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In this paper, we analyse nonlocal equations in perforated domains. We consider
nonlocal problems of the form f(x) =

∫
B J(x − y)(u(y) − u(x))dy with x in a

perforated domain Ωε ⊂ Ω. Here J is a nonsingular kernel. We think about Ωε as a
fixed set Ω from where we have removed a subset that we call the holes. We deal
both with the Neumann and Dirichlet conditions in the holes and assume a Dirichlet
condition outside Ω. In the latter case we impose that u vanishes in the holes but
integrate in the whole R

N (B = R
N ) and in the former we just consider integrals in

R
N minus the holes (B = R

N \ (Ω \ Ωε)). Assuming weak convergence of the holes,
specifically, under the assumption that the characteristic function of Ωε has a weak
limit, χε ⇀ X weakly∗ in L∞(Ω), we analyse the limit as ε → 0 of the solutions to
the nonlocal problems proving that there is a nonlocal limit problem. In the case in
which the holes are periodically removed balls, we obtain that the critical radius is
of the order of the size of the typical cell (that gives the period). In addition, in this
periodic case, we also study the behaviour of these nonlocal problems when we
rescale the kernel in order to approximate local PDE problems.
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1. Introduction

Let Ωε ⊂ R
N be a family of open bounded sets satisfying

Ωε ⊂ Ω

for some fixed open bounded domain Ω ⊂ R
N and ε > 0. If χε ∈ L∞(RN ) is the

characteristic function of Ωε, we also assume that there exists X ∈ L∞(RN ) such
that

χε ⇀ X weakly∗ in L∞(Ω). (1.1)

This means, ∫
Ω

χε(x)ϕ(x) dx →
∫

Ω

X (x)ϕ(x) dx as ε → 0
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for all ϕ ∈ L1(Ω). Note that both functions χε and X satisfy

0 � Y(x) � 1, for all x ∈ R
N , and Y(x) ≡ 0 as x ∈ R

N \ Ω,

for Y = χε or X .
Our main goal in this paper is to study nonlocal problems with nonsingular

kernels in the perforated domains Ωε. We consider problems of the form

f(x) =
∫

B

J(x − y)(uε(y) − uε(x))dy

with x ∈ Ωε ⊂ Ω. Here J is a nonsingular kernel. We deal both with the Neumann
and Dirichlet problems. For the Dirichlet case we impose that u vanishes in R

N \ Ωε

and we integrate in the whole R
N (B = R

N ) while in the Neumann case we just
consider integrals in R

N minus Ω \ Ωε (B = R
N \ (Ω \ Ωε)) only assuming that

u vanishes in R
N \ Ω. Note that for this last case we have considered nonlocal

Neumann boundary conditions in the holes and a Dirichlet boundary condition in
the exterior of the set Ω.

Along the whole paper, we assume that the function J that appears as the kernel
in the nonlocal problem satisfies the following hypotheses:

J ∈ C(RN , R) is nonnegative and compactly supported with J(0) > 0,
(HJ)

J(−x) = J(x) for every x ∈ R
N , and

∫
RN

J(x) dx = 1.

On the other hand, we only assume that f ∈ L2(Ω).
Our main result, that holds both for the Dirichlet and the Neumann problem

says that there exists a limit as ε → 0,

ũε ⇀ u∗, weakly in L2(Ω),

where ·̃ denotes the extension by zero of functions defined in subsets of R
N . We

characterize the nonlocal problem that verifies the weak limit u∗. Note that in the
Dirichlet problem, the extension by zero and the solutions coincide, and then, to
consider ũ can be omitted.

For the Dirichlet problem we have the following result:

Theorem 1.1. Let {uε}ε>0 be the family of solutions of the nonlocal Dirichlet
problem

f(x) =
∫

RN

J(x − y)(uε(y) − uε(x))dy, x ∈ Ωε (1.2)

with

uε(x) ≡ 0, x ∈ R
N \ Ωε, (1.3)

for f ∈ L2(Ω), and assume that the characteristic functions χε satisfy (1.1). Then,
there exists u∗ ∈ L2(Ω) such that

ũε ⇀ u∗ weakly in L2(Ω).
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Figure 1. A periodic perforated domain Ωε = (0, 1)2 \ ∪Brε(xi).

Moreover, the limit u∗ satisfies the following nonlocal problem in Ω,

X (x)f(x) = X (x)
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy − (1 −X (x))u∗(x)

with

u∗(x) ≡ 0, x ∈ R
N \ Ω.

We want to remark that no regularity assumptions on the sets Ωε (besides
measurability and the weak convergence (1.1)) is needed for our arguments.

For local operators, like the usual Laplacian, that is, for the problem Δvε = f
in Ωε with vε = 0 on ∂Ωε, the study of the behaviour of solutions in perforated
domains has attracted much interest since the pioneering works [20,28,34]. In the
classical paper [12], for example, the authors consider the Dirichlet problem for the
equation Δvε = f in a bounded domain from where we have removed a big number
of periodic small balls (the holes). That is, they consider

Ωε = Ω \ ∪iBrε(xi)

where Brε(xi) is a ball centred in xi ∈ Ω of the form xi ∈ 2εZN with radius 0 <
rε < ε � 1. See figure 1 below for an example of a periodic perforated domain Ωε.

In [12] it is shown that there is a critical size of the holes (that is, a critical order
of rε in ε) such that

vε → v∗, as ε → 0,

with v∗ given by

v∗ =

⎧⎪⎨
⎪⎩

the solution to Δv∗ = f, if rε � aε,

the solution to Δv∗ − μ v∗ = f, if rε = aε,

v∗ = 0, if rε � aε,

(1.4)
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with Dirichlet boundary conditions v∗ = 0 on ∂Ω. Assuming N � 3, we have that
the critical size of the holes is given by

aε ∼ εN/(N−2).

Note the extra term μ v∗ that appears in the critical case. In this particular
example, for aε = C0ε

N/(N−2) with C0 a constant, μ is a positive constant that can
be explicitly computed and is given by

μ =
SN (N − 2)

2N
CN−2

0

where SN is the surface of the sphere of radius one in R
N . Also, it is proved that

the convergence vε → v∗ is weak in H1(Ω) in the first two cases and strong when
rε � aε.

For our nonlocal problem, in the same periodic setting, we get that the critical
value of rε is different from the local case and is given by

bε = C0 ε

since in this case we obtain from theorem 1.1 that the limit u∗ verifies

u∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

the solution to

∫
RN

J(x − y)(u∗(y) − u∗(x)) dy = f(x), if rε � bε,

the solution to

∫
RN

J(x − y)(u∗(y) − u∗(x)) dy − νu∗(x) = f(x), if rε = bε,

u∗ = 0, if rε � bε.

We have weak convergence in L2(Ω) in the first two cases and strong convergence in
the last one. Here the coefficient ν that appears in the critical case is also positive
and can be explicitly computed. In fact,

ν =
1 −X
X

where X ∈ L∞(Ω) is just a positive constant, X = cte, determined by the proportion
of the cube which is occupied by the hole. This follows from the fact that in this
periodic case we have χε ⇀ X = |Q \ B|/|Q| (here Q is the unit cube and B is a
ball of radius C0 inside the cube). In some sense, the terms X and (1 −X ) in the
limit problem can be seen as the effect of the holes in the original equation (1.2)
and (1.3). The coefficient ν that appears in the critical case represents a kind of
friction or drag caused by the perforations.

Concerning to the Neumann problem that we write as follows (see [2,18]):

f(x) =
∫

RN\Aε

J(x − y)(uε(y) − uε(x))dy, x ∈ Ωε (1.5)

with

uε(x) ≡ 0, x ∈ R
N \ Ω, (1.6)
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and f ∈ L2(Ω), where Aε is the family of holes given by

Aε = Ω \ Ωε.

Note that we are integrating only in R
N \ Aε in the definition of our nonlocal oper-

ator, but still assume that uε ≡ 0 in R
N \ Ω. Hence, we are considering Neumann

boundary conditions in the holes and a Dirichlet boundary condition outside Ω. For
this problem, we need to guarantee that the quantity

λε
1 = inf

u∈Wε

1
2

∫
RN\Aε

∫
RN\Aε

J(x − y)(u(y) − u(x))2dy dx∫
Ωε

u2(x) dx

with Wε = {u ∈ L2(RN \ Aε) : u(x) ≡ 0, x ∈ R
N \ Ω} possesses a uniform lower

bound. This is needed in order to obtain existence and uniqueness of solutions uε

and is also necessary to study the asymptotic behaviour of the problem as ε → 0.
We have the following result:

Theorem 1.2. Let {uε}ε>0 be a family of solutions of problem (1.5) with (1.6).
Assume that the characteristic functions χε satisfy (1.1) and that λε

1 � c > 0 with
c independent of ε. Then, there exists u∗ ∈ L2(Ω) such that

ũε ⇀ u∗ weakly in L2(Ω).

