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ABSTRACT
Aiming at the issue of missiles attacking on-ground maneuvering targets in three-dimensional
space, a three-dimensional finite-time guidance law with impact-angle constraints is pro-
posed. In order to improve convergence speed and restrain chattering phenomenon, the
nonsingular fast terminal three-dimensional second-order sliding mode guidance law with
coupling terms is designed based on the theory of nonhomogeneous fast terminal sliding
surface and second-order sliding mode control. The system model need not be linearized dur-
ing the design process, and the singular problem is avoided. A nonhomogeneous disturbance
observer is designed to estimate and compensate the total disturbance, which is caused by
target maneuvering information and coupling terms of line of sight. And the stability and
finite-time convergence of the guidance law are proved strictly and mathematically. Finally,
simulation results have verified the effectiveness and superiority of the proposed guidance
law.

Keywords: Maneuvering targets; Impact-angle constraints; Convergence speed; Second-
order sliding mode; Three-dimensional guidance law

1.0 INTRODUCTION
For realizing the maximum effectiveness of the missile and performing a precision strike on
the target, not only does the missile need to hit the target accurately, but it is also expected
to attack the target from a specified angle(1,2). Therefore, it is of great practical engineering
significance to study the guidance law with impact-angle constraints(3).

There are many methods for designing the guidance law with impact-angle constraint at
present. Based on the idea of proportional guidance, Ref. (4) designs a new type of bias pro-
portional guidance law with impact-angle constraints, its bias term is a function of the residual
time and impact-angle error. Based on the optimal control theory, and constrained by zero
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miss-distance and zero impact-angle error, Ref. (5) obtains the close-form solution of optimal
guidance law with impact-angle constraints by using Schwartz inequality. Based on the theory
of Model Predictive Static Programming (MPSP), the control quantity of the angle is updated
iteratively to satisfy the constraint conditions of impact-angle in Ref. (6). Based on the theory
of sliding mode control, Ref. (7) designs the guidance law with impact-angle constraints and
designs the extended state observer to estimate target maneuvering information.

Guidance law based on the theory of sliding mode control is very robust to external interfer-
ence(8), so it is widely used in the design of guidance law. Ref. (9) designs the sliding surface
based on the non-singular fast terminal sliding mode function and applies fast exponential
reaching law to design the guidance law in 2D space law with impact-angle constraints. Ref.
(10) proposes an integral sliding surface with finite time convergence and also applies fast
exponential reaching law to design the guidance law for attacking maneuvering target in 2D
space with impact-angle constraint and makes adaptive estimation for the upper bound of
unknown maneuvering target. But Ref. (9) and (10) only design the guidance law in 2D space
and the coupling relation between channels in 3D space is not considered, which makes the
design of the guidance law less practical. Ref. (11) proposes a 3D finite-time sliding mode
guidance law with impact-angle constraints. The model of guidance system is not decoupled
during the design process, and this guidance law can only be used to attack stationary tar-
gets. Ref. (12) applies the fast-double exponential reaching law to design 3D forward sliding
mode guidance law and ensures that the system can converge quickly to the sliding surface,
but this guidance law does not take the problem of impact-angle constraints into consider-
ation. In addition, all the above References study the first-order sliding mode guidance law
while the second-order sliding mode guidance has the advantages of strong chattering sup-
pression and strong robustness(13). So, the 3D finite-time guidance law with impact-angle
constraints based on the theory of second-order sliding mode variable structure control is of
great practical engineering value.

In this paper, a complete three-dimensional guidance system model is established and there
is no need to decouple the model. Then, the second-order sliding mode guidance law is
designed by selecting the non-singular terminal sliding mode surface, and also, the nonhomo-
geneous disturbance observer is designed, which estimate and compensate coupling terms of
unknown target maneuvering information and line-of-sight angle to avoid the singular prob-
lem in traditional terminal sliding mode guidance law. Finally, the stability and finite-time
convergence of the proposed guidance law are proved mathematically.

