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disintegration of thin planar liquid sheets

By C. M E H R I N G AND W. A. S I R I G N A N O

Department of Mechanical and Aerospace Engineering, University of California,
Irvine, CA 92697, USA
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Linear and nonlinear dilational and sinuous capillary waves on thin inviscid infinite
and semi-infinite planar liquid sheets in a void are analysed in a unified manner
by means of a method that reduces the two-dimensional unsteady problem to a
one-dimensional unsteady problem. For nonlinear dilational waves on infinite sheets,
the accuracy of the numerical solutions is verified by comparing with an analytical
solution. The nonlinear dilational wave maintains a reciprocal relationship between
wavelength and wave speed modified from the linear theory prediction by a depend-
ence of the product of wavelength and wave speed on the wave amplitude. For
the general dilational case, nonlinear numerical simulations show that the sheet is
unstable to superimposed subharmonic disturbances on the infinite sheet. Agreement
for both sinuous and dilational waves is demonstrated for the infinite case between
nonlinear simulations using the reduced one-dimensional approach, and nonlinear
two-dimensional simulations using a discrete-vortex method. For semi-infinite dila-
tional and sinuous distorting sheets that are periodically forced at the nozzle exit,
linear and nonlinear analyses predict the appearance of two constant-amplitude waves
of nearly equal wavelengths, resulting in a sheet disturbance characterized by a long-
wavelength envelope of a short-wavelength oscillation. For semi-infinite sheets with
sinuous waves, qualitative agreement between the dimensionally reduced analysis and
experimental results is found. For example, a half-wave thinning and a sawtooth wave
shape is found for the nonlinear sinuous mode. For the semi-infinite dilational case, a
critical frequency-dependent Weber number is found below which one component of
the disturbances decays with downstream distance. For the semi-infinite sinuous case,
a critical Weber number equal to 2 is found; below this value, only one characteristic
is emitted in the positive time direction from the nozzle exit.

1. Introduction
The instability and breakup of free liquid sheets are of considerable scientific

and technological importance, and have been extensively studied in connection with
atomization, spray combustion (Dombrowski & Munday 1968; Lefebvre 1989) and
curtain coating (Brown 1961). The dynamics of thin sheets of fluid was studied as
long as one and a half centuries ago by Savart (1833), Boussinesq (1869a, b), Bond
(1935), Dorman (1952), Fraser & Eisenklam (1953) and Dombrowski & Fraser (1954).

This section of the paper focuses on a review of the literature on the analyses of
capillary wave motion on planar liquid sheets.
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70 C. Mehring and W. A. Sirignano

1.1. Linear two-dimensional planar sheets

Theoretical investigations on the linear stability of (thin) planar liquid sheets in a
surrounding gas flow were first conducted by York, Stubbs & Tek (1953) and Squire
(1953) and later by Hagerty & Shea (1955). Hagerty & Shea (1955) could show
that by linear analysis, only two modes of sheet deformation are possible on planar
sheets, i.e. sinuous (antisymmetric) waves and dilational (symmetric) or ‘sausage’ mode
waves. Hagerty & Shea were also the first to compare their theoretical results with
planar sheet experiments with and without modulation of the sheets at the nozzle
exit. The linear analyses presented by Squire (1953) and Hagerty & Shea (1955) were
generalized later by Dombrowski & Hooper (1962) and Rangel & Sirignano (1991),
the latter extending the linear analysis for the complete range of liquid-to-gas density
and thickness-to-disturbance wavelength ratios.

Theoretical analyses on the dispersive nature of linear capillary waves on (thin)
planar sheets were first provided by Taylor (1959a); for thin sheets, i.e. sheets with
disturbance wavelengths significantly larger than the sheet thickness, linear dilational
(capillary) waves are dispersive, whereas linear sinuous (capillary) waves are non-
dispersive. Similar observations were made later by Lin & Roberts (1981), Mehring,
Kim & Sirignano (1997) and Mehring & Sirignano (1998a), the latter two by using a
simplified one-dimensional theory based on the assumption of thin sheets.

The predominant appearance of the sinuous or dilational mode of sheet distortion
was discussed by Fraser et al. (1962) and continued by Dombrowski & Hooper
(1962) in their analysis of the effect of ambient density on the sheet-breakup mode.
Dombrowski & Hooper (1962) made the observation that, at atmospheric density,
sheet breakup occurs through sinuous waves, whereas at higher densities, both sinuous
and dilational modes appear to be present, the latter being dominant at very high
density ratios. This phenomenon has also been observed later theoretically and
experimentally by Li & Tankin (1991), Rangel & Sirignano (1991) and Mansour &
Chigier (1991).

Squire (1953) and later Taylor (1959b) observed that the linear stability analysis of a
liquid sheet moving in an ambient gas is not able to predict sheet breakup but merely
wave amplification of small sinuous disturbances. Following this observation, Taylor
(1959b) presented a simple analysis for the dynamics of a free edge bounding a sheet
of uniform thickness. He used this simplified theory to predict the breakup length
of a conical liquid sheet which had also been investigated experimentally. Based on
the mean wavelength of the sheet-thickness variations caused by oscillations within
the atomizer, Taylor also proposed a diameter for the droplets generated by the
disintegrating sheet. Drop-size predictions for aerodynamically induced fan sheet
disintegration were obtained by Fraser et al. (1962) and Dombrowski & Hooper
(1962) by considering that the most rapidly growing wave (predicted according to
Squire 1953 or Hagerty & Shea 1955) is detached at the leading edge in the form of
a ribbon half a wavelength wide. This ribbon forms a ligament which subsequently
disintegrates according to Rayleigh’s capillary instability analysis. Taylor’s ‘edge-
dynamics’ theory has also been employed by other authors (Brown 1961; Antoniades,
Godwin & Lin 1980) to predict the breakup length of liquid curtains.

The spatial stability of planar sheets was first considered by Lin (1981), who
provided a linear stability analysis for thin viscous two-dimensional liquid sheets in a
void and under the influence of gravity. The latter is of importance in connection with
a process called curtain coating where a two-dimensional liquid sheet, guided by two
wires, falls onto a moving substrate to provide a uniform coating (Brown 1961). The
(thin) liquid curtain is temporally and spatially stable for varicose disturbances and
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Nonlinear distortion of thin planar liquid sheets 71

temporally stable for sinuous disturbances. As reported, only the spatially growing
(sinuous) disturbances with negative group velocity were unstable, in agreement with
the experimental results by Brown (1961). Lin, Lian & Creighton (1990) analysed
the curtain problem, with the influence of the ambient gas considered. Absolute
and convective stability (to be defined later) of the sheet were determined from the
corresponding characteristic equations for complex wavenumbers and frequencies
according to Briggs (1964) and Bers (1983). (See also Li 1993 in this context.) Lin
et al. (1990) found that the sheet is convectively unstable for both sinuous and
dilational modes. However, the instability with respect to sinuous disturbances at
Weber numbers (here defined as the ratio of inertia force to surface tension force per
unit area of the gas–liquid interface) We < 2 as observed experimentally by Brown
(1961) and predicted theoretically for the case of a viscous curtain in a void by Lin
(1981) was not observed in the same way as by the latter author. Lin et al. (1990)
explain this instability through the presence of a ‘pinch-point’ singularity at zero
wavelength and zero wavenumber.

In recent years, Li (1993) presented a linear analysis (related to the study by Lin et
al. 1990) on the spatial stability of a thin two-dimensional viscous liquid sheet in an
inviscid gas medium similar to the temporal analysis presented by Li & Tankin (1991).
Spatial and temporal instabilities were found to differ quantitatively and qualitatively
at low Weber numbers, but give almost identical results at large Weber numbers (Li
1994).

Linear analyses of modulated semi-infinite two-dimensional sheets exiting from a
nozzle or atomizer were only considered within the work by Mehring & Sirignano
(1997, 1998b) for the case of a zero-density ambient gas. Prior to this work, capillary
waves on planar liquqid sheets emanating from a nozzle or atomizer had already been
observed and investigated experimentally by Hashimoto & Suzuki (1991) and held
responsible by Clark & Dombrowski (1972) for the observed discrepancy between
their theoretical (infinite sheet) and experimental results for fan sheets.

Sheet attenuation, i.e. the variation of sheet thickness with distance in diverging
nozzle configurations such as fan spray nozzles, had been considered by Taylor
(1959b), and later by Dombrowski, Hasson & Ward (1960). Their results were sub-
sequently used by Dombrowski & Johns (1963) in a linear stability analysis of
attenuating (thinning in the flow direction) sheets, and by several other authors for
the prediction of drop sizes from fan sheets as described above (Fraser et al. 1962;
Dombrowski & Hooper 1962; Weihs 1978).

The effects of liquid (and gas) viscosity were analysed by several of the previously
mentioned authors and others: Dombrowski & Johns (1963), Crapper, Dombrowski
& Jepson (1975), Lin (1981), Lin & Roberts (1981), Lin et al. (1990) and Ramos
(1996). Lin (1981) showed that liquid viscosity has the dual roles of increasing the
amplification rate as well as damping the growth rate of sinuous sheet disturbances,
a result that was also observed later by Li & Tankin (1991) and Li (1993).

In the context of comparisons between experimental results and predictions made
by linear theory, the importance of nozzle vibrations was considered, discussed and/or
demonstrated by Taylor (1959b), Crapper, Dombrowski & Pyott (1975a) and Crapper
& Dombrowski (1984).

Planar liquid sheets were also analysed as limiting cases of annular sheet configura-
tions (Crapper, Dombrowski & Pyott 1975b; Meyer & Weihs 1987; Shen & Li 1996)
recovering the results of previously mentioned authors (Squire 1953; Li & Tankin
1991).

In the past decades, there have been several interesting articles that discuss spatially
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72 C. Mehring and W. A. Sirignano

developing hydrodynamic instabilities and categorize the instabilities as either abso-
lute or convective. See, for example, Bers (1983) and Huerre & Monkewitz (1990).
This categorization depends upon the temporal response to a disturbance at the very
location of the disturbance. When the initial disturbance results in a local growth of
the disturbance over a long time according to linearized theory, then the phenomenon
is classified as an absolute instability. On the other hand, when the initial disturbance
results in a growing disturbance that propagates away from the original location
leaving only temporal decay at the original location, it is classified as a convective
instability. Of course, no growth of any kind of the original disturbance indicates
a stable phenomenon. Our analysis will relate to disturbances that do not grow in
amplitude so the categorization in its original form is not useful here. The analysis pre-
sented here (similar to the analysis by Lin 1981 mentioned before) will consider local
spatial theory in the strict sense (real frequency and complex wavenumber) in order
to investigate the linear behaviour of modulated semi-infinitely long sheets and tem-
poral theory (real wavenumber and complex frequency) in order to study periodically
disturbed infinite sheets. The former theory considers spatial disturbances originating
from a time-dependent locally-imposed finite disturbance (previously referred to as
spatial stability analysis) and the latter theory treats the temporal evolution of pe-
riodic disturbances due to an initial deviation from the undisturbed flow condition
(previously identified as temporal stability analysis).

1.2. Nonlinear two-dimensional planar sheet analyses

As noted earlier, linear stability analyses of planar sheets do not predict sheet breakup
due to sinuous disturbances, the latter being dominant at low gas-to-liquid density
ratios (Rangel & Sirignano 1991; Mansour & Chigier 1991).

Clark & Dombrowski (1972) considered a second-order (temporal) analysis of the
aerodynamic growth of sinuous waves on parallel-sided, i.e. non-attenuating, inviscid
sheets. They predicted the appearance of the first-harmonic dilational mode due to
energy transfer from the fundamental sinuous mode, which provided sheet breakup
at half-wavelengths of the fundamental mode and at locations close to the maximum
deflection region of the sheet. A similar observation was made in the nonlinear
sheet analyses by Rangel & Sirignano (1991) using a discrete-vortex method for the
analysis of a planar liquid sheet in a gas of non-zero density. Jazayeri & Li (1996)
used a third-order stability analysis for an inviscid periodically disturbed liquid sheet
moving in an inviscid (and incompressible) gas stream and also concluded that the
sheet ruptures at half-wavelengths of the fundamental sinuous mode. However, the
sheet distortion predicted by Jazayeri & Li (1996) is greatly influenced by the first
and second harmonics of the sinuous mode. In agreement with Rangel & Sirignano
(1991), Jazayeri & Li (1996) observed that the nonlinear growth rates for the sinuous
mode are less than suggested by the linear prediction.

