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Abstract

The effects of a radiation field (RF) on the interaction process of a relativistic electron beam (REB) with an electron plasma
are investigated. The stopping power of the test electron averaged with a period of the RF has been calculated assuming an
underdense plasma, ω0> ωp, where ω0 is the frequency of the RF and ωp is the plasma frequency. In order to highlight the
effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with
those for vanishing RF. In particular, it has been shown that the weak RF increases the mean energy loss for small angles
between the velocity of the REB and the direction of polarization of the RF while decreasing it at large angles.
Furthermore, the relative deviation of the energy loss from the field-free value is strongly reduced with increasing the
beam energy. Special case of the parallel orientation of the polarization of the RF with respect to the beam velocity has
been also considered. At high-intensities of the RF two extreme regimes have been distinguished when the excited
harmonics cancel effectively each other reducing strongly the energy loss or increasing it due to the constructive
interference. Moreover, it has been demonstrated that the energy loss of the ultrarelativistic electron beam increases
systematically with the intensity of the RF exceeding essentially the field-free value.
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1. INTRODUCTION

The interaction of a charged particles beam with a plasma is
an important subject of relevance for many fields of physics,
such as inertial confinement fusion (ICF) driven by ion or
electron beams (Deutsch, 1986, 1995; Deutsch & Fromy,
2001; D’Avanzo et al., 1993; Couillaud et al., 1994; Hoff-
mann, 2008), high energy density physics (Tahir et al.,
2005; Nellis, 2006), and related astrophysical phenomena
(Piran, 2005). This interaction is also relevant, among
others, for the fast ignition scenario (FIS) (Tabak et al.,
1994; Deutsch et al., 1996), where the precompressed
deuterium-tritium (DT) core of a fusion target is to be ignited
by a laser-generated relativistic electron beam. In addition, a
promising ICF scheme has been recently proposed (Stöckl
et al., 1996; Roth et al., 2001), in which the plasma target
is irradiated simultaneously by intense laser and ion beams.
Within this scheme several experiments (Roth et al., 2000;

Oguri et al., 2000; Frank et al., 2010, 2013; Hoffmann
et al., 2010) have been performed to investigate the inter-
actions of heavy ion and laser beams with plasma or solid tar-
gets. An important aspect of these experiments is the energy
loss measurements for the ions in a wide-range of plasma
parameters. It is expected in such experiments that the ion
propagation would be essentially affected by the parametric
excitation of the plasma target by means of laser irradiation.
This effect has been supported recently by particle-in-cell
numerical simulations (Hu et al., 2011).

Motivated by the experimental achievements mentioned
above, in this paper we present a study of the effects of in-
tense radiation field (RF) on the interaction of projectile par-
ticles with an electron plasma. Previously this has been a
subject of great activity, starting with the pioneering work
of Tavdgiridze, Aliev, and Gorbunov (Tavdgiridze & Tsint-
sadze, 1970; Aliev et al., 1971). More recently the need of
the comprehensive analysis of the complexity of the beam-
matter interaction in the presence of strong laser fields has
stimulated a number of theoretical studies. Arista et al.
(1989) and Nersisyan and Akopyan (1999) have developed
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a time-dependent Hamiltonian formulation to describe the
effect of a strong laser field on energy losses of swift ions
moving in a degenerate electron gas. It has been shown
that the energy loss is reduced for ions at intermediate vel-
ocities, but is increased for slow ions, due to a resonance pro-
cess of plasmon excitation in the target assisted by a photon
absorption (Arista et al., 1989). For plasma targets, on the
other hand, it has been obtained that the energy loss is re-
duced in the presence of a laser field when the projectile vel-
ocity is smaller than the electron thermal velocity (Arista
et al., 1990; Nersisyan & Deutsch, 2011). Moreover, the
reduction of the energy loss rate increases with decreasing
the angle between the projectile velocity and the polarization
vector of the laser field (Nersisyan & Deutsch, 2011). Next,
an interesting effect has been obtained by Akopyan et al.
(1997) considering the oscillatory motion of the light projec-
tile particles in the laser field. In this case, the energy loss de-
pends on the projectile charge sign and mass and, therefore,
results in a different stopping powers for electrons and posi-
trons. In recent years, special attention has also been paid to
the regimes of high intensities of the laser field when the
quiver velocity of the plasma electron exceeds the projectile
velocity (Nersisyan & Akopyan, 1999; Nersisyan & Deutsch,
2011). It has been shown that the projectile particles can be
even accelerated in a plasma due to the parametric effects ex-
cited by an intense laser field. Furthermore, Wang et al.
(2002, 2012) have studied the influence of a high-intensity
laser field on the Coulomb explosion and stopping power
for a swift H3

+ cluster ion in a plasma target. They have de-
monstrated that the laser field affects the correlation between
the ions and contributes to weaken the wake effect as com-
pared to the laser-free case.
All papers mentioned above deal with a nonrelativistic

projectile particles interacting with a laser irradiated
plasma. In the present paper, we study more general con-
figurations thus considering the interaction of relativistic par-
ticles with an electron plasma. Our objective is then to study
some aspects of the energy loss of relativistic particles which
have not been considered previously. As an important motiv-
ation of the present paper is the research on the topic of the
FIS for inertial confinement fusion (Deutsch et al., 1996;
Tabak et al., 1994) which involves the interaction of a laser-
generated relativistic electron beam (REB) with a plasma.
Although the concept of the FIS implies an overdense
plasma and the propagation of a relativistic electron beam
from the border of a precompressed target to the dense core
occurs without crossing the laser beam, the target plasma is
assumed to be parametrically excited by the RF through
high-harmonics generation. In this situation, the presence
of the RF as well as the relativistic effects of the beam can
dramatically change the main features of the standard stop-
ping capabilities of the plasma.
The plan of the paper is as follows. In Section 2, we out-

line the theoretical formalism for the electromagnetic
response of a plasma due to the motion of a relativistic
charged particles beam in a plasma in the presence of an

intense RF. The stopping of the relativistic beam is formu-
lated in Section 3. In this section, we calculate the effects
of the RF on the mean energy loss (stopping power) of the
test particle considering two somewhat distinct cases with a
weak (Section 3.1) and intense (Section 3.2) radiation field
as well as a wide range for the test particle energies, extend-
ing from nonrelativistic up to the ultrarelativistic energies.
The dynamics of the electron plasma is treated by a system
of fluid equations which results in a high-frequency approxi-
mation for the dielectric response function. The results are
summarized in Section 4.

