plug are still perturbed by the presence of the droplet.
Thus, the droplet may still break the plug. Figure 13(b) shows the critical values of
H and L for B = 20, above which the plug yields, for three different χ = −20, 0
and 20. Again we see that a favourable density difference (lighter droplets) allows
the encapsulation of longer drops, whereas an unfavourable density difference (heavier
droplets) weakens the encapsulation capabilities.

Figure 14 explores variations in the stress fields as the density of the droplet is
varied. The plug close to the central part of the droplet is largely unaffected by χ , but
on increasing |x| we observe generation of extensional stresses towards the ends of the
droplet within the plug (figure 14d). Increasing χ amplifies the size of extensional
stresses and of the pressure in these regions (figure 14b,d). The stresses combine
so that σyy shows little variation in y (figure 14f ), which implies that the pressure
variation in y is negatively amplified in τxx. The net effect is that the front of the
droplet is stretched and the rear is compressed (in the x direction); see figure 14(e).
These normal stress gradient results in significant shear stresses (figure 14c). The
underlying pattern is not changed for χ > 0, but simply amplified.

6. Droplet encapsulation in a pipe

For the purposes of practical application we now consider the analogous flow
to that described in § 2, but within a vertical pipe of radius R̂. We describe the
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FIGURE 14. Stress distribution as the droplet becomes heavier: B= 20, L= 0.9 and H=
0.2. From top to bottom in each panel: χ =−10, −1, 0, 1 and 10. (a) Speed; (b) pressure;
(c) τxy; (d) τxx; (e) σxx and (f ) σyy.

problem in a cylindrical coordinate system, assuming that the flow is axisymmetric
with droplets travelling along the pipe axis. As in § 2 a moving coordinate system is
adopted. Lengths and velocities are scaled with R̂ and Ŵ0 respectively, where Ŵ0 is
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the mean velocity along the pipe, i.e. the flow rate is πR̂2Ŵ0. Denoting by Ŵp the
fully developed plug velocity of the Hagen–Poiseuille flow (with no droplets), the
variables are as follows:

(r, z, θ)=
(

r̂

R̂
,

ẑ− Ŵp t̂

R̂
, θ

)
, (u,w)=

(
ûr

Ŵ0
,

ûz − Ŵp

Ŵ0

)
, (6.1a,b)

and t = Ŵp t̂/R̂. The deviatoric stresses are scaled with µ̂Ŵ0/R̂ as is the modified
pressure (on subtracting the static pressure of the carrier fluid),

p̂= p̂0 + ρ̂ĝẑ+ µ̂Ŵ0

R̂
p. (6.2)

Exploiting axisymmetry of the geometry, the dimensionless forms of the continuity
and momentum equations governing carrier fluid are

1
r
∂

∂r
(ru)+ ∂w

∂z
= 0, (6.3a)

Re
(

u
∂w
∂r
+w

∂w
∂z

)
=−∂p

∂z
+ 1

r
∂

∂r
(rτrz)+ ∂τzz

∂z
, (6.3b)

Re
(

u
∂u
∂r
+w

∂u
∂z

)
=−∂p

∂r
+ 1

r
∂

∂r
(rτrr)+ ∂τrz

∂z
− τθθ

r
. (6.3c)

The constitutive relations are similar to (2.5), but now γ̇ =
√
γ̇ 2

rr + γ̇ 2
zz + γ̇ 2

θθ + 2γ̇ 2
rz

is the rate of strain, and τ =
√
τ 2

rr + τ 2
zz + τ 2

θθ + 2τ 2
rz is the deviatoric stress. The

components are given by

γ̇rr = 2
∂u
∂r
, γ̇θθ = 2

w
r
, γ̇zz = 2

∂w
∂z
, γ̇rz = γ̇zr = ∂w

∂r
+ ∂u
∂z
. (6.4a−d)

Reynolds number and Bingham number are defined as Re = ρ̂Ŵ0R̂/µ̂ and B =
τ̂Y R̂/(µ̂Ŵ0).