After Clark & Dombrowski (1972) developed their nonlinear (temporal) analysis
based on experimental observations from fan sheet experiments, nonlinear effects were
also studied by Crapper et al. (1975a) for the spatial stability of thin liquid sheets
forced at the nozzle exit. Based on experimental observations, Crapper et al. (1975a)
developed a ‘preliminary’ large-amplitude theory considering the formation of vortices
in the gas flow surrounding the liquid stream. Asare, Takahashi & Hoffman (1981)
also investigated the stability of liquid sheets (at two thicknesses and at variable air
pressures) harmonically forced at the nozzle (sinuous disturbances only). Deviations
between experimental observations and linear theory were found for higher forcing
frequencies and at larger downstream positions where the wave-envelope amplitude
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Nonlinear distortion of thin planar liquid sheets 73

appeared to saturate before sheet breakup. Similar observations were made by Crapper
et al. (1975a). Asare et al. (1981) also provided a simplified trajectory theory based
on the linearized force balance for a fluid particle in the crest of a propagating wave.

Nonlinear (capillary) waves on fluid sheets in a void were studied by Kinnersley
(1976) whose analysis was a generalization of Crapper’s (1957) exact solution for a
fluid of infinite depth. The former analysis was later revised and extended by Hogan
(1986). Sheet breakup at half-wavelengths for sinuous waves and at points interspaced
by one wavelength for dilational distorting sheets was observed by Dombrowski &
Hooper (1962).

Weakly nonlinear analyses for capillary dilational waves on planar sheets by Mat-
suuchi (1974, 1976) revealed that two periodic (dilational) wave trains of finite
amplitude and with different wavelengths are ‘modulationally’ unstable and lead to
sheet breakup even without the interaction with an ambient gas. This is in contrast to
corresponding linear analyses and the observation made by Dombrowski & Hooper
(1962), i.e. that a flat laminar sheet injected in vacuo is stable. The same observa-
tion as described by Matsuuchi (1976) is also made within the present analysis. The
recent work and the work presented by Mehring & Sirignano (1998a) extend the
Matsuuchi analysis to general (i.e. dilational and sinuous) capillary waves on planar
sheets. For sinuous waves, the same characteristic nonlinear behaviour was observed
as previously described by Rangel & Sirignano (1991) for aerodynamically forced
liquid sheets, including the nonlinear transverse oscillation of initially linear (sinuous)
travelling waves. In their analysis of the dilational mode only, Mehring et al. (1997)
also observed a temporal steepening and desteepening of initially linear dilational
travelling waves with sheet breakup at points interspaced by one wavelength.

Nonlinear analyses of planar sheets in a void and with harmonic forcing at the
nozzle exit were analysed only by Meier, Klöpper & Grabitz (1992) and Mehring &
Sirignano (1997, 1998b). The latter observed that, as in their linear analysis of the
corresponding sheet configuration, the (sinuous and dilational) sheet distortion is in
general characterized by a long-wavelength envelope of a short-wavelength oscillation.
(See also Hashimoto & Suzuki 1991.) Fluid agglomeration in the maximum deflection
region of the sheet found on transversely modulated sheets was similar to that in the
corresponding infinite case of sinuous travelling waves. Also, for sheets with dilational
forcing at the nozzle exit, fluid was found to accumulate into fluid lumps, with in-
creased sheet thinning and breakup at points close to these blobs of fluid. The analysis
presented by Meier et al. (1992) focused on the dilational mode of sheet modulation
and did not consider surface tension; therefore, the physics, especially in the thin
sheet limit, can be shown to be profoundly different from the application of interest.

1.3. Three-dimensional planar sheets

Only a few three-dimensional or quasi-three-dimensional analyses on planar liquid
sheets have been reported so far in the literature. Arai & Hashimoto (1985) presented
experimental results on the three-dimensional breakdown of a planar liquid sheet
in a high-speed cocurrent uniform gas stream; more extensive anlayses of a similar
configuration were later conducted by Mansour & Chigier (1990, 1991). Within
their work, Arai & Hashimoto (1985) also presented a perturbation analysis of the
corresponding inviscid three-dimensional boundary value problem. Ibrahim & Akpan
(1996) presented a three-dimensional linear analysis of a periodically disturbed planar
viscous liquid sheet in an inviscid gas medium. Preliminary results on the nonlinear
distortion of a thin planar inviscid liquid sheet in a void and with three-dimensional
disturbances were recently presented by Kim & Sirignano (1997, 1998) for infinite
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74 C. Mehring and W. A. Sirignano

periodically disturbed and semi-infinite modulated sheets (dilational disturbances
only). Their nonlinear analyses are based on the analyses presented by Sirignano
& Mehring (1996), Mehring et al. (1997) and Mehring & Sirignano (1997, 1998a, b)
using a reduced-dimension approach to describe the nonlinear distortion of thin
planar two-dimensional liquid sheets.

The analysis of the stability or distortion of thin sheets of liquid of arbitrary shape
in terms of a reduced-dimension analysis, i.e. a one- or two-dimensional continua
theory, has also been proposed by Entov (1982). Although general dynamic equations
were derived including the effects of complex rheology of the liquid sheets considered,
only stationary motions and small perturbations of the film about its stationary
position were considered. More recent work on this topic was presented by Zak
(1979) and Yarin (1993), the latter including a detailed review of previous work on
liquid sheet rheology and hydrodynamics.

A numerical analysis of free liquid sheets by using a ‘general-purpose’ multi-fluid
method has been reported only by Poo & Ashgriz (1988). Although similar techniques
such as VOF (volume-of-fluid) methods (e.g. Kothe et al. 1996), level-set methods
(e.g. Sussman et al. 1997) or other front-tracking finite-difference techniques (e.g.
Nobari & Tryggvason 1996 ) are also able to predict the nonlinear distortion of
liquid sheets, the accuracy of these predominantly Eulerian techniques is difficult to
retain at an acceptable level when thin sheets with considerable nonlinear distortion
are considered. More accurate results might be expected by Lagrangian methods for
interfacial flows (Shyy et al. 1996), e.g. boundary-element techniques (Heister 1997)
or discrete-vortex methods (Baker, Meiron & Orszag 1982; Rangel & Sirignano
1988, 1991) as well as the prescribed Eulerian techniques if combined with dynamic
regridding at the location of the fluid interfaces. However, such simulations are
computationally very intensive and do not typically yield the same insights as the
analytical considerations described previously.

Many interesting studies have been performed for round liquid jets. Some precede
the first studies on liquid sheets and many parallel efforts on the sheet configuration.
See the pioneering work of Rayleigh (1879) and the review by Bogy (1978).

1.4. Present analysis

The treatment in this paper for nonlinear dilational and sinuous waves follows
a system of equations and approach originally determined by the senior author
for the limiting case of small sheet thickness compared to wavelength. The first
computations for dilational waves were presented by Sirignano & Mehring (1996).
This first solution was valid only for short times and did not capture the full nonlinear
wave development. Approximate forms of the equations were solved in a manner valid
for long times by Mehring et al. (1997) and Mehring & Sirignano (1997) for dilational
and sinuous waves in both the infinite and semi-infinite configurations (temporal and
spatial stability, respectively). In this paper, certain approximations are removed and
the various analyses (linear and nonlinear treatments, dilational and sinuous modes,
infinite and semi-infinite configurations) are unified. Comparisons with fully two-
dimensional computations are also made. After the study was launched and the first
publication was printed, the authors discovered the work of Matsuuchi (1974, 1976)
that very closely paralleled a portion of this work in the narrow domain of dilational
waves on infinite sheets.

In § 2, the reduced-dimension system of equations is formulated; it is derived from
the fully two-dimensional problem by using polynominal expansions of the dependent
flow variables in terms of [y− y(x, t)] where y denotes the direction perpendicular to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

46
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004693


Nonlinear distortion of thin planar liquid sheets 75

the undisturbed sheet or main flow direction and y(x, t) is the instantaneous location
of the sheet centreline in the y-direction. The temporal stability of infinite sheets is
considered in § 3 with both linear and nonlinear analyses for both dilational and
sinuous mode waves. An exact nonlinear solution is presented for the dilational case
in § 3.2. More general nonlinear solutions are found by finite-difference computations
and presented in § 3.3. The spatial stability on a semi-infinite sheet is discussed in § 4 for
linear and nonlinear treatments of both wave modes. Conclusions are presented in § 5.

2. Governing equations
A thin incompressible inviscid planar liquid sheet flowing in a void and zero gravity

is considered. Here, the specification ‘thin’ implies that only fluid sheets are considered
for which the thickness of the sheet is small compared to the disturbance wavelength.
Our derivation below will be an extension of the analysis by Sirignano & Mehring
(1996).

The governing equations, describing the unsteady motion within an incompressible
inviscid two-dimensional liquid sheet at zero gravity are given by

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
, (2.3)

where u and v are the velocity components parallel and perpendicular to the main
flow direction, and p and ρ denote the pressure and the density of the liquid. In
the undisturbed case, the liquid flows in the x-direction with a uniform and steady
velocity.

Indicating the upper and lower interfaces of the sheet by y+(x, t) and y−(x, t), we
define the centreline position and the thickness of the sheet by

y(x, t) = (y+ + y−)/2, ỹ(x, t) = y+ − y− . (2.4)

The boundary conditions at the interfaces of the sheet are given by the following
kinematic and dynamic conditions:
kinematic conditions

v± =
∂y±
∂t

+ u±
∂y±
∂x

; (2.5)

dynamic conditions

p± = ± σ

R±
= ∓σ f± ∂

2y±
∂x2

with f± =

[
1 +

(
∂y±
∂x

)2 ]−3/2

, (2.6)

where the subscripts + and − denote values at the upper and lower interface,
respectively. In (2.6), R± is the local radius of curvature of the interface and σ denotes
the surface tension coefficient of the liquid. The ambient gas density and pressure
are considered negligible, i.e. the limit of a void surrounding the liquid is considered.
Vaporization is neglected.

Now, for a sheet whose thickness is small compared to the wavelength of a
disturbance, it is convenient to reduce the problem to a one-dimensional unsteady
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formulation. Equations (2.10), (2.11), (2.17), and (2.18) will be the leading-order
equations resulting from a power-series expansion of the dependent variables u, v and
p in terms of (y − y). The same result can be obtained in a more ad-hoc fashion by
(standard) one-dimensional approximations to the two-dimensional flow governed by
(2.1)–(2.6) (Mehring & Sirignano 1998a). See also the analysis by Ramos (1992) for
annular sheets in this context.

If u, v and p are analytical in x, y and t, then they are also analytical in x, y−y(x, t),
and t provided that y is analytical. In this case we can employ the following expansions
for the dependent variables:

u = u0(x, t) + u1(x, t)[y − y(x, t)] + u2(x, t)[y − y(x, t)]2 + · · · , (2.7)

v = v0(x, t) + v1(x, t)[y − y(x, t)] + v2(x, t)[y − y(x, t)]2 + · · · , (2.8)

p = p0(x, t) + p1(x, t)[y − y(x, t)] + p2(x, t)[y − y(x, t)]2 + · · · , (2.9)

where |y − y(x, t)| 6 |y±(x, t) − y(x, t)|. The proposed polynominal expansion of u, v
and p in terms of [y − y(x, t)] is a generalization of the series expansions in terms
of the undisturbed sheet thickness h previously employed by other authors for the
dilational case only (Matsuuchi 1976; Erneux & Davis 1993; Ramos 1996).