2. SOLUTION OF THE BASIC EQUATIONS

The whole interaction process of the relativistic charged
particles beam with plasma involves the energy loss and
the charge states of the projectile particle and — as an
additional aspect — the ionization and recombination of
the projectile driven by the RF and the collisions with the
plasma particles. A complete description of the interaction
of the beam requires a simultaneous treatment of all these
effects including, in particular, in the case of the structured
particles the effect of the charge equilibration on the energy
loss process. In this paper, we do not discuss the charge
state evolution of the projectiles under study, but concen-
trate on the RF effects on the energy loss process assuming
an equilibrium charge state of the projectile particle with an
effective charge Ze. This is motivated by the fact that the
charge equilibration occurs in time scales, which are
usually much smaller than the time of passage of the
beam through target. In addition, the effects mentioned
above are not important in the case of the relativistic elec-
tron beams.
The problem is formulated using the hydrodynamic

model of the plasma and includes the effects of the RF in
a self-consistent way. The external RF is treated in the long-
wavelength limit, and the plasma electrons are considered
nonrelativistic. These are good approximations provided
that (1) the wavelength of the RF λ0= 2πc/ω0 is much
larger than the Debye screening length λD= vth/ωp (with
vth the thermal velocity of the electrons and ωp the
plasma frequency), and (2) the “quiver velocity” of the
electrons in the RF vE= eE0/mω0 (where E0 is the ampli-
tude of the RF) is much smaller than the speed of light c.
These conditions can be alternatively written as (1) ω0/
ωp≪ 2πc/vth, and (2) WL ≪ 1

2nemc
3(ω0/ωp)2, where WL=

cE0
2/8π is the intensity of the RF. As an estimate in the case

of a dense plasma, with electron density ne= 1022 cm−3, we get
1
2nemc

3 ≃ 1.2 × 1019 W/cm2. Thus the conditions (1) and (2)
are well above the values obtained with currently available high-
power sources of the RF, and these approximations are well
justified.
The response of the plasma to the incoming relativistic

beam is governed by the hydrodynamic equations for the
density n(r, t) and the velocity v(r, t) of the plasma electrons
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as well as by the Maxwell equations for the electromagnetic
fields. Thus,

∂n
∂t

+∇(n · v) = 0, (1)

∂v
∂t

+ (v ·∇)v = − e

m
E0(t)+ E+ 1

c
v × B[ ]

[ ]
, (2)

where E0(t)= E0 sin(ω0t) is the RF, and E and B are the self-
consistent electromagnetic fields which are determined by
the Maxwell equations,

∇ × E = − 1
c

∂B
∂t

, ∇ × B = 4π
c

j0 + j
( )+ 1

c

∂E
∂t

, (3)

∇ · E = −4πe n− ne( ) + 4πρ0, ∇ · B = 0. (4)

Here j=−env is the induced current density, ρ0 and j0 are
the charge and current densities for the beam, respectively,
ne is the equilibrium plasma density in an unperturbed
state. As mentioned above we consider a relativistic beam
of charged particles and, therefore, the influence of the RF
E0(t) on the beam is ignored.
Consider now the solution of Eqs. (1)–(4) for the beam-

plasma system in the presence of the high-frequency RF. In
an unperturbed state (i.e., neglecting the self-consistent elec-
tromagnetic fields E and B in Eq. (2) and assuming the
homogeneous initial state), the plasma velocity satisfies the
equation _ue(t) = − e

mE0(t) which yields the equilibrium
velocity for the plasma electrons, ue(t)= vE cos(ω0t). Here
vE= eE0/mω0 and a= eE0/mω0

2 are the quiver velocity
and the oscillation amplitude of the plasma electrons,
respectively, driven by the RF.
Next we consider the linearized hydrodynamic and

Maxwell’s equations for the plasma and electromagnetic
fields, respectively. For sufficiently small perturbations, we
assume v(r, t)= ue(t)+ δv(r, t), n(r, t)= ne+ δn(r, t), (with
δn ≪ ne and δv ≪ ue). Thus, introducing the Fourier trans-
forms δn(k, t), δv(k, t), E(k, t), and B(k, t) with respect to the
coordinate r, the linearized hydrodynamic equations read

∂
∂t

+ i k · ue(t)( )
[ ]

δn(k, t) = −ine k · δv(k, t)( ), (5)

∂
∂t

+ i k · ue(t)( )
[ ]

δv(k, t) = − e

m
E(k, t)+ 1

c
ue(t) × B(k, t)[ ]

[ ]
.

(6)

In order to solve Eqs. (5) and (6) it is convenient to introduce
instead of the Fourier transform P(k, t) a new unknown

function P̃(k, t) via the relation (Nersisyan & Deutsch, 2012)

P̃(k, t) = P(k, t)eiζsin(ω0 t), (7)

where ζ= k · a, P(k, t) represents one of the quantities δn(k, t),
δv(k, t), E(k, t), and B(k, t). Substituting this relation for the
quantities δn(k, t), δv(k, t),E(k, t), andB(k, t) into Eqs. (5) and
(6) it is easy to see that the obtained equation for the unknown
function P̃(k, t) constitutes an equation with periodic coeffi-
cients (Nersisyan & Deutsch, 2012). Therefore, we introduce
the decompositions

P(k, t) =
∫∞
−∞

dωe−iωt
∑∞
ℓ=−∞

Pℓ(k, ω)e−iℓω0 t , (8)

P̃(k, t) =
∫∞
−∞

dωe−iωt
∑∞
ℓ=−∞

P̃ℓ (k, ω)e−iℓω0t , (9)

where Pℓ(k, ω) and P̃ℓ (k, ω) are the corresponding amplitudes
of the ℓth harmonic. It is also useful to find the connection be-
tween these amplitudes. This can be done using the Fourier
series representation of the exponential function eiζ sin(ω0t) as
well as the summation formula

∑∞
r=−∞ Jr(ζ)Jr+ℓ(ζ) = δℓ0

for the Bessel functions (Gradshteyn & Rizhik, 1980) which
yields

P̃ℓ (k, ω) =
∑∞
s=−∞

Js−ℓ(ζ)Ps(k, ω), (10)

Pℓ(k, ω) =
∑∞
s=−∞

Jℓ−s(ζ) P̃s (k, ω). (11)

Here Jℓ is the Bessel function of the first kind and of the ℓth
order. Using these results from Eqs. (5) and (6) it is straightfor-
ward to obtain

δ ñℓ (k, ω) = ne
Ωℓ

k · δ ṽℓ (k, ω)( ), (12)

δ ṽℓ (k, ω) = − ie

mΩℓ

Ẽℓ (k, ω), (13)

where Ωℓ= ω+ ℓω0 and we have neglected the term of the
order of vE/c (see the last term in Eq. (6)) according to the
approximation (2). Using the transformation formulas (10)
and (11) from the system of Eqs. (12) and (13) it is easy to
obtain

δnℓ(k, ω) = − inee

m

∑∞
s,r=−∞

1

Ω2
r

Jℓ−r(ζ)Js−r(ζ) k · Es(k, ω)( ), (14)
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δvℓ(k, ω) = − ie

m

∑∞
s,r=−∞

1
Ωr

Jℓ−r(ζ)Js−r(ζ)Es(k, ω). (15)

Next let us evaluate the induced current density which is given
by δj=−e[neδv+ ue(t)δn] in the coordinate space. Employ-
ing Eqs. (8), (9), (14), and (15) for the Fourier transform of
the induced current density we obtain

δjℓ(k, ω) = −e neδvℓ(k, ω)+ vE
2

δnℓ+1(k, ω)+ δnℓ−1(k, ω)[ ]
{ }

= iω2
p

4π

∑∞
s,r=−∞

1
Ωr

Jℓ−r(ζ)Js−r(ζ)