As before, we consider a single droplet from our periodic train of droplets. The
scaled droplet length is L and the maximal radius is H. The droplet surface is steady
within the moving fame of reference and is denoted r = h(z). Within the droplet the
following equations must be satisfied:

1
r
∂

∂r
(ru)+ ∂w

∂z
= 0, (6.5a)

φRe
(

u
∂w
∂r
+w

∂w
∂z

)
=−∂p

∂z
+m

1
r
∂

∂r

(
r
∂w
∂r

)
+m

∂2w
∂z2
+ χ, (6.5b)

φRe
(

u
∂u
∂r
+w

∂u
∂z

)
=−∂p

∂r
+m

1
r
∂

∂r

(
r
∂u
∂r

)
+m

∂2u
∂z2
−m

u
r2
, (6.5c)

where χ = ((ρ̂d − ρ̂)ĝR̂2)/(Ŵ0µ̂). Similar boundary and interfacial conditions are
satisfied as for the plane channel problem earlier. As before, it is assumed that the
droplet translates uniformly within the moving plug.
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6.1. Poiseuille flow solution
In a fixed frame of reference the Hagen–Poiseuille solution is easily found:

Wp(r)=


wp,0 if r 6 ry,0,

wp,0

[
1−

(
r− ry,0

1− ry,0

)2
]

if r > ry,0,
(6.6)

where wp,0 = (B/(2ry,0))(1− ry,0)
2. On imposing the flow rate constraint we find that

the yield surface position satisfies the following Buckingham equation:

r4
y,0 − 4ry,0

(
1+ 3

B

)
+ 3= 0, (6.7)

which has a unique zero in the interval (0, 1).

6.2. Slender drop
For practical reasons it is advantageous to know if encapsulated droplets within a pipe
flow also result in vanishing small perturbations of the flow streamlines. Thus, similar
to § 3 we rescale the problem assuming a small slender droplet:

r= R, θ =Θ, zδ = Z, u= δU, w=W, pδ = P. (6.8a−f )

Upon rescaling and neglecting the inertial terms, the governing equations are

1
R
∂

∂R
(RU)+ ∂W

∂Z
= 0, (6.9a)

0=−∂P
∂Z
+ 1

R
∂

∂R
(RτRZ)+ δ2 ∂τZZ

∂Z
, (6.9b)

0=−∂P
∂R
+ δ2 1

R
∂

∂R
(RτRR)+ δ2 ∂τRZ

∂Z
− δ2 τΘΘ

R
, (6.9c)

where τrz = τRZ , τrr = δτRR, τθθ = δτΘΘ and τzz = δτZZ . The constitutive relations are
similar to (2.5), except that now

τ =√τ 2
RZ + δ2τ 2

RR + δ2τ 2
ΘΘ + δ2τ 2

ZZ, (6.10a)

γ̇ =√γ̇ 2
RZ + δ2γ̇ 2

RR + δ2γ̇ 2
ΘΘ + δ2γ̇ 2

ZZ (6.10b)

and

γ̇RZ = ∂W
∂R
+ δ2 ∂U

∂Z
, (6.11a)

γ̇RR = 2
∂U
∂R
, (6.11b)

γ̇ΘΘ = 2
W
R
, (6.11c)

γ̇ZZ = 2
∂W
∂Z
. (6.11d)
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We adopt a regular perturbation expansion in δ: (P, W, U) = (P0, W0, U0) +
δ(P1, W1, U1) + · · ·, substitute into the equations and derive the following leading-
order problem:

1
R
∂

∂R
(RU)+ ∂W

∂Z
= 0, (6.12a)

0=−∂P
∂Z
+ 1

R
∂

∂R
(RτRZ), (6.12b)

0=−∂P
∂R
. (6.12c)