If X = 0 in L∞(RN ) and∫
RN\Ω

J(x − y) dy � m > 0, for x ∈ Ω,

we have u∗(x) = 0 a.e. in R
N .

If X 
= 0 in L∞(RN ), the function u∗ satisfies the following nonlocal problem
in Ω,

X (x) f(x) = X (x)
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy − Λ(x)u∗(x)

with

u∗(x) ≡ 0, x ∈ R
N \ Ω,

where Λ ∈ L∞(Ω) is given by

Λ(x) =
∫

RN

J(x − y) (1 − χΩ(y) + X (y)) dy −X (x), x ∈ Ω.

Here χΩ is the characteristic function of the open set Ω and X is given by (1.1).

Observe that to deal with the Neumann problem we need to assume extra condi-
tions (besides (1.1)) on the sets Ωε, namely, we need that λε

1 � c > 0. Concerning
this assumption, λε

1 � c > 0, we will regard at λε
1 as the first eigenvalue of our
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Neumann problem. Then, we will introduce a hypothesis involving the geometry
of Ωε and the kernel J (see condition (HN) in § 2) which ensures the validity of
λε

1 � c. We also include a simple example that shows that, in general, it could
have happened that λε

1 = 0 (in this case, we do not have existence of solutions to
our nonlocal Neumann problem for a general datum f). In § 4, we verify that this
assumption (HN) holds in the classical case of periodic perforated domains. This
fact also allows us to obtain the limit equation to the Neumann problem (1.5) with
(1.6) in the case of a periodically perforated domain.

Note the more involved term Λ that appears in theorem 1.2. Rewriting it as

Λ(x) =
∫

RN\Ω
J(x − y) dy +

∫
RN

J(x − y)(X (y) −X (x))dy, x ∈ Ω,

we see that the kernel J explicitly affects the extra term in the limit problem to
the critical case for the Neumann problem. This dependence of the extra term on
the kernel J does not occur in the Dirichlet problem where the coefficient ν only
depends on the perturbation of the domain via X .

We remark that the Dirichlet and Neumann problems can be written in a unified
way as

f(x) = N(uε)(x) + Oε(x)uε,

see remark 2.3. Here N is a nonlocal operator (the same for both problems) and
Oε is equal to 1 in the Dirichlet case and a function of x that depends on ε but
converges strongly in L2. This fact allows us to shorten a little the proofs of our
main results, but we keep the presentation of both problems separate for the reader’s
convenience.

Many techniques and methods have been developed in order to understand the
effect of the holes in perforated domains on the solutions of PDE problems with
different boundary values. From pioneering works to recent ones we can still mention
[1,6,8,15,17,29,30,33,36] and references therein that are concerned with elliptic
and parabolic equations, nonlinear operators, as well as Stokes and Navier-Stokes
equations from fluid mechanics. Note that this kind of problem is a ‘homogenization’
problem since the heterogeneous domain Ωε is replaced by a homogeneous one, Ω,
in the limit. However, up to our knowledge, this is the first paper to deal with this
kind of homogenization problem for a nonlocal operator with a nonsingular kernel.

For homogenization results for singular kernels, we refer to [10,37,38] (we
emphasize that those references deal with homogenization in the coefficients
involved in the equation and not with perforated domains as it is the case here).
For random homogenization of an obstacle problem, we refer to [7]. We also remark
that the case of stochastic homogenization (this is, the case in which the holes are
randomly distributed inside Ω) is not treated here.

On the other hand, nonlocal equations with nonsingular kernel attracted some
attention recently, see [2,16,21,23,24,35] for a nonexhaustive list of references.
We also mention [31,32] where asymptotic problems in such nonlocal equations
have been recently studied. Besides the applied models with such kernels (e.g., we
refer to elasticity models, [25]), the mathematical interest is mainly due to the fact
that, in general, there is no regularizing effect and therefore no general compactness
tools are available.
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Figure 2. A domain Ωε with oscillating boundary.

Now, we comment briefly on our hypothesis and results. First, we remark that
we only obtain weak convergence in L2 of the solutions uε. This is due to the fact
that the nonlocal operator does not regularize (and hence solutions uε are expected
to be bounded in L2 but nothing better) and is analogous to the fact that for the
usual local case we have weak convergence in H1.

On the other hand, we note that our results are valid under very general assump-
tions on the perturbed domains. Namely, we only require that the characteristic
functions of the involved domains converge weakly. Of course, this is verified in the
periodic case that is our leading example (but we are not restricted to this case).

Indeed, we can allow many other different situations than perforated domains.
For instance, we can consider here a family of domains Ωε whose the boundary
presents a highly oscillatory behaviour as the parameter ε → 0. We take as a fixed
domain the rectangle Ω = (0, 1) × (−1, 1), and as a family of perturbed domains

Ωε = {(x, y) ∈ R
2 : x ∈ (0, 1), −1 < y < 0.5 (1 + sin(x/ε))}.

We illustrate this simple situation in figure 2 below. Note that here, the period
and amplitude of the oscillations are of the same order with respect to the positive
parameter ε. Then, if χ is the characteristic function of the open set

Y = {(z, w) ∈ R
2 : z ∈ (0, 2π), −1 < w < 0.5 (1 + sin z)},

we have that the characteristic function χε of Ωε is given by χε(x, y) = χ̂(x/ε, y)
where χ̂ is the periodic extension of χ with respect to its first variable (that is,
in the horizontal direction). Thus, we get from Averaging theorem for oscillating
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functions that

χε ⇀ X =
1
2π

∫ 2π

0

χ̂(s, ·) ds weakly∗in L∞(Ω)

as ε → 0. Since X 
= χΩ, in general, we obtain from theorems 1.1 and 1.2 a nontrivial
nonlocal limit problem to this case.

We quote here [3,4,9,26,27] and references therein where local problems to
partial differential equations in highly oscillating domains are deeply studied.

Finally, our aim is to see how these problems behave when we introduce another
parameter that controls the size of the nonlocality. In [2] (see also [18,19]) it
is shown that we can obtain solutions to local problems as limits of solutions to
nonlocal problems when we rescale the kernel considering

Jδ(z) =
C

δN+2
J
(z

δ

)
and letting δ → 0. Here C = 2(

∫
RN J(z)z2

1)−1 is just a normalizing constant. If we
apply this idea to our nonlocal problem in the Dirichlet case we are lead to consider

f(x) =
C

δN+2

∫
RN

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε, (1.7)

with uε,δ(x) ≡ 0, for x ∈ R
N \ Ωε.

Our aim is to study the limits ε → 0 (to have a homogenized limit problem) and
δ → 0 (to approach local problems). To perform this analysis, we restrict ourselves
to the periodic case for perforated domains. That is, we consider Ωε = Ω \ ∪Brε(xi)
where Brε(xi) is a ball strictly contained in Ω centred in xi ∈ Ω of the form xi ∈
2εZN with 0 < rε < ε � 1.

We show that, for uε,δ we have that the iterated limits

lim
ε→0

lim
δ→0

ũε,δ = v, and lim
δ→0

lim
ε→0

ũε,δ = w,

exist, but, in general, they do not commute, that is, in general, w 
= v. Here, v is
given by (1.4), that is,

v =

⎧⎪⎨
⎪⎩

the solution to Δv = f, if rε � aε,

the solution to Δv − μ v = f, if rε = aε,

v = 0, if rε � aε,

with Dirichlet boundary conditions, v = 0 on ∂Ω, and w by

w =

{
the solution to Δw = f with w = 0on ∂Ω, if rε � bε,

0, if rε = bε.
(1.8)

Note that v is the limit for the local problem, in fact, when we compute first the
limit as δ → 0 of ũε,δ we obtain a solution to a local problem with the Laplacian,
then the limit limε→0 limδ→0 ũε,δ coincides with the one that holds in the local
case. On the other hand, when we first take the limit as ε → 0 from our results we
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get a solution to a nonlocal problem (with a different size of the critical radius)
and when we localize this problem letting δ → 0 we obtain w a solution to a local
problem but different from the previous one (in general). We remark that in the limit
limδ→0 limε→0 ũε,δ we have weak convergence in L2 while for limε→0 limδ→0 ũε,δ the
convergence is strong in L2.

A similar situation (rescaling the kernel with a parameter δ in a periodically
perforated domain) can be studied for the Neumann case. Now we consider

f(x) =
C

δN+2

∫
RN\Aε

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε, (1.9)

with uε,δ(x) ≡ 0, for x ∈ R
N \ Ω. In this case, we have

lim
ε→0

Pε(lim
δ→0

uδ,ε) = v in L2(Ω),

with Pε an extension operator. Here the limit v is given by

v =

⎧⎪⎪⎨
⎪⎪⎩

the solution to Δv = f, if rε � bε,

the solution to
N∑

i,j=1

qij
∂2v

∂xi∂xi
=

|Q \ B|
|Q| f, if rε = bε,

(1.10)

with Dirichlet boundary conditions, v = 0 on ∂Ω. The constants qij are the
homogenized coefficients and can be explicitly computed (see [14] and § 5).