× Es(k, ω)+ (ℓ− r)ω0

Ωr

a
ζ
k · Es(k, ω)( )

[ ]
, (16)

where ωp
2= 4πnee

2/m is the plasma frequency.
From the Maxwell equations we express the magnetic field

through the electric field. In terms of the amplitudes of the
ℓth harmonics [see definition given by Eqs. (8) and (9)] the
electric field is determined by the system of equations

k2 −Ω2
ℓ

c2

( )
Eℓ(k, ω)− k k · Eℓ(k, ω)( )

= 4πiΩℓ

c2
δℓ0j0(k, ω)+ δjℓ(k, ω)
[ ]

, (17)

k · Eℓ(k, ω)( ) = 4πi eδnℓ(k, ω)− δℓ0ρ0(k, ω)
[ ]

. (18)

Here j0(k, ω) and ρ0(k, ω) are the ordinary Fourier transforms
of the current and charge densities of the beam, respectively.
Note that the ℓth harmonics of these quantities are given by
δℓ0j0(k, ω) and δℓ0ρ0(k, ω). Also the longitudinal part of the
electric field is determined by the Poisson equation (18).
Insertion of Eq. (16) into Eq. (17) results in

k2 −Ω2
ℓ

c2
ε(Ωℓ)

[ ]
Eℓ(k, ω)− k(k · Eℓ(k, ω))

= −ω2
p

c2
∑∞

s,r=−∞

(ℓ− r)ω0

Ωr
Jℓ−r(ζ)Js−r(ζ)

Es(k, ω)+Ωℓ

Ωr

a
ζ
k · Es(k, ω)( )

[ ]
+ 4πiΩℓ

c2
δℓ0j0(k, ω),

(19)

where ε(ω)= 1− ωp
2/ω2 is the longitudinal dielectric func-

tion of a plasma. The obtained expression (19) completely
determines the electromagnetic response in the beam-plasma
system in the presence of the RF. The resulting equation rep-
resents a coupled and infinite system of linear equations for
the quantities Eℓ(k, ω) (with ℓ= 0,± 1, ±2,…). The (infi-
nite) determinant of this system determines the dispersion

equation for the electromagnetic plasma modes in the pres-
ence of the RF. It should be also emphasized that the hydro-
dynamic description of a plasma is justified at high
frequencies when |ω+ ℓω0|≫ kvth. In particular, this condition
requires that the velocity of the projectile particle should
exceed the thermal velocity vth of the plasma electrons.
Eq. (19) can be further simplified excluding there the

longitudinal part (k · Eℓ) of the electric field by means of
the Poisson equation (18) together with the induced charge
density, Eq. (14). In the first step we multiply both sides of
Eq. (18) by Jℓ−q(ζ)Jm−q(ζ) and sum up over the harmonic
numbers ℓ and q. Using the summation formula involving
two Bessel functions (see above Eq. (10)) this results in

∑∞
s,r=−∞

ε(Ωr)Jℓ−r(ζ)Js−r(ζ) k · Es(k, ω)( ) = −4πiδℓ0ρ0(k, ω). (20)

Similarly repeating the first step for the latter expression for
the longitudinal electric field one finally obtains

k · Eℓ(k, ω)( ) = −4πiρ0(k, ω)
∑∞
r=−∞

(− 1)r

ε(Ωr)
Jℓ−r(ζ)Jr(ζ). (21)

This expression has been previously obtained and studied by
many authors (Tavdgiridze & Tsintsadze, 1970; Aliev et al.,
1971; Arista et al., 1989, 1990; Akopyan et al., 1997; Nersis-
yan & Akopyan, 1999; Nersisyan & Deutsch, 2011) assum-
ing nonrelativistic beam of charged particles. Thus, inserting
Eq. (21) into Eq. (19) we finally obtain

k2 −Ω2
ℓ

c2
ε(Ωℓ)

[ ]
Eℓ(k, ω) = 4πiω

c2
δℓ0j0 k, ω( )

− ω2
p

c2
∑∞

s,r=−∞

(ℓ− r)ω0

Ωr
Jℓ−r(ζ)Js−r(ζ)Es(k, ω)

− 4πiρ0(k, ω)
∑∞
r=−∞

(− 1)r
χℓr(k, ω)
ε(Ωr)

Jℓ−r(ζ)Jr(ζ),

(22)

where we have introduced the vector quantity

χℓr(k, ω) = k− (ℓ− r)ω0Ωℓ 1− ε(Ωr)[ ] a
c2ζ

. (23)

As mentioned above Eq. (19) as well as its equivalent Eq.
(22) represent an infinite system of the coupled linear
equations for the amplitudes Eℓ(k,ω) which, in general, do
not allow an analytic solution. Next, we will make an ad
hoc assumption neglecting the second term in the right-hand
side of Eq. (22) which contains an infinite sum over the har-
monics Es. In this case the solution of Eq. (22) is trivial and it
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is given by

Eℓ(k, ω) = 4πi

k2 − (Ω2
ℓ/c

2)ε(Ωℓ)

ω

c2
δℓ0j0(k, ω)

[
−ρ0(k, ω)

∑∞
r=−∞

(− 1)r
χℓr(k, ω)
ε(Ωr)

Jℓ−r(ζ)Jr(ζ)

]
.

(24)

Now let us examine the physical consequences of the neglect
of the second term in Eq. (22). For this purpose we insert the
last expression into the second term of the right-hand side of
Eq. (22). Then it is straightforward to see that this term cor-
responds to the Čerenkov radiation (or absorbtion) in a
plasma by a moving charged particles beam. Note that this
effect is absent in the field-free case since the physical con-
ditions of the Čerenkov radiation cannot be fulfilled in this
case. Thus the RF essentially changes the dispersion proper-
ties of the plasma and the Čerenkov effect becomes now
possible. In particular, an inspection of a general expression
(22) shows that in a long wavelength limit the emission of the
transverse electromagnetic waves occurs at the frequencies
ωℓ= ℓω0β/(1− β) for ℓ⩾ 1 (emission), and at ω= |ℓ|ω0β/
(1+ β) for ℓ⩽− 1 (absorbtion), where β= u/c and u are
the relativistic factor and the velocity of the beam, respect-
ively. Moreover, the ratio of the neglected term, related to
the Čerenkov effect, to the contribution given by Eq. (24)
is of the order of (ωp/ω0)(vE/u)

2< 1 and the neglect of the
second term in Eq. (22) is justified at the high-frequencies
of the RF (ω0>> ωp). In the next sections the further calcu-
lations will be done using the approximate expression (24).
Before closing this section let us consider briefly some

limiting cases of Eq. (24). For instance, in the electrostatic
limit (assuming that c → ∞) from Eq. (24) one obtains

Eℓ(k, ω) = − 4πik
k2

ρ0(k, ω)
∑∞
r=−∞

(−1)r
ε(Ωr)

Jℓ−r(ζ)Jr(ζ), (25)

which confirms Eq. (21). In the limit of the vanishing
radiation field with a → 0, Eq. (24) yields Eℓ(k, ω)=
E(k, ω)δℓ0, where

E(k, ω) = 4πi
k2 − (ω2/c2)ε(ω)

ω

c2
j0(k, ω)−

k
ε(ω)

ρ0(k, ω)
[ ]

. (26)

It is seen that in the last expression E(k, ω) is the Fourier
transform of the electric field created in a medium by an ex-
ternal charge with the density ρ0(k, ω) and current j0(k, ω)
(Alexandrov et al., 1984).