Integrating the axial momentum equation from R= h yields

τRZ = ∂W0

∂R
+ B sgn

(
∂W0

∂R

)
= ∂W0

∂R
− B= 1

2
∂P
∂Z

(
R− h2

R

)
, (6.13)

and defining the yield surface R= Ry as where τRZ =−B we find

∂W0

∂R
= 1

2
∂P
∂Z

(
R− Ry − h2

R
+ h2

Ry

)
,

∂P
∂Z
=− 2BRy

R2
y − h2

. (6.14)

We can reconstruct the velocity in the fixed frame, using the no-slip condition at
R= 1:

W0(r)+wp,0

=


wp if 0 6 R 6 Ry,

wp

[
1−

(
0.5(R− Ry)

2 + h2(R− Ry)/Ry + h2 ln(Ry/R)
0.5(1− Ry)2 + h2(1− Ry)/Ry + h2 ln Ry

)]
if Ry 6 R 6 1,

(6.15)

where the plug velocity is given by

wp = B
Ry

R2
y − h2

(
(1− Ry)

2

2
+ h2

Ry
(1− Ry)+ h2 ln Ry

)
. (6.16)

Finally we use the unit flow rate condition to find the pressure gradient (equivalently
Ry). This leads to the following Buckingham equation:

R4
y − 4

(
1+ 3

B

)
Ry + 3+ 2h2

Ry

[
(1− Ry)

2(2+ Ry)+ 6
B

]
= 0, (6.17)

which may be solved numerically for Ry.
Comparing the solution above with that in § 6.1, we note that the leading-order plug

velocity, velocity profile and Buckingham equation are all O(h2) perturbations from
the unperturbed Poiseuille flow solution, cf. (6.15) and (6.17), (6.6) and (6.7), . . . .

The implications of this are two-fold. Firstly, in terms of the perturbation procedure
there is no need to seek a correction to the solution at first order in δ. In practical
terms, this means that for any small slender drop of aspect ratio δ the streamlines
in the yielded layer will be perturbed by O(δ2), suggesting that inertial effects on the
flow are of O(δ2Re) as for the channel flow. Secondly, this suggests that a perturbation
approximation of the above form would only require a first-order correction when h∼
δ1/2. As δ = H/L is the droplet aspect ratio, this suggests L ∼ δ−1/2. This hints that
longer and wider droplets may be accommodated in the pipe geometry.
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FIGURE 15. Stress distribution in the axisymmetric geometry as the droplet gets longer:
B= 20, H = 0.4 and from top to bottom in each panel L= 1.2, 1.25, 1.3, 1.34 and 1.45.
(a) Velocity; (b) pressure; (c) τrz; (d) τzz; (e) τrr and (f ) τθθ .

6.3. Examples of encapsulation and failure

We now present computed solutions of droplets as either L or H is increased until
breaking point. Figure 15 shows yielding of the ‘slender’ droplet and figure 16 shows
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FIGURE 16. Stress distribution in the axisymmetric geometry as the droplet height is
increased: B= 20, L= 0.5 and from top to bottom in each panel H= 0.4, 0.45, 0.5, 0.525
and 0.55. (a) Velocity; (b) pressure; (c) τrz; (d) τzz; (e) τrr and (f ) τθθ .

the ‘fat’ droplet. Superficially, the yielding mechanism is similar to the channel flow
in which the plugs break (ends or near the centre). However, as suggested by the
previous section, the plugs generally break at larger values of H and L.
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FIGURE 17. Maximum size of encapsulated droplets for four different Bingham numbers:
E, B = 5; @, B = 10; A, B = 20, ♦, B = 50. Included for comparison is a single curve
showing the maximum size of droplet in the channel geometry for B= 10 (broken line).

The main reason is in the normal stresses. The pressure distributions found are
qualitatively similar between pipe and channel geometries. At the yield surface in the
channel −σyy is continuous and approximately equal to the pressure. The normal stress
must then vanish at the droplet surface which transfers some of the pressure into τyy.
Since τxx + τyy = 0 extensional stresses are experienced along the plug, i.e. τxx 6= 0,
and particularly near the ends of the droplet. These normal stress gradients promote
shear stresses τxy, but additional shear stresses result directly in the widest part of the
droplet where the stress gradients must increase.