On the other hand, the limit

lim
δ→0

(lim
ε→0

ũδ,ε) = w

exists (but this time the convergence is weak in L2(Ω)), and is given by

w =

{
the solution to Δw = f,with w = 0on ∂Ω, if rε � bε,

0, if rε = bε.
(1.11)

The paper is organized as follows: in § 2, we give some basic results needed to deal
with the Dirichlet and Neumann problem. Next, in § 3, we show the main results
of the paper, theorems 1.1 and 1.2. In § 4, we deal with the case of periodically
distributed holes. Finally, in § 5, we rescale the kernel.

2. Basic facts and preliminary results

In this section, we discuss the existence and uniqueness of our equations writing
them in an appropriated way to pass to the limit. As we will see, the first eigenvalue
of the nonlocal Dirichlet and Neumann problems plays an important rule in order
to do that.
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2.1. The Dirichlet problem

First, we deal with the nonlocal Dirichlet problem. For f ∈ L2(Ω), we consider

f(x) =
∫

RN

J(x − y)(uε(y) − uε(x))dy, x ∈ Ωε (2.1)

with

uε(x) ≡ 0, x ∈ R
N \ Ωε. (2.2)

Observe that existence and uniqueness of our problem follows considering the
variational problem

min
u∈Wε

1
4

∫
RN

∫
RN

J(x − y)(u(y) − u(x))2dy dx −
∫

RN

f(x)u(x) dx

with Wε = {u ∈ L2(Ωε) : uε(x) ≡ 0, x ∈ R
N \ Ωε}. It follows from (HJ) that

the unique minimizer (that we call uε) is a solution to (2.1) and (2.2) since it holds
that

0 = −1
2

∫
RN

∫
RN

J(x − y)(uε(y) − uε(x))(ϕ(y) − ϕ(x)) dydx −
∫

RN

f(x)ϕ(x) dx

=
∫

RN

ϕ(x)
∫

RN

J(x − y)(uε(y) − uε(x)) dydx −
∫

RN

f(x)ϕ(x) dx (2.3)

for any ϕ ∈ L2(RN ) with ϕ(x) ≡ 0 for x ∈ R
N \ Ωε. Note that, if uε ∈ L2(Ωε) is a

solution to (2.1) and (2.2), then it is the unique minimizer. Taking ϕ = uε in (2.3)
we get

−
∫

Ωε

f(x)uε(x) dx =
1
2

∫
RN

∫
RN

J(x − y)(uε(y) − uε(x))2 dydx

� βε
1

∫
Ωε

(uε(x))2 dx (2.4)

where βε
1 is the first eigenvalue associated with this operator in the space Wε. It is

given by

βε
1 = inf

u∈Wε

1/2
∫

RN

∫
RN

J(x − y)(u(y) − u(x))2dy dx∫
Ωε

u2(x) dx

. (2.5)

From [2, proposition 2.3] we know that βε
1 is strictly positive. Therefore, due to

(2.4), we get

‖uε‖L2(Ωε) � 1
βε

1

‖f‖L2(Ω).

Thus, since βε
1 � c > 0 with c independent of ε (see lemma 3.5 below), we also

obtain

‖uε‖L2(Ωε) � K
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for some positive constant K depending only on f (and so, independent of ε). Then,
along a subsequence if necessary,

ũε ⇀ u∗ weakly in L2(Ω) (2.6)

as ε → 0 where ·̃ denotes the extension by zero applied to functions defined in
subsets of R

N .
Thus, if χε is the characteristic function of Ωε and ũε is the extension by zero of

uε to R
N , we can use

∫
RN J(x − y) dy = 1 to rewrite (2.3) as

∫
Ω

χε(x)ϕ(x)f(x) dx =
∫

Ω

χε(x)ϕ(x)N(ũε)(x) dx −
∫

Ω

ϕ(x) ũε(x) dx (2.7)

for any ϕ ∈ L2(Ω) where N : L2(Ω) �→ L2(Ω) is the nonlocal operator set by

N(u)(x) =
∫

Ω

J(x − y)u(y) dy, x ∈ Ωε. (2.8)

2.2. The Neumann problem

Now let us discuss the nonlocal Neumann problem. Given f ∈ L2(Ω), we consider
here the following equation

f(x) =
∫

RN\Aε

J(x − y)(uε(y) − uε(x))dy, x ∈ Ωε (2.9)

with

uε(x) ≡ 0, x ∈ R
N \ Ω. (2.10)

Here we are calling Aε the set Aε = Ω \ Ωε.
In this problem (2.9) with (2.10), we have taken nonlocal Neumann boundary

conditions in the holes and a Dirichlet boundary condition in the exterior of the
set Ω. The arguments that we use in this section are similar to the ones for the
Dirichlet case.

Since we want to consider general functions f ∈ L2(Ω), in what follows we need
that the first eigenvalue associated to this problem, that is given by

λε
1 = inf

u∈Wε

1/2
∫

RN\Aε

∫
RN\Aε

J(x − y)(u(y) − u(x))2dy dx∫
Ωε

u2(x) dx

(2.11)

with Wε = {u ∈ L2(RN \ Aε) : u(x) ≡ 0, x ∈ R
N \ Ω}, is strictly positive.

In fact, when λε
1 = 0 then our problem (2.9) may not have solutions as the

following example shows: Assume that λε
1 = 0 and take f such that

∫
RN\Aε fφ1 
= 0
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being φ1 an eigenfunction associated with λε
1, that is, φ1 verifies,

0 =
∫

RN\Aε

J(x − y)(φ1(y) − φ1(x))dy.

The existence of such an eigenfunction can be proved as in [22]. Then, assume that
there is a solution uε to the problem

f(x) =
∫

RN\Aε

J(x − y)(uε(y) − uε(x))dy, x ∈ Ωε.

Multiplying by φ1 and integrating in R
N \ Aε we get

0 
=
∫

RN\Aε

f(x)φ1(x) =
∫

RN\Aε

φ1(x)
∫

RN\Aε

J(x − y)(uε(y) − uε(x))dy dx

=
∫

RN\Aε

uε(x)
∫

RN\Aε

J(x − y)(φ1(y) − φ1(x))dy dx = 0, (2.12)

a contradiction.
A condition under which the first eigenvalue λε

1 is strictly positive is given in our
next result. Let us introduce this condition that we call (HN).

(HN) We assume that there exists a finite family of sets B0, B1, . . . , BL ⊂ R
N \

Aε such that B0 = R
N \ Ω,

(RN \ Aε) ⊂
L⋃

i=0

Bi and αj =
1
4

min
x∈Bj

∫
Bj−1

J(x − y) dy > 0.

This condition says that we can cover R
N \ Aε by a finite family of sets Bi

starting with B0 = R
N \ Ω in such a way that every point in some Bj sees the set

Bj−1 with uniformly positive probability. This property holds if Aε is not very thick
(see example 3.7 at § 3).

Lemma 2.1. Under the previous condition (HN) on the set Aε, there exists a positive
constant λ such that

∫
RN\Aε

∫
RN\Aε

J(x − y)|u(y) − u(x)|2 dy dx � λ

∫
RN\Aε

|u(x)|2 dx,

for every u ∈ Wε = {u ∈ L2(RN \ Aε) : u(x) ≡ 0, x ∈ R
N \ Ω}.

Proof. Following [2, Chapter 6] we cover the domain R
N \ Aε with a finite family

of disjoint sets, Bj j = 0, 1, . . . , L (the existence of such sets is guaranteed by our
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hypothesis) and define

αj =
1
4

min
x∈Bj

∫
Bj−1

J(x − y) dy , 1 =
∫

RN

J(s) ds . (2.13)

Now, for u ∈ Wε, we have∫
RN\Aε

∫
RN\Aε

J(x − y)|u(y) − u(x)|2 dy dx

�
∫

Bj

∫
Bj−1

J(x − y)|u(y) − u(x)|2 dy dx

for j = 1, . . . , L, and∫
Bj

∫
Bj−1

J(x − y)|u(y) − u(x)|2 dy dx

� 1
4

∫
Bj

(∫
Bj−1

J(x − y) dy

)
|u(x)|2 dx −

∫
Bj−1

(∫
Bj

J(x − y) dx

)
|u(y)|2 dy

� αj

∫
Bj

|u(x)|2 dx −
∫

Bj−1

|u(y)|2 dy .

Then, taking B0 = R
N \ Ω (notice that u = 0 in B0), we can iterate this inequality

to get that∫
Bj

|u(x)|2 dx � Cj

∫
RN\Aε

∫
RN\Aε

J(x − y)|u(y) − u(x)|2 dy dx

where

C1 =
1
α1

, Cj =
1
αj

(1 + Cj−1) j = 2, . . . , L .

