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In this paper we investigate the effects of oil price uncertainty and its asymmetry on real
economic activity in the United States, in the context of a bivariate vector autoregression
with GARCH-in-mean errors. The model allows for the possibilities of spillovers and
asymmetries in the variance–covariance structure for real output growth and the change in
the real price of oil. Our measure of oil price uncertainty is the conditional variance of the
oil price–change forecast error. We isolate the effects of volatility in the change in the
price of oil and its asymmetry on output growth and employ simulation methods to
calculate generalized impulse response functions and volatility impulse response
functions to trace the effects of independent shocks on the conditional means and the
conditional variances, respectively, of the variables. We find that oil price uncertainty has
a negative effect on output, and that shocks to the price of oil and its uncertainty have
asymmetric effects on output.

Keywords: Crude Oil, Volatility, Vector Autoregression, Multivariate GARCH-in-Mean
VAR

1. INTRODUCTION

Questions regarding the relationship between the price of oil and economic activity
are fundamental empirical issues in macroeconomics. Hamilton (1983) showed
that oil prices had significant predictive content for real economic activity in the
United States prior to 1972, whereas Hooker (1996) argued that the estimated linear
relations between oil prices and economic activity appear much weaker after 1973.
In the debate that followed, it has been suggested that the apparent weakening of
the relationship between oil prices and economic activity is illusory and that the
true relationship between oil prices and real economic activity is asymmetric,
with the correlation between oil price decreases and output significantly different
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from the correlation between oil price increases and output—see, for example,
Mork (1989) and Hamilton (2003). More recently, however, Edelstein and Kilian
(2007, 2008) evaluated alternative hypotheses and argued that the evidence of
asymmetry cited in the literature is driven by a combination of ignoring the effects
of the 1986 Tax Reform Act on fixed investment and the aggregation of energy
and non–energy related investment.

There is a vast literature that investigates the effects of oil prices on the real
economy. However, relatively few studies consider the effects of uncertainty about
oil prices on real economic activity. Lee et al. (1995) were the first to employ
recent advances in financial econometrics and model oil price uncertainty using
a univariate GARCH (1,1) model. They calculated an oil price shock variable,
reflecting the unanticipated component as well as the time-varying conditional
variance of oil price changes, introduced it into various vector autoregression
(VAR) systems, and found that oil price volatility is highly significant in explaining
economic growth. They also found evidence of asymmetry, in the sense that
positive shocks have a strong effect on growth whereas negative shocks do not.
The Lee et al. (1995) approach, however, is subject to the generated regressor
problem, described by Pagan (1984).

More recently, Elder and Serletis (2010) examined the direct effects of oil
price uncertainty on real economic activity in the United States, over the modern
OPEC period, in the context of a structural VAR that is modified to accommodate
GARCH-in-mean errors, as detailed in Engle and Kroner (1995) and Elder (2004).
As a measure of uncertainty about the impending oil price, they use the conditional
standard deviation of the forecast error for the change in the price of oil. Their main
result is that uncertainty about the price of oil has had a negative and significant
effect on real economic activity over the post-1975 period, even controlling for
lagged oil prices and lagged real output. Their estimated effect is robust to a
number of different specifications, including alternative measures of the price of
oil and of economic activity, as well as alternative sample periods. They also find
that accounting for oil price uncertainty tends to reinforce the decline in real GDP
in response to higher oil prices, although moderating the short-run response of
real GDP to lower oil prices.

In this paper we move the empirical literature forward by investigating the
asymmetric effects of uncertainty on output growth and oil price changes, as
well as the response of uncertainty about output growth and oil price changes to
shocks. In doing so, we use an extremely general bivariate framework in which
a vector autoregression is modified to accommodate GARCH-in-mean errors,
as detailed in Engle and Kroner (1995), Grier et al. (2004), and Shields et al.
(2005). The model allows for the possibilities of spillovers and asymmetries in the
variance–covariance structure for real activity and the real price of oil. As in Elder
and Serletis (2010), our measure of oil price change volatility is the conditional
variance of the oil price change forecast error. We isolate the effects of oil price
change volatility and its asymmetry on output growth and, following Koop et al.
(1996), Grier et al. (2004), and Hafner and Herwartz (2006), we employ simulation
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methods to calculate generalized impulse response functions (GIRFs) and volatil-
ity impulse response functions (VIRFs) to trace the effects of independent shocks
on the conditional means and the conditional variances, respectively, of the vari-
ables.

We find that our bivariate, GARCH-in-mean, asymmetric VAR-BEKK model
embodies a reasonable description of the monthly U.S. data, over the period
from 1980:1 to 2010:7. We present evidence that increased uncertainty about the
change in the real price of oil is associated with a lower average rate of growth in
real economic activity. Generalized impulse response experiments highlight the
asymmetric effects of positive and negative shocks in the change in the real price
of oil on output growth. Also, volatility impulse response experiments reveal that
the effect of good news (negative shocks in the change in the real price of oil) on
the conditional variance of the change in the real price of oil differs in magnitude
and persistence from that of bad news of similar magnitude. This result suggests
that, given the relationship between oil price volatility and output, the asymmetric
response of oil price volatility to oil price shocks might be a contributing factor in
explaining the asymmetric relationship between oil prices and economic activity.

The paper is organized as follows. Section 2 presents the data and Section 3
provides a brief description of the bivariate, GARCH-in-mean, asymmetric VAR-
BEKK model. Sections 4, 5, and 6 assess the appropriateness of the econometric
methodology by various information criteria and present and discuss the empirical
results. The final section concludes the paper.