The pipe differs firstly in that although normal stresses are generated at the yield
surface, τrr can now be balanced by the hoop stress τθθ as well as by τzz. Indeed,
comparing figures 15(e) and 15( f ), we see that τrr and τθθ largely cancel out over
much of the plug, leaving only small bands where τzz is significant (figure 15d).
As a result, the shear stresses in much of the plug appear drastically reduced (see
figure 15c), occurring mostly close to z= 0.

6.3.1. Maximum size of encapsulated droplets
Following approximately 300 computations we have been able to quantify the

maximal size of encapsulated droplets at four different Bingham numbers; see
figure 17. In order to have a better comparison between channel and pipe geometries,
we include the channel data for B= 10. We see that in the range of slender droplets
encapsulation is much easier in pipe geometry than in the channel although for short
droplets the channel allows larger H. The computed results for the slender droplets
are suggestive of L→∞ as H→ 0. Although consistent with the notion that H∼ δ1/2

and L∼ δ−1/2 (see § 6.2), the slender geometries are not ideal for computations.

7. Discussion and conclusions
In viscoplastically lubricated flows, multi-layer flows are kept stable through the

yield stress of the lubricating fluid, which prevents the interface from deforming; see
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e.g. Frigaard (2001), Moyers-Gonzalez et al. (2004), Huen et al. (2007) and Hormozi
et al. (2011b,c). In Hormozi et al. (2014) this concept has been extended to multi-
layer flows in which the interface is shaped, e.g. wavy, but again the yield stress
prevents interfacial deformation. In this paper we have extended the concept in a
different direction. Steady Poiseuille flows of yield stress fluids along uniform ducts
are characterized by unyielded central plug regions, travelling at constant speed along
the duct. Here we have investigated whether we may encapsulate droplets of a second
fluid within the plug region of the yield stress fluid, with again the shape held constant
by the yield stress of the fluid.

We have shown that the above method is indeed feasible as a transport method.
Using both asymptotic methods for slender droplets and computational solution
otherwise, we have shown that these flows exist in both plane channel and pipe
geometries. Introducing a droplet moving at the steady speed of the plug does not
deform the interface but does induce stresses within the carrier fluid. It is the latter
that may lead to breaking of the plug. In both geometries we have found that the
yield surface of the plug region containing the droplet is not significantly perturbed,
apparently remaining near-planar as the droplet size is increased up until the point at
which the plug breaks. From the asymptotic solution it appears that the deformation
is of O(δ2) for slender droplets, where δ=H/L� 1 represents the droplet aspect ratio.
The significance of this result is that we can expect that inertial effects in the yielded
part of the flow will scale like εRe, where ε is the aspect ratio of the streamlines,
(i.e. ε = δ2 for slender droplets). Thus, we expect that the solutions and results we
have computed here will retain their validity as approximations to the solution for
significant Re, even though they are computed under Stokes flow assumptions. More
clearly, the Stokes flow assumption produces an approximation that is self-consistent
provided that εRe� 1.

Note that it is the inertial terms that are responsible for flow instability. Our results
suggest that the velocity perturbation due to the droplet is small. Thus, there is the
possibility that these flows may be observable up to high Re. On the other hand
note that the effect of the stress field perturbations in the yielded part of the flow
are unpredictable in terms of stability. In the perturbation solution we have seen that
the first-order pressure gradient essentially compensates for the leading order (see
figure 2), resulting in a slightly reduced pressure drop over the length of the droplet,
and the same effect is present in the computed results e.g. see figures 9(b), 10(b) and
similar. The reduction in pressure drop appears relatively small for as long as the
unyielded plug remains intact. Figure 11 has presented examples of the pressure drop
perturbation variation with H, L and B. The perturbation is insignificant for slender
droplets, but for fat droplets may become significant compared to a typical pressure
drop (over a length equal to the channel width), e.g. approaching 10 % around
yielding, for large B. Note that although this may be significant over the droplet
length, it is less significant over the length between droplets. As we have shown, a
minimal spacing of around 3 droplet lengths is required in order to allow the flow
to become fully developed between droplets. Thus, for large l the net reduction in
pressure drop is negligible.