Therefore, adding in j, we have the Poincaré type inequality∫
RN\Aε

∫
RN\Aε

J(x − y)|u(y) − u(x)|2 dy dx � λ

∫
RN\Aε

|u(x)|2 dx, (2.14)

with

λ =

⎛
⎝ L∑

j=1

Cj

⎞
⎠

−1

∼
L∏

j=1

αj ,

as we wanted to show. �

Remark 2.2. Note that if we have that for each ε condition (HN) is satisfied with
the number of sets, L, independent of ε and a uniform constant α such that αj �
α > 0, then there is a positive constant c independent of ε such that λε

1 � c > 0.
In § 4, we will see that this property holds, for example, for periodically perforated
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domains in the case that the characteristic function X ∈ L∞(RN ) given in (1.1) is
not the null function.

Now, let us observe that existence and uniqueness to (2.9) with (2.10) follows
considering the variational problem

min
u∈Wε

1
4

∫
RN\Aε

∫
RN\Aε

J(x − y)(u(y) − u(x))2dy dx −
∫

RN\Aε

f(x)u(x) dx.

In fact, it follows from hypothesis (HN) (we can use lemma 2.1) that

‖u‖2 :=
∫

RN\Aε

∫
RN\Aε

J(x − y)(u(y) − u(x))2dy dx

is a norm equivalent to the usual L2−norm in Wε. Hence, the functional involved
in the minimization problem is lower semicontinuous, coercive and convex in Wε,
and then possesses a unique minimizer (that we call uε). As for the Dirichlet case,
this minimizer is a solution to (2.9) and (2.10). Moreover, if uε ∈ L2(Ωε) satisfies
(2.9) and (2.10), then it is a minimizer. Multiplying the equation by uε we get

−
∫

Ωε

f(x)uε(x) dx =
1
2

∫
RN\Aε

∫
RN\Aε

J(x − y)(uε(y) − uε(x))2 dydx

� λε
1

∫
Ωε

(uε(x))2 dx. (2.15)

Here λε
1 is the first eigenvalue (2.11) associated with this operator in the space Wε.

Therefore, assuming that λε
1 � c > 0 with c independent of ε (see remark 2.2), we

get that ∫
Ωε

(uε(x))2 dx

is bounded by a constant that depends only on f but is independent of ε. Hence,
along a subsequence if necessary,

ũε ⇀ u∗

weakly in L2(Ω) as ε → 0 where ·̃ denotes the extension by zero on functions defined
in the open set Ωε. Hence, if χε is the characteristic function of Ωε and ũε is the
extension by zero of uε to R

N , we can write the weak form of the equation as∫
Ω

χε(x)ϕ(x)f(x) dx =
∫

Ω

χε(x)ϕ(x)N(ũε)(x) dx −
∫

Ω

ϕ(x) ũε(x)Oε(x) dx

(2.16)
for any ϕ ∈ L2(Ω). Here, N is the nonlocal operator introduced in (2.8), and Oε is
the following function defined on R

N

Oε(x) =
∫

RN\Aε

J(x − y) dy. (2.17)
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Remark 2.3. Notice that both problems (2.1) and (2.9) with (2.10) can be written
on the same form (2.16). For the Dirichlet problem, we take Oε constant and equal
to 1. On the other hand, for the Neumann equation, we take Oε as (2.17). In this
way, we can pass to the limit in our problems, proving theorems 1.1 and 1.2.

3. Proof of theorems 1.1 and 1.2.

Now we are ready to proceed with the proof of theorems 1.1 and 1.2. We first
consider the nonlocal Dirichlet problem.

Proof of theorem 1.1. We need to pass to the limit in (2.7). In order to do that, we
evaluate

N(ũε)(x) =
∫

Ω

J(x − y)ũε(y) dy, x ∈ R
N . (3.1)

From (2.6), we have that

N(ũε)(x) → N(u∗)(x) =
∫

Ω

J(x − y)u∗(y) dy, as ε → 0, (3.2)

for each x ∈ R
N . Hence, since uε is uniformly bounded in L2(Ωε) and

|N(ũε)(x)| � |Ω|1/2‖J‖∞‖uε‖L2(Ωε), (3.3)

we obtain by Dominated Convergence theorem that

∫
Ω

N(ũε)(x)ϕ(x) dx →
∫

Ω

N(u∗)(x)ϕ(x) dx

for all ϕ ∈ L2(Ω), and then, N(ũε) ⇀ N(u∗) weakly in L2(Ω). Indeed, we can prove
that

N(ũε) → N(u∗) strongly in L2(Ω). (3.4)

It follows from (3.2) and (3.3) that (N(ũε)(x))2 → (N(u∗)(x))2 for all x ∈ R
N with

|N(ũε)(x)|2 � |Ω|‖J‖2
∞‖uε‖2

L2(Ωε).

Consequently, using again the Dominated Convergence theorem, we get

‖N(ũε)‖L2(Ω) → ‖N(u∗)‖L2(Ω)

as ε → 0 proving (3.4) since we are working in Hilbert spaces.
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We now can combine (1.1), (2.6), (2.7) and (3.1) to obtain∫
Ω

X (x)ϕ(x)f(x) dx =
∫

Ω

X (x)ϕ(x)N(u∗)(x)dx −
∫

Ω

ϕ(x)u∗(x) dx (3.5)

for any ϕ ∈ L2(Ω). We still can rewrite (3.5) as∫
Ω

X (x)ϕ(x)f(x) dx =
∫

Ω

X (x)ϕ(x)
(∫

RN

J(x − y) (u∗(y) − u∗(x)) dy

)
dx

−
∫

Ω

ϕ(x)u∗(x) (1 −X (x)) dx (3.6)

which implies

X (x) f(x) = X (x)
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy − (1 −X (x))u∗(x), a.e. Ω,

(3.7)
with u∗(x) ≡ 0, x ∈ R

N \ Ω.
Finally, we show that u∗ is the unique solution of (3.7). This fact implies the

convergence of whole sequence ũε. To do that, we consider the set D where the
function X vanishes

D = {x ∈ Ω : X (x) = 0}. (3.8)

From (3.7), we have u∗(x) = 0 for all x ∈ D. Hence, if D = Ω a.e., u∗(x) = 0 a.e.
x ∈ R

N is the unique solution. Thus, let us consider that Ω \ D is a nontrivial
measurable set. We can rewrite equation (3.7) as

f(x) =
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy − (1 −X (x))
X (x)

u∗(x), a.e. Ω \ D, (3.9)

with u∗(x) ≡ 0, x ∈ R
N \ (Ω \ D). Hence, if u∗ and v∗ are solutions of (3.9), w∗ =

u∗ − v∗ satisfies

0 =
∫

RN

J(x − y)(w∗(y) − w∗(x)) dy − (1 −X (x))
X (x)

w∗(x), a.e. Ω \ D. (3.10)

Consequently, (1 −X )/X w∗ ∈ L2(Ω \ D), and then,∫
Ω\D

1 −X (x)
X (x)

(w∗(x))2 dx = −1
2

∫
RN

∫
RN

J(x − y)(w∗(y) − w∗(x))2 dy dx � 0.

Since (1 −X (x))/X (x) � 0 in Ω \ D, we get

1 −X (x)
X (x)

(w∗(x))2 = 0 a.e. x ∈ Ω \ D.

This combined with [2, proposition 2.2] completes the proof. �

If we still assume in the hypotheses of theorem 1.1 that the characteristic func-
tions χε converges weakly star to X (x) = 0 a.e. in Ω, we get that the limit function
u∗ must be null with strong convergence in L2.
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Corollary 3.1. Under the hypotheses of theorem 1.1 with X (x) = 0 a.e. x ∈ Ω,
we obtain u∗(x) = 0 a.e. x ∈ R

N with

ũε → 0, strongly in L2(Ω).

Proof. From the limit equation in theorem 1.1 is very easy to see that u∗ = 0. We
obtain strong convergence just observing that the norm of ũε also converges to 0
as ε → 0. Indeed, from (2.7) with ϕ = ũε we have

‖ũε‖2
L2(Ω) =

∫
Ω

ũε(x)N(ũε)(x) −
∫

Ω

ũε(x) f(x) dx →
∫

Ω

u∗(x)N(u∗)(x)

−
∫

Ω

u∗(x) f(x) dx = 0. �

Remark 3.2. Let us suppose that we are in the classic situation in Homogeniza-
tion Theory in which the family of perforated domains Ωε possesses an extension
operator such as

Pε ∈ L(L2(Ωε);L2(Ω)) ∩ L(H1(Ωε);H1(Ω))

with bounded norm (independently of ε). Let us also assume that the data are
smooth, by this we mean that f ∈ H1(Ω) and J ∈ C1(RN , R). Then, it follows for
solutions to the nonlocal Dirichlet problem (2.1) and (2.2) that uε ∈ H1(Ωε) and
satisfies

∂uε

∂xi
(x) =

∫
RN

J(x − y)
(

∂uε

∂xi
(y) − ∂uε

∂xi
(x)
)

dy − ∂f

∂xi
(x), a.e. Ωε.