Inserting (2.7) and (2.8) into the expression for (v+ + v−)/2 given by (2.5) and
considering ỹ = y+ − y− and y = (y+ + y−)/2 yields

v0 =
∂y

∂t
+ u0

∂y

∂x
(2.10)

for the transverse velocity component v to the lowest order in (y−y). Equation (2.10)
is accurate through first order in |y± − y| = ỹ/2. Proceeding in the same way to
express the velocity difference (v+ − v−), one arrives at(

∂ỹ

∂t
+ u0

∂ỹ

∂x

)
1

ỹ
= v1 − u1

∂y

∂x
,

which is also accurate through order |y± − y| = ỹ/2. The previous equation can be
combined with the lowest-order equation in the series expansion of (2.1), i.e.

∂u0

∂x
− u1

∂y

∂x
+ v1 = 0,

to yield

∂ỹ

∂t
+
∂(u0ỹ)

∂x
= 0. (2.11)

The lowest-order approximation of (2.2) is obtained by replacing u, v and p by the
appropriate series expansions and is given by

∂u0

∂t
+ u0

∂u0

∂x
= −1

ρ

(
∂p0

∂x
− p1

∂y

∂x

)
. (2.12)

A similar procedure to that described for the momentum equation in the axial
direction (2.2) can be employed to obtain the lowest-order approximation to the
momentum equation in the transverse direction (2.3). The final result here is

∂v0

∂t
+ u0

∂v0

∂x
= −p1

ρ
. (2.13)

Equations (2.10), (2.11), (2.12) and (2.13) govern the relationships amongst u0, v0, ỹ,
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y, p0 and p1. Equation (2.6) can now be used to obtain a closed system of equations
governing the nonlinear wave distortion of thin liquid sheets.

Considering terms up to first order in the expansion of the pressure at the liquid
interfaces p±, i.e. p± = p0 ± p1 ỹ/2, one obtains p0 = (p+ + p−)/2 and p1 ỹ = p+ − p−
which can be expressed in terms of ỹ and y by employing (2.6), i.e.

p0 =
p+ + p−

2
= −σ

2

[
f+ + f−

2

∂2ỹ

∂x2
+ (f+ − f−)

∂2y

∂x2

]
, (2.14)

p1 ỹ = p+ − p− = −σ
[
(f+ + f−)

∂2y

∂x2
+
f+ − f−

2

∂2ỹ

∂x2

]
, (2.15)

where f+ and f− are given by

f± =

[
1 +

(
∂y

∂x

)2

± ∂y

∂x

∂ỹ

∂x
+

1

4

(
∂ỹ

∂x

)2 ]−3/2

. (2.16)

After insertion of (2.14), (2.15) and (2.16) into (2.12) and (2.13), the momentum
equations in the axial and transverse directions take the following forms:

∂u0

∂t
+ u0

∂u0

∂x
=

σ

2ρ

{
∂

∂x

[
f+ + f−

2

∂2ỹ

∂x2
+ (f+ − f−)

∂2y

∂x2

]
−2

ỹ

∂y

∂x

[
(f+ + f−)

∂2y

∂x2
+
f+ − f−

2

∂2ỹ

∂x2

]}
, (2.17)

∂v0

∂t
+ u0

∂v0

∂x
=
σ

ρ

1

ỹ

{
(f+ + f−)

∂2y

∂x2
+
f+ − f−

2

∂2ỹ

∂x2

}
. (2.18)

Equations (2.10), (2.11), (2.17), and (2.18) form a closed system of equations which
together with appropriate boundary and initial conditions governs the nonlinear
distortion of thin liquid sheets in a void.

The analysis of the nonlinear sheet distortion, governed by the above equations, is
simplified by introducing non-dimensional quantities,

x∗ =
x

lref
, t∗ =

t

lref/uref
, y =

ỹ

lref
, Y =

y

lref
, u =

u0

uref
and v =

v0

uref
. (2.19)

Also, derivation of the above governing equations in terms of non-dimensional vari-
ables and with disturbance wavelength λ as characteristic length lref shows that, (2.10),
(2.11), (2.17) and (2.18) are exact in the limit where the ratio between undisturbed
sheet thickness h and λ reaches zero, if |y± − y| = O(h/2).

Using (2.19) to rewrite (2.10), (2.11), (2.17) and (2.18) yields the following non-
dimensional system of equations:

∂y

∂t∗
+

∂

∂x∗
(uy) = 0, (2.20)

∂u

∂t∗
+ u

∂u

∂x∗
= ε2

{
∂

∂x∗

[
f+ + f−

2

∂2y

∂x∗2
+ (f+ − f−)

∂2Y

∂x∗2

]
−2

y

∂Y

∂x∗

[
(f+ + f−)

∂2Y

∂x∗2
+
f+ − f−

2

∂2y

∂x∗2

]}
, (2.21)
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∂v

∂t∗
+ u

∂v

∂x∗
= ε2

2

y

{
(f+ + f−)

∂2Y

∂x∗2
+
f+ − f−

2

∂2y

∂x∗2

}
, (2.22)

∂Y

∂t∗
+ u

∂Y

∂x∗
= v, (2.23)

where ε2 = σ/(2ρu2
reflref) and

f± =

[
1 +

(
∂Y

∂x∗

)2

± ∂Y

∂x∗
∂y

∂x∗
+

1

4

(
∂y

∂x∗

)2 ]−3/2

. (2.24)

Note that the symbols y, u and v defined in (2.19) now have a different meaning from
those employed in (2.1), (2.2) and (2.3).

Expressing the flow variables y, Y , u and v within the above equations in terms
of their undisturbed and fluctuating values, the corresponding linearized system of
equations is readily obtained by neglecting terms which contain products of the
fluctuating quantities. The linearized system of equations is given by

∂y′

∂t∗
+ u(0) ∂y

′

∂x∗
+ y(0) ∂u

′

∂x∗
= 0, (2.25)

∂u′

∂t∗
+ u(0) ∂u

′

∂x∗
= ε2

∂3y′

∂x∗3
, (2.26)

∂v′

∂t∗
+ u(0) ∂v

′

∂x∗
= ε2

4

y(0)

∂2Y ′

∂x∗ 2
, (2.27)

∂Y ′

∂t∗
+ u(0) ∂Y

′

∂x∗
= v′, (2.28)

where y(0) and u(0) or y′ and u′ denote the non-dimensional undisturbed or fluctuating
values of the sheet thickness y and the sheet velocity u, respectively (y = y(0) +y′ , u =
u(0) +u′). The non-dimensional undisturbed transverse velocity component of the sheet
v(0) and its non-dimensional undisturbed centreline location Y (0) are zero. The values
of y(0) and u(0) are constant and will depend on the characteristic length and velocity
scales chosen for the particular problem according to table 1. From (2.25)–(2.28), we
see that, in the linear case, the dilational (or symmetric) mode of sheet distortion
governed by (2.25) and (2.26) is decoupled from the sinuous (or antisymmetric) mode,
the latter being governed by (2.27) and (2.28). This is in contrast to the nonlinear
case governed by (2.20)–(2.23) where a coupling occurs.

The present analysis does not model the details of the sheet-disintegration process
during the sheet breakup. Such an analysis would require a modification of the
governing equations presented above, in order to include molecular forces that become
important when the sheet thickness is of the order of the molecular mean free path. For
symmetric periodically disturbed infinite sheets, such an analysis has been presented
by Erneux & Davis (1993) and more recently by Vaynblat et al. (1997).

3. Infinite sheets
3.1. Linear analysis

Introducing the Galilean transformation defined by

τ = t∗, ξ = x∗ − u(0)t∗ (3.1)
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and choosing lref to be the undisturbed sheet thickness h, and uref = (σ/(2ρh))1/2 (so
that ε = 1), equations (2.25) and (2.26) or (2.27) and (2.28) can be combined to yield

∂2y′

∂τ2
+
∂4y′

∂ξ4
= 0, (3.2)

∂2Y ′

∂τ2
− 4

∂2Y ′

∂ξ2
= 0. (3.3)

Equations (3.2) and (3.3) illustrate that the dilational and sinuous distortions of
thin liquid sheets in a void are decoupled and do not interact in a linear analysis.
However, the undisturbed sheet thickness, that has been chosen as the characteristic
length in the non-dimensionalization process, is a scaling factor for both dilational and
sinuous cases. Equations (3.2) and (3.3) are both well-known equations in dynamical
mechanics, governing the transverse vibration of a uniform beam and vibrations
on a taut string, respectively. The propagation characteristics of free waves and
waves resulting from forced motion on both beams and strings have been analysed
extensively in the literature (Graff 1975; Ortner 1978). Within the analysis of thin
liquid sheets, Taylor (1959a) first derived and analysed (3.2) and (3.3), the latter in its
steady form and for a radially expanding planar sheet.

Periodic travelling wave solutions to (3.2) for the dilational case are readily obtained
by separation of variables. The reciprocal relation between the disturbance wavelength
λ∗d and the wave velocity V ∗d (i.e. V ∗d = 2π/λ∗d ) observed in this linear case illustrates the
dispersive nature of the dilational sheet distortion. It indicates that the dimensional
wave velocity is proportional to the factor (σh/2ρ)1/2 divided by the wavelength λ. This
implies that the short wavelengths travel faster. In fact, the phase velocity increases
without limit for decreasing wavelength. This anomaly is a result of the inviscid flow
assumption and has already been observed for the (linear) transverse vibration of
beams where it is a consequence of neglecting rotary inertia and shear effects (Graff
1975). It should be noted however that the theory employed here is only valid for thin
sheets, i.e. where the wavelength of the imposed sheet disturbance is large compared
to the sheet thickness. Travelling wave solutions to (3.3) show that (linear) sinuous
capillary waves on thin sheets are non-dispersive, with a constant wave velocity of
V ∗s = 2. Comparison of the linear wave velocities V ∗ for sinuous and dilational
waves also shows that on thin sheets, i.e. λ∗ � 1, sinuous (or antisymmetric) waves
propagate much faster than dilational waves. The results described here, obtained
by using a reduced-dimension approach, were presented by Taylor (1959a), and can
also be obtained by taking the linearized two-dimensional solution of Squire (1953)
or Rangel & Sirignano (1991) in the limit of a thin layer with zero ambient gas
density. Apart from the single-harmonic wave analyses described above, more general
analyses of the free and forced motion of infinite and finite media governed by (3.2)
and (3.3) were described by Graff (1975).

3.2. Nonlinear exact analysis (dilational thin sheet case)

The analysis in this section is a modification of the analysis by Sirignano & Mehring
(1996). For dilational sheet disturbances only, we have y = (y+ + y−) /2 = 0 or
v0 = ∂y/∂t + u0 ∂y/∂x = 0, so that after employing non-dimensionalization and a
Galilean transformation, the nonlinear system of equations (2.20)–(2.23) reduces to

∂y

∂τ
+
∂(yu′)
∂ξ

= 0, (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

46
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004693


80 C. Mehring and W. A. Sirignano

∂u′

∂τ
+ u′

∂u′

∂ξ
=

∂

∂ξ

[
q
∂2y

∂ξ2

]
, (3.5)

with q = f+ = f− = [1 + 1
4
(∂y/∂ξ)2]−3/2. The assumption of travelling wave solutions,

i.e.

y = F(ζ) = F(ξ − V ∗τ), u′ = G(ζ) = G(ξ − V ∗τ) (3.6)

then yields, after insertion into (3.4) and (3.5),(
G− V ∗) dF

dζ
+ F

dG

dζ
= 0, (3.7)

(
G− V ∗) dG

dζ
− d

dζ

[
q

d2F

dζ2

]
= 0. (3.8)

Integration of (3.7) provides G = u′ = V ∗
(
1− 1/F

)
where the integration constant

is obtained by adjusting the Galilean transformation so that G = 0 when F = 1. This
implies that the product of the liquid velocity (relative to the moving wave) and the
thickness remains constant. Introducing this result into (3.8) gives

V ∗ 2

F3

dF

dζ
+

d

dζ

[
q

d2F

dζ2

]
= 0. (3.9)

Integration of (3.9) yields

K − V ∗ 2

2F2
+ q

d2F

dζ2
= 0 , (3.10)

where K is the constant of integration. We will choose the reference length here so
that F = 1 at the point where the second derivative is zero. This will determine
K = V ∗ 2/2. The reference length now is not the unperturbed thickness but goes to
that value as the amplitude of the wave goes to zero. Later, we shall determine this
reference-length value. Now we multiply (3.10) by dF = (dF/dζ)dζ and integrate with
respect to ζ. This yields [

1 +
1

4

(
dF

dζ

)2 ]−1/2

= V ∗2H(F, c), (3.11)

where H(F, c) has been defined as H(F, c) = 1
8
[(F + 1/F) + c] and c is a constant of

integration. For a soliton-type solution, dF/dζ → 0 and F → 1 as ζ → −∞; whereas
for a periodic solution, dF/dζ = 0 at maximum and minimum values of F . Therefore,
c = 1/V ∗2 − 1

4
for a soliton-type solution and

H(Fmax, c) = H(Fmin, c) = 1/V ∗2 (3.12)

for periodic solutions.
It follows that Fmin = Fmax = 1 for a soliton solution; this implies F = 1 everywhere

so that no soliton wave can exist. Therefore, we consider only periodic disturbances.
Note that solutions with discontinuous first or second derivatives are not considered;
otherwise discontinuities in the surface-tension force and pressure could occur.