3. STOPPING POWER

With the basic results presented in the previous Sec. 2, we
now take up the main topic of this paper, namely the inves-
tigation of the stopping power of a relativistic charged par-
ticle beam in a plasma irradiated by an intense laser field.

For further progress the charge and current densities of the
beam in Eq. (24) should be specified. Furthermore, we will
assume that these quantities are given functions of the coor-
dinates and time. In particular, for a beam of charged par-
ticles having a total charge Ze and moving with a constant
velocity u, the charge and current densities are determined
by ρ0(r,t)= ZeQ(r− ut) and j0(r, t)= uρ0(r, t), respect-
ively. Here Q(r) is the spatial distribution of the charge in
the beam with the normalization ∫Q(r)dr= 1. Accordingly,
the Fourier transforms of these quantities are ρ0(k, ω)=
[Ze/(2π)3]Q(k)δ(ω− k · u), j0 (k,ω)= uρ0(k,ω), and Q(k)
is the Fourier transform of the distribution Q(r) (form-factor
of the beam). Note that Q(k) is normalized in a such way
that Q(k= 0)= 1. In particular, for the Gaussian beam
with a charge distribution Q(r)= (π3/2L‖L⊥

2)−1 exp(−z2/L‖
2)

exp(−r⊥
2 /L⊥

2 ), we obtain Q(k)= exp(−k‖
2L‖

2/4)exp(−k⊥
2 L⊥

2 /4).
Here L‖ and L⊥ are the characteristic sizes of the beam
along and transverse to the direction of motion, respectively.

From Eqs. (8) and (24) it is straightforward to calculate the
time average (with respect to the period 2π/ω0 of the laser
field) of the stopping field acting on the beam. Then, the
averaged stopping power (SP) of the beam becomes

S ≡ − 1
u

∫
〈ρ0(r, t) u · E(r, t)( )〉dr

= 2Z2e2

(2π)2u
Im
∫
|Q(k)|2dk

∫∞
−∞

δ(ω− k · u) ωdω

D(k, ω)

× β2 −
∑∞
ℓ=−∞

J2ℓ (ζ)
ε(Ωℓ)

1+ ℓω0 1− ε(Ωℓ)[ ] (u · a)
c2ζ

[ ]{ }
,

(27)

where D(k, ω)= k2− (ω2/c2)ε(ω) and β= u/c is the relati-
vistic factor of the beam. In Eq. (27) the symbol 〈…〉 denotes
an average with respect to the period of the laser field. Hence,
the SP depends on the beam velocity u, the frequency ω0 and
the intensity WL= cE0

2/8π of the RF (the intensity depen-
dence is given through the quiver amplitude a). Moreover,
since the vector k in Eq. (27) is integrated over the angular
variables, S becomes also a function of the angle ϑ between
the velocity u, and the direction of RF polarization, rep-
resented by a. In addition, it is well known that within clas-
sical description an upper cut-off parameter kmax= 1/rmin

(where rmin is the effective minimum impact parameter or
the distance of closest approach) must be introduced in Eq.
(27) to avoid the logarithmic divergence at large k. This di-
vergence corresponds to the incapability of the classical per-
turbation theory to treat close encounters between the
projectile particles and the plasma electrons properly. For
rmin, we use the effective minimum impact parameter exclud-
ing hard Coulomb collisions with a scattering angle larger
than π/2. The resulting cut-off parameter kmax≃m(u2+
vth
2 )/|Z|e2 is well known for energy loss calculations (see,
e.g., Zwicknagel et al. (1999); Nersisyan et al. (2007) and re-
ferences therein). Here vth is the thermal velocity of the elec-
trons. In particular, at high-velocities this cut-off parameter
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reads as kmax≃mu2/|Z|e2. When, however, u> 2|Z|e2/ħ, the
de Broglie wavelength exceeds the classical distance of clo-
sest approach. Under these circumstances we choose kmax=
2mu/ħ.
Equation (27) contains two types of the contributions. The

first one is proportional to the imaginary part of the inverse of
the longitudinal dielectric function ε(Ωℓ) and is the energy
loss of the beam due to the excitations of the longitudinal
plasma modes. The second contribution comes from the ima-
ginary part of [D(k,ω)]−1, where D(k,ω) has been introduced
above and determines the energy loss of the beam due to the
excitations of the transverse plasma modes. Therefore, due to
the resonant nature of the integral in Eq. (27), we may replace
the imaginary parts of the functions [ε(Ωℓ)]

−1 and
[D(k,ω)]−1 using the property of the Dirac δ function. How-
ever, as discussed in the preceding section, the terms contain-
ing the factor δ(D(k, ω)) with zero harmonic number (ℓ= 0)
correspond to the usual Čerenkov effect which is absent here.
Neglecting such terms we finally arrive at

S = Z2e2

2πu

∫
|Q(k)|2dk

∫∞
−∞

δ(ω− k · u) ωdω

D(k, ω)

×
∑∞
ℓ=−∞

|Ωℓ|
Ωℓ

J2ℓ (ζ) 1+ ω2
p

Ω2
ℓ

(u · a)
c2ζ

ℓω0

[ ]
δ ε(Ωℓ)( ).

(28)

By comparison, the SP in the absence of the RF is given by
(Nersisyan & Akopyan, 1999; Nersisyan & Deutsch, 2011)

S0 = Z2e2

2πu

∫
|Q(k)|2 dk

k2

∫∞
−∞

δ(ω− k · u)δ ε(ω)( )|ω|dω (29)

which after straightforward integration for the point-like par-
ticles (with Q(k)= 1) yields

S0 =
Z2e2ω2

p

2u2
ln 1+ k2maxu

2

ω2
p

( )
≃

Z2e2ω2
p

u2
ln
kmaxu

ωp
. (30)

In the presence of the RF, the SP S0 is modified and is given
by the ℓ= 0 term in Eq. (28) (“no photon” SP). It is evident
that the RF decreases the SP S0 by a factor of J0

2(ζ)< 1.
Finally, we would like to mention that the relativistic effects
in Eq. (28) are given by the second term in the square brack-
ets and by the dispersion function D(k, ω). In a nonrelativistic
limit (β→ 0) the former vanishes while the latter is replaced
by D(k, ω)→ k2.
To illustrate the features of the stopping of the relativistic

charged particles in a laser-irradiated plasma, we consider
below two examples when the intensity of the RF is small
but the angle between the vectors u and a is arbitrary (Sec.
3.1). In the second example we assume that the polarization
vectorE0 of the RF is parallel to the beam velocity u (Sec.3. 2).