2. THE DATA

We use monthly data for the United States from the Federal Reserve Economic
Database (FRED) maintained by the Federal Reserve Bank of St. Louis, over the
period from 1980:1 to 2010:7, on two variables—the industrial production index
(yt ) and the real price of oil (oilt ). In particular, we use the spot price on West
Texas Intermediate (WTI) crude oil as the nominal price of oil and divide it by
the consumer price index (CPI) to obtain the real price of oil. Following Bernanke
et al. (1997), Lee and Ni (2002), Hamilton and Herrera (2004), and Edelstein
and Kilian (2008), we use the industrial production index as a proxy variable for
real output. It is to be noted that industrial output reflects only manufacturing,
mining, and utilities, and represents only about 20% of total output. The industrial
production index, however, captures economic activity that is likely to be directly
affected by oil prices and uncertainty about oil prices.

Table 1 presents summary statistics for the annualized logarithmic first differ-
ences of yt and oilt , denoted as � ln yt and � ln oilt , and Figures 1 and 2 plot
the ln yt and � ln yt and ln oilt and � ln oilt series, respectively, with shaded area
indicating NBER recessions. Both � ln yt and � ln oilt are skewed and there is
a significant amount of excess kurtosis present in the data. Moreover, a Jarque–
Bera (1980) test for normality, distributed as a χ2(2) under the null hypothesis
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TABLE 1. Summary statistics

A. Summary statistics
Excess J–B

Variable Mean Variance Skewness kurtosis normality

� ln yt 1.951 70.174 −0.956 4.375 348.789
(0.000)

� ln oilt −0.607 9583.058 −0.344 3.374 181.375
(0.000)

B. Unit root and stationary tests
Unit root tests KPSS stationarity tests

Variable ADF(τ) ADF(µ) ADF η̂µ η̂τ

� ln yt −6.508 −6.898 −6.898 0.181 0.155
� ln oilt −8.274 −8.265 −8.459 0.200 0.019
5% cv −1.941 −2.871 −3.425 0.463 0.146

C. Tests for serial correlation and ARCH
Variable Q(4) Q(12) ARCH(4)

� ln yt 100.734 127.531 28.192
(0.000) (0.000) (0.000)

� ln oilt 33.913 50.807 27.187
(0.000) (0.000) (0.000)

D. Engle and Ng (1993) Tests for sign and size bias in variance
Variable Sign Negative size Positive size Joint

� ln yt 24.440 −7.846 −1.622 37.102
(0.013) (0.000) (0.171) (0.000)

� ln oilt 3543.713 −87.300 −0.786 32.087
(0.062) (0.000) (0.963) (0.000)

Note: Numbers in parentheses are tail areas of tests. Annualized logarithmic first differences are used.

of normality, suggests that each of � ln yt and � ln oilt fails to satisfy the null
hypothesis of the test.

A battery of unit root and stationarity tests are conducted in Table 1 in � ln yt

and � ln oilt . In particular, we report the augmented Dickey–Fuller (ADF) test
[see Dickey and Fuller (1981)] and, given that unit root tests have low power
against relevant trend stationary alternatives, we also present Kwiatkowski et al.
(1992) tests, known as KPSS tests, for level and trend stationarity. As can be
seen, the null hypothesis of a unit root can be rejected at conventional significance
levels. Moreover, the t-statistics η̂µ and η̂τ that test the null hypotheses of level and
trend stationarity are small relative to their 5% critical values of 0.463 and 0.146
(respectively), given in Kwiatkowski et al. (1992). We thus conclude that � ln yt

and � ln oilt are stationary [integrated of order zero, or I (0), in the terminology
of Engle and Granger (1987)].
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FIGURE 1. Logged real output and the real output growth rate.
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FIGURE 2. Logged real oil price and the rate of change in the real price of oil.
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In panel C of Table 1, we conduct Ljung–Box (1979) tests for serial correlation
in � ln yt and � ln oilt . The Q-statistics, Q(4) and Q(12), are asymptotically
distributed as χ2(36) on the null hypothesis of no autocorrelation. Clearly, there
is significant serial dependence in the data. We also present (in the last column
of panel C) Engle’s (1982) ARCH χ2 test statistic, distributed as a χ2(1) on the
null of no ARCH. The test indicates that there is strong evidence of conditional
heteroskedasticity in each of the � ln yt and � ln oilt series.

Finally, as we are interested in the asymmetry of the volatility response to
news, in panel D of Table 1 we present Engle and Ng (1993) tests for “sign bias,”
“negative size bias,” and “positive size bias,” based on the respective regression
equations

ε̂2
t = φ0 + φ1D

−
t−1 + ξt , (1)

ε̂2
t = φ0 + φ1D

−
t−1̂εt−1 + ξt , (2)

ε̂2
t = φ0 + φ1D

+
t−1̂εt−1 + ξt , (3)

where ε̂t is the residual from a fourth-order autoregression of the raw data (� ln yt

or � ln oilt ), treated as a collective measure of news at time t , D−
t−1 is a dummy

variable that takes a value of one when ε̂t−1 is negative (bad news) and zero
otherwise, D+

t−1 = 1−D−
t−1, picking up the observations with positive innovations

(good news), and φ0 and φ1 are parameters. The t-ratio of the φ1 coefficient in
each of the regression equations (1)–(3) is defined as the test statistic.