The advantages of the guidance law proposed in this paper are as following: 1© 3D coupling
terms are considered in the design of guidance law, and there is no need to decouple the
system model. 2© The nonhomogeneous disturbance observer is designed to estimate the total
disturbance caused by the coupling of target maneuvering information and line-of-sight angle
and prior information of target is not needed. 3© The second-order sliding mode guidance
law is designed by selecting the non-singular terminal sliding mode surface, which converges
fast and can restrain chattering phenomenon effectively. 4© The guidance law proposed in the
paper can be used to attack maneuvering targets in 3D space with impact-angle constraints
and has much value for engineering application.

2.0 3D SPACE TERMINAL GUIDANCE SYSTEM MODEL
Considering the case of a missile attacking a ground maneuvering target in 3D space, the
relative motion relationship between the missile and the target is shown in Fig. 1.
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Figure 1. Relative motion between missile and target.

In Fig. 1, Oxyz is the ground inertial coordinate system; M and T stand for the missile and
the target respectively; r stands for the line of sight between missile and target; qε and qβ

stand for line-of-sight dip angle and line-of-sight drift angle, respectively; and the direction is
defined as follows: qε is positive when r is above the horizontal plane Oxz; qβ is positive when
the ox axis rotates anticlockwise on the projection of r on the plane Oxz. vm is the velocity
of missile, θm and ϕm stand for ballistic inclination angle and ballistic deflection angle. The
direction is defined as follows: θm is positive when vm is above the horizontal plane; ϕm is
positive when the ox axis rotates anticlockwise on the projection of vm on the plane Oxz.
vt is the velocity of target. θt and ϕt respectively stands for course angle in pitching direction
and in horizontal direction. Definition of their direction is the same as that of ballistic incli-
nation angle and ballistic deflection angle. According to Fig. 1, the relative motion equation
of missile target in 3D space is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṙ = vt

(
cos θt cos qε cos

(
qβ − ϕt

)+ sin θt sin qε

)
− vm

(
cos θm cos qε cos

(
qβ − ϕm

)+ sin θm sin qε

)
rq̇ε = −vt

(
cos θt sin qε cos

(
qβ − ϕt

)− sin θt cos qε

)
+ vm

(
cos θm sin qε cos

(
qβ − ϕm

)− sin θm cos qε

)
rq̇β cos qε = −vt cos θt sin

(
qβ − ϕt

)+ vm cos θm sin
(
qβ − ϕm

)
. . . (1)

The dynamic equation of the missile is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇m = ax

θ̇m = ay

vm

ϕ̇m = − az

vm cos θm

. . . (2)

Where, ax, ay and az are the three components of missile acceleration in velocity direction,
normal velocity direction and lateral velocity direction. Most missiles have no thrust during
the process of terminal guidance so the acceleration is caused by a combined external force
acting on the missile.

https://doi.org/10.1017/aer.2019.130 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.130


ZHAO AND YOU NEW THREE-DIMENSIONAL SECOND-ORDER SLIDING MODE GUIDANCE LAW... 371

Decompose the missile velocity vm on three axes of the ground inertial coordinate system
Oxyz, the equation of missile motion in 3D space is written as:

⎧⎪⎨
⎪⎩

ẋm = vm cos θm cos ϕm

ẏm = vm sin θm

żm = −vm cos θm sin ϕm

. . . (3)

Similarly, decompose the target velocity vt on the three axes of the ground inertial
coordinate system Oxyz. The equation of target motion can be got.

Suppose that the rotational angular velocity of the line-of-sight coordinate system with
respect to the inertial coordinate system on the ground is ω. The components of the rel-
ative velocity of missile and target, the relative acceleration of missile and target, missile
velocity and missile acceleration in the line-of-sight coordinate system are vr, αr, vm and am.
According to the Coriolis effect, the following equation is written as:

⎧⎪⎨
⎪⎩

ar = ∂vr

∂t
+ ω × vr

am = ∂vm

∂t
+ ω × vm

. . . (4)

In this equation,

ω =
⎡
⎢⎣

0 −q̇ε q̇β cos qε

q̇ε 0 −q̇β sin qε

−q̇β cos qε q̇β sin qε 0

⎤
⎥⎦ , vr =

⎡
⎢⎣

ṙ

rq̇ε

−rq̇β cos qε

⎤
⎥⎦ ,

vm =
⎡
⎢⎣

vm

(
cos θm cos qε cos

(
qβ − ϕm

)+ sin θm sin qε

)
−vm

(
cos θm sin qε cos

(
qβ − ϕm

)− sin θm cos qε

)
vm cos θm sin

(
qβ − ϕm

)
⎤
⎥⎦

Expanding the first equation of Equation (4) produces:

⎧⎪⎨
⎪⎩

atr − amr = r̈ − rq̇2
ε − rq̇2

β cos q2
ε

atθ − amθ = 2ṙq̇ε + rq̇ε + rq̇2
β sin qε cos qε

atϕ − amϕ = −2ṙq̇β cos qε − rq̇β cos qε + 2rq̇εq̇β sin qε

. . . (5)

Where, atr, atθ , atϕ and amr, amθ , amϕ respectively stand for the components of the target and
missile acceleration on the three axes of the line-of-sight coordinate system.

Expand the second equation of Equation (4). Substitute Equation (2) in and simplify, the
transformation relation between ay, az and amθ , amϕ can be got:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ay = cos
(
qβ − ϕm

)
amθ − sin

(
qβ − ϕm

)
sin qεamϕ

sin θm sin qε + cos θm cos qε cos
(
qβ − ϕm

)
az = amϕ + sin θm cos

(
qβ − ϕm

)
amθ

cos
(
qβ − ϕm

) . . . (6)
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During the terminal guidance stage, the component of the relative acceleration of missile
and target in the line-of-sight coordinate system is quite small, so setting the component amr

of missile acceleration in the line-of-sight direction as 0. In order to make the rate of change of
ballistic inclination angle q̇ε and ballistic deflection angle q̇β converge to 0 in finite time, and
to make ballistic inclination angle qε and ballistic deflection angle qβ converge to expected
value qεd and qβd in finite time, the missile acceleration in line-of-sight normal direction amθ

and in lateral direction amϕ are designed in this paper by using the second and third equations
of Equation (5).

3.0 THE DESIGN OF GUIDANCE LAW
Aiming at the problem that the missile attacks the ground maneuvering target at the spec-
ified angle in 3D space, this part designs a nonsingular fast terminal second-order sliding
mode guidance law with impact-angle constraints. Firstly, the state equation of the 3D system
with impact-angle constraints is given. Then, the second-order sliding mode guidance law is
designed by selecting the non-singular terminal sliding mode surface, which ensures that the
chattering phenomenon is effectively suppressed while the system converges rapidly. At last,
the nonhomogeneous disturbance observer is designed for the target maneuvering informa-
tion and the coupling term of line-of-sight angle in the system to estimate and compensate the
total disturbance in the system.

3.1 Design goals
When the missile hits the target, the missile angle of attack can be approximately 0. According
to Ref. (14), the problem of missile impact-angle constraints can be transformed into the
problem of line-of-sight tracking.

Suppose that the excepted line-of-sight dip angle and line-of-sight drift angle at the time the
missile hits the target are respectively qεd and qβd , make x1 = qε − qεd , x2 = q̇ε, x3 = qβ − qβd ,
x4 = q̇β . Simplify the second and third equations in Equation (5), the system state equation in
3D space can be shown as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −2ṙx2

r
+ dθ − amθ

r
ẋ3 = x4

ẋ4 = −2ṙx4

r
+ dϕ + amϕ

r cos qε

. . . (7)

In this equation, dθ and dϕ are the total disturbance caused by the coupling term of maneu-
vering information of the target and the line-of-sight angle in the normal direction and lateral
direction of line-of- sight respectively. The expressions are respectively:

⎧⎪⎨
⎪⎩

dθ = −x2
4 sin qε cos qε + atθ

r

dϕ = 2x2x4 tan qε − atϕ

r cos qε

. . . (8)

The purpose of this part to design the guidance law is to make system Equation (7) converge
to 0 in a finite time by designing the missile acceleration in line-of-sight normal direction

https://doi.org/10.1017/aer.2019.130 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.130


ZHAO AND YOU NEW THREE-DIMENSIONAL SECOND-ORDER SLIDING MODE GUIDANCE LAW... 373

amθ and the missile acceleration in line-of-sight lateral direction amϕ , and to estimate and
compensate the total disturbance amθ and amϕ in the system by designing an nonhomogeneous
disturbance observer.