3.1. Stopping Power at Weak Intensities of the RF

In this section we consider the case of a weak radiation field
(vE ≪ u) at arbitrary angle ϑ between the velocity u of the
beam and the direction of polarization of the RF a. Assuming
a point-like test particle (with Q(k)= 1), in Eq. (28) we keep
only the quadratic terms with respect to the quantity a (or vE)
and for the stopping power S we obtain

S = S0 + Z2e2

8πu

∫∞
−∞

ωdω

∫
δ(ω− k · u)(k · a)dk

×
|Ω1|
Ω1

δ ε(Ω1)( )
D(k, ω)

(k · a)+ ω2
p

Ω2
1

(u · vE)
c2

[ ]{

+ |Ω−1|
Ω−1

δ ε(Ω−1)( )
D(k, ω)

(k · a)− ω2
p

Ω2
−1

(u · vE)
c2ζ

[ ]

− 2|ω|
ω

(k · a)
k2

δ ε(ω)( )
}
,

(31)

where Ω±1= ω± ω0 and S0 is the field-free SP given by
Eq. (30). The remaining terms are proportional to the inten-
sity of the radiation field (∼a2). Note that due to the isotropy
of the dielectric function ε(ω) as well as the dispersion func-
tion D(k, ω) the angular integrations in Eq. (31) can be easily
done. This results in

S = S0 +
Z2e2ω2

pα
2

16u2
Φ1(n) 3 cos

2 ϑ− 1
( )+ 2β2Φ2(n) cos

2 ϑ
[ ]

,

(32)

where α= vE/u is the scaled quiver velocity and two func-
tions have been introduced as follows

Φ1(n) = ζ+
n

γ−2ζ2+ + β2n2
( )

ln 1+ η2n2

γ−2ζ2+ + β2n2

( )

− ζ−
n

γ−2ζ2− + β2n2
( )

ln 1+ η2n2

γ−2ζ2− + β2n2

( )
− 2n2 ln (1+ η2),

(33)

Φ2(n) = ζ+ ln 1+ η2n2

γ−2ζ2+ + β2n2

( )

+ ζ− ln 1+ η2n2

γ−2ζ2− + β2n2

( )
(34)

with η= kmaxu/ωp, n= ωp/ω0< 1, ζ±= 1± n. Also γ is the
relativistic factor of the beam with γ−2= 1− β2. In particu-
lar, in the case of the ultrarelativistic beam with γ≫ ω0/ωp

from Eqs. (33) and (34) we obtain

Φ1(n) = 6
γ2

ln (1+ η2)− η2

η2 + 1

[ ]
, (35)
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Φ2(n) = 2 ln (1+ η2), (36)

and in Eq. (32) the additional energy loss of the beam (i.e. the
term of Eq. (32) proportional to ∼α2) is mainly determined
by the function Φ2(n).
Consider next the angular distribution of the SP at low-

intensities of the RF. Figure 1 shows the dimensionless quan-
tity P(ϑ)= [S(ϑ)− S0]/S0 (the relative deviation of S from
S0) as a function of the angle ϑ for the scaled laser intensity
vE /c= 10−2 and for ω0= 5ωp, Z= 1, A= c/ωp re =1.88 ×
107, where re= e2/mc2 is the electron classical radius. The
quantity A corresponds to the density of the plasma ne=
1022 cm−3. In addition, left and right panels of Fig. 1 demon-
strate P(ϑ) for the stopping of the nonrelativistic (with β=
0.05 and β= 0.1) and relativistic (with β= 0.8, β= 0.9
and β= 0.9999) charged particles, respectively. At nonrelati-
vistic velocities the second term in Eq. (32) can be neglected
and the angular distribution of the quantity P(ϑ) has a
quadrupole nature (the angular average of P(ϑ) vanishes). At
0 ≤ ϑ ≤ ϑ0 = arccos (1/

��
3

√
) the excitation of the waves with

the frequencies ω0 ± ωp leads to additional energy loss. At
ϑ0≤ ϑ≤ π/2 the energy loss changes the sign and the total
energy loss decreases. When the particle moves at ϑ= ϑ0

with respect to the polarization vector a the radiation field
has no any influence on the SP. At the relativistic velocities
(Fig. 1, right panel) the field-free SP S0 as well as the relative
deviation P(ϑ) are strongly reduced and the critical angle ϑ0,
which now depends on the factor β, is shifted towards higher
values. Finally, at ultrarelativistic velocities (Fig. 1, dotted
line in the right panel), P(ϑ) is positive for arbitrary ϑ and
the radiation field systematically increases the energy loss
of the particle (see also Eq. (32) with Eqs. (35) and (36)).

3.2. Stopping Power at Parallel (u ‖ a) Configuration

Let us now investigate the influence of the radiation field on
the stopping process of the relativistic charged particle when
its velocity u is parallel to a. It is expected that the effect of

the RF is maximal in this case. In the case of the point-like
particles after straightforward integrations in Eq. (28) we
arrive at

S = Z2e2ωpω0

2u2
∑∞
ℓ=−∞

n+ ℓγ−2( )
J2ℓ α((ℓ+ n))( )

ln 1+ η2n2

γ−2(ℓ+ n)2 + β2n2

[ ]
.

(37)

We have used here the same notations as in Sec. 3.1.
From Eq. (37) it is seen that “no photon” SP (the term
with ℓ= 0) oscillates with the intensity of the laser field.
However, the radiation field suppresses the excitation of
the plasma modes and this term by a factor of J0

2 (αn) is smal-
ler than the field-free SP S0. As follows from Eq. (37) at high-
intensities of the RF the “no photon” SP vanishes when αn=
(vE/u)(ωp/ω0)≃ μn with n= 1, 2, …, where μn are the zeros
of the Bessel function J0 (μn)= 0 (μ1= 2.4, μ2= 5.52, …).
Then the energy loss of the charged particle is mainly
determined by other terms in Eq. (1) and is stipulated by exci-
tation of plasma waves with the combinational frequencies
ℓω0± ωp.

In the case of the ultrarelativistic charged particle (with
γ≫ ω0/ωp) Eq. (37) gets essentially simplified. In this
equation neglecting the small corrections proportional to
γ−2 we obtain

S = Z2e2ω2
p

2c2
ln(1+ η2)

∑∞
ℓ=−∞

J2ℓ α((ℓ+ n))( ), (38)

with α= vE/c. Equation (38) can be further simplified ne-
glecting the small quantity n= ωp/ω0 in the argument of
the Bessel function. The remaining infinite sum is evaluated

Fig. 1. (Color online) The dimensionless quantity P(ϑ) (in percents) vs the angle ϑ (in rad) for the intensity parameter of the laser field vE
/c= 10−2 and for ω0= 5ωp. Left and right panels demonstrate the quantity P(ϑ) for the stopping of the nonrelativistic and relativistic
charged particles, respectively, at various values of the relativistic factor β. Left panel, β= 0.05 (solid line) and β= 0.1 (dashed line).
Right panel, β= 0.8 (solid line), β= 0.9 (dashed line), and β= 0.9999 (dotted line).
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in Appendix A [see Eq. (48)] which results in

S ≃
Z2e2ω2

p

2c2
ln(1+ η2)

1��������
1− α2

√ . (39)