The sign bias test in equation (1) examines the impact that positive and negative
shocks have on volatility which is not predicted by the volatility model under
consideration. In particular, if the response of volatility to shocks is asymmetric
(that is, positive and negative shocks to ε̂t−1 impact differently upon the conditional
variance, ε̂2

t ), then φ1 will be statistically significant. Irrespective of whether the
response of volatiltiy to shocks is symmetric or asymmetric, the size (or magnitude)
of the shock could also affect volatility. The negative size bias test in equation (2)
focuses on the asymmetric effects of negative shocks (that is, whether small and
large negative shocks to ε̂t−1 impact differently upon the conditional variance, ε̂2

t ).
In this case, D−

t−1 is used as a slope dummy variable in equation (2) and negative
size bias is present if φ1 is statistically significant. The positive size bias test in
equation (3) focuses on the different effects that large and small positive shocks
have on volatility, and positive size bias is present if φ1 is statistically significant
in (3). We also conduct a joint test for both sign and size bias using the regression
equation

ε̂2
t = φ0 + φ1D

−
t−1 + φ2D

−
t−1̂εt−1 + φ3D

+
t−1̂εt−1 + ξt . (4)

In the joint test in equation (4), the test statistic is equal to T × R2 (where R2 is
from the regression) and follows a χ2 distribution with three degrees of freedom
under the null hypothesis of no asymmetric effects.

As can be seen in panel D of Table 1, the conditional volatility of output growth
is sensitive to the sign and size of the innovation. In particular, there is strong
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evidence of sign and negative size bias in the output growth volatility, and the
joint test for both sign and size bias is highly significant. Also, the conditional
volatility of the change in the price of oil displays negative size bias and the joint
test for both sign and size bias is significant at conventional levels.

3. ECONOMETRIC METHODOLOGY

Given the evidence of conditional heteroskedasticity in the � ln yt and � ln oilt
series, we characterize the joint data-generating process underlying � ln yt and
� ln oilt as a bivariate GARCH-in-mean model, as follows:

yt = a +
p∑

i=1

Γiyt−i +
q∑

j=0

Ψj

√
ht−j + et (5)

et | �t−1 ∼ (0, H t ) , H t =
[

h� ln y� ln y,t h� ln y� ln oil,t

h� ln oil� ln y,t h� ln oil� ln oil,t

]
,

where 0 is the null vector, �t−1 denotes the available information set in period
t − 1, and

yt =
[

� ln yt

� ln oilt

]
;et =

[
e� ln y,t

e� ln oil,t

]
; ht =

[
h� ln y� ln y,t

h� ln oil� ln oil,t

]
;

a =
[

a� ln y

a� ln oil

]
; Γi =

[
γ

(i)
11 γ

(i)
12

γ
(i)
21 γ

(i)
22

]
; Ψj =

[
ψ

(j)

11 ψ
(j)

12

ψ
(j)

21 ψ
(j)

22

]
.

Notice that we have not added any error correction term to the model, as the null
hypothesis of no cointegration between output (ln yt ) and the real price of oil (ln
oilt ) cannot be rejected.

Multivariate GARCH models require that we specify volatilities of � ln yt and
� ln oilt , measured by conditional variances. Several different specifications have
been proposed in the literature, including the VECH model of Bollerslev et al.
(1988), the CCORR model of Bollerslev (1990), the FARCH specification of
Engle et al. (1990), the BEKK model proposed by Engle and Kroner (1995), and
the DCC model of Engle (2002). However, none of these specifications is capable
of capturing the asymmetry of the volatility response to news.

In this regard, given the asymmetric effects of news on volatility in the � ln yt

and � ln oilt series, we use an asymmetric version of the BEKK model, introduced
by Grier et al. (2004),

H t = C ′C +
f∑

j=1

B′
jH t−jBj +

g∑
k=1

A′
ket−ke

′
t−kAk + D′ut−1u

′
t−1D, (6)
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where C, Bj , Ak , and D are 2 × 2 matrices (for all values of j and k), with
C being a triangular matrix to ensure positive definiteness of H . In equation
(6), ut = (u� ln y,t , u� ln oil,t )

′ and captures potential asymmetric responses. In
particular, if the change in the price of oil, � ln oilt , is higher than expected, we
take that to be bad news. We therefore capture bad news about oil price changes by
a positive oil price change residual, by defining u� ln oil,t = max{e� ln oil,t , 0}. We
also capture bad news about output growth by defining u� ln y,t = min{e� ln y,t , 0}.
Hence, ut = (u� ln y,t , u� ln oil,t )

′ = (min{e� ln y,t , 0}, max{e� ln oil,t , 0})′.
The specification in equation (6) allows past volatilities, H t−j , as well as lagged

values of ee′ and uu′ to show up in estimating current volatilities of � ln yt and
� ln oilt . Moreover, the introduction of the uu′ term in (6) extends the BEKK
model by relaxing the assumption of symmetry, thereby allowing for different
relative responses to positive and negative shocks in the conditional variance–
covariance matrix, H .

There are n+n2 (p + q)+n(n+1)/2+n2(f +g+1) parameters in (5) and (6)
and to deal with estimation problems in the large parameter space, we assume that
f = g = 1 in equation (6), consistent with recent empirical evidence regarding
the superiority of GARCH(1,1) models—see, for example, Hansen and Lunde
(2005). It is also to be noted that we have not included an interest rate variable
in the model (in the yt equation), although it would seem to be important as oil
prices affect output through an indirect effect on the rate of interest. We have kept
the dimension of the model low because of computational and degree of freedom
problems in the large parameter space. For example, with n = 2, p = q = 2 in
equation (5) and f = g = 1 in equation (6), the model has 33 parameters to be
estimated. If we introduce one more variable into the model (such as the interest
rate), then we would have to estimate 81 parameters. Moreover, the tests that we
conduct in Section 4 indicate that the exclusion of such a variable is not expected
to result in significant misspecification error.