Consequently, since ‖∂f/∂xi‖L2(Ωε) is uniformly bounded, from the same argu-
ments used in lemma 3.5, we also get ‖uε‖H1(Ωε) � K for some constant K > 0
independent of ε. Hence, Pεu

ε is uniformly bounded in H1(Ω), from where we can
extract a subsequence (up to a sequence) such that

Pεu
ε → u0 strongly in L2(Ω), (3.11)

for some u0 ∈ H1(Ω).
Remark that for nonlocal problems with nonsingular kernels it does not hold

that the Dirichlet datum is taken continuously, that is, we do not have uε(x) → 0
as x → ∂Ωε (even for solutions in C(Ωε)), see [5]. Therefore, the extension Pεu

ε

of uε to the holes does not coincide with the extension by zero, ũε, that we have
considered here.

Now, we observe that we can pass to the limit (weakly in L2) in the identity

ũε(x) = χε(x)Pεu
ε(x), a.e. Ω.

Note that ũε is the extension by zero of uε in the holes and that χε Pεu
ε first extends

uε to the holes and then multiply by χε. From the limit of ũε = χε Pεu
ε we obtain
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the following relation between the function u∗ ∈ L2(Ω) given by theorem 1.1, and
u0 ∈ H1(Ω) introduced in (3.11)

u∗(x) = X (x)u0(x), a.e. Ω.

For the particular case of a periodically perforated domain, we have that X (x) is
a constant and therefore we obtain that u∗(x) = X u0(x) ∈ H1(Ω). This regularity
result for the limit u∗ can also be obtained from the limit problem that is satisfied
since we assumed that f ∈ H1(Ω) and J ∈ C1(RN , R).

Now let us consider the Neumann problem (2.9) with (2.10). We show theorem
1.2.

Proof of theorem 1.2. Under the assumption λε
1 � c > 0 with c independent of ε,

we have already seen that ‖uε‖L2(Ωε) � c−1‖f‖L2(Ω) from where we obtain (up to
a subsequence) the weak convergence

ũε ⇀ u∗.

First, we observe that the additional assumption X (x) = 0 implies u∗(x) = 0 in
R

N . In fact, it is a consequence of the lower semicontinuity of the norm and the
limit∣∣∣∣
∫

Ω

χε(x)ϕ(x)uε(x) dx

∣∣∣∣ � ‖χεϕ‖L2(Ωε)‖uε‖L2(Ωε) → 0, as ε → 0 ∀ϕ ∈ L2(Ω).

Now let us get the limit problem to the other cases. In order to do that, we need
to pass to the limit in (2.16). First, we pass to the limit in Oε given by (2.17). We
show that

Oε → O0 strongly in L2(Ω) (3.12)

with

O0(x) =
∫

RN

J(x − y)(1 − χΩ(y) + X (y))dy.

Since

Oε(x) =
∫

RN\Aε

J(x − y) dy =
∫

RN

J(x − y) dy −
∫

Ω

J(x − y) dy +
∫

Ωε

J(x − y) dy

for any x ∈ R
N , we just need to observe that, from (1.1), we get

Ôε(x) =
∫

Ωε

J(x − y) dy =
∫

Ω

χε(y)J(x − y) dy. → Ô0(x) =
∫

Ω

X (y)J(x − y) dy

for all x ∈ R
N . Thus, since |Oε(x)| � 1 for every ε > 0 and x ∈ R

N , we can argue
as in (3.4) to obtain from Dominated Convergence theorem that

Ôε → Ô0 strongly in L2(Ω).

Consequently, we conclude (3.12).
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Now we can combine (1.1), (3.4) and (3.12) to pass to the limit in (2.16) obtaining∫
Ω

X (x)ϕ(x)f(x) dx =
∫

Ω

X (x)ϕ(x)N(u∗)(x) dx

−
∫

Ω

ϕ(x)u∗(x)
∫

RN

J(x − y)(1 − χΩ(y) + X (y))dy dx

for any ϕ ∈ L2(Ω). This can be rewriten as∫
Ω

X (x)ϕ(x)f(x) dx

=
∫

Ω

X (x)ϕ(x)
∫

RN

J(x − y) (u∗(y) − u∗(x)) dy dx

+
∫

Ω

ϕ(x)u∗(x)
(
X (x) −

∫
RN

J(x − y)(1 − χΩ(y) + X (y))dy

)
dx.

Observe that u∗(x) ≡ 0 wherever x ∈ R
N \ Ω.

Therefore, there exists u∗ ∈ L2(Ω) with ũε ⇀ u∗ weakly in L2(Ω) and u∗

satisfying the following nonlocal problem

X (x) f(x) = X (x)
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy − Λ(x)u∗(x) (3.13)

with u∗(x) ≡ 0, x ∈ R
N \ Ω, where Λ ∈ L∞(Ω) is given by

Λ(x) =
∫

RN

J(x − y) (1 − χΩ(y) + X (y)) dy −X (x), x ∈ Ω. (3.14)

Uniqueness for the limit problem can be obtained as in the proof of theorem 1.1.
This fact implies the convergence of whole sequence ũε. �

We still notice that a stronger hypothesis is needed to obtain strong convergence
in L2 of the extended solutions to zero for the singular case X (x) = 0 a.e. R

N . In
this respect, we have the following result.

Corollary 3.3. Let Γ : Ω �→ R be the function given by

Γ(x) =
∫

RN\Ω
J(x − y) dy. (3.15)

Suppose X (x) = 0 a.e. Ω in (1.1) and assume

Γ(x) � m > 0, in Ω (3.16)

for some m > 0. Then, the solutions uε of the Neumann problem (2.9) with (2.10)
satisfy

‖uε‖L2(Ωε) → 0, as ε → 0.
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Proof. First, let us take ϕ = χε uε in (2.16). Then,

∫
Ω

ũε(x)f(x) dx =
∫

Ω

ũε(x)N(ũε)(x) dx −
∫

Ω

ũε(x)2Oε(x) dx. (3.17)

Since Γ is strictly positive in Ω, hypothesis (HN) holds, and then

ũε ⇀ 0, weakly in L2(Ω),

as ε → 0. Consequently, due to (3.17), we obtain

lim
ε→0

∫
Ω

ũε(x)2Oε(x) dx = 0. (3.18)

On the other hand, we have that

∣∣∣∣
∫

Ω

ũε(x)2Oε(x) dx

∣∣∣∣ � ‖uε‖L2(Ωε) inf
x∈Ω̄

∫
RN\Aε

J(x − y) dy. (3.19)

Hence, we conclude the proof from (3.16), (3.18) and (3.19). �

Remark 3.4. Notice that we still can reach the same results described in theorems
1.1 and 1.2 for the more general situation with f ε → f strongly in L2(Ω) since
‖f ε‖L2(Ω) remains uniformly bounded in ε and

∫
Ω

χε(x) f ε(x) dx →
∫

Ω

X (x) f(x) dx, as ε → 0.

Now let us show that the sequence of first eigenvalues to the Dirichlet problem
converges to a positive value. Thus, this sequence possesses a positive lower bound.

Lemma 3.5. Let βε
1 be the family of first eigenvalues introduced in (2.5). Then,

there exist β1 > 0, such that

βε
1 → β1, as ε → 0.

Consequently, there exist ε0 > 0 and c > 0 with

βε
1 > c > 0, ∀ε ∈ (0, ε0).

Proof. We start observing that βε
1 is a bounded sequence with respect to ε. Indeed,

it follows from [2, proposition 2.3] that 0 < βε
1 < 1. Thus, we can extract a subse-

quence, still denoted by βε
1, such that βε

1 → β1. Since βε
1 is strictly positive, β1 is

nonnegative.
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Now let φε be the associated eigenfunction to βε
1 with ‖φε‖L2(Ωε) = 1 (the

existence of such eigenfunction can be proved as in [22]). Hence,

−βε
1

∫
Ωε

φε(x)ϕ(x) dx =
∫

Ωε

ϕ(x)
∫

RN

J(x − y)(φε(y) − φε(x)) dydx

for any ϕ ∈ L2(Ω) with φε vanishing in R
N \ Ωε. Therefore, using the extension by

zero to whole space and the characteristic function χε of Ωε, we get

− βε
1

∫
Ω

φ̃ε(x)ϕ(x) dx =
∫

Ω

χε(x)ϕ(x)N(φ̃ε)(x) dx −
∫

Ω

ϕ(x) φ̃ε(x) dx. (3.20)

Due to ‖φε‖L2(Ωε) = 1, we can extract a subsequence, still denoted by φ̃ε, such that

φ̃ε ⇀ φ∗ weakly in L2(Ω) (3.21)

with φ∗ ≡ 0 as x ∈ R
N \ Ω.