Thus, in the case of the ultrarelativistic charged particles the
energy loss of the beam essentially increases with the inten-
sity of the RF. Let us recall, however, that Eq. (39) is only
valid below relativistic intensities of the RF when α≲ 1.
For treating precisely the resonance in Eq. (39) at α= 1 we
should go beyond the present long-wavelength approxi-
mation of the laser field. Figure 2 demonstrates the quantity
R(α)= S(α)/S0 for three distinct values of the laser fre-
quency ω0 as a function of the RF intensity α= vE/c,
where the SP is given by Eq. (38) for an ultrarelativistic pro-
jectile particle. Note that the quantity R(α) is independent on
the plasma density ne. It is seen that the SP is indeed not sen-
sitive to the variation of the laser frequency and the approxi-
mation (39) is justified at α ≲1.
Next let us examine an interesting regime of the high-

intensities of the RF when αn> 1. It is clear that such a
regime requires nonrelativistic velocities of the charged par-
ticles beam. Thus, at αn> 1 we consider here the relativistic
effects as small corrections to the corresponding nonrelativis-
tic expressions. Using the asymptotic behavior of the Bessel
function (Gradshteyn & Rizhik, 1980) in a general Eq. (37) it
is straightforward to obtain

S = Z2e2ω2
p

u2
1
2
J20 (αn) ln (1+ η2)+ 1

πγ2
sin (2αn)

αn
Γ1(η, α)

{
+ β2

πα
cos(2αn)Γ2(η, α)+ Γ(η)
[ ]}

,

(40)

where we have introduced the following quantities

Γ1(η, α) =
∑∞
ℓ=1

(− 1)ℓ ln 1+ η2n2

γ−2ℓ2 + β2n2

( )
cos (2αℓ), (41)

Γ2(η, α) =
∑∞
ℓ=1

(− 1)ℓ

ℓ
ln 1+ η2n2

γ−2ℓ2 + β2n2

( )
sin (2αℓ), (42)

Γ(η) =
∑∞
ℓ=1

1
ℓ
ln 1+ η2n2

γ−2ℓ2 + β2n2

( )
. (43)

In Appendix we have found some approximate analytical
expressions for these functions. Recalling that γ−2= 1− β2

the relativistic corrections (∼β2) can be easily deduced
from Eq. (40).
Let us consider briefly two particular cases. When α =

π(s+ 1
2 ) (where s= 0,1,…) all terms in Eq. (41) have a

positive sign and the function Γ1 (η, α) in Eq. (40) is maxi-
mal in this case due to the constructive interference of the
excited waves with the frequencies ℓω0± ωp. Note that the
relativistic correction given by Γ2(η, α) vanishes in this
case. From Eq. (53) it follows that p(α) = 1

2 and Eq. (54)
can be evaluated explicitly. The result reads

Γ1(η, α) = ln
A(0)
A(η)

sinh[πγ A(η)]
sinh[πγ A(0)]

{ }
, (44)

where A(η) = n
���������
β2 + η2

√
, A(0)= βn.

In the second regime when α= π(s+ 1), p(α)= 0 and
the relativistic corrections given by Γ2 again vanishes,
Γ2(η, α)= 0. Equation (54) then yields a negative contri-
bution to the energy loss (40) with

Γ1(η, α) = −ln
A(η)
A(0)

tanh[ 12 πγA(0)]

tanh[ 12 πγA(η)]

{ }
< 0. (45)

The function Γ1(η, α) is minimal in this case since the differ-
ent harmonics cancel effectively each other. However, it
should be emphasized that the contribution of the term con-
taining the function Γ1(η, α) to the SP (40) can either be posi-
tive or negative depending on the dimensionless quantity αn.
Moreover, the absolute value of this contribution decreases
with the parameter αn.
The results of the numerical evaluation of the SP given by

a general Eq. (37) are shown in Figs. 3–5 both for nonrelati-
vistic and relativistic projectiles, where the ratios R(α)=
S(α)/S0 and R(γ)= S(γ)/S0 are plotted as the functions of
the RF intensity α= vE/u= 0.855WL

1/2λ0/β (Figs. 3 and 4)
and the relativistic factor γ of the electron beam (Fig. 5),
respectively. Here WL and λ0 are measured in units 1018

W/cm2 and μm, respectively. Also in Figs. 3 and 4 the
parameter α varies in the interval 0 ≲ α< 1/β to ensure

Fig. 2. (Color online) The ratio R(α)= S(α)/S0 for an ultrarelativistic pro-
jectile particle as a function of dimensionless intensity of the RF α at
ω0= 2ωp (solid line), ω0= 5ωp (dashed line), ω0= 10ωp (dotted line).
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the applicability of the long-wavelength approximation of the
laser field. From Fig. 3 it is seen that the SP of a
nonrelativistic particle exhibits a strong oscillations.
Furthermore, it may exceed the field-free SP and change the
sign due to plasma irradiation by intense (α> 1) laser field.
These properties of a nonrelativistic SP have been obtained
previously for a classical plasma (Nersisyan & Akopyan,
1999) as well as for a fully degenerated plasma (Nersisyan
&Deutsch, 2011). The effect of the acceleration of the projec-
tile particle shown in Fig. 3 occurs at vE/u≃ μℓ/n (with ℓ=
1, 2,…) when the “no photon” SP nearly vanishes. It should
be noted that in the laser irradiated plasma a parametric in-
stability is expected (Nersisyan & Deutsch, 2012) with an in-
crement increasing with the intensity of the radiation field.
This restricts the possible acceleration time of the incident
particle. The similar behavior of the SP is demonstrated in
the right panel of Fig. 3, where however the plasma density
is ne= 1024 cm−3 and two orders of magnitude exceeds the
value adopted in the left panel of Fig. 3. We note that
although the ratio R(α) is reduced with a plasma density,
the field-free SP given by Eq. (30) is proportional to ne
which in turn results in a strong enhancement of the SP
S(α)= S0R(α) with a plasma density.

Next, in Fig. 4, we consider weakly relativistic regimes of
the electron beam with β= 0.2 (left panel) and β= 0.5
(right panel). At smaller intensities of the RF, 0< α≲ 1,
the SP is described qualitatively by Eq. (39) and reaches
its maximum at α≃ 1 (or at vE≃ u). This is because the
electrons are driven by the laser field in the direction of
the beam with nearly same velocity u effectively enhancing
the amplitude of the excited waves. The minimum or two
maxima of the SP at α≃ 3π/2 in the left panel of Fig. 4
are formed due to the constructive interference of the excited
harmonics as discussed above (see Eq. (44)). The other
minima of the SP at α≃ π in the left panel of Fig. 4 are
formed due to the destructive interference of the excited har-
monics (see Eq. (45)). Let us note that at α∼ 1 the effect of
the enhancement of the SP of the test particle moving in a
laser irradiated plasma is intensified at smaller frequency
of the laser field ω0= 2ωp (see Figs. 3 and 4) while at
higher intensities, α> 1, the quantity R(α) increases with
the frequency ω0.