Equation (3.11) indicates that, for any value of F , two values of its slope exist with
equal magnitude but opposite sign. This implies that symmetries exist for F(ζ) about
the maximum and minimum points. Note that (3.12) gives c = 1/V ∗2 − 1

4
for the

trivial case where Fmax = Fmin = 1.
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To find the solution y = F(ζ) = F(ξ − V ∗τ), (3.11) is rewritten in the form

dF

dζ
= ±2

[
1

V ∗4H(F, c)2
− 1

]1/2

or dζ = ±1

2

[
1

V ∗4H(F, c)2
− 1

]−1/2

dF

and integrated starting at ζ = 0 with Fm = Fmin or Fmax. The resulting integral
equation ∫ ζ

0

dζ ′ =
1

2

∫ F

Fm

[
1

V ∗4H(F ′, c)2
− 1

]−1/2

dF ′ (3.13)

then provides the exact solution y = F(ζ) to (3.9). In (3.13) a minus sign appears in
front of the integrand wherever dF/dζ is negative.

From (3.13), the wavelength in ζ-space λζ can be determined as

λζ =

∫ Fmax

Fmin

[
1

V ∗4H(F, c)2
− 1

]−1/2

dF. (3.14)

In order to determine the reference length, we can employ the conservation-of-mass
principle. The normalized unperturbed thickness a is given by

a λζ =

∫ λζ

0

Fdζ. (3.15)

From (3.14) and (3.15), a is governed by the relationship∫ Fmax

Fmin

[
1

V ∗4H(F, c)2
− 1

]−1/2

(F − a) dF = 0 . (3.16)

Since a is the ratio of the dimensional unperturbed thickness to the reference length,
the reference length is known once (3.16) is solved. The thickness normalized by the
unperturbed thickness is given by F/a. It can be shown that the velocity for the
Galilean transformation is the product of a and the unperturbed velocity.

We can arrive at an approximate solution to (3.9) by first expanding the quantity
within brackets in (3.11)

1− 1

8

(
dF

dζ

)2

+
3

128

(
dF

dζ

)4

− · · · = V ∗2H(F, c). (3.17)

If we take only the two leading terms in the above expansion, it is equivalent to
approximating q ≈ 1 in (3.5) and (3.9). In that case, we can make the analogy with a
simple oscillator and relate the left-hand side of (3.17) to a kinetic energy term and
the right-hand side to a total energy less the potential energy. However, in physical
terms, the analogy is very poor since just the opposite is true; the left-hand side
derives from the surface-tension forces while the right-hand side derives from the
inertial term. Furthermore, (3.11) is a statement of momentum balance rather than a
statement of energy balance.

Using the approximation q ≈ 1 and employing the same procedure as for the
derivation of the exact solution (3.13), (3.17) yields after separation and integration∫ ζ

0

dζ ′ =
1

|V ∗|
∫ F

Fm

dF ′

(C − (1/F ′ + F ′))1/2
, (3.18)

where again a minus sign appears in front of the integrand wherever the slope
dF/dζ is negative. Note that, for both the exact solution and the above approximate
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Figure 1. Nonlinear travelling wave solution y = F(ζ/λζ , C) governed by (3.18). λζ denotes the
non-dimensional wavelength of the solution and u′/V ∗ = 1 − 1/F the corresponding streamwise
velocity.

solution, Fmin and Fmax are functions of the integration constant C (e.g. Fmin,max =
(C ∓ (C2 − 4)1/2)/2) or equivalently of c. This demonstrates the significance of either
of these constants as an amplitude parameter in the solutions (3.13) and (3.18).

From (3.18) the wavelength λζ is given by

λζ =
2

|V ∗|
∫ Fmax

Fmin

dF

(C − (1/F + F))1/2
, (3.19)

which is correct through second order in the amplitude of the derivative dF/dζ; the
error is third order. From the approximate solution for λζ we note that, once C and
the wave velocity V ∗ are specified, the amplitude and wavelength of the nonlinear
travelling wave are determined. This is in contrast to the linear case, where dilational
travelling waves have the same propagation velocity at any disturbance amplitude.
However, (3.19) also reveals that the linear result V ∗d ∼ 1/λ∗d also applies in the
nonlinear case and is correct through second order in the amplitude of the derivative
dF/dζ. The product of wavelength and wave speed is weakly dependent on the
wave amplitude and, in linear theory, becomes independent of the amplitude for the
dispersive dilational travelling wave.

Figure 1 illustrates the nonlinear travelling wave solutions given by (3.18) for
different values of C .

After performing the above analysis of nonlinear dilational travelling waves, a
careful literature review revealed the existence of a similar analysis attempted by
Matsuuchi (1974, 1976). Matsuuchi chose the two integration constants appearing in
the integration process of the nonlinear governing equations freely and independently
which allows for nonlinear dilational travelling waves with independent values for the
maximum and minimum sheet thickness. However, as shown above, consideration of
the trivial solution, i.e. (u′ = 0, y = 1), can be used to determine one of the integration
constants. This leaves only one free constant, i.e. c or C , which determines both the
minimum and maximum amplitude of the travelling nonlinear wave, rendering them
dependent on each other.
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In conclusion of this analysis, we find that nonlinear capillary wave trains of
constant amplitude can exist on thin liquid sheets if a relation such as (3.19) is
satisfied among the wave amplitude (represented by C), the wavelength and the wave
velocity (see also figure 1). Furthermore, (3.19) also reveals that for dilational waves,
the nonlinearity leads to a decrease in the wave velocity which is contrary to the case
of gravity waves (Lamb 1932). The same findings were also reported by Matsuuchi
(1976).

3.3. Nonlinear numerical analysis

Equations (2.20)–(2.23) have been solved numerically as an initial-value problem and
with periodicity conditions imposed at the boundaries of the computational domain.
Non-dimensional numerical simulations were performed in the same reference frame
as the linear solutions presented earlier. For the non-dimensionalization the same
reference length and velocity were used as in the linear case. Numerical solutions
were obtained by using the Lax–Wendroff method with Richtmyer splitting (Ferziger
1981). This followed a suggestion by I. Kim (1997, personal communication). See
also Kim & Sirignano (1997). In the linear limit, the latter reduces to the ordinary
Lax–Wendroff method.

3.3.1. Dilational case

To validate the implementation of the numerical scheme, the propagation of the
nonlinear waves governed by (3.18) was considered. To be consistent in the comparison
of this approximate analytical solution with the corresponding numerical results, the
approximation q ≈ 1 was also employed in the numerical solution of the appropriate
non-dimensional equations (but only for this validation exercise), i.e. (3.4) and (3.5).

Figure 2 illustrates the numerical result obtained for such a wave (C = 2.5 and
V ∗ = 1 → λ∗ ≈ 6.865). The appropriate initial conditions for this case are y(τ =
0, ξ) = F(ξ, C = 2.5) and u′(τ = 0, ξ) = V ∗(1 − 1/F), where F is given by (3.18)
with ζ = ξ at τ = 0 according to (3.6). The number of grid points per disturbance
wavelength was nξ = 100 and the integration time step per time period T = λ∗/V ∗,
∆τ/T = 10−4.

One observes that the shape of the periodic nonlinear travelling wave is very
well preserved in the numerical simulation, and the velocity at which the wave
travels agrees with the analytical prediction. This result has been confirmed for a
wide range of (nonlinear) waves, i.e. waves with different amplitudes (or C-values)
and propagation velocities V ∗ (not illustrated). For very small wave amplitudes (i.e.
C → 2), analytical and finite-difference solutions were also found to agree with the
results obtained from the linear analysis. The nonlinear waves governed by (3.18) are
stable with regard to disturbances introduced by the numerical scheme employed.

The influence of nonlinear effects on symmetric distorting sheets was analysed by
comparison of linear analytical and nonlinear numerical solutions for various initial
conditions of harmonically disturbed (infinite) sheets. Initial conditions were chosen
to be travelling wave solutions of the linear equation (3.2), i.e.

yd(τ, ξ) = 1 + Ad cos

[
2π

λ∗
(ξ − V ∗τ)

]
at τ = 0, (3.20)

where Ad denotes the (non-dimensional) disturbance amplitude, and where the wave
velocity V ∗ and the time period T are given by V ∗ = 2π/λ∗ and T = λ∗/V ∗ = λ∗ 2/(2π)
as described earlier. The initial momentum disturbance of the sheet for the specified
sheet disturbance is obtained from the above expression for yd(τ = 0, ξ) and the
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Figure 2. Numerical solution for a propagating nonlinear dilational travelling wave
governed by (3.18) (V ∗ = 1, C = 2.5→ λ∗ ≈ 6.865).

linearized continuity equation (2.25) after Galilean transformation, i.e.

u′d = V ∗Ad cos

[
2π

λ∗
ξ

]
. (3.21)

For all the simulations, the number of grid points per wavelength λ∗ was nξ = 200
and the integration time step per time period T , ∆τ/T = 10−4. Figure 3 illustrates
the linear and nonlinear wave propagation for the case Ad = 0.55.

Comparison between linear and nonlinear results shows that nonlinear effects
induce a slight temporal oscillation of the disturbance amplitude, combined with an
increased thinning of the sheet and a pulsating steepening and de-steepening on the
front or back of the wave (‘wobbling’). For the nonlinear dilational wave propagation
on an infinite sheet, the difference between the exact solution with its constant
waveform and the wave resulting from the initial sinusoidal thickness variation can
be described by the higher harmonics. Since the wave phenomenon is dispersive, these
higher harmonics do not travel at the same speed as the fundamental component.
Therefore, an unsteady waveform results. The frequency at which the sheet alternately
steepens at one side and flattens at the opposite side is of the same order as the
oscillation frequency of the maximum amplitude variation, since both originate in the
presence of the higher harmonics. Figure 3 also reveals that the system nonlinearity
effectively decreases the propagation velocity of the initially linear travelling wave.
For the case illustrated in figure 3, the linear wave travels five wavelengths, while the
nonlinear wave only propagates about 4 wavelengths (not illustrated).
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Figure 3. Linear and nonlinear propagation of a dilational travelling wave initially prescribed by
(3.20) and (3.21) (λ∗ = 50, Ad = 0.55: −−−, linear; ——, nonlinear; 0 < τ < T ).