First, let us discuss the case φ∗ = 0. From (3.20) with ϕ = φ̃ε, we have that

(1 − βε
1) =

∫
Ω

φ̃ε(x)N(φ̃ε)(x) dx, (3.22)

since ‖φε‖L2(Ωε) = 1. Arguing as in (3.1), we can show from assumptions (3.21) and
the fact that φ∗(x) = 0 a.e. in R

N that, as ε → 0,

N(φ̃ε) → 0 strongly in L2(Ω).

Hence, it follows from (3.21) and (3.22) that βε
1 → 1 proving our result. Therefore,

we can suppose φ∗ 
= 0 in L2(Ω).
Now, we can argue as in (3.5) to pass to the limit in (3.20) obtaining the following

limit equation

−β1

∫
Ω

φ∗(x)ϕ(x) dx =
∫

Ω

X (x)ϕ(x)N(φ∗)(x) dx −
∫

Ω

ϕ(x)φ∗(x) dx

=
∫

Ω

X (x)ϕ(x)
∫

RN

J(x − y) (φ∗(y) − φ∗(x)) dy dx

−
∫

Ω

(1 −X (x))φ∗(x)ϕ(x) dx, (3.23)

which can be rewritten as

− β1 φ∗(x) = X (x)
∫

RN

J(x − y)(φ∗(y) − φ∗(x)) dy − (1 −X (x))φ∗(x), a.e. Ω,

(3.24)
with φ∗(x) ≡ 0, x ∈ R

N \ Ω.
If X (x) ≡ 1 a.e. Ω, it follows from (3.24) that β1 is the first eigenvalue of the

self-adjoint operator T : L2(Ω) �→ L2(Ω) given by

T (φ) =
∫

RN

J(x − y)(φ(y) − φ(x)) dy.

Hence, from [2, proposition 2.3] we get β1 > 0, and the proof is completed.
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Thus, let us assume X 
= 1 in L∞(Ω), and consider the set D given by the
vanishing points of X introduced in (3.8). From (3.24), we get φ∗(x)(1 − β1) = 0 for
all x ∈ D. If β1 = 1, the proof is complete. If it is not the case, we have φ∗(x) ≡ 0
in x ∈ D. Let us suppose φ∗(x) ≡ 0 in D. In fact, without loss of generality, we can
assume φ∗(x) 
= 0 in Ω \ D. From (3.24)

1 −X (x) − β1

X (x)
φ∗(x) =

∫
RN

J(x − y)(φ∗(y) − φ∗(x)) dy, a.e. Ω \ D, (3.25)

with φ∗(x) ≡ 0 wherever x ∈ R
N \ (Ω \ D). Since φ∗ ∈ L2(Ω), it follows from (3.25)

that (1 −X − β1)/X φ∗ also belongs to L2(Ω \ D). Then, we also obtain from (3.25)
that ∫

Ω\D

1 −X (x) − β1

X (x)
(φ∗(x))2 dx

= −1
2

∫
RN

∫
RN

J(x − y)(φ∗(y) − φ∗(x))2 dydx < 0.

Consequently, there exists an open set D̃ ⊂ Ω \ D such that

1 −X (x) − β1 < 0, ∀x ∈ D̃.

Hence, since 0 � X (x) � 1, we conclude that β1 > 0 finishing the proof. �

Remark 3.6. Notice that β1 = 1 is not an eigenvalue of the operator

L2(Ω) � φ → X (·)
∫

RN

J(· − y) (φ(y) − φ(·)) dy − (1 −X (·))φ(·) ∈ L2(Ω).

Indeed, it is equivalent to the existence of a nonzero function φ∗ ∈ L2(Ω) satisfying

− φ∗(x) =
∫

RN

J(x − y) (φ∗(y) − φ∗(x)) dy, a.e. Ω \ D, (3.26)

with φ∗(x) ≡ 0 in R
N \ (Ω \ D) where D ⊂ Ω is the set introduced in (3.8). Now,

it is known from [2, proposition 2.2] that (3.26) implies φ∗(x) ≡ 0 in Ω \ D. Since
φ∗(x) = 0 in D, we get the contradiction.

Finally, we point out why we have not proceeded as in the proof of lemma 3.5 to
obtain a positive lower bound for the eigenvalues of the nonlocal Neumann problem.
In fact, we cannot pass to the limit in the eigenvalue problem associated with (2.9)
with (2.10)

−λε
1

∫
Ωε

φε(x)ϕ(x) dx =
∫

Ωε

ϕ(x)
∫

RN\Aε

J(x − y)(φε(y) − φε(x)) dydx, x ∈ Ωε,

with φε and ϕ ∈ L2(RN ) vanishing in R
N \ Ω. We can extract a convergent

subsequence of eigenvalues and eigenfunctions, but we are not able to evaluate
their limits in order to show that they are nontrivial. This drives us to hypothesis
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Figure 3. An example where the first eigenvalue to the Neumann problem is zero.

(HN) and the following example that shows that in fact there are configurations of
the holes for which the first eigenvalue is zero.

Example 3.7. As illustrated in figure 3, let Ω = B6 and Ωε = B3 the balls of radius
6 and 3 centred at the origin in R

N respectively, hence the annulus Aε = Ω \ Ωε is
the hole. Now assume that the kernel J satisfies hypothesis (HJ) and has the unit
ball B1 as its support. Then, we have that the function

u(x) =

{
1, x ∈ Ωε

0, x ∈ R
N \ Ω

satisfies
1
2

∫
RN\Aε

∫
RN\Aε

J(x − y)(u(y) − u(x))2dy dx∫
Ωε

u2(x) dx

= 0

since supp(J) = B1 implies J(x − y)(u(y) − u(x)) = 0 whenever x, y ∈ R
N \ Aε.

Consequently, hypothesis (HJ) it is not enough to guarantee the first eigenvalue of
the Neumann problem introduced in (2.11) is strictly positive as in the Dirichlet
case.

4. Periodically Perforated Domains

In this section, we discuss theorems 1.1 and 1.2 in the particular situation where
the holes in Ω ⊂ R

N are periodically distributed.
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First, we deal with the critical case, it means, that one in which the size and
distribution of holes possess the same order. Next, we consider the other cases.

4.1. Size and distribution with same order

Let Q ⊂ R
N be the representative cell

Q = (0, l1) × (0, l2) × · · · × (0, lN ).

We perforate Ω removing from it a set Aε of periodically distributed holes given as
follows: Take any open set A ⊂ Q such that T = Q \ A is measurable set satisfying
|T | 
= 0. Denote by τε(A) the set of all translated images of εĀ of the form ε(kl + A)
where k ∈ Z

N and kl = (k1l1, . . . , kN lN ). Now define

Aε = Ω ∩ τε(A).

We introduce our perforated domain as

Ωε = Ω \ Aε. (4.1)

Note that when considering Ωε we have removed from Ω a large number of holes
of size |εĀ| which are ε-periodically distributed. Aε represent the sets of holes inside
Ω. It contains the interior holes, that ones that are fully contained into Ω, as well
as part of each hole that intersects the boundary ∂Ω.

We now pass to the limit in the characteristic function χε to obtain the limit
equations to Dirichlet and Neumann problems in the family of perforated domains
given by (4.1). To do that let χA be the characteristic function of the open set
A ⊂ Q extended periodically in R

N . Hence, if χAε is the characteristic function of
Aε, for each x ∈ Aε there exist k ∈ Z

N such that

χAε(x) = χA

(
x − εkl

ε

)
= χA(x/ε).

Therefore, if χΩ and χε are the characteristic functions of Ω and Ωε respectively,
we have the following relationship

χε(x) = χΩ(x) − χAε(x). (4.2)

It follows from the Average theorem [11, theorem 2.6] that

χAε ⇀
1
|Q|

∫
Q

χA(s) ds =
|A|
|Q| , as ε → 0, (4.3)

weakly star in L∞(Ω). Hence, from (4.2), (4.3) and |T | = |Q \ A| = |Q| − |A| we
obtain that

χε ⇀
|T |
|Q| weakly∗ in L∞(Ω).

In this way, we can set

X (x) =
|T |
|Q|χΩ(x) in R

N (4.4)

at assumption (1.1).
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Thus, as a consequence of theorem 1.1 and (4.4), the extended solutions ũε of the
Dirichlet problem (2.1) and (2.2) weakly converge in L2(Ω) to the solution u∗ to

|T |
|Q|f(x) =

|T |
|Q|

∫
RN

J(x − y)(u∗(y) − u∗(x)) dy −
( |Q| − |T |

|Q|
)

u∗(x), x ∈ Ω,

(4.5)
with u∗(x) ≡ 0, for x ∈ R

N \ Ω, which can be rewritten as

f(x) =
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy −
( |Q| − |T |

|T |
)

u∗(x), x ∈ Ω, (4.6)

whenever |T | 
= 0.
Now to get the limit equation to the Neumann problem (2.9) and (2.10), we first

have to see that condition (HN) is verified. To do that, given δ > 0 small we define
the sets

B0 = R
N \ Ω

and

Bj = {x ∈ Ωε : δj < d(x, ∂Ω) < δ(j + 1)} j = 1, . . . , L.