Finally, in Fig. 5, the quantity R(γ) is shown as a function
of the electron beam energy at various intensities of the laser
field given here by a dimensionless parameter vE/c. It is seen
that at the moderate energies of the electron beam the SP

Fig. 3. (Color online) (Left panel) the ratio R(α)= S(α)/S0 as a function of dimensionless quantity α at ne= 1022 cm−3, β= 10−2, ω0=
2ωp (solid line), ω0= 5ωp (dashed line), ω0= 10ωp (dotted line). (Right panel) same as in the left panel but for ne= 1024 cm−3.

Fig. 4. (Color online) (Left panel) the ratio R(α)= S(α)/S0 as a function of dimensionless quantity α at β= 0.2, ω0= 2ω p (solid line),
ω0= 5ωp (dashed line), ω0= 10ωp (dotted line). (Right panel) same as in the left panel but for β= 0.5.
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strongly increases with the laser intensity as has been also de-
monstrated in Figs. 3 and 4. Comparing two panels of Fig. 5
we may conclude that the position of the maximum of the SP
depends only on the intensity of the RF, γmax∼vE/c, while
the maximum value of the SP is scaled as Rmax∼(vE/c)
(ωp/ω0)

1/2 and is sensitive to both the intensity and fre-
quency of the RF. Furthermore, with increasing the relativis-
tic factor γ of the electron beam one asymptotically arrives at
the ultrarelativistic regime described by Eqs. (38) and (39).
Interestingly this occurs at the moderate energies of the elec-
tron beam with γ≳ 4 which, in particular, pertain to the FIS
relativistic electron beam in the typical 1- to 2-MeV energy
range of practical interest.

4. CONCLUSIONS

In this paper, we have investigated the energy loss of a rela-
tivistic charged particles beam moving in a laser irradiated
plasma, where the laser field has been treated in the long-
wavelength approximation. The dynamics of the beam-
plasma system in the presence of the RF is studied by the
linearized fluid and Maxwell equations for the plasma par-
ticles and the electromagnetic fields, respectively. The full
electromagnetic response of the system is derived involving
all harmonics of the RF. It has been shown that, in general,
the excited longitudinal and transversal modes are parametri-
cally coupled due to the presence of the RF. As a result, the
Čerenkov radiation by the charged particles beam, which is
absent in a plasma in the field-free case, becomes possible.
However, in contrast to the usual Čerenkov effect in a laser-
free medium, the spectrum of the radiation in the present case
is discrete and the emitted frequencies are localized around
the harmonics of the RF depending essentially on the
energy of the incoming beam. In particular, at ultrarelativistic
energies of the beam emitted frequencies are shifted towards
higher harmonics of the RF.
In the course of our study, we have derived a general

expression for the SP, which has been also simplified in
the limit of a low-intensity laser field. As in the field-free

case, the SP in a laser irradiated plasma is completely deter-
mined by the dielectric function of the plasma which in the
present context is given by the hydrodynamic approximation.
Explicit calculations have been done for two particular cases
assuming (i) a low-intensity laser field but arbitrary orien-
tation of the laser polarization vector E0 with respect to the
charged particles beam velocity u, and (ii) an arbitrary (but
nonrelativistic) intensity of the laser field when E0 is parallel
to u. In the case (i) it has been shown that the RF increases
the SP for small angles between the velocity of the beam
and E0 while decreasing it at large angles. Furthermore, the
relative deviation of the SP from the field-free value is
strongly reduced with increasing the beam energy. In the
case (ii) and at high-intensities of the RF two extrem regimes
have been distinguished when the excited harmonics cancel
effectively each other reducing strongly the energy loss or in-
creasing it due to the constructive interference. As in the pre-
vious nonrelativistic treatments (Nersisyan & Akopyan,
1999; Nersisyan & Deutsch, 2011) an acceleration of the pro-
jectile particle is expected at high-intensities of the RF when
the quiver velocity of the plasma electrons exceeds the beam
velocity u. Special attention has been paid to the relativistic
effects of the beam. We have demonstrated that in general
the energy loss increases with the beam energy forming a
maximum at moderate relativistic factors γ≲ 2 which, how-
ever, are shifted towards higher energies of the beam with the
laser intensity. In addition, the enhancement of the SP is
more pronounced when the laser frequency approaches the
plasma frequency in agreement with PIC simulations (Hu
et al., 2011). Finally, it has been also shown that the SP of
the ultrarelativistic electron beam increases systematically
with the intensity of the RF exceeding essentially the field-
free SP.
Going beyond the present model, which is based on

several approximations, we can envisage a number of im-
provements. In particular, a simple possibility qualitatively
involving relativistic intensities of the laser field is to replace
the quiver velocity vE → VE by its relativistic counterpart VE,
where VE= vE[1+ (vE/c)

2]−1/2. The latter approximation

Fig. 5. (Color online) (Left panel) the ratio R(γ)= S(γ)/S0 as a function of the relativistic factor γ of the electron beam at ω0= 5ωp, vE/
c= 0.2 (solid line), vE/c= 0.5 (dashed line), vE/c= 0.8 (dotted line). (Right panel) same as in the left panel but for ω0= 10ωp.
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can be easily obtained from a single-particle dynamics in a
plane RF. In the course of our study we have also neglected
the Čerenkov radiation which might be important in the total
balance of the energy loss process. However, in a general
Eq. (22) this effect is well separated by its spectral character-
istics and can be treated independently. We intend to address
this issue in our forthcoming investigations.
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FRANK, A., BLAŽEVIĆ, A., BAGNOUD, V., BASKO, M.M., BÖRNER, M.,
CAYZAK, W., KRAUS, D., HEßLING, TH., HOFFMANN, D.H.H.,
ORTNER, A., OTTEN, A., PELKA, A., PEPLER, D., SCHUMACHER,
D., TAUSCHWITZ, AN. & ROTH, M. (2013). Energy loss and
charge transfer of argon in a laser-generated carbon plasma.
Phys. Rev. Lett. 110, 115001 (1–5).

GRADSHTEYN, I.S. & RIZHIK, I.M. (1980). Table of Integrals, Series
and Products. New York: Academic.

HOFFMANN, D.H.H. (2008). Intense laser and particle beams inter-
action physics toward inertial fusion. Laser Part. Beams 26,
295–296.

HOFFMANN, D.H.H., TAHIR, N.A., UDREA, S., ROSMEJ, O., MEISTER,
C.V., VARENTSOV, D., ROTH, M., SCHAUMANN, G., FRANK, A.,
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APPENDIX: EVALUATION OF THE FUNCTIONS
INTRODUCED IN THE TEXT

In this Appendix we evaluate the infinite sum containing the
square of the Bessel functions and involved in Eq. (38). Also
we will derive some analytical expressions for the functions
Γ1(η, α) and Γ2(η, α) introduced in Sec. 3.2 [see Eqs. (41)
and (42)].
Our starting point is the Neumann’s formula (Bateman &

Erdélyi, 1953)

J2ℓ (z) =
2
π

∫π/2
0

J2ℓ(2z cost)dt. (46)

Using this expression as well as the known relation (Gradsh-
teyn & Rizhik, 1980)

∑∞
ℓ=1

J2ℓ(2ℓz) = z2

2(1− z2)
, (47)

the desired summation can be performed easily

∑∞
ℓ=1

J2ℓ (αℓ) =
1
π

∫π/2
0

dt

1− α2cos2t
− 1

2
= 1

2
1��������

1− α2
√ − 1

( )
. (48)