Figure 4 illustrates the evolution of an initially highly disturbed sheet (Ad = 0.65).
In this case, as was found for all cases of Ad > 0.61 and λ∗ = 50, the wave thins
and breaks at a finite time due to nonlinear effects, i.e. due to the appearance of
the previously described higher-harmonic waves which, in interaction with each other
and the original wave disturbance, cause variations of the sheet thickness resulting in
sheet disintegration since the original sheet disturbance is already very high. However,
in all cases under consideration the nonlinearity did not promote sheet breakup due
to severe wave steepening or amplitude growth of the travelling wave. We note that
Rangel & Sirignano (1991) found amplitude growth for both linear and nonlinear
analyses when the ambient gas density was not negligible; they also found severe
wave steepening in the nonlinear case.

Nonlinear numerical simulations for various values of the non-dimensional dis-
turbance wavelength λ∗ = λ/h showed that the time Tc typically required for one
oscillation of the sheet in the transverse or axial direction increases monotonically
as the non-dimensional wavelength λ∗ is increased. However, the increase of Tc with
increasing λ∗ is less than the corresponding increase of the time period T of the
travelling wave, since the nonlinear oscillation is associated with higher-harmonic
dilational waves for which variations in T due to changes in λ∗ are smaller than for
the initially imposed disturbance with larger value of λ∗. (Note that, by linear analysis,
dT/dλ∗ ∼ λ∗ for dilational waves.) The effect of variations of λ∗ on the propagation
velocity or time period T of the travelling wave describes the dispersive nature of
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Figure 4. Linear and nonlinear propagation of a dilational travelling wave initially prescribed by
(3.20) and (3.21) (λ∗ = 50, Ad = 0.65: −−−, linear; ——, nonlinear).

the problem and was already discussed within the linear analysis. The importance
of nonlinear effects on the deviation of the functional dependency of V ∗ from the
linear case (V ∗ = 2π/λ∗) has not been analysed, except for the analytical nonlinear
considerations presented earlier. No significant changes in the characteristics of the
nonlinear sheet oscillation or its frequency were found with variations of the initial
disturbance amplitude Ad (e.g. for Ad = 0.61) or at later times in the simulation (e.g.
within 0 < τ < 6T ).

Also, the analysis of standing waves created by the superposition of two initially
linear travelling waves with opposite wave velocities but the same wavelengths and
disturbance amplitudes showed that the existence of higher-harmonic waves in the
nonlinear simulations leads at times to the formation of fluid lumps very similar to
those observed on semi-infinite modulated sheets (see figure 13). This similarity might
be explained by the fact that, as for the standing wave analysis, there are two waves
present on the modulated semi-infinite sheet. In the case of figure 13, the two waves
have slightly different wave speeds and wavenumbers.

Nonlinear effects such as those described above are only significant if the distur-
bance amplitude Ad is large enough. For the travelling-wave case with λ∗ = 50, the
limit where linear theory can be applied was found to be at Ad ≈ 0.4.

The previous analysis showed that nonlinear effects do not support wave breaking
or severe amplitude growth of initially linear dilational travelling waves. However,
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severe amplitude growth can occur for the case where subharmonic dilational distur-
bances are superimposed on an already symmetrically disturbed sheet.

The existence of this ‘modulational’ instability, arising from the nonlinear inter-
action between different dilational modes, had already been observed and analysed
by Matsuuchi (1974, 1976) and has also been observed in the present analysis for a
variety of different initial conditions (i.e. initially linear and nonlinear travelling wave
solutions with subharmonic disturbances at different amplitudes and wavelengths).
However, the existence of the prescribed instability in the fully two-dimensional non-
linear case remains to be addressed. In this context, the use of the subsequently
employed two-dimensional discrete-vortex method is problematic due to the increase
of numerical error along the time-integration process, especially when using short
time steps. These short time steps are required to allow for a sufficient number of
point vortices in order to obtain an accurate spatial resolution of the problem. The
significance of growing numerical error in discrete-vortex methods has been discussed
elsewhere (Pullin 1982).

3.3.2. Sinuous case

To investigate the importance of nonlinear effects for sinuous distorting thin liquid
sheets, the same approach is taken as for the investigation of dilational disturbances in
the previous section, i.e. the same non-dimensionalization and Galilean transformation
are employed. The corresponding non-dimensional equations to be solved are now
given by (2.20)–(2.23) written in the appropriate coordinate system (ξ, τ) and with ε2

and u replaced by 1 and u′, respectively.
Linear analytical and nonlinear numerical solutions to these equations are com-

pared for various initial conditions of sinuous (i.e. antisymmetric) periodically dis-
turbed sheets. Analogous to the dilational case, initial conditions were chosen to be
travelling wave solutions to the linearized equation (3.3), i.e.

Ys = As cos

[
2π

λ∗
(ξ − V ∗τ)

]
, vs =

∂Ys

∂τ
= As

2πV ∗

λ∗
sin

[
2π

λ∗
(ξ − V ∗τ)

]
at τ = 0,

(3.22)
with wave velocity V ∗ = 2 and time period T = λ∗/V ∗ as described earlier. Initial
conditions for u′ and y are taken at their undisturbed values, i.e. u′(ξ, τ = 0) = 0
and y(ξ, τ = 0) = 1. Similarly to the dilational case, As denotes the (non-dimensional)
amplitude of the sinuous sheet disturbance. For the numerical solution the same
number of grid points per wavelength and time steps per time period were employed
as for the corresponding dilational cases analysed earlier. Accuracy of the numerical
solutions was assessed for both dilational and sinuous cases by successive refinement
of mesh size and time step. The mesh size resulting from nξ = 200 grid points per
disturbance wavelength λ∗ and the time step ∆τ = 10−4 T employed are rather small
for the dilational case analysed earlier; however, they are required in order to provide
appropriate spatial and temporal resolution for both sinuous and dilational cases
under consideration.

Figure 5 illustrates the temporal evolution of a travelling wave initially prescribed
by equation (3.22) with As = 1.375 and for λ∗ = 50. Note that for As = 0.55 and
λ∗ = 50 as used previously for the illustrated dilational case, nonlinear effects are
negligible (not illustrated). However, from figure 5 we see that nonlinear effects cause
a considerable distortion and might even lead to the breakup of an initially linear
sinuous travelling wave, if the disturbance amplitude As is large enough (figure 7).
Comparison between linear and nonlinear solutions for the case shown in figure 5
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Figure 5. Linear and nonlinear propagation of a sinuous travelling wave initially prescribed by
(3.22) (λ∗ = 50, As = 1.375: −−−, linear; ——, nonlinear).

indicates that nonlinear effects become significant only after the sinuous wave has
travelled about two wavelengths, i.e. for τ > 2T . After this time the nonlinear effects
were found to cause an oscillation of the sheet in the transverse flow direction at a
frequency significantly greater than 1/T .

Figure 5 at τ = 85 shows that, in the nonlinear case, the transverse oscillation of
the sheet is accompanied by an increase in the maximum disturbance amplitude of
the wave together with an accumulation of fluid in the maximum deflection region
of the sheet, which then results in a sawtooth-like sheet configuration rather than
a sinuousoidal one. In particular, the nonlinear coupling between the sinuous and
dilational modes causes variations in the sheet thickness with wavelengths about one-
half of that for the initially imposed antisymmetric disturbance. The sheet distortion
is dominated by the nonlinear interaction between the basic sinuous mode and a
dilational first harmonic as described by Clark & Dombrowski (1972) with only
minor contributions of higher-harmonic sinuous waves like those observed within
the analysis by Jazayeri & Li (1996). Figure 5 illustrates that sheet thinning can
occur at the location of maximum slope as found at times τ = 85 and 125 or
it might occur at points located near the maximum deflection region as at time
τ = 105. Only the latter has been described by other authors using nonlinear two-
dimensional simulations (Rangel & Sirignano 1991), or higher-order expansions of
the two-dimensional problem (Clark & Dombrowski 1972; Jazayeri & Li 1996).
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The previously mentioned sheet oscillation in the transverse flow direction is clearly
observed from the time sequence shown in figure 5. A similar observation was made
by Rangel & Sirignano (1991) for the case of aerodynamically unstable planar sheets.
(See Rangel & Sirignano 1991, figure 9.) The present results illustrate the existence
of this nonlinear oscillation even in the absence of aerodynamic forces.

Standing-wave simulations analogous to those conducted for the dilational case
discussed earlier (i.e. two travelling waves with opposite wave speeds but the same
disturbance amplitudes and wavelengths) showed that, at the time where the maximum
disturbance amplitude is reached, fluid agglomeration in the sheet edges is increased
in comparison to the case with only one travelling wave. The same observation can be
made in the case of sinuous modulated sheets where the imposed modulation results
in the appearance of one or two downstream travelling waves. See figures 16 and 17.

Nonlinear effects such as those described above increase as the disturbance ampli-
tude of the travelling wave solution imposed at τ = 0 is increased. For very small
values of the amplitude As, the linear solution is recovered, i.e. the initially imposed
linear travelling wave solution preserves its shape throughout the simulation and
travels with the velocity V ∗ = 2 predicted by linear theory. However, for initially sin-
uous travelling waves with very high disturbance amplitudes, nonlinear effects might
cause the sheet to break up at points interspaced by half a wavelength and located
near the maximum deflection region of the sheet. (See figure 7.) This is analogous
to the numerical results presented by Rangel & Sirignano (1991) for a very low
density-ratio value of 0.01 (Rangel & Sirignano 1991, figure 6). It also agrees with
the experimental observations made by Mansour & Chigier (1990, figure 15) and
suggests that, for the case of a liquid sheet in a co-flowing gas stream, as considered
by the previously mentioned authors, the nonlinear coupling between dilational and
sinuous modes causes the sheet to break up, after aerodynamic interaction caused the
oscillation amplitude of the sinuous distorting sheet to increase sufficiently for the
prescribed nonlinear interaction to ‘take over’. Both the linear and the nonlinear solu-
tions maintain their antisymmetric character with time, i.e. Y (ξ, τ) = −Y (ξ + λ∗/2, τ)
and y(ξ, τ) = y(ξ + λ/2, τ).

3.3.3. Comparison with nonlinear two-dimensional simulations

In order to benchmark the accuracy of the proposed reduced-dimension approach,
nonlinear one-dimensional results have been compared to fully two-dimensional
nonlinear computations using the discrete-vortex method described by Rangel &
Sirignano (1991). Initial conditions for both nonlinear two-dimensional and one-
dimensional simulations were obtained from the solution to the linear two-dimensional
problem already presented by these authors. The latter shows that the linear motion
of a two-dimensional liquid sheet in a void is always stable. Also, for the case of a
liquid sheet in a gas of zero density, the two-dimensional linear analysis presented
by Rangel & Sirignano (1991) reduces to the linear analysis described earlier in the
limit where the ratio between the undisturbed sheet thickness and the disturbance
wavelength approaches zero.