In our results we have focused mainly on establishing feasibility of these flows,
studying the stress distributions up until failure of the plug, and determining the
limiting size of droplets. Two failure modes have been uncovered: droplets that
become increasing fat tend to break the plug at the ends of the droplet, whereas
those that become increasingly slender tend to break near the centre of the droplet.
Loosely speaking, the end mode of breakage appears to be driven by normal stress
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development whereas the central mode is driven by tangential stress gradients. For
elliptic (ellipsoidal) droplets we have computed the critical H and L at which breaking
occurs for both channel and pipe geometries. Increasing the yield stress (via B) does
increase the limiting droplet size, but not as much as might be expected. This
is because the yield stress also increases the size of stresses found in the flow,
i.e. considered at constant flow rate.

The limiting values of H and L are different for channel and pipe, as might be
expected. At the same B the channel may allow slightly larger H for the same L. Here
the limiting factor is anyway the yield surface position, which is similar as a function
of B. The limitation in terms of length shows a more significant difference, with the
pipe able to encapsulate much longer droplets than the channel. The pipe geometry
uses the hoop stress to reduce normal stress effects. A different way in which droplet
size may be increased is via introduction of a density difference between fluids.
When pumping in the direction of gravity, lighter droplets increase encapsulation
volume (heavier if pumping against gravity). This increase in encapsulation volume is
not unbounded, but appears to reach a maximum approximately when the frictional
pressure gradient of the base flow matches the buoyancy, i.e.

∂p0

∂x
=− B

yy,0
= χ ⇒ τ̂Y

ĝR̂yy,0
= ρ̂ − ρ̂d. (7.1)

On decreasing the buoyancy beyond this limit, buoyancy stresses contribute to
breaking of the plug. Simplistically, the main mechanism of buoyancy at the limit
(7.1) is to compensate within the droplet for pressure variations in the yielded layer.
This then reduces the need for normal stress gradients between the droplet interface
and yield surface.

Note that the viscosity ratio m plays no role in our analysis, as there is no flow
within the droplet. For as long as the droplet is held in the plug, the droplet motion
has no driving force. Thus, motions relative to the plug translation should decay
viscously: essentially, m comes into play by influencing the speed of this decay.

The key advantage of the encapsulation methodology proposed in this paper is
that the yield stress holds the interface rigid, instead of relying on capillary forces
as is common in many droplet encapsulation studies. Thus, we have not considered
surface tension effects in the analysis. Depending on the chosen droplet fluid there
may anyway be no surface tension. We note that in using miscible fluids in many
practical situations, Péclet numbers (based on molecular diffusion) are very large and
with no relative droplet motion dispersion is nullified. If the droplet is immiscible
the validity of this neglect rests on the relevant stresses, and we expect our results to
retain validity provided that

τ̂Y� σ̂T

κ̂
, (7.2)

where σ̂T and κ̂ are the surface tension coefficient and (a representative) radius
of curvature of the droplet. Surface tension values between yield stress fluids and
other fluids are not well known and reliable measurement techniques are still being
developed, e.g. Boujlel & Coussot (2013). Nevertheless, for values typical of water
and light oils, with yield stresses of ∼10 Pa capillary effects are insignificant on
length scales &2 mm, which represents many industrial-scale pumping operations.
This is not to say that interesting flow effects might not be produced by encapsulating
immiscible fluid droplets. Indeed, these may have some advantages in the forming
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part of such a flow where it is likely that the plug is unyielded as a droplet is
introduced to the main flow. Study of such flows is for the future.