3.2 Second-order sliding mode guidance law based on fast terminal
sliding surface

According to Equation (7), choosing the fast terminal sliding surface:

{
s1 = x1 + k1sig(x1)a1 + k2sig(x2)a2

s2 = x3 + k3sig(x3)a3 + k4sig(x4)a4
. . . (9)

Where, k1, k2, k3 and k4 are all constants greater than 0, 1 < a2 <2; 1 < a4 <2; a1 > a2 ;
a2 > a4 ; sig(x)ai = |x|ai sgn(x), i = 1, 2, 3, 4.

Take the derivation of the sliding mode surface Equation (9) and substitute Equation (7) to
get:

⎧⎪⎪⎨
⎪⎪⎩

ṡ1 = x2 + a1k1 |x1|a1−1 x2 + a2k2 |x2|a2−1

(−2ṙx2

r
+ dθ − amθ

r

)

ṡ2 = x4 + a3k3 |x3|a3−1 x4 + a4k4 |x4|a4−1

(−2ṙx4

r
+ dϕ + amϕ

r cos qε

) . . . (10)

In order to make the system state converge to the sliding mode surface in finite time and
make the motion along the sliding surface converge to the expected system state in finite time,
for Equation (10), the guidance law designed in this paper is as following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

amθ = −2ṙx2 + r

a2k2
sig (x2)

2−a2
(
1 + a1k1 |x1|a1−1

)+ z1θ + α1sig(s1)1− 1
y + β1ε1

ε̇1 = |x2|a2−1 |s1|1− 2
y

r
sgn (s1)

amϕ =
(

2ṙx4 − r

a4k4
sig (x4)

2−a4
(
1 + a3k3 |x3|a3−1

)− z1ϕ − α2sig(s2)1− 1
u − β2ε2

)
cos qε

ε̇2 = |x4|a4−1 |s2|1− 2
u

r
sgn (s2)

. . . (11)
Where, z1θ and z1ϕ are respectively estimated values of total disturbance dθ and dϕ in system

(7) of the nonhomogeneous disturbance observer. Design parameters α1, α2, β1 and β2 are all
constants greater than 0 and y > 2, u > 2.

The guidance law Equation (11) proposed in this paper does not contain negative exponen-
tial terms. Therefore, the singularity problem in the traditional terminal sliding mode guidance
law is avoided. The fast terminal sliding mode surface is selected to design the guidance law,
which improves the speed of the system convergence to the expected value. The second-
order sliding mode guidance law is designed and it does not contain discontinuous symbolic
function terms, which effectively restrains the chattering phenomenon.

For the total system disturbance dθ and dϕ caused by the coupling term of line-of-
sight angle and target maneuvering information in system Equation (10), the following two
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observers are designed respectively to estimate dθ and dϕ according to the definition of
nonhomogeneous disturbance observer with finite time convergence in Ref. (15).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0θ = v0θ + x2 + a1k1 |x1|a1−1 x2 − 2ṙx2

r
− amθ

r

v0θ = −λ2θL
1
3 sig(z0θ − s1)

2
3 − u2θ (z0θ − s1) + z1θ

ż1θ = v1θ

v1θ = −λ1θL
1
2 sig(z1θ − v0θ )

1
2 − u1θ (z1θ − v0θ ) + z2θ

ż2θ = −λ0θLsgn(z2θ − v1θ ) − u0θ (z2θ − v1θ )

d̂θ = z1θ

. . . (12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0ϕ = v0ϕ + x4 + a3k3 |x3|a3−1 x4 − 2ṙx4

r
+ amϕ

r cos qε

v0ϕ = −λ2ϕL
1
3 sig(z0ϕ − s2)

2
3 − u2ϕ(z0ϕ − s2) + z1ϕ

ż1ϕ = v1ϕ

v1ϕ = −λ1ϕL
1
2 sig(z1ϕ − v0ϕ)

1
2 − u1ϕ(z1ϕ − v0ϕ) + z2ϕ

ż2ϕ = −λ0ϕLsgn(z2ϕ − v1ϕ) − u0ϕ(z2ϕ − v1ϕ)

d̂ϕ = z1ϕ

. . . (13)

Where, λiθ , λiϕ , uiθ and uiϕ are all constants greater than 0, d̂θ and d̂ϕ are relatively the
estimated values of dθ and dϕ , and they are also the true values in finite time which converges
to the total system disturbance.