For easy comparison between the different numerical results, the length and time
scales for non-dimensionalization in both the one-dimensional and two-dimensional
approaches are chosen to be the same. This requires some adjustment of the non-
dimensionalization schemes described before and employed by Rangel & Sirignano
(1991); it also implies that the Weber number for both one-dimensional and two-
dimensional simulations will be We = 1. Both simulations are performed in a frame
of reference which is moving with the undisturbed sheet velocity. The spatial and
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2D-vortex code 1D-approach

uref U (σ/(2ρlref))
1/2

lref λ h
tref lref/uref lref/uref

Table 1. Characteristic velocities, lengths and time scales (uref , lref , tref) used within the discrete-vortex
method by Rangel & Sirignano (1991) and employed previously within the reduced-dimension
approach.

temporal coordinates employed are therefore ξ and τ according to (3.1). This is in
contrast to the work by Rangel & Sirignano (1991) where the authors have chosen a
reference frame in which the undisturbed fluid sheet moves with velocity −U/2 and
the surrounding semi-infinite gas streams move with velocity U/2. Note that since
there is no interaction between the fluid sheet considered and its surrounding void,
the undisturbed sheet velocity or the relative velocity U between the sheet and its
surrounding is not a parameter in this analysis. Table 1 shows the characteristic lengths
and velocities used in the non-dimensionalization process of the previous reduced-
dimension analyses, as well as in the non-dimensional discrete-vortex method by
Rangel & Sirignano (1991). Note that the choice of uref = (σ/(2ρlref))

1/2 eliminated
the Weber number as part of the non-dimensional equations in the one-dimensional
case. The same can be done in the two-dimensional case, if the Weber number We =
ρu2

reflref/σ is defined by using uref = (σ/ρλ)1/2 rather than uref = U as employed by

Rangel & Sirignano (1991).† Therefore, assuming lref,1D = λ and uref,1D = (σ/(ρλ))1/2

within the one-dimensional analysis provides the same length and velocity scales for
both one-dimensional and two-dimensional simulations, if uref,2D is chosen accordingly
(uref,2D = (σ/ρλ)1/2). Also note that due to the specific choice of uref,1D, ε2 in (2.21) and
(2.22) has now to be replaced by 1

2
rather than 1 in order to obtain the appropriate

non-dimensional governing equations within the one-dimensional analysis.
Initial conditions within the discrete-vortex method had to be specified for the

location of the fluid interfaces or the point vortices located on them, and the initial
circulation of each single vortex. For a sinuousoidally disturbed liquid sheet, i.e. a
sine- or cosine-disturbance imposed on the sheet, these conditions can be obtained
from the linear two-dimensional analysis presented by Rangel & Sirignano (1991)
and are given by

y∗i,+|t∗=0 =
h∗

2
+ ε sin (2πξ∗i ) or y∗i,−|t∗=0 = −

[
h∗

2
+ ε sin (2π(ξ∗i + 0.5(k − 1)))

]
(3.23)

for the non-dimensional y-location of the ith vortex located at the upper or lower
interface, and

γ∗i,±|t∗=0 = ∓2πε(2π/A)1/2 (A+ 1) sin (2πξ∗i )/n (3.24)

for its non-dimensional circulation. In the above equations, n is the number of point
vortices per disturbance wavelength, and * denotes a non-dimensional value. The

† The two-dimensional nonlinear vortex-dynamics analysis by Rangel & Sirignano (1991) con-
siders the general case of zero or non-zero ambient gas density which suggests the use of the relative
velocity between the liquid and its surrounding gas flow U in the definition of the Weber number.
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Figure 6. Nonlinear one-dimensional (——) and two-dimensional (− − −) solutions for the
temporal evolution of a dilational travelling wave initially prescribed by (3.23) and (3.24)
(h∗ = 0.1, ε = 0.025, k = 1, A = coth πh∗).

constants k and A are given by k = 1 or k = 2 and A = coth (πh∗) or A = tanh (πh∗)
for dilational or sinuous disturbances, respectively. In (3.23) and (3.24) ε and h∗ denote
the non-dimensional disturbance amplitude and thickness of the sheet, respectively.
Initial conditions for the corresponding reduced-dimension simulations are to be
specified for the sheet thickness y, the sheet-centreline location Y , the sheet velocity in
the axial direction u and the sheet velocity in the transverse flow direction v. The initial
variation of the (non-dimensional) sheet thickness y and the sheet-centreline location
Y are chosen in accordance with the interface locations specified for the vortex-
method simulations (3.23). The initial disturbances of the non-dimensional sheet
velocities u and v which correspond to the circulation distribution specified for the
two-dimensional simulations along the disturbed interface location (3.24) are obtained
from the definition of the averaged (dimensional) velocities u(x) ≡ (1/ỹ)

∫ y+

y− vx(x, y) dy
and v(x) ≡ (1/ỹ)

∫ y+

y− vy(x, y) dy where the local velocity components in the axial and

transverse flow direction vx and vy are obtained from the circulation along the
fluid interfaces, by using Biot-Savart’s law (Schlichting & Truckenbrodt 1967). Note
that u = u0/uref and v = v0/uref where u0(x, t) and v0(x, t) are the lowest-order
approximations to the axial and transverse velocity components which agree with the
previously defined averaged values u and v (Mehring & Sirignano 1998a).

Also, note once more that the specification of the above conditions as well as the
subsequently presented results are based on a frame of reference which is moving with
the undisturbed sheet velocity. In other words, the coordinate system employed for
the comparison between one-dimensional and two-dimensional nonlinear theory uses
the same Galilean transformation as already employed previously for the comparison
between linear and nonlinear one-dimensional results. However, here different values
for the characteristic length and velocity are used within the non-dimensionalization
process, in order to simplify the comparison with the two-dimensional discrete-vortex-
method simulations. Reference lengths and velocities are the same in both one- and
two-dimensional simulations; this yields 1/(2ε2) = 1 or We = 1 within the one- or
two-dimensional analyses, respectively.

Figure 6 illustrates the dilational deformation of a liquid sheet due to the prescribed
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Figure 7. Nonlinear one-dimensional (——) and two-dimensional (− − −) solutions for the tem-
poral evolution of a sinuous travelling wave initially prescribed by (3.23) and (3.24) (h∗ = 0.02,
ε = 0.1, k = 2, A = tanh πh∗).

initial conditions and with a non-dimensional disturbance amplitude ε beyond the
validity limits of the linear theory (ε/h∗ = 0.25). The non-dimensional undisturbed
sheet thickness for this case was chosen to be h∗ = 0.1. From figure 6 we observe that
the one-dimensional and two-dimensional simulations show the same nonlinear sheet
oscillations as already analysed for the dilational case. Good agreement between one-
dimensional and two-dimensional theory is found for this case. The sheet thickness
of h∗ = 0.1 here is rather large, considering our assumption of thin sheets.

Figure 7 illustrates the case of a sinuous travelling wave described by the linear
initial conditions stated earlier. The non-dimensional undisturbed thickness of the
sheet was h∗ = 0.02 with the non-dimensional amplitude ε = 0.1 for the sinuous sheet
disturbance.

For the nonlinear transverse oscillation of the sheet and the agglomeration of
fluid in the sheet edges as described earlier, the one-dimensional approach provides a
good description of the nonlinear sinuous sheet distortion. However, in the reduced-
dimension analysis the disturbance amplitude is larger than predicted by the more
accurate two-dimensional simulations. Furthermore, for the case considered of an ini-
tially highly distorted and subsequently disintegrating liquid sheet, the sheet-breakup
time within the one-dimensional simulations is shorter than predicted by the non-
linear two-dimensional simulations. Note however that, for very small values of h∗ and
ε/h∗, the two methods agree with each other and with the linearized one-dimensional
or two-dimensional solutions (not illustrated). The simulations also showed that, as
the sheet thickness h∗ and/or the ratio ε/h∗ are increased, agreement between the
one-dimensional and two-dimensional approaches deteriorates for both dilational and
sinuous cases; however, the reduced-dimension approach provides representative sheet
dynamics even at higher values of ε/h∗, if the sheet thickness is not too large.

Note that, for very thin fluid sheets as they appear locally during the pinch-off
in the sinuous case presented in figure 7, accurate discrete-vortex-method results are
difficult to obtain at reasonable computing times; the proximity of the two interfaces
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requires a high number of point vortices interspaced by a distance significantly
smaller than the smallest characteristic length in the problem. For liquid sheets that
are tearing, that smallest length becomes the distance between the two interfaces
or the instantaneous thickness of the sheet. Also, as already mentioned in § 3.3.1,
increasing numerical error during the time-integration process within the discrete-
vortex method simulations will affect the accuracy of the vortex-dynamics solutions,
so that comparisons with solutions from the reduced-dimension analysis cannot be
performed at later times, i.e. for ‘large’ values of τ, if these comparisons are to be
used to assess the accuracy of the simplified theory. The two-dimensional simulations
presented in figures 6 and 7 were conducted by using n = 100 or 140 point vortices
(per wavelength) at a non-dimensional integration time step of ∆τ = 5 × 10−5. The
two-dimensional simulations illustrated in figure 7 have also been conducted for
n = 200 and ∆τ = 2.5 × 10−5. Only minor differences between the two different
results were observed. The reduced, one-dimensional results were obtained by using
∆ξ = 0.01 or 2.5×10−3 and ∆τ = 10−4 or 1.6×10−5 as non-dimensional mesh size and
integration time step, respectively. Computational times required for the simulations
presented were of the order of 10 CPU seconds for the one-dimensional simulations
and 104 CPU seconds for the corresponding two-dimensional discrete-vortex-method
simulations. The simulations for both one-dimensional and two-dimensional cases
were conducted on a DEC-alpha workstation. The previous statements on the CPU
time required for the different simulations clearly show that the reduced-dimension
approach will be a valuable tool for the analysis of geometrically more complex
sheet configurations, such as thin conical sheets. It is acknowledged that recently
developed multi- or two-fluid methods, such as the level-set and vortex-dynamics
methods, and volume-of-fluid approaches described in § 1.3 have the capability to
predict such flow configurations. However, as already noted, these methods are often
less accurate in the tracking of the fluid interfaces; this is particularly true for Eulerian
methods using a fixed grid (Shyy et al. 1996). Lagrangian methods such as boundary-
element or vortex-dynamics methods and some Eulerian methods which employ
adaptive regridding are more accurate in the tracking of discontinuities; however,
they are in general highly computationally intensive. Note that the proposed reduced-
dimension analysis provides more insight to the physical problem considered than
the previously mentioned more general but also more complex methods for which
analytical considerations are not feasible or are very difficult to accomplish. One
example of the insights developed from this method is the understanding of the
nonlinear coupling between the dilational and sinuous modes that is evident through
the system (2.10), (2.11), (2.17), and (2.18).

4. Semi-infinite sheets
Liquid sheets are in general generated by plane or circular slit nozzles or by

diverging nozzle configurations (swirl nozzle, hollow cone; fan spray nozzle) through
which the liquid is forced by a given pressure gradient. The analysis of semi-infinite
sheets which are modulated/forced at the nozzle is therefore of greater practical
interest than the analysis of infinitely long sheets presented earlier. The analysis
presented here only considers the convective nature of waves generated at the nozzle
exit.

As for the infinite case, the equations governing the nonlinear or linear distortion of
semi-infinite planar liquid sheets in a void are given by (2.20)–(2.24) or (2.25)–(2.28),
respectively. However, for the semi-infinite configuration a Galilean transformation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

46
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004693
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of the governing equations does not yield any simplification. This would imply
the transformation of locally fixed boundary conditions at the end of the sheet to
boundary conditions which are to be applied at varying locations in the transformed
space. Since the undisturbed sheet velocity U is retained in this analysis, we use
lref = h and uref = U in the non-dimensionalization process described in § 2 which
then yields ε2 = 1/(2We) in (2.21), (2.22), (2.26) and (2.27), where We = ρU2h/σ is
the Weber number evaluated using the thickness h and velocity U of the undisturbed
sheet.† There are two characteristic velocities vI,II in the semi-infinite case with
1/We = 2ε2 = v2

II/v
2
I , i.e. vII = (σ/ρh)1/2 which is analogous to the characteristic

velocity uref chosen in the infinite sheet analysis, and vI = U which could be omitted

in the infinite case by Galilean transformation. Note that
√

2vII is the capillary
velocity at which sinuous waves of small amplitude travel along the sheet of liquid in
a manner analogous to waves on a string (Pimbley 1976).

4.1. Linear analysis

Using the thickness h and velocity U of the undisturbed sheet as characteristic length
and velocity in the non-dimensionalization process described in § 2, we have u(0) = 1
and y(0) = 1 within the linearized system (2.25)–(2.28). As already stated, (2.25), (2.26)
and (2.27), (2.28) are decoupled from each other so that the subsequent analysis for
dilational and sinuous modulated semi-infinite sheets can be performed separately.

The linear solutions presented below illustrate the general linear behaviour of
thin semi-infinite sheets with streamwise or transverse modulations enforced at the
nozzle exit. It is understood that the linear solutions which involve large maximum
disturbance amplitudes and/or high forcing frequencies lie beyond the validity of this
linearized reduced-dimension analysis.