In order to estimate our bivariate GARCH-in-mean asymmetric BEKK model,
we construct the likelihood function, ignoring the constant term and assuming that
the statistical innovations are conditionally Gaussian,

lt = −1

2

T∑
t=t+1

log |H t | − 1

2

T∑
t=t+1

(
e′

tH
−1
t et

)
,

where et and H t are evaluated at their estimates. The log-likelihood is maximized
with respect to the parameters Γi (i = 1, . . . , p), �j (j = 1, . . . , q), C, B,
A, and D. As we are using the BEKK model, we do not need to impose any
restrictions on the variance parameters to make H t positive definite. Moreover,
we are estimating all the parameters simultaneously rather than estimating mean
and variance parameters separately, thus avoiding the Lee et al. (1995) problem
of generated regressors.

https://doi.org/10.1017/S1365100511000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000204


446 SAJJADUR RAHMAN AND APOSTOLOS SERLETIS

4. EMPIRICAL EVIDENCE

Initially we used the AIC and SIC criteria to select the optimal values of p and
q in (5). However, because of computational difficulties and remaining serial
correlation and ARCH effects in the standardized residuals, we set p = 3 and
q = 1 in equation (5). Hence, with p = 3 and q = 1 in equation (5), and
f = g = 1 in equation (6), we estimate a total of 37 parameters. Maximum
likelihood (ML) estimates of the parameters and diagnostic test statistics are
presented in Tables 2 and 3.

We conducted a battery of misspecification tests, using robustified versions of
the standard test statistics based on the standardized residuals

zi = ei,t√
ĥij,t

, for i, j = � ln y, � ln oil.

As shown in panel A of Table 2, the Ljung–Box Q-statistics for testing serial
correlation cannot reject the null hypothesis of no autocorrelation (at conventional
significance levels) for the values and the squared values of the standardized
residuals, suggesting that there is no evidence of conditional heteroskedasticity.
Moreover, the failure of the data to reject the null hypotheses of E(z) = 0 and
E(z2) = 1 implicitly indicates that our bivariate asymmetric GARCH-in-mean
model does not bear significant misspecification error—see, for example, Kroner
and Ng (1998).

In Table 3, we also present diagnostic tests suggested by Engle and Ng (1993)
and Kroner and Ng (1998), based on the “generalized residuals,” defined as
ei,t ej,t − hij,t for i, j = � ln y, � ln oil. For all symmetric GARCH models,
the news impact curve—see Engle and Ng (1993)—is symmetric and centered
at ei,t−1 = 0. A generalized residual can be thought of as the distance between
a point on the scatterplot of ei,t ej,t and a corresponding point on the news im-
pact curve. If the conditional heteroskedasticity part of the model is correct,
Et−1(ei,t ej,t − hij,t ) = 0 for all values of i and j , generalized residuals should
be uncorrelated with all information known at time t − 1. In other words, the
unconditional expectation of ei,t ej,t should be equal to its conditional one, hij,t .

The Engle and Ng (1993) and Kroner and Ng (1998) misspecification indicators
test whether we can predict the generalized residuals by some variables observed in
the past, but that are not included in the model—this is exactly the intuition behind
Et−1(ei,t ej,t − hij,t ) = 0. In this regard, we follow Kroner and Ng (1998) and
Shields et al. (2005) and define two sets of misspecification indicators. In a two-
dimensional space, we first partition (e� ln y,t−1, e� ln oil,t−1) into four quadrants
in terms of the possible signs of the two residuals. Then, to shed light on any
possible sign bias of the model, we define the first set of indicator functions
as I (e� ln y,t−1 < 0), I (e� ln oil,t−1 < 0), I (e� ln y,t−1 < 0; e� ln oil,t−1 < 0),
I (e� ln y,t−1 > 0; e� ln oil,t−1 < 0), I (e� ln y,t−1 < 0; e� ln oil,t−1 > 0), and
I (e� ln y,t−1 > 0; e� ln oil,t−1 > 0), where I (·) equals one if the argument is
true and zero otherwise. Significance of any of these indicator functions indicates
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TABLE 2. The bivariate GARCH-in-mean asymmetric BEKK model

A. Conditional mean equation

a =

⎡⎢⎢⎢⎣
0.725

(0.895)

−47.680
(0.005)

⎤⎥⎥⎥⎦; Γ1 =

⎡⎢⎢⎢⎣
0.213 0.002

(0.000) (0.614)

0.528 0.174
(0.303) (0.000)

⎤⎥⎥⎥⎦; Γ2 =

⎡⎢⎢⎢⎣
0.263 −0.006

(0.000) (0.027)

1.633 −0.100
(0.000) (0.112)

⎤⎥⎥⎥⎦; Γ3 =

⎡⎢⎢⎢⎣
0.179 −0.002

(0.163) (0.824)

−0.276 0.043
(0.512) (0.380)

⎤⎥⎥⎥⎦;

Ψ1 =

⎡⎢⎢⎢⎣
0.144 −0.071

(0.000) (0.005)

−1.735 0.276
(0.309) (0.726)

⎤⎥⎥⎥⎦; Ψ2 =

⎡⎢⎢⎢⎣
0.046 0.056

(0.941) (0.000)

3.210 0.123
(0.205) (0.855)

⎤⎥⎥⎥⎦ .