Note that

(RN \ Aε) ⊂
L⋃

j=0

Bj

Notice also that, for x ∈ Bj we have∫
Bj−1

J(x − y) dy �
∫
{y∈Ω\Aε : δ(j−1)+δ/2<d(y,∂Ω)<δj}

J(x − y) dy

�
(

min
|z|�1−δ/2

J(z)
)
× |{y ∈ Ω \ Aε : δ(j − 1)

+ δ/2 < d(y, ∂Ω) < δj}| > 0. (4.7)

Here we have used that J is continuous with J(0) > 0.
Also observe that the number of sets, L, as well as the lower bound for the αj ,

depend only on δ and therefore they can be chosen independently of ε.
Therefore, we can conclude from lemma 2.1 that there exists ε0 and c > 0 such

that

λε
1 > c > 0, ∀ε ∈ (0, ε0),

and then, due to theorem 1.2, we obtain that the limit equation of (2.9) and (2.10)
is

f(x) =
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy

−
( |Q| − |T |

|T |
)

u∗(x)
∫

RN\Ω
J(x − y) dy, x ∈ Ω, (4.8)
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Figure 4. A nonconnected perforated domain.

with u∗(x) ≡ 0 for all x ∈ R
N \ Ω, where the term Λ defined in (3.14) can be

calculated by

Λ(x) =
∫

RN

J(x − y)
(

1 − χΩ(y) +
|T |
|Q|χΩ(y)

)
dy − |T |

|Q|χΩ(x)

=
( |Q| − |T |

|Q|
)∫

RN

J(x − y)(1 − χΩ(y))dy.

Remark 4.1. Notice that what makes distinction between the limit problems (4.5)
and (4.8) here is just the coefficient (3.15).

Now, let us present an example that shows that we do not need the set Ωε to be
connected. This has to be contrasted with what happens in the local case (where
connectedness of Ωε plays a crucial role).

Example 4.2. We consider Ω = (−1, 1) × (−1, 1) the periodic case in which the
hole is given by the scaled version of the strip A = [0, 1] × [1/3, 2/3], in the
representative cell (0, 1) × (0, 1). That is, we remove from Ω the set of all translated
images of εA of the form ε(k + A) where k ∈ Z

N . Note that Ωε is a square from
where we have removed a large number of horizontal strips of size |εA| which are
ε-periodically distributed. See figure 4 which illustrates this situation. Considering
B1, . . . , BL as horizontal strips of width δ one can easily check that hypothesis
(HN) holds (note that here δ and L can be chosen independently of ε).

4.2. Size and distribution with different orders

Now let us take holes in the open set Ω with distribution and size of different orders.
To do that we consider the sets Q, A and B as in § 4.1, and define by τ̂ε(A) the
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union of all translated images of εγĀ of the form

εkl + εγA = ε(kl + εγ−1A)

where γ > 0, k ∈ Z
N and kl = (k1l1, . . . , kN lN ). Here the hole set are given by

Aε = Ω ∩ τ̂ε(A)

and the perforated domain by

Ωε = Ω \ Aε.

When γ < 1, the order of distributions is bigger that the size of the holes at ε = 0.
On the other hand, the size order of the holes is larger than their distributions as
γ > 1. The case γ = 1 has been considered in § 4.1 and the sets are of the same
order of the size and distribution of a typical cell.

If we assume γ > 1, the set of distributed holes vanishes in Ω as ε → 0, and then,
Ωε fills the whole of Ω which implies

χε ⇀ χΩ weakly∗in L∞(Ω) (4.9)

where χΩ is the characteristic function of Ω.
Then, as a consequence of theorems 1.1 and 1.2, we get the same limit equation

to both Dirichlet and Neumann problems (2.1) and (2.9) respectively. We get the
nonlocal Dirichlet problem in the open set Ω

f(x) =
∫

RN

J(x − y)(u∗(y) − u∗(x)) dy, x ∈ Ω, (4.10)

with u∗(x) ≡ 0, in R
N \ Ω.

Notice that hypothesis (HN) to the Neumann problem can be easily verified here
as in (4.7). Among other things, it means that under the assumptions (4.9), (HJ)
and (HN), the nonlocal Neumann problem (2.9) behaves as the nonlocal Dirichlet
problem for ε small enough.

Finally, if γ < 1, it is not difficult to see that the set of the holes fill the whole of
Ω when ε goes to zero implying that

χε ⇀ 0 weakly∗in L∞(Ω).

Hence, it follows from theorems 1.1 and 1.2 that the extended solutions ũε to
both Neumann and Dirichlet problems weakly converge to zero in L2(Ω) as ε → 0.
Moreover, from corollary 3.1, we still obtain strong convergence to zero in the
Dirichlet case. That is, if uε satisfies the Dirichlet problem (2.1) and (2.2), then

ũε → 0 strongly in L2(Ω)

as ε → 0.
With the additional condition (3.16), we also have ũε → 0 strongly in L2(Ω) for

the Neumann problem (2.9) with (2.10). See corollary 3.3.
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5. Rescaling the kernel

In this section, our aim is to see how these problems behave when we rescale the
kernel in order to approximate local equations. Hence, now we have two different
parameters ε (that controls the size of the holes) and δ (that is used to rescale
the kernel). Our aim is to study the limits ε → 0 (to have an homogenized limit
problem) and δ → 0 (to approach local problems).

To describe accurately these limits along this section we need to restrict ourselves
to the periodic case. We assume that we have a bounded domain Ω from where
we have removed a big number of periodic small balls (the holes). That is, we
consider Ωε = Ω \ ∪Brε(xi) where Brε(xi) is a ball centred in xi ∈ Ω of the form
xi ∈ 2εZN with 0 < rε < ε � 1. To simplify, we only remove here balls that are
strictly contained in Ω. Moreover, we will assume here that J is radially symmetric.

Our aim is to show that, in general, the involved limits do not commute, but it
holds that both limits exist. For uε,δ a solution to the nonlocal problem in Ωε with
a kernel rescaled with δ we have that

lim
δ→0

lim
ε→0

ũε,δ = w,

and

lim
ε→0

lim
δ→0

ũε,δ = v,

but, in general

w 
= v.

5.1. The Dirichlet case

We start by considering

f(x) =
C

δN+2

∫
RN

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε, (5.1)

with

uε,δ(x) ≡ 0, x ∈ R
N \ Ωε, (5.2)

and C is a normalizing constant given by

C =
(

1
2

∫
RN

J(x)x2
1 dx

)−1

(5.3)

where x1 is the first coordinate of x ∈ R
N .

Existence and uniqueness of the solutions uε,δ of (5.1) are guaranteed in § 2.1 for
any f ∈ L2(Ω), ε and δ > 0. Thus, we proceed with the analysis of the behaviour
of uε,δ as ε and δ go to zero.
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Performing the change of variable

z =
(x − y)

δ

and using Taylor expansion, we obtain for a smooth u

C
1

δ2+N

∫
RN

J

(
x − y

δ

)
(u(y) − u(x))dy =

C

δ2

∫
RN

J(z)(u(x − δz) − u(x))dz

=
C

2

[
N∑

i=1

∂2
i u(x)

]∫
RN

J(z)z2
1dz + O(δ) = Δxu(x) + O(δ). (5.4)

Expression (5.4) makes a connection between the nonlocal problem with the
kernel Jδ and the following boundary value problem{

Δvε(x) = f(x), x ∈ Ωε

vε(x) = 0, x ∈ ∂Ωε.
(5.5)

Now, we can use the results in [2, § 3.2.2] (see also [19]) to obtain that

‖uδ,ε − vε‖L2(Ω) → 0, as δ → 0. (5.6)

As we can see from [12], problem (5.5) is the prototype for the study of the
Laplacian in perforated domains. As we have mentioned in the introduction, the
limit as ε → 0 is given by (1.4). Hence, we have that

‖vε − v‖L2(Ω) → 0, as ε → 0.

Now, we just observe that we have obtained the following result.

Theorem 5.1. If uδ,ε, v are given by (5.1) and (1.4) respectively, it holds that

lim
ε→0

(lim
δ→0

uδ,ε) = v in L2(Ω),

Now, we let first ε → 0 and then δ → 0. To compute the first limit we rewrite our
problem (5.1) as follows:

δ2

C
f(x) =

1
δN

∫
RN

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε.

Note that the involved kernel satisfies

1
δN

∫
RN

J
(z

δ

)
dz = 1.