4.0 PROOF OF STABILITY AND FINITE TIME
CONVERGENCE

When the nonhomogeneous disturbance observer designed in this paper is stable, the proof of
the stability of the system and the finite time convergence can be divided into two steps. Step
1 is to prove that the system state reaches the sliding surface in finite time. Step 2 is to prove
that the system state converges to the expected value along the sliding surface in finite time.

Step 1 Prove that the system reaches the sliding surface in finite time

Suppose that Equations (12) and (13) of the nonhomogeneous disturbance observer respec-
tively converge to the true value dθ and dϕ of the total system disturbance at time tr1 and tr2.
When t ≥ max {tr1, tr2}, substitute guidance law Equation (11) into Equation (10) and simplify
as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṡ1 = k2a2 |x2|a2−1

[
−α1 |s1|1− 1

y

r
sgn (s1) − β1

r

∫ |x2|a2−1 |s1|1− 2
y

r
sgn (s1) dt

]

ṡ2 = k4a4 |x4|a4−1

[
−α2 |s2|1− 1

u

r
sgn (s2) − β2

r

∫ |x4|a4−1 |s2|1− 2
u

r
sgn (s2) dt

] . . . (14)
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To facilitate analysis, the following state variables are introduced:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = s1

w2 = −a2k2β1

∫ |x2|a2−1 |s1|1− 2
y

r
sgn (s1) dt

w3 = s2

w4 = −a4k4β2

∫ |x4|a4−1 |s2|1− 2
u

r
sgn (s2) dt

. . . (15)

ρ1 =
[

|w1|1− 1
y sgn (w1)

w2

]
, ρ2 =

[
|w3|1− 1

u sgn (w3)

w4

]
. . . (16)

Take the derivation of Equation (16) to get:⎧⎪⎪⎨
⎪⎪⎩

ρ̇1 = |x2|a2−1

r
|w1|− 1

y Aρ1

ρ̇2 = |x4|a4−1

r
|w3|− 1

u Bρ2

. . . (17)

In Equation (17), the matrix A and B are respectively defined as:

A =
(

−a2k2α1

(
1 − 1

y

)
1 − 1

y

−a2k2β1 0

)
, B =

(−a4k4α2
(
1 − 1

u

)
1 − 1

u−a4k4β2 0

)

It’s easy to see that the matrices A and B are both Hurwitz matrices(16). Thus, for any
matrixes Q1 = QT

1 and Q2 = QT
2 , there exist corresponding matrixes P1 = PT

1 > 0 and P2 =
PT

2 > 0, which satisfy the following algebraic Riccati Equation (17):{
AT P1 + P1A = −Q1

BT P2 + P2B = −Q2

. . . (18)

For system Equation (17), choose the following Lyapunov function:{
V1 = ρT

1 P1ρ1

V2 = ρT
2 P2ρ2

. . . (19)

Take the derivation of Equation (19) to get:

{
V̇1 = ρ̇T

1 P1ρ1 + ρT
1 P1ρ̇1

V̇2 = ρ̇T
2 P2ρ2 + ρT

2 P2ρ̇2

. . . (20)

Substitute Equation (17) into Equation (20) to get:

⎧⎪⎪⎨
⎪⎪⎩

V̇1 = −|x2|a2−1

r
|w1|− 1

y ρT
1 Q1ρ1

V̇2 = −|x4|a4−1

r
|w3|− 1

u ρT
2 Q2ρ2

. . . (21)
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It can be known from Equation (16) that |w1|1− 1
y ≤ ‖ρ1‖ and |w3|1− 1

u ≤ ‖ρ2‖, Thereinto,
‖ · ‖ stands for Euclidean norm of matrix (·), Substitute it into Equation (21) to get:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̇1 ≤ −|x2|a2−1

r

∥∥ρ1

∥∥ −1
y−1 ρT

1 Q1ρ1 ≤ −m1V n1
1

V̇2 ≤ −|x4|a4−1

r

∥∥ρ4

∥∥ −1
u−1 ρT

2 Q2ρ2 ≤ −m2V n2
2

. . . (22)