4.1.1. Dilational case

A modal analysis of (2.25) and (2.26) is conducted by assuming wave-like solutions
for the non-dimensional sheet thickness y = 1 + y′ and sheet velocity u = 1 + u′ of
the forms

y′ = aei (ωt∗−kx∗), u′ = bei (ωt∗−kx∗), (4.1)

where ω is the non-dimensional oscillation frequency of the sheet and k = 2π/λ∗ is
the non-dimensional disturbance wavenumber. A similar linear analysis has already
been presented by Pimbley (1976) and Bogy (1978) for semi-infinite round liquid jets.
Introducing the above solutions for y and u into (2.25) and (2.26) yields the condition

ε2 k4 − (ω − k)2 = 0 (4.2)

for non-trivial solutions to exist. This condition provides the dispersion relation
ω(k) = k ± εk2, where the first term on the right-hand side is due to the non-
zero propagation velocity U of the undisturbed sheet. Since ω is prescribed by the
boundary conditions enforced at x∗ = 0, we can solve for wavenumber k to yield the
four roots

k1,2 =
1± (1− 4εω)1/2

2ε
, k3,4 =

−1± (1 + 4εω)1/2

2ε
, (4.3)

where the + or – sign relates to k1 and k3 or k2 and k4, respectively. The dependence
of the wavenumbers ki on the forcing period T = 2π/ω is illustrated in figure 8.

† Note that the Weber number is not a characterizing/critical quantity in the consideration of the
infinite sheet problem, since the undisturbed sheet velocity U (dimensional) or u(0) (non-dimensional)
could be easily eliminated by a Galilean transformation.
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Figure 8. The dependence of wavenumbers ki for modulated symmetric distorting semi-infinite
sheets on forcing period T = 2π/ω.

Note that k1,2 can be complex, and k3,4 are always real. Also, the solutions for ki
obtained for the case ε → ∞ or U → 0, i.e. k1,2 = ± i (ω/ε)1/2 and k3,4 = ±(ω/ε)1/2,
recover the linearized solutions to (3.2) for the infinite liquid sheet after Galilean
transformation. Using the four solutions obtained for the wavenumbers ki in (4.3),
the general solution to (2.25) and (2.26) is given by

y′ =

4∑
i=1

aie
i (ωt∗−kix∗), u′ =

4∑
i=1

bie
i (ωt∗−kix∗), (4.4)

where the coefficients ai and bi are linearly dependent on each other according to
equations (2.25) and (2.26). This might suggest that four boundary conditions are to
be specified at x∗ = 0; however, wavenumbers k1 and k2 provide a non-wave-like,
exponential behaviour if the forcing of the sheet (at x∗ = 0) is such that ω > 1/(4ε).
This would imply that a modulated two-dimensional semi-infinite thin liquid sheet
might be spatially unstable, whereas it is well-known that an infinite planar liquid
sheet in a void and with non-zero surface tension is temporally stable by linear
analysis. Although this might seem reasonable at first, we will subsequently show
that this is not the case. In the spatial analysis of the semi-infinite sheet, energy is
added to the system due to the time-dependent forcing at the boundary, whereas in
the temporal analysis of the infinite sheet, energy is not added but only transported
along the sheet.

The conservation equation for wavenumber ki is given by Whitham (1974):

∂ki

∂t∗
+
∂ω

∂x∗
= 0 or

∂ki

∂t∗
+ C(ki)

∂ki

∂x∗
= 0 , (4.5)

where C(ki) = dω/dki denotes the group velocity of wavenumber ki obtained from
the dispersion relation ω(ki),

C(k2,3) = + (1∓ 4εω)1/2 or C(k1,4) = − (1∓ 4εω)1/2. (4.6)

Therefore, on an initially undisturbed sheet, wavenumbers k1 and k4 will appear only
upstream and k2 and k3 will appear only downstream from the location where some
disturbance is forced onto the moving sheet. See figure 9. This is analogous to the
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Figure 9. Wave propagation on a fluid sheet initiated by a local disturbance.

appearance of gravity waves and capillary waves, downstream and upstream of an
obstacle on the surface of a liquid stream (Whitham 1974).

Similarly, on a semi-infinite sheet subject to disturbances of some frequency ω at
an orifice (located at x∗ = 0), only wavenumbers k2 and k3 will appear at x∗ > 0. This
implies that the roots k1 and k4 have to be excluded from the solution for x∗ > 0, such
that y′ or u′ do not exponentially grow as x∗ → ∞ for any value of ω. In other words,
the semi-infinite sheet is unconditionally stable by linear analysis. Since there are only
two remaining roots k2 and k3, only two boundary conditions should be specified at
x∗ = 0, in order to determine the fluctuations of sheet thickness y′(x∗ > 0, t∗) and
velocity u′(x∗ > 0, t∗), i.e. y′2,3 = a2,3 ei (ωt∗−k2,3x

∗) and u′2,3 = b2,3 ei (ωt∗−k2,3x
∗).

The notion of a meaningful group velocity C(k1,2) = dω/dk1,2 only applies for
cases where k1 and k2 are real, i.e. ω < 1/(4ε). For ω > 1/(4ε), C(k1,2) is given by
C(k1,2) = dω/d [Re(k1,2)]. For the k1 or k2 branch, the group velocity has positive or
negative infinite values if the wavenumber is complex. Within the present analysis
it is assumed that, if k1 and k2 become complex as ω changes, the direction of
propagation of information is the same as it was in the neighbouring region where
both wavenumbers were real. This implies that k1 (with its negative group velocity) is
to be disregarded for any forcing frequency ω and k2 (with its positive group velocity)
is to be included in the analysis for any ω. The same result would have been obtained
by following the assumption to disregard a certain root ki for all values of ω, if it
is to be disregarded at some value ω. This assumption is generally more restrictive
and has been employed by Bogy (1978) in his linear analysis of semi-infinite round
liquid jets. However, the difference between the two approaches is not manifested in
the planar case.

The demonstrated use of group velocity arguments in order to determine where
waves will appear is closely related to energy-transport considerations employing the
Sommerfeld radiation condition (Whitham 1974). In the present problem, this implies
that the energy transport along the sheet is outgoing as x∗ → ∞; in other words,
energy cannot travel upstream from infinity (Bogy 1978). Since the group velocity
C(k) is related to energy propagation (Whitham 1974; Bogy 1978), wavenumbers
k1 and k4 are then excluded in determining u′(x∗ > 0, t∗) and y′(x∗ > 0, t∗). In this
sense, the Sommerfeld radiation condition provides two ‘boundary conditions’ for
x∗ → ∞ by excluding the wavenumbers with negative group velocities. The solution
is obtained by specifying two conditions at x∗ = 0 relating to wavenumbers k2 and
k3. The exclusion of certain wavenumbers ki by using energy-transport arguments
has already been illustrated (Bogy 1978). Also, the above considerations about the
appearance of certain wavenumbers downstream from the nozzle and the specification
of appropriate boundary conditions at the nozzle are in agreement with numerical
simulations of the corresponding dilational transient problem (§ 4.2.1). The same is
true for the similar considerations employed for sinuous or antisymmetric modulated
sheets (§ 4.1.2, § 4.2.2).

The linearized semi-infinite sheet problem for dilational disturbances as described
above has been solved by using y′(x∗ = 0, t∗) = 0 and u′(x∗ = 0, t∗) = uoeiωt∗ as
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Figure 10. Time-periodic solution (t∗ = nT , n ∈ I) to the linear boundary value problem given by a
semi-infinite planar sheet with harmonic dilational forcing at x∗ = 0 (forcing frequency ω = 2π/T ,

ε = (2We)−1/2 = 0.05, Ay′ = 0). (a) ω = 0.2, Au′ = 0.01, k2 = 0.202, k3 = 0.198; (b) ω = 0.525,
Au′ = 0.01 (——) or 0.03 (− − −), k2 = 0.54, k3 = 0.512; (c) ω = 1.2, Au′ = 0.01, k2 = 1.282,
k3 = 1.136; (d) ω = 4.95, Au′ = 0.01, k2 = 9, k3 = 4.108; (e) ω = 5.0025, Au′ = 0.01, k2 = 10− i 0.022,
k3 = 4.144.

boundary conditions imposed at x∗ = 0 where the sheet exits the nozzle or atomizer.
The flow is in the positive x∗-direction for 0 6 x∗ 6 ∞. Similar conditions were
employed by Meier et al. (1992) in their experimental investigation of circular jets,
which also included theoretical analyses for both circular and planar semi-infinite
liquid streams. The corresponding time-dependent solution for y′(x∗ > 0, t∗) is given
by

y′(x∗, t∗) =
uok2k3

ω(k3 − k2)

[
ei (ωt∗−k2x

∗) − ei(ωt∗−k3x
∗)] , (4.7)

where the wavenumbers k2,3(ω, ε) are given by (4.3). Note that the amplitude uok2k3/
(ω(k3 − k2)) in (4.7) is real if ω < 1/(4ε) but complex if ω > 1/(4ε), assuming uo is
real. Figure 10(a–e) shows the real part of this solution, corresponding to a harmonic
forcing of the sheet velocity by Re(u′) = Au′ cos (ωt∗) at x∗ = 0 as already stated.

Figure 10(a–e) refers to a high-velocity jet or a high Weber number case ((2We)−1/2 =
ε = 0.05). The velocity disturbance imposed on the liquid sheet is characterized by
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its amplitude Au′ = 0.01 or 0.03 and its forcing frequency ω = 0.2, 0.525, 1.2, 4.95
or 5.0025. Two of these cases (Au′ = 0.01 and ω = 0.525 or 1.2) parallel cases
considered by Pimbley (1976) and Bogy (1978) for a circular liquid jet. From (4.3)
and (4.7) we see that, for small ω, k2 and k3 are only slightly different, providing two
constant-amplitude waves of nearly equal wavelength propagating at different phase
speeds. One is slightly slower and the other is slightly faster than the jet, so that
the disturbance amplitude of the sheet thickness takes the form of a long-wavelength
envelope of a short-wavelength oscillation. Equation (4.7) also illustrates that, as k2

and k3 approach the same value, the maximum amplitude of this envelope increases
which ultimately leads to a breakup of the sheet if the maximum disturbance amplitude
is greater than or equal to the value of the undisturbed sheet thickness (figure 10a).
At higher forcing frequencies but same forcing amplitude Au′ , the wavelength of this
envelope decreases, the overall thinning of the sheet is smaller and sheet breakup
does not occur (figure 10b–e). However, as Au′ is increased the sheet might also
break up at these higher forcing frequencies (figure 10b), due to the linear increase
of the disturbance amplitude with Au′ or uo according to (4.7). The breakup length
is decreased as Au′ is increased. Figure 10(d) also shows that at higher values of ω,
k2 and k3 take significantly different values, such that the solution does not appear
to be harmonic any more. As ω takes values greater than ωcr = 1/(4ε), k2 becomes
complex resulting in a sheet distortion which involves an exponentially decaying
periodic contribution as illustrated in figure 10(e).

As the Weber number of the sheet is lowered, k2 and k3 change such that the
amplitude of the resulting envelope is decreased (not illustrated). This result is directly
obtained by investigating the dependence of the solution (4.7) on ε. In fact, combining
(4.3) with (4.7) shows that the maximum amplitude of the linear sheet distortion is a
function of uo and (εω) only. The amplitude monotonically decreases with increasing
magnitude of the product (εω). As already stated, it also decreases linearly with
decreasing amplitude of the imposed velocity disturbance uo or Au′ . This is true for
any value of ω, even though k2 and therefore the amplitude uok2k3/(ω(k3−k2)) in (4.7)
might be complex for high values of ω. In that sense, a lower jet velocity or higher
surface-tension coefficient (i.e. lower Weber number) is stabilizing on a semi-infinite
liquid sheet with a velocity disturbance forced at one end. This is in contrast to the
results obtained by Pimbley (1976) and Bogy (1978) for semi-infinite circular jets,
where an increase in surface tension or decrease in jet velocity is destabilizing due to
the radius of curvature in the circumferential direction.