This property was used in the proof of theorem 1.1 in § 3. Arguing as in § 3 with
a fixed δ we obtain that there exists u∗,δ ∈ L2(Ω) such that

ũε,δ ⇀ u∗,δ weakly in L2(Ω).
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Moreover, the limit u∗,δ satisfies the following nonlocal problem in Ω

δ2

C
X (x) f(x) = X (x)

1
δN

∫
RN

J

(
x − y

δ

)
(u∗,δ(y)

− u∗,δ(x)) dy − (1 −X (x))u∗,δ(x) (5.7)

with u∗,δ(x) ≡ 0, for x ∈ R
N \ Ω. Note that, since we are considering periodic holes,

we have that X is a constant given by

X =

⎧⎨
⎩

1 if rε � C0ε,
|Q \ B|
|Q| if rε = C0ε.

(5.8)

Recall that |Q \ B| is the measure of the complement of the ball B in the cube Q.
Hence, here |Q \ B|/|Q| is the proportion of the cube that is inside Ωε. Also, recall
that in this case the critical size is bε := C0ε.

Now, for the limit as δ → 0 we consider two cases. First, when rε � bε, we have
X = 1 and (5.7) reduces to

f(x) =
C

δN+2

∫
RN

J

(
x − y

δ

)
(u∗,δ(y) − u∗,δ(x)) dy,

and from the results in [2, § 3.2.2] we get that

u∗,δ → w, in L2(Ω),

as δ → 0, where w is the solution to Δw = f with w = 0 on ∂Ω.
In the case rε = bε we have

δ2

C
f(x) =

1
δN

∫
RN

J

(
x − y

δ

)
(u∗,δ(y) − u∗,δ(x)) dy − (1 −X )

X u∗,δ(x).

Multiplying by u∗,δ and integrating we get∫
RN

δ2

C
f(x)u∗,δ(x) dx = −1

2
1

δN

∫
RN

∫
RN

J

(
x − y

δ

)
(u∗,δ(y) − u∗,δ(x))2 dy dx

− (1 −X )
X

∫
RN

(u∗,δ(x))2 dx.

It follows that

(1 −X )
X

∫
RN

(u∗,δ(x))2 dx

�
∣∣∣∣
∫

RN

δ2

C
f(x)u∗,δ(x) dx

∣∣∣∣ � C(f)δ2

(∫
RN

(u∗,δ(x))2 dx

)1/2

,

and we conclude that

u∗,δ → 0, in L2(Ω),
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as δ → 0. Hence, we have obtained that

‖u∗,δ − w‖L2(Ω) → 0, as δ → 0,

where w is given by

w =

{
the solution to Δw = f with w = 0 on ∂Ω, if rε � bε,

0, if rε = bε.
(5.9)

We have obtained the following theorem.

Theorem 5.2. If uδ,ε, w are given by (5.1) and (5.9) respectively,it holds that

lim
δ→0

(lim
ε→0

ũδ,ε) = w weakly in L2(Ω),

Now, let us see when v and w coincide. We have to distinguish several cases
according to the size of the holes. Notice bε � aε whenever ε is small enough.

Case 1. rε = bε. In this case, we have that w = 0 and v = 0. Therefore w = v in
this case.

Case 2. aε � rε � bε. In this case, w is the solution to Δw = f and v = 0.
Therefore w 
= v in this case.

Case 3. rε = aε. In this case, w is the solution to Δw = f and v the solution to
Δv − μ v = f . Therefore, also w 
= v in this case.

Case 4. rε � aε. In this case, w and v coincide and are given by the unique
solution to Δw = f .

5.2. The Neumann case

Now we consider

f(x) =
C

δN+2

∫
RN\Aε

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε, (5.10)

with

uε,δ(x) ≡ 0, x ∈ R
N \ Ω, (5.11)

and C is the same normalizing constant that we used for the Dirichlet case and is
given by (5.3).

Existence and uniqueness of the solutions uε,δ of (5.10) are guaranteed in § 2.2
for any f ∈ L2(Ω), ε and δ > 0, provided there is a positive constant c independent
of ε such that

λε
1 � c > 0.

We have seen that this holds in our case, that is, for periodically perforated domains.
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Let us proceed with the analysis of the behaviour of uε,δ as ε and δ go to zero.
From (5.4) using results from [18] we have

‖uδ,ε − vε‖L2(Ωε) → 0, as δ → 0.

being vε the solution to the local problem

⎧⎪⎪⎨
⎪⎪⎩

Δvε(x) = f(x), x ∈ Ωε

vε(x) = 0, x ∈ ∂Ω,
∂vε(x)

∂η
= 0, x ∈ ∂Ωε ∩ Ω.

(5.12)

Now, using results from [14, theorem 2.16] (see also [13]) we get that the limit
as ε → 0 in this local problem is given by

v =

⎧⎪⎪⎨
⎪⎪⎩

the solution to Δv = f, if rε � bε,

the solution to
N∑

i,j=1

qij
∂2v

∂xi∂xi
=

|Q \ B|
|Q| f, if rε = bε,

(5.13)

with Dirichlet boundary conditions, v = 0 on ∂Ω. Here qij are called the homoge-
nized coefficients and are given by

qij =
1
|Q|

[∫
Q\B

δij dy −
∫

Q\B

∂Xi

∂yj
(y) dy

]
,

where δij is the Kronecker delta and Xi (for i = 1, . . . , N) are the solutions of the
system ⎧⎪⎨

⎪⎩
ΔXi = 0 in Q \ B,

∂ηXi = ηi on ∂B,

Xi Q − periodic

with
∫

Q\B
Xi(y) dy = 0. Here the critical size of the holes is bε := C0ε,

Now let Pε be an extension operator, that is, Pε ∈ L(L2(Ωε);L2(Ω)) ∩
L(Vε;H1

0 (Ω)) where Vε = {v ∈ H1(Ω) : u = 0on ∂extΩε} (the existence of such
extension operator was proved in [12]). Then, from [14, theorem 2.16] we have

‖Pεv
ε − v‖L2(Ω) → 0, as ε → 0.

Thus, we conclude that

Theorem 5.3. If uδ,ε, v are given by (5.10) and (5.13) respectively, it holds that

lim
ε→0

Pε(lim
δ→0

uδ,ε) = v in L2(Ω).
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Now, we reverse the order in which we take limits and let first ε → 0 and then
δ → 0. First, as we did in the Dirichlet case we write our equation as

δ2

C
f(x) =

1
δN

∫
RN\Aε

J

(
x − y

δ

)
(uε,δ(y) − uε,δ(x))dy, x ∈ Ωε,

since again in this case we want to use that the involved kernel satisfies

1
δN

∫
RN

J
(z

δ

)
dz = 1.

Arguing as in § 3 with a fixed δ we obtain that there exists a limit u∗,δ ∈ L2(Ω)
such that

ũε,δ ⇀ u∗,δ weakly in L2(Ω).

Moreover, the limit u∗,δ satisfies the following nonlocal problem in Ω⎧⎨
⎩

δ2

C
X (x) f(x) = X (x)

1
δN

∫
RN

J

(
x − y

δ

)
(u∗(y) − u∗(x)) dy − Λ(x)u∗(x)

u∗(x) ≡ 0, x ∈ R
N \ Ω,

(5.14)
where Λ ∈ L∞(Ω) is given by

Λ(x) =
1

δN

∫
RN

J

(
x − y

δ

)
(1 − χΩ(y) + X (y)) dy −X (x), x ∈ Ω.

Here χΩ is the characteristic function of the open set Ω and X is the constant given
by (5.8), that is,

X =

⎧⎨
⎩

|Q \ B|
|Q| if rε = C0ε,

1 if rε � C0ε.

Note that also in this case the critical size is bε := C0ε.
Now, for the limit as δ → 0 we consider two cases. First, when rε � bε, we have

X = 1 and from the results in [2, § 3.2.2] we get that

u∗,δ → w, in L2(Ω),

as δ → 0, where w is the solution to Δw = f with w = 0 on ∂Ω.
In the case rε = bε we have

δ2

C
f(x) =

1
δN

∫
RN

J

(
x − y

δ

)
(u∗,δ(y) − u∗,δ(x)) dy − Λ u∗,δ(x).

Multiplying by u∗,δ and integrating we get, arguing as in the Dirichlet case and
using lemma 2.1, that

u∗,δ → 0, in L2(Ω),

as δ → 0.
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Hence, we have obtained that u∗,δ converges as δ → 0 to w that is given by

w =

{
the solution to Δw = f, with w = 0 on ∂Ω, if rε � bε,

0, if rε = bε.
(5.15)

Therefore, we have the following theorem.

Theorem 5.4. If uδ,ε, w are given by (5.10) and (5.15) respectively,it holds that

lim
δ→0

(
lim
ε→0

ũδ,ε
)

= w weakly in L2(Ω).

Now, let us see when v and w coincide. We have to distinguish only two cases
according to the size of the holes:

Case 1. rε = bε. In this case we have that w = 0 and v is the solution to

N∑
i,j=1

qij
∂2v

∂xi∂xi
=

|Q \ B|
|Q| f.

Note that w 
= v in this case.
Case 2. rε � bε. In this case, w and v coincide and are given by the unique

solution to Δw = f .
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