Where,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1 = λmin(Q1)λ
1

2y−2 −1

max (P1)|x2|a2−1

rmax
≥ 0, n1 = 1 − 1

2y−2 ∈ (0, 1)

m2 = λmin(Q2)λ
1

2u−2 −1
max (P2)|x4|a4−1

rmax
≥ 0, n2 = 1 − 1

2u−2 ∈ (0, 1)

Thereinto, λmin(·) and λmax(·) represent the minimum eigenvalue and maximum eigenvalue
of the matrix (·) respectively. According to Equation (22), V̇1 ≤ 0, V̇2 ≤ 0, so the system
Equation (17) is stable. And according to Lemma 1 in Ref. (18), It can be known that the
origin is the stable equilibrium point of system(17) in finite time when |x2| �= 0, |x4| �= 0, and
the times that the system converges to the sliding mode surface are ts1 and ts2 respectively.
The expression are respectively:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ts1 = tr1 + V 1−n1
1 (tr1)

m1 (1 − n1)

ts2 = tr2 + V 1−n2
2 (tr2)

m2 (1 − n2)

. . . (23)

Where, tr1 and tr2 are the time of the true values dθ and dϕ of the total disturbance of conver-
gent system of Equations (12) and (13) of nonhomogeneous disturbance observer respectively.
Equation (23) indicates that the system state will converge to the sliding mode surfaces s1 and
s2 in finite time.

When |x2| = 0, |x4| = 0, and max {tr1, tr2} ≤ t ≤ min {ts1, ts2}, substitute guidance law
Equation (11) into system Equation (7) gets:

⎧⎪⎨
⎪⎩

ẋ2 = −α1

r
sig(s1)1− 1

y

ẋ4 = −α2

r
sig(s2)1− 1

u

. . . (24)

The system state does not converge to the sliding mode surfaces s1 and s2 yet, which means
s1 �= 0 and s2 �= 0. At this moment, ẋ2 �= 0 and ẋ4 �= 0, so |x2| = 0 and |x4| = 0 are not attractors
of the system and they will not prevent the system from converging to the sliding surface.

Step 2 Prove that the system state converges to the expected value in finite time

When t ≥ max {tr1, tr2}, which means the system state converges to the sliding mode
surfaces s1 = 0 and s2 = 0, Equation (9) becomes:

{
x1 + k1sig(x1)a1 + k2sig(x2)a2 = 0

x3 + k3sig(x3)a3 + k4sig(x4)a4 = 0
. . . (25)
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As for Equation (25), choose Lyapunov function(19) as following:

⎧⎪⎨
⎪⎩

V3 = 1

2
x2

1

V4 = 1

2
x2

3

. . . (26)

Take the derivation of Equation (26) and substitute Equation (25) can be shown as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇3 = x1x2 = x1

[
−x1

k2
− k1

k2
sig (x1)

a1

] 1
a2

V̇4 = x3x4 = x3

[
−x3

k4
− k3

k4
sig (x3)

a3

] 1
a4

. . . (27)

Substitute Equation (26) into Equation (27), after simplification:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇1 ≤
[
− 1

k2
2

1+a2
2 V

1+a2
2

1 − k1

k2
2

a1+a2
2 V

a1+a2
2

1

] 1
a2

V̇2 ≤
[
− 1

k4
2

1+a4
2 V

1+a4
2

2 − k3

k4
2

a3+a4
2 V

a3+a4
2

2

] 1
a4

. . . (28)

From Equation (28), It can be known that it has the same structure as Equation (22).
Similarly, x1 and x3 converge to 0 in finite time according to Lemma 1 in Ref. (20). Also,
according to Equation (25), when x1=0 and x3=0, x2 and x4 converge to 0 in finite time.

5.0 SIMULATION ANALYSIS
In order to verify the effectiveness and superiority of the guidance law proposed in this paper,
three missiles in different positions and states are simulated to attack the same maneuver-
ing target to verify the superiority of the guidance law in this paper. The superiority of the
guidance law is then verified by comparing it with different guidance laws under the same
conditions.