Residual diagnostics
Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt
−0.007 (0.892) 0.994 (0.997) 1.139 (0.887) 2.701 (0.608) 15.358 (0.222) 12.029 (0.443)

zoilt −0.020 (0.698) 1.003 (1.001) 7.016 (0.135) 2.650 (0.617) 13.517 (0.332) 8.868 (0.714)
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TABLE 2. Continued

B. Conditional variance–covariance structure

C =

⎡⎢⎢⎢⎣
5.400 −3.338

(0.000) (0.435)

22.662
(0.001)

⎤⎥⎥⎥⎦; B =

⎡⎢⎢⎢⎣
0.002 1.213

(0.994) (0.354)

0.001 0.807
(0.919) (0.000)

⎤⎥⎥⎥⎦;

A =

⎡⎢⎢⎢⎣
0.393 0.298

(0.277) (0.842)

0.018 0.546
(0.133) (0.000)

⎤⎥⎥⎥⎦; D =

⎡⎢⎢⎢⎣
−0.898 1.491
(0.000) (0.093)

−0.016 0.037
(0.335) (0.752)

⎤⎥⎥⎥⎦.

Hypothesis testing

Diagonal VAR H0 : γ (i)

12 = γ
(i)

21 = 0, for i = 1, 2, 3 (0.000)

No GARCH H0 : αij = βij = δij = 0, for all i, j (0.000)

No GARCH-M H0 : ψk
ij = 0, for all i, j, k (0.000)

No asymmetry H0 : δij = 0, for i, j = 1, 2 (0.000)

Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 (0.000)

Note: Model: Equations (2) and (3) with p = 3, q = 1, and f = g = 1. Numbers in parentheses are tail areas of tests.
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TABLE 3. Diagnostic tests based on the news impact curve

e2
� ln y,t− e� ln y,t e� ln oil,t− e2

� ln oil,t−
h� ln y� ln y,t h� ln y� ln oil,t −h� ln oil� ln oil,t

I (e� ln y,t−1 < 0) 1.107 (0.292) 0.337 (0.561) 2.441 (0.118)
I (e� ln oil,t−1 < 0) 0.027 (0.867) 0.620 (0.430) 1.639 (0.200)
I (e� ln y,t−1 < 0, 31.178 (0.000) 5.890 (0.015) 0.772 (0.379)

e� ln oil,t−1 < 0)

I (e� ln y,t−1 > 0, 18.607 (0.000) 12.271 (0.000) 3.187 (0.074)
e� ln oil,t−1 < 0)

I (e� ln y,t−1 < 0, 1.414 (0.234) 20.550 (0.000) 8.859 (0.003)
e� ln oil,t−1 > 0)

I (e� ln y,t−1 > 0, 1.322 (0.250) 3.452 (0.063) 1.205 (0.272)
e� ln oil,t−1 > 0)

e2
� ln y,t−1I (e� ln y,t−1 < 0) 0.392 (0.530) 1.954 (0.162) 2.953 (0.085)

e2
� ln y,t−1I (e� ln oil,t−1 < 0) 0.688 (0.407) 5.476 (0.019) 10.516 (0.001)

e2
� ln oil,t−1I (e� ln y,t−1 < 0) 0.350 (0.553) 0.514 (0.473) 0.009 (0.923)

e2
� ln oil,t−1I (e� ln oil,t−1 < 0) 0.153 (0.695) 2.536 (0.111) 1.826 (0.176)

Note: Numbers in parentheses are tail areas of tests.

that the model (5)–(6) is incapable of predicting the effects of some shocks to
either � ln yt or � ln oilt . Moreover, because the possible effect of a shock could
be a function of both the size and the sign of the shock, we define a second
set of indicator functions, e2

� ln y,t−1I (e� ln y,t−1 < 0), e2
� ln y,t−1I (e� ln y,t−1 < 0),

e2
� ln oil,t−1I (e� ln y,t−1 < 0), and e2

� ln oil,t−1I (e� ln oil,t−1 < 0). These indicators are
technically scaled versions of the former ones, with the magnitude of the shocks
as a scale measure.

We conducted indicator tests and we report the results in Table 3. As can be
seen in Table 3, most of the indicators fail to reject the null hypothesis of no
misspecification—all test statistics in Table 3 are distributed as χ2(1). Hence, our
model (5)–(6) captures the effects of all sign bias and sign size scale–dependent
shocks in predicting volatility, and there is no significant misspecification error.
This means that the exclusion of the interest rate variable (in yt ), mentioned earlier,
is not expected to lead to significant misspecification problems.

Turning now back to panel B of Table 2, the diagonality restriction, γ
(i)
12 =

γ
(i)
21 = 0 for i = 1, 2, 3, is rejected, meaning that the data provide strong evidence

of the existence of dynamic interactions between � ln yt and � ln oilt . The null
hypothesis of homoskedastic disturbances requires the A, B, and D matrices to be
jointly nonsignificant (that is, αij = βij = δij = 0 for all i, j) and is rejected at the
1% level or better, suggesting that there is significant conditional heteroskedasticity
in the data. The null hypothesis of symmetric conditional variance–covariances,
which requires all elements of the D matrix to be jointly insignificant (that is,
δij = 0 for all i, j ), is rejected at the 1% level or better, implying the existence of
some asymmetries in the data that the model is capable of capturing. Also, the null
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hypothesis of a diagonal covariance process requires the off-diagonal elements of
the A, B, and D matrices to be jointly insignificant (that is, α12 = α21 = β12 =
β21 = δ12 = δ21 = 0), but these estimated coefficients are jointly significant at the
1% level of significance.

Thus the � ln yt–� ln oilt process is strongly conditionally heteroskedastic,
with innovations in oil price changes significantly influencing the conditional
variance of output growth in an asymmetric way. Moreover, the sign as well as the
size of oil price change innovations are important. To establish the relationship
between volatility in the change in the price of oil and output growth, in Table
2 we test the null hypothesis that the volatility of � ln oilt does not (Granger)
cause output growth, H0 : ψ12 = 0. We strongly reject the null hypothesis, finding
strong evidence in support of the hypothesis that � ln oilt volatility Granger-causes
output growth.