The latter formula is valid at α< 1.
Next we derive approximate but very accurate expressions

for the functions Γ1 (η, α) and Γ2 (η, α) which determine the
SP in Eq. (40). For that purpose consider the following two

functions

G1(a, b) =
∑∞
ℓ=1

(− 1)ℓln 1+ a2

ℓ2 + b2

( )
cos(2αℓ), (49)

G2(a, b) =
∑∞
ℓ=1

(− 1)ℓ

ℓ
ln 1+ a2

ℓ2 + b2

( )
sin(2αℓ), (50)

where a> 0 and b> 0 are some arbitrary positive variables.
Note that Γ1;2 (η, α)=G1;2(a, b) at a= ηγn and b= βγn.
Consider the derivatives of these functions with respect to
the variable a. Using the known summation formulas invol-
ving the trigonometric functions (Gradshteyn & Rizhik,
1980) we arrive at

∂
∂a

G1(a, b) = 2a
∑∞
ℓ=1

(−1)ℓ
cos(2αℓ)
ℓ2 + u2

= πa

u

cosh[2πup(α)]
sinh(πu)

− 1
πu

{ }
,

(51)

∂
∂a

G2(a, b) = 2a
∑∞
ℓ=1

(−1)ℓ

ℓ

sin(2αℓ)
ℓ2 + u2

= πa

u2
cos πq(α)
[ ] sinh 2πup(α)[ ]

sinh(πu)
− 2p(α)

{ } (52)

with u= (a2+ b2)1/2, q(α)= E[M(α/π)+ 1/2], and

p(α) =
M

α

π

( )
; 0 ≤ M

α

π

( )
≤ 1

2

1−M
α

π

( )
;

1
2
≤ M

α

π

( )
< 1

⎧⎪⎨⎪⎩ , (53)

where M(z) and E(z) are the fractional and integer parts of z,
respectively. Consequently, from Eqs. (51) and (52) we
obtain

G1(a, b) = G1(a0, b)+
∫πu
πu0

cosh[2xp(α)]
sinh(x)

dx− ln
u

u0
, (54)

G2(a, b) = G2(a0, b)+ πcos[πq(α)]∫πu
πu0

sinh[2xp(α)]
sinh(x)

dx

x
−2p(α)ln

u

u0

{ }
.

(55)

Here u0= (a0
2+ b2)1/2 and a0> 0 is an arbitrary initial value

of a. Thus, the infinite sums in Eqs. (41) and (42) have been
represented in the equivalent integral forms with finite inte-
gration limits. Assuming that b> 1 let us apply Eqs. (54)
and (55) in a particular case with a0= 0. Taking into account
the initial conditions (see Eqs. (49) and (50)) G1(0, b)=
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G2(0, b)= 0 from Eqs. (54) and (55) we obtain

G1(a, b) = −ln
u

b
+
∫πu
πb

cosh[2xp(α)]
sinh(x)

dx, (56)

G2(a, b) = πcos[πq(α)]
∫πu
πb

sinh[2xp(α)]
sinh(x)

dx

x
− 2p(α)ln

u

b

{ }
. (57)

For further progress we note that at b> 1 the hyperbolic func-
tions in Eqs. (56) and (57) can be replaced by an exponential
function, sinh(πx)≃ eπx/2, which yield the following approxi-
mations for the functions G1(a, b) and G2(a, b)

G1(a, b) ≃ −ln
u

b
+ 1

2Q−(α)

exp −2πbQ−(α)[ ] − exp −2πuQ−(α)[ ]{ }
+ 1

2Q+(α)
exp −2πbQ+(α)[ ] − exp −2πuQ+(α)[ ]{ }

,

(58)

G2(a, b) ≃ πcos[πq(α)] E1 2πuQ+(α)[ ] − E1 2πuQ−(α)[ ]{
+E1 2πbQ−(α)[ ] − E1 2πbQ+(α)[ ] − 2p(α)ln

u

b

}
,

(59)

where E1(z) is the exponential integral function and
Q±(α) = 1

2 ± p(α).
Let us now consider the opposite case of small b< 1. Then

at ℓ≥ 2 we may neglect the variable b in Eqs. (49) and (50)
and represent these expressions in the approximate form

G1(a, b) ≃ G1(a, 0)+ ln 1+ a2b2

1+ a2 + b2

( )
cos(2α)

− ln 1+ a2b2/4
4+ a2 + b2

( )
cos(4α),

(60)

G2(a, b) ≃ G2(a, 0)+ ln 1+ a2b2

1+ a2 + b2

( )
sin(2α)

− 1
2
ln 1+ a2b2/4

4+ a2 + b2

( )
sin(4α).

(61)

Here G1;2(a, 0) are the functions G1;2(a, b) at b= 0 and are
evaluated in a similar way as approximate Eqs. (58) and

(59). For that purpose consider again Eqs. (54) and (55)
with a0= 1 and b= 0, that is

G1(a, 0) = G1(1, 0)+
∫πa
π

cosh[2xp(α)]
sinh(x)

dx− ln a, (62)

G2(a, 0) = G2(1, 0)+ π cos [πq(α)]∫πa
π

sinh[2xp(α)]
sinh(x)

dx

x
− 2p(α)ln a

{ }
.

(63)

In the latter expressions replacing the hyperbolic sine func-
tions by the exponential functions we arrive at the following
approximate formulas for the quantities G1(a, 0) and G2(a, 0)

G1(a,0)≃G1(1,0)+ 1
2Q−(α)

exp −2πQ−(α)[ ]−exp −2πaQ−(α)[ ]{ }
+ 1
2Q+(α)

exp −2πQ+(α)[ ]−exp −2πaQ+(α)[ ]{ }− lna,

(64)

G2(a, 0) ≃ G2(1, 0)+ πcos πq(α)
[ ]

E1 2πQ−(α)[ ] − E1 2πQ+(α)[ ]{
+E1 2πaQ+(α)[ ] − E1 2πaQ−(α)[ ] − 2p(α)ln a

}
.

(65)

Finally, for the quantities G1(1, 0) and G2(1, 0) it follows
from Eqs. (49) and (50) that (Gradshteyn & Rizhik, 1980)

G1(1, 0) ≃ C1cos(2α)− C2cos(4α)+ π2 p2(α)− 1
12

[ ]
, (66)

G2(1, 0) ≃ C1sin(2α)− 1
2
C2sin(4α)

+ 2
3
π3cos πq(α)

[ ]
p(α) p2(α)− 1

4

[ ]
,

(67)

where C1= 1− ln 2, C2= 1/4− ln(5/4). For approximate
evaluation of the quantities G1(1,0) and G2(1,0) we have
used the expansion ln(1+ ℓ−2)≃ ℓ−2 at ℓ≥ 3 for the logar-
ithmic function. Then at b< 1 the final analytical
expressions for G1(a,b) and G2(a,b) are obtained from Eqs.
(60), (64), (66) and (61), (65), (67), respectively. The relative
accuracy of the derived approximations is less than 10−3 in a
wide range of the parameters.
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