5.1 Simulation analysis of multiple missiles
To verify the effectiveness and universality of the guidance law designed in this paper, three
missiles at different positions and initial states which attack maneuvering targets at their own
specified angles are taken into consideration. Suppose that the initial coordinate of the target
is (10,0,10) km, velocity vt = 50m/s. The accelerations in the normal direction of velocity and
the lateral direction of velocity are respectively a ty = 1g and a tz = 0.5g. The initial course
angles in pitching direction and in yaw direction are θt0 = 10◦ and ϕt0 = 15◦ respectively. The
three missiles have a constant velocity of 300m/s. θm0 and ϕm0 stand for the initial dip angle
and drift angle of the missile respectively. qεd and qβd stand for the expected line-of-sight dip
angle and line-of-sight drift angle of the missile respectively. The remaining parameters of
the three missiles are shown in Table 1.
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Table 1
Initial parameters and expected angle

Missile Initial ordinate/km θm0(◦) ϕm0(◦) qεd(◦) qβd(◦)

M1 (5,5,5) −25 −20 −30 −30
M2 (6,6,5.5) −10 −30 −60 −20
M3 (4,4.5,6.5) 10 10 −50 −80

The parameters in the guidance law Equation (11) are set as following: a1 = a3 = 3,
a2 = a4 = 1.1, k1 = k2 = k3 = k4 = 1, α1 = α2 = 500, β1 = β2 = 600, γ = 2.1, u = 2.1. The
parameters of observer Equations (12) and (13) are as following: λ0j = 1.1, λ1j = 1.5, λ2j = 2;
u0j = 3, u1j = 6, u2j = 8, j = θ , ϕ; L = 0.1. The guidance blind area is set to 20m,which means
that the missile flies at the acceleration at which it enters the guidance blind area when missile-
target distance is less than 20m. The restriction of overload of missile is 30g. The simulation
step size is set to 1ms. The simulation results are shown in Fig. 2 and Table 2.

From Table 2 and Fig. 2(a)–(d), it can be known that under the guidance law Equation (11),
all three missiles in different states and at different initial positions can hit the maneuvering
targets at a specified line-of-sight dip angle and line-of-sight drift angle. The maximum miss
distances of the three missiles are no more than 0.3m, errors of line-of-sight dip angle and
line-of-sight drift angle are controlled in the range of 0.04◦, which verify the control ability
of the guidance law proposed in this paper to control miss distance and impact-angle error.
From Fig. 2(e)–(f), It can be known that rates of line-of-sight dip angle and line-of-sight drift
angle converge to 0 in finite time, which ensures that the missile can hit the target within
a limited time. From Fig. 2(g)–(h), both the overload of missile in normal direction and in
lateral direction converge to near 0 at the end of guidance and the convergence process is
smooth and chattering free, which ensures the stability of missile control. From Fig. 2(i)–(j),
the sliding mode surface s1 and s2 converge to 0 smoothly and continuously in finite time,
and the convergence process is chattering free, which proves that the guidance law proposed
in this paper can effectively suppress the chattering phenomenon.

5.2 Simulation comparison of different guidance laws
In order to further demonstrate the superiority of the guidance law in this paper, mark the guid-
ance law proposed in this paper as SO-NFTSMG, Simulation comparisons is made between
it and standard nonsingular sliding mode guidance law (marked as NTSMG1) and first-order
sliding mode guidance law (marked as NTSMG2) based on non-singular terminal sliding
mode surface and fast power reaching law in Ref. (17).

Now, extend two types of guidance laws to 3D space. The expression of NTSMG1 in 3D
space is:

⎧⎪⎪⎨
⎪⎪⎩

amθ = −2ṙx2 + r

a2k2
sig (x2)

2−a2 + K1sgn (s1)

amϕ =
(

2ṙx4 − r

a4k4
sig (x4)

2−a4 + K2sgn (s2)

)
cos qε

. . . (29)

Where, K1 and K2 are the gain of sign function, according to the upper bound for target
maneuvering, In the simulation of this paper, they are selected as 50 and 100, respectively. The
remaining parameters in the Equation (29) are selected the same as those of guidance law (11).
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Figure 2. Simulation results of three missiles attacking targets.