In Figures 3–5 we plot the conditional standard deviations of output growth and
the change in the price of oil, as well as the conditional covariance implied by our
estimates of the asymmetric VAR-BEKK model in Table 2. In Figure 3, the biggest
episode of output growth volatility coincides with the 2009 NBER recession—the
largest recession in the sample. Regarding the change in the real price of oil,
� ln oilt , Figure 4 shows that the largest episodes of oil price change volatility
took place in 1986, 1990, and 2009. All of these volatility jumps in � ln oilt do
not coincide with NBER recessions, but the relatively higher volatility jump in the
oil price change in 2009 coincides with the largest recession in the sample. The
volatility jumps in 1986 and 1999 are the results of steep oil price declines rather
than oil price increases. Finally, the conditional covariance between � ln yt and
� ln oilt , shown in Figure 5, is highest in 1986, 1991, and 2009.

5. GENERALIZED IMPULSE RESPONSE FUNCTIONS

As van Dijk et al. (2007) recently put it, “it generally is difficult, if not impossible,
to fully understand and interpret nonlinear time series models by considering
the estimated values of the model parameters only.” Thus, in order to quantify
the dynamic response of output growth and oil price changes to shocks and to
investigate the statistical significance of the asymmetry in the variance–covariance
structure, we calculate GIRFs, introduced by Koop et al. (1996) and recently used
by Grier et al. (2004), based on our bivariate, GARCH-in-mean, asymmetric
VAR-BEKK model (5)–(6).

Traditional impulse-response functions, which are more usefully applied to
linear models than to nonlinear ones, measure the effect of a shock (say of size
δ) hitting the system at time t on the state of the system at time t + n, given
that no other shocks hit the system. As Koop et al. (1996, p. 121) put it, “the
idea is very similar to Keynesian multiplier analysis, with the difference that the
analysis is carried out with respect to shocks or ‘innovations’ of macroeconomic
time series, rather than the series themselves (such as investment or government
expenditure).” In the case of multivariate nonlinear models, however, traditional
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FIGURE 3. Conditional standard deviation of output growth.
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FIGURE 4. Conditional standard deviation of the change in the price of oil.

https://doi.org/10.1017/S1365100511000204 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100511000204


A
SY

M
M

ETR
IC

EFFEC
TS

O
F

O
IL

PR
IC

E
SH

O
C

K
S

453

-1383.0

-883.0

-383.0

117.0

617.0

1117.0

1617.0

2117.0

2617.0

3117.0

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

FIGURE 5. Covariance between output growth and the change in the price of oil.
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impulse-response functions depend on the sign and size of the shock as well as
the history of the system (i.e., expansionary or contractionary) before the shock
hits—see, for example, Potter (2000).

In our asymmetric bivariate, GARCH-in-mean, VAR-BEKK model, shocks
impact on output growth and the change in the price of oil through the conditional
mean as described in equation (5) and with lags through the conditional variance as
described in equation (6). Moreover, the impulse responses of � ln yt and � ln Oilt
depend on the composition of the e� ln yt

and e� ln oilt shocks—that is, the effect
of a shock to � ln oilt is not isolated from having a contemporaneous effect on
� ln yt and vice versa. The GIRFs that we use in this paper provide a method
of dealing with the problems of shock, history, and composition dependence of
impulse responses in multivariate (linear and) nonlinear models.

In particular, assuming that yt is a random vector, the GIRF for an arbitrary
current shock, vt , and history, ωt−1, is defined as

GIRFy(n,vt , ωt−1) = E[yt+n|vt , ωt−1 ] − E[yt+n|ωt−1 ] (7)

for n = 0, 1, 2, . . . . If vt and ωt−1 are realizations of the random variables V t

and �t−1 (where �t−1 is the set containing information used to forecast yt ) that
generate realizations of {yt }, then according to Koop et al. (1996), the GIRF in
(7) can be considered to be a realization of a random variable defined by

GIRFy(n,V t , �t−1) = E[yt+n|V t , �t−1 ] − E[yt+n|�t−1 ]. (8)

Equation (8) is the difference between two conditional expectations,
E[yt+n|V t , �t−1] and E[yt+n|�t−1]. It is also to be noted that generalized
impulse-responses are expected values (which are not random values and will
not have error bands).

The computation of GIRFs in the case of multivariate nonlinear models is made
difficult by the inability to construct analytical expressions for the conditional
expectations E[yt+n|V t , �t−1] and E[yt+n|�t−1] in equation (8). To deal with
this problem, Monte Carlo methods of stochastic simulation are used to con-
struct the GIRFs. Here, we allow for time-varying composition dependence and
follow the algorithm described in Koop et al. (1996). In particular, using 310
data points as histories, we first transform the estimated residuals by using the
variance–covariance structure and Jordan decomposition. Then at each history, 50
realizations are drawn randomly, thereby obtaining identical and independent dis-
tributions over time. Recovering the time-varying dependence among the residuals,
15,500 realizations of impulse responses are calculated for each horizon. Finally,
the whole process is replicated 150 times to average out the effects of impulses.

The GIRFs to an average shock in � ln yt and � ln oilt are shown in Figures 6
and 7—they show the effect on � ln yt and � ln oilt of an average initial shock
in � ln yt and � ln oilt . As can be seen, none of the shocks is very persistent,
although the effect of the shock to � ln oilt on � ln yt is more persistent than
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FIGURE 6. GIRF of output growth to an oil price change shock.
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the effect of the shock to � ln yt on � ln oilt , as it takes longer for � ln yt to
return to its original value. Shocks to output growth and the change in the price
of oil provide a large stimulus to � ln yt and � ln oilt for the first few months.
In particular, in response to an oil price change shock, output growth declines by
more than 0.75% in the first quarter of the year and returns to its mean within
one and one-half years. Also the change in the price of oil responds very strongly
(almost 12%) to the innovation in output growth within the first few months of the
year.

In Figures 8 and 9, we differentiate between positive and negative shocks, in
order to address issues regarding the asymmetry of shocks. As can be seen in Figure
8, output growth declines because of a positive � ln oilt shock and increases in
response to a negative � ln oilt shock. The responses are not mirror images of
each other, suggesting that output growth, � ln yt , responds asymmetrically to
shocks in the change in the price of oil, � ln oilt . Also, the response of output
growth to a negative � ln oilt shock returns to zero faster than to a positive shock
of equal magnitude, suggesting that positive shocks in the change in the price of
oil have more persistent effects on output growth than negative ones. Figure 9
shows the GIRFs of � ln oilt to positive and negative output growth shocks. A
positive � ln yt shock raises � ln oilt and a negative � ln yt shock lowers � ln oilt .
The response of � ln oilt to output growth shocks is also asymmetric—a positive
output growth shock has a larger effect on the change in the price of oil compared
to a negative � ln yt shock.

Given the asymmetric nature of the specification of our bivariate asymmetric
VAR-BEKK model, we follow Van Dijk et al. (2007) and use the GIRFs to positive
and negative shocks to compute a random asymmetry measure, defined as follows,

ASYy(n,V +
t , �t−1) = GIRFy(n,V +

t , �t−1) + GIRFy(n,−V +
t , �t−1), (9)

where GIRFy(n,V +
t , �t−1) denotes the GIRF derived from conditioning on the

set of all possible positive shocks, GIRFy(n,−V +
t , �t−1) denotes the GIRF

derived from conditioning on the set of all possible negative shocks, and
V +

t = {vt |vt > 0}. The distribution of ASY(n,V +
t , �t−1) can provide an in-

dication of the asymmetric effects of positive and negative shocks. In particular, if
ASY(n,V +

t , �t−1) has a symmetric distribution with a mean of zero, then positive
and negative shocks have exactly the same effect (with opposite sign).

We have computed the asymmetry measures for � ln yt and � ln oilt and show
the distributions of the respective ASYy(n,V +

t , �t−1) measures in Figures 10
and 11 at horizons n = 6, n = 9, and n = 12. As can be seen in Figure 10,
on average output growth exhibits more persistence to a positive � ln oilt shock
than to a negative one. In particular, the loss of output growth due to a positive
� ln oilt shock (bad news) at horizon n = 9 is 0.083% in excess of the gain in
output growth from a negative � ln oilt shock (good news) of equal magnitude.
Figure 11 shows the asymmetry measure for an output growth shock on � ln oilt .
We find a stronger effect of a positive output growth shock on the change in the
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FIGURE 8. GIRFs of output growth to positive and negative shocks to the change in the price of oil.
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FIGURE 10. The distribution of the asymmetry measure based on the GIRFs of output growth to shocks in the change in the price of oil.
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price of oil than of a negative shock of equal magnitude. On average at horizon 9,
the increase in � ln oilt due to a positive output growth shock is 0.256% in excess
of the decrease in � ln oilt due to a negative � ln yt shock.

6. VOLATILITY IMPULSE RESPONSE FUNCTIONS

The GIRFs, introduced by Koop et al. (1996), trace the effects of independent
shocks (or news) on the conditional mean. Recently, Hafner and Herwartz (2006)
introduced a new concept of impulse response functions, known as “volatility
impulse response functions” (VIRFs), tracing the effects of independent shocks
on the conditional variance—see also Shields et al. (2005) for an early application
of the Hafner and Herwartz (2006) VIRFs concept.

We start with the conditional variance–covariance matrix of et , H t , and define
Qt = vech(H t ) to be a 3 × 1 random vector with the following elements (in that
order): h� ln y,t , h� ln y� ln oil,t , h� ln oil,t . Then the VIRFs of Qt , for n = 0, 1, . . . ,
are given by

VIRFQ(n,vt , ωt−1) = E[Qt+n|vt , ωt−1 ] − E[Qt+n|ωt−1 ]. (10)

Hence, the VIRF is conditional on the initial shock and history, vt and ωt−1,
and constructs the response by averaging out future innovations given the past
and present. Following Koop et al. (1996) and assuming that vt and ωt−1 are
realizations of the random variables V t and �t−1 that generate realizations of
{Q}, the VIRF in (10) can be considered to be a realization of a random variable
given by

VIRFQ(n,V t , �t−1) = E[Qt+n|V t , �t−1 ] − E[Qt+n|�t−1 ].

As already noted, the first element of VIRFQ(n,V t , �t−1) gives the impulse
response of the conditional variance of � ln yt , h� ln y,t , the second that of the
conditional covariance, h� ln y� ln oil,t , and the third that of the conditional vari-
ance of � ln oilt , h� ln oil,t . It should also be noted that in contrast to the GIRFs
where positive and negative shocks produce opposite effects, VIRFs consist of the
same (positive sign) effect irrespective of the sign of the shocks. Also, shock
linearity does not hold in the case of VIRFs. Finally, unlike traditional im-
pulse responses that do not depend on history, VIRFs depend on history through
the conditional variance–covariance matrix at time t = 0 when the innovation
occurs.

Using an analytic version of the VIRF, as described in Hafner and Herwartz
(2006), we show the VIRFs to shocks in � ln yt and � ln oilt in Figures 12 and
13. In Figure 12 (the responses of oil price change volatility are on the secondary
y-axis), shocks to the change in the price of oil, � ln oilt , produce much higher
responses in the conditional variance of the change in the price of oil, h� ln oil,t , than
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FIGURE 12. Volatility responses to oil price change shocks.
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FIGURE 13. Volatility responses to output growth shocks.
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in the conditional variance of output growth, h� ln y,t . Moreover, the responses of
both oil price change and output growth volatility are persistent—they take more
than two years to return to zero. In Figure 13 (again the responses of oil price
change volatility are on the secondary y-axis), shocks to output growth also have
a very remarkable impact on the conditional variance of the change in the price
of oil, h� ln oil,t , and the conditional variance of output growth, h� ln y,t . The peak
response of the change in the price of oil is much lower than that of output growth
volatility and h� ln oil,t takes longer to return to its original position compared to
h� ln y,t . In Figure 14, we distinguish again between positive and negative shocks
in order to investigate the effect of the asymmetry of shocks on the conditional
variance of the change in the real price of oil. As is shown, negative oil price
shocks have a larger impact on oil price change volatility than positive oil price
shocks do.

As with the GIRFs, we use the VIRFs to positive and negative innovations to
compute the random asymmetry measure

ASYQ(n,V +
t , �t−1) = VIRFQ(n,V +

t , �t−1) − VIRFQ(n,−V +
t , �t−1), (11)

where VIRFQ(n,V +
t , �t−1) denotes the VIRF derived from conditioning on the

set of all possible positive innovations, VIRFQ(n,−V +
t , �t−1) denotes the VIRF

derived from conditioning on the set of all possible negative innovations, and
V +

t = {vt |vt > 0}. The distribution of ASYQ(n,V +
t , �t−1) will be centered at

zero if positive and negative shocks have exactly the same effect. The difference
between the random asymmetry measures (9) and (11) is that the latter is the
diffrence between VIRFQ(n,V +

t , �t−1) and VIRFQ(n,−V +
t , �t−1), whereas the

former is the sum of GIRFy(n,V +
t , �t−1) and GIRFy(n,−V +

t , �t−1). This is
because unlike the GIRFs, where positive and negative shocks cause the response
functions to take opposite signs, the VIRFs are made up of the squares of the
innovations and are thus of the same sign.

We have computed the asymmetry measures ASYQ(n,V +
t , �t−1) and show

the distributions of these measures in Figures 15 and 16 at horizon n = 3, 6, 9.
The distribution in Figure 15 indicates that on the average, negative shocks to
the change in the price of oil have more persistent effects on oil price change
volatility than positive shocks do. The asymmetry measure for an oil price change
shock to oil price change volatility at horizon n = 3 is −4.13%. Given the
negative relationship between oil price change volatility and output growth, this
asymmetric response of oil price change volatility tends to further weaken the
short run response of ouput growth to lower oil prices. This result further helps in
explaining the asymmetric response of output growth to oil price shocks. Also, in
Figure 16, positive shocks to the change in the price of oil have more persistent
effects on the volatility of output growth than negative shocks do. The asymmetry
measure for oil price change shocks to the volatility in the change in the price of
oil at horizon n = 3 is 0.13%.
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FIGURE 14. VIRFs of oil price change to positive and negative shocks to the change in the price of oil.
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FIGURE 15. The distribution of the asymmetry measure based on the VIRFs of the change in price of oil to shocks in the change in the price of oil.
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FIGURE 16. The distribution of the asymmetry measure based on the VIRFs of the change in the price of oil to shocks in output growth.
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7. CONCLUSION

Recent empirical research regarding the relationship between the price of oil and
real economic activity has focused on the role of uncertainty about oil prices—see,
for example, Elder and Serletis (2010). In this paper, we examine the effects of
oil price uncertainty and its asymmetry on real economic activity in the United
States, in the context of a vector autoregression, in output growth and the change
in the real price of oil, because the identification of higher-order VARs is usually
highly questionable. In doing so, we modify our bivariate VAR to accommodate
asymmetric GARCH-in-mean errors.

Our model is extremely general and allows for the possibilities of spillovers
and asymmetries in the variance–covariance structure for real output growth and
the change in the real price of oil. Our measure of oil price uncertainty is the
conditional variance of the oil price change forecast error. We isolate the effects
of volatility in the change in the price of oil and its asymmetry on output growth
and, following Koop et al. (1996), Hafner and Herwartz (2006), and van Dijk
et al. (2007), we employ simulation methods to calculate GIRFs and VIRFs to
trace the effects of independent shocks on the conditional mean and the condi-
tional variance, respectively, of output growth and the change in the real price of
oil.

We find that our bivariate, GARCH-in-mean, asymmetric BEKK model em-
bodies a reasonable description of the U.S. data on output growth and the change
in the real price of oil. We show that the conditional variance–covariance process
underlying output growth and the change in the real price of oil exhibits significant
nondiagonality and asymmetry. We present evidence that increased uncertainty
about the change in the real price of oil is associated with a lower average growth
rate of real economic activity. Generalized impulse response experiments highlight
the asymmetric effects of positive and negative shocks in the change in the real
price of oil to output growth. Also, volatility impulse response experiments reveal
that the effect of good news (negative shocks to the change in the real price of
oil) on the conditional variance of the change in the real price of oil differs in
magnitude and persistence from that of bad news of similar magnitude. This helps
further in explaining the asymmetric response of output growth to oil price change
shocks.
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