4.1.2. Sinuous case

Analogous to the previous analysis of semi-infinite dilational distorting sheets,
solutions to (2.27) and (2.28) are sought by modal analysis. Solutions for Y ′ and v′
are assumed to be of the form

Y ′ = c ei (lx∗−ωt∗), v′ = d ei (lx∗−ωt∗), (4.8)

where l and ω denote the non-dimensional disturbance wavenumber 2π/λ∗ and
the non-dimensional transverse oscillation frequency enforced at the nozzle exit.
Introducing these solutions into (2.27) and (2.28) yields the condition

ω = l ± 2εl (4.9)

for non-trivial solutions to exist. Equation (4.9) differs significantly from the corre-
sponding relation (4.2) derived for dilational waves. It predicts that the propagation
velocity V ∗ = ω/l = 1 ± 2ε is the same for all sinuous travelling waves; there is no
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wave dispersion as predicted for dilational waves. The same observation was made in
§ 3.1 for periodically disturbed infinite sheets.

Analogously to the dilational analysis of the previous section (§ 4.1.1), (4.9) is solved
for wavenumber l, since the transverse oscillation frequency ω is prescribed by the
boundary conditions enforced at the nozzle exit (at x∗ = 0). This yields the two real
solutions

l1,2 =
ω

1± 2ε
. (4.10)

Note that, as ε→∞ or U → 0, one obtains l1,2 = ±ω/(2ε) which yields the solutions
to (3.3) for infinite sinuous distorting sheets in a reference frame moving with the
undisturbed sheet velocity. From (4.8) and (4.10) the general solution to (2.27) and
(2.28) is found, i.e.

Y ′ =

2∑
i=1

cie
i (lix

∗−ωt∗), v′ =

2∑
i=1

die
i (lix

∗−ωt∗), (4.11)

with l1,2 given by (4.10), and ci and di being related by (2.28), i.e. di = i(l − ω)ci. The
latter implies that no more than two of these coefficients may be chosen independently.
This is observed more readily by reducing (2.27) and (2.28) to a single equation
governing Y ′(x∗, t∗). The general solution to this equation is then given by (4.11) for
Y ′ with the free coefficients c1,2 and l1,2 provided by (4.10).

As for dilational waves on semi-infinite fluid sheets, group velocity arguments can
now be used to determine which waves generated by the transverse sheet oscillation
enforced at the nozzle exit (x∗ = 0) will appear downstream at x∗ > 0.

From (4.9), the group velocities C(li) = dω/dli for the two waves with wavenumbers
l1 and l2 are the same as their corresponding wave velocities, i.e.

C(l1,2) = 1± 2ε. (4.12)

Equation (4.12) shows that both waves will appear on the semi-infinite sheet
(0 > x∗ > ∞) as long as ε < 1/2 or We > 2. However, for cases where the Weber
number We has values below 2, only the wave with wavenumber l1 = ω/(1 + 2ε)
is expected to appear at downstream locations x∗ > 0. Accordingly, two boundary
conditions are to be prescribed at x∗ = 0 if We > 2, but only one condition may be
imposed at the nozzle exit for cases where We < 2. For the former case (i.e. We > 2),
the linearized semi-infinite sheet problem for sinuous disturbances has been solved
by using Y ′(x∗ = 0, t∗) = Y oe−iωt∗ and v′(x∗ = 0, t∗) = voe−iωt∗ as boundary conditions
imposed at x∗ = 0. (Note that, Y o and vo might be complex.) The corresponding
time-dependent solution for Y ′(x∗ > 0, t∗) is given by

Y ′(x∗, t∗) =
Y o(ω − l2)− i vo

l1 − l2 ei(l1x
∗−ωt∗) +

Y o(ω − l1)− i vo

l2 − l1 ei(l2x
∗−ωt∗). (4.13)

We observe that the maximum amplitude of the sheet disturbance Y ′(x∗, t∗) depends
linearly on the values of the forcing amplitudes Y o and vo, and increases as l1 and
l2 approach the same value ω for ε → 0.† The latter also implies that the sheet
distortion for low values of ε is characterized by a long-wavelength envelope of a short-
wavelength oscillation. Equation (4.13) also illustrates that the maximum disturbance
amplitude is influenced by the phase angle between the harmonic disturbances forced

† As ε is varied from 0 to 1
2
, the non-dimensional wavenumber l1 decreases from ω to ω/2,

whereas l2 increases from ω to infinity. This corresponds to an increase in wavelength λ1 = 2π/l1
from 2π/ω to 4π/ω, or a decrease in λ2 = 2π/l2 from 2π/ω to 0.
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onto Y ′ and v′. Further details on the solution presented in (4.13) can be obtained
by substituting l1,2 from (4.10) into (4.13). Doing so, one observes that the maximum
amplitude of the sinuous sheet disturbance caused by the harmonic forcing of the
transverse velocity v′ decreases with an increase in the forcing frequency ω or a
decrease of the Weber number We = 1/(2ε2). However, the amplitude disturbance
caused by harmonic variations of Y ′ at x∗ = 0 does not depend on the frequency of
this variation. For a harmonic forcing of the sheet centreline Y ′ at the nozzle exit,
increasing values of ε (corresponding to a decrease in Weber number We) causes an
increase in the sheet-disturbance amplitude of the longer wave (wavenumber l1) but
a decrease in the amplitude of the shorter wave (wavenumber l2). As ε is increased
from zero (zero-surface-tension case) to 1/2 (maximum ε value for which both waves
appear at x∗ > 0) the wave amplitude corresponding to l1 varies between Y o/2 and
Y o, and the amplitude for the wave with wavenumber l2 changes from Y o to zero.
Note that, for a harmonic forcing of v′ at x∗ = 0, the maximum wave amplitude
approaches infinity as ε→ 0.

Figure 11(a–e) illustrates the sinuous distorting sheet for two different values of ε
but the same frequency ω = 0.25 at which the sheet centreline Y ′ and the transverse
sheet velocity v′ are forced at the nozzle exit. A phase angle of π/2 was chosen
between the harmonic forcing of Y ′ and v′, i.e.

Y ′ = AY ′ sin (ωt∗) and v′ = Av′ cos (ωt∗) (4.14)

was assumed. For the illustrated cases, the (real) forcing amplitudes were chosen
among AY ′ = 0, 0.2 and Av′ = 0, 0.005, 0.05. The corresponding (linear) solutions are
given by the imaginary part of the solution (4.13) with Y o = −AY ′ and vo = iAv′ .

Figure 11(a–e) demonstrates that the wavelength of the observed sheet envelope
increases as ε = (2We)−1/2 is decreased. From the cases with AY ′ = 0 we also
observe that the maximum disturbance amplitude increases with a decrease in ε or
an increase in Av′ . For the case with ε = 0.05 and transverse velocity disturbance
only (Av′ = 0.005), the result resembles figure 10(c) for the dilational case. Also note
that, for ε = 0.05 with AY ′ = 0.2 and Av′ = 0.005 simultaneously, the beat amplitude
of the resulting linear solution is virtually zero (not illustrated). However, under the
same forcing conditions but with a different ε-value (ε = 0.02), the beat behaviour
is still observed. (See figure 11e.) The characteristic beat in the sinuous distortion of
semi-infinite sheets was also observed experimentally by Hashimoto & Suzuki (1991).

When We < 2, only one wave travels downstream from the nozzle exit. There-
fore, a sinusoidal forcing at the exit results in a constant-amplitude wave travelling
downstream according to the linear solution.

Finally, it should be noted once more that, in contrast to the dilational distortion
of semi-infinite sheets, ω does not influence the ratio between wavenumbers l1 and
l2, but merely their absolute values and the disturbance amplitude of Y ′ caused by
the harmonic forcing of v′ at x∗ = 0. Also, by linear analysis, harmonic disturbances
of v′ and/or Y ′ only will not cause the sheet to break up at a finite time. This is in
contrast to the linear results presented earlier for dilational disturbances imposed on
the sheet at the nozzle exit. However, as described below, sinuous distorting sheets
might break up due to nonlinear effects.

4.2. Nonlinear numerical analysis

The equations governing the nonlinear symmetric or antisymmetric distortion of a
thin inviscid semi-infinite planar liquid sheet in a void with time-dependent forcing
at one end have been solved numerically. Solutions were obtained explicitly by using
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Figure 11. Time-periodic solution (t∗ = nT , n ∈ I) to the linear boundary value problem given
by a semi-infinite planar sheet with harmonic sinuous forcing at x∗ = 0 (forcing frequency
ω = 2π/T = 0.25). (a) ε = 0.05, AY ′ = 0.2, Av′ = 0, l1 = 0.227, l2 = 0.278; (b) ε = 0.05,
AY ′ = 0, Av′ = 0.005, l1 = 0.227, l2 = 0.278; (c) ε = 0.05, AY ′ = 0, Av′ = 0.05, l1 = 0.227, l2 = 0.278;
(d) ε = 0.02, AY ′ = 0, Av′ = 0.05, l1 = 0.24, l2 = 0.26; (e) ε = 0.02, AY ′ = 0.2, Av′ = 0.005, l1 = 0.24,
l2 = 0.26.

the same numerical scheme as employed for periodically disturbed infinite sheets, i.e.
the Lax–Wendroff method with Richtmyer splitting, and/or the ‘angled-derivative’
scheme described by Richtmyer & Morton (1967).

4.2.1. Dilational case

For modulated, symmetric distorting semi-infinite sheets, the same time-dependent
boundary conditions were specified at x∗ = 0 as in the corresponding linear case. How-
ever, a phase shift of π/2 was employed in order to reduce oscillations in the solution,
which are produced as the disturbances generated at the nozzle exit start propagating
downstream, into the undisturbed sheet. The specification of an additional condition
at this boundary was needed within the numerical schemes employed, in order to
evaluate the highest-order spatial derivative of y near the boundary. Only minor dif-
ferences in the numerical solutions were found when specifying different higher-order
spatial derivatives in y for this additional condition (i.e. ∂ny/∂x∗ n; n = 4, 5). For the
results presented below, (∂4y/∂x∗ 4)x∗=0 = 0 has been used. For this case, the two nu-
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Figure 12. Dilational distortion of a semi-infinite planar liquid sheet at time t∗ = 35T . The sheet
is harmonically forced at x∗ = 0 with forcing frequency ω (Au′ = 0.02, We = 1/(2ε2) = 250,
T = 2π/ω = 10: −−−, linear limit cycle (t∗ = nT , n ∈ I); ——, nonlinear transient).

merical schemes employed were found to yield solutions which agree with each other
over the considered range of Weber numbers, disturbance amplitudes and forcing
frequencies. A detailed analysis on the stability of the numerical boundary condition
imposed at x∗ = 0 has not been conducted. For the simpler, one-dimensional linear
convection equation, such considerations have been presented by Trefethen (1984).
When using the ‘angled-derivative’ scheme, stability problems were encountered if
(∂5y/∂x∗ 5)x∗=0 = 0 was specified as numerical boundary condition.

In order to model the semi-infinite sheet properly, the boundaries of the computa-
tional domain were chosen such that the shortest resolved waves did not reach the
downstream boundary within the simulation time. For the computations, an initially
undisturbed sheet was assumed. In other words, the numerical models solve an initial-
value and boundary-value problem, whereas the linear analysis presented above solves
the boundary value problem of a semi-infinite sheet. The nonlinear oscillation does
not extend to infinity in a finite time while the linear oscillation has already extended
to infinity at the starting time.

The numerical schemes employed have been tested by simulating the linearized case
(with the same boundary conditions) and subsequent comparison with the analytical
solution. Good agreement was obtained for various forcing frequencies ω = 2π/T
and Weber numbers above and below the critical value Wecr,d = 8ω2. In all cases
considered, transient effects were propagated away from the nozzle at a finite time and
did not prevent the development of the limit-cycle solution. The solutions illustrated
below were obtained by using the ‘angled-derivative’ scheme and (∂