Methodologically, we have used asymptotic and computational methods. Asymptotic
methods have proven successful but show limitations. Firstly, they predict only the
velocity and stress distributions outside the plug, but not the stress distribution
inside the plug. Although we attempted to derive predictions of the (indeterminate)
stress fields inside the plug, in order to predict breaking, we were unsuccessful. The
computational solutions reveal rather complex stress distributions inside the plug, not
easily inferred from the asymptotic analysis. Secondly, predicting other flow features
such as spacing between successive droplets also was not possible asymptotically.
Thirdly, as we assume a priori that the droplet translates rigidly in the plug, there is
no way to include the density difference, i.e. we solve a one-fluid problem with a
perturbed droplet boundary.

Our focus has been on computational and analytical methods and our results
certainly need experimental verification, which is intended in the future. Using
idealized models such as the Bingham model has both advantages and disadvantages.
The advantage is in being able to establish the key dynamical features in an
unambiguous way. The disadvantage is that the assumption of rigid sub-yield
behaviour is an acknowledged idealization. In practice the sub-yield (or low-shear)
rheological behaviour depends on the specific material, with viscous, elastic,
thixotropic and viscoelastic descriptions being advanced accordingly. This has been
a topical area of research for many years; see e.g. Barnes (1999), Coussot (2005),
Moller, Fall & Bonn (2009), Balmforth, Frigaard & Overlaz (2014) and Coussot
(2014). It is clear that in any experimental study of the encapsulation process
introduced here, we will encounter sub-yield values of the stress field, meaning
that the real material behaviour of the experiment may affect the results. This
additional complexity does not however mean that the yield stress features of the
idealized models will not be observed experimentally. For example, small bubbles
and particles are commonly observed to remain trapped in yield stress fluids (such
as Carbopol) over time scales of weeks/months, in accordance with the idealized
notion of a yield stress. However, Stokes flow settling experiments reveal low-Re
flow fore–aft asymmetries in conflict with inelastic generalized Newtonian models;
see e.g. Putz et al. (2008). As another example, theoretical and computational features
of the VPL flows that motivated our study have been verified experimentally by Huen
et al. (2007) and Hormozi et al. (2011a). Thus, we believe that experimental study
is certainly feasible and have reasonable confidence that model predictions can be
realized.

Although we have not found any direct experimental study of the flows described,
it is worth noting that solid particles are frequently transported by yield stress
fluids. Drilled cuttings are removed from wellbores in this way, using drilling
muds. Coal–water suspensions have long been a way of transporting fuel over
long distances and mined tailings are often transported to/from thickeners and tailings
dams via pipelining. Many of these applications have significant density differences
and pipelines oriented (approximately) horizontally. As well as a significant industrial
literature there are some more targeted studies. Merkak and co-workers (Merkak,
Jossic & Magnin 2008, 2009) have studied the behaviour of neutrally buoyant spheres
in horizontal pipe flows of Carbopol. At relatively low concentrations of particles
of 1/8th the pipe diameter they show that the translational velocity of the particles
approaches that of the plug as the Bingham number increases. For smaller diameter
particles, convergence to the plug velocity with B is faster. In these experiments the
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FIGURE 18. Encapsulation of drops with exotic shapes.

particles are distributed throughout the flow, rather than centrally positioned, and of
course the interface conditions are different for droplets and rigid particles. Thus,
direct comparison is not possible. The results of Merkak et al. (2008, 2009) do
however suggest that non-local effects of the particles on the stress field may be felt
within the plug region even for dilute suspensions.

Other future areas for exploration include more realistic models for the yield
stress fluids, e.g. shear-thinning and other effects. We do not expect qualitative
differences in the ability to encapsulate in steady flows, but rheological effects such
as visco-elasticity may aid in the establishment of these flows. Lastly, although we
have computed elliptical shaped droplets in this paper, in principle a yield stress
allows any shape to be encapsulated. Figure 18 shows some exotic droplet shapes
that do not yield the plug.
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