The expression of NTSMG2 in 3D space is:

⎧⎪⎪⎨
⎪⎪⎩

amθ = −2ṙx2 + r

a2k2
sig (x2)

2−a2 + α1sig(s1)1− 1
y + β1s1

amϕ =
(

2ṙx4 − r

a4k4
sig (x4)

2−a4 + α2sig(s2)1− 1
u + β2s2

)
cos qε

. . . (30)

The parameters in the Eq are selected the same as those of guidance law (11).
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Figure 2. Continued.

In the simulation, the missile M1 in Section 5.1. are selected to attack maneuvering targets
under the action of SO-NFTSMG, NTSMG1 and NTSMG2 respectively. The initial value
of the target and the parameter in the guidance law are the same as those in Section 5.1.
Simulation results are shown in Fig. 3 and Table 3.

As can be seen from Fig. 3, all three guidance laws can control the missile to hit the maneu-
vering target at a specified angle. Among them, the convergence speed of SO-NFTSMG and
NTSMG1 is relatively fast and similar, and the convergence process is smooth and chattering
free. The convergence speed of NTSMG2 is slow, and the phenomenon of high frequency
chattering appears in the convergence process, which is not conducive to the control of mis-
sile autopilot. From Table 3, it can be seen that the miss distance of missile under action of
SO-NFTSMG is the smallest, the line-of-sight dip angle error and line-of-sight drift angle
error are smaller than NTSMG1, and the flight time of missile is 0.493s shorter than that
of NTSMG1, which increases the penetration probability for the terminal guidance period
of missile with shorter flight time. Although the flight time of the missile under action of
NTSMG2 is the shortest, and the control ability of miss distance and impact-angle is not
much different from that of SO-NFTSMG, the high frequency chattering occurs in the accel-
eration instruction of NTSMG2, which reduces the control ability of the missile in practical
application. The chattering phenomenon cannot be eliminated by substituting the saturation
function for the sign function in practical application, and the performance of guidance law
will be decreased. Generally speaking, the proposed guidance law SO-NFTSMG has fast
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Table 2
Simulation results of three missiles attacking targets

Line-of-sight dip Line-of-sight drift
Missile Miss distance/m angle error(◦) angle error(◦) Flight time/s

M1 0.0894 0.0173 0.0372 31.0040
M2 0.2391 0.0046 0.0113 32.3690
M3 0.2740 0.0013 0.0246 34.0514
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Figure 3. Law simulation results of three guidance laws.
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Figure 3. Continued.

Table 3
Simulation results of three guidance laws

Line-of-sight dip Line-of-sight drift
Guidance Law Miss distance/m angle error(◦) angle error(◦) Flight time/s

SO-NFTSMG 0.0894 0.0173 0.0372 31.0040
NTSMG1 0.3072 0.0321 0.0413 31.4970
NTSMG2 0.1136 0.0114 0.0346 30.6190

convergence speed, stronger ability to control miss distance and impact-angle than NTSMG1,
shorter flight time of the missile than that under the action of NTSMG1, and no chattering
phenomenon in the guidance command, which is beneficial to the control of missile autopilot.

6.0 CONCLUSION
Based on the theory of the non-singular fast terminal sliding mode surface and the second-
order sliding mode control, a new second-order sliding mode three-dimensional guidance law
of the non-singular fast terminal with impact-angle constraints is proposed in this paper. There
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is no need to decouple the model of guidance system and this guidance law can be applied
to attack ground maneuvering targets. Aiming at the total disturbance caused by the coupling
of target maneuvering information and line-of-sight angle, we design the nonhomogeneous
disturbance observer to estimate and prior information of target is not needed. The results
of two groups of experiment simulation show that the guidance law proposed in this paper
can control multiple missiles at different positions and different states to hit the target at
their expected angles, with fast convergence speed, short flight time, strong ability to control
miss distance and impact-angle and no chattering phenomena appear during the process of
convergence, which make it has practical application value. However, it is still worth further
study to consider the dynamic characteristics of autopilot and how to reduce the required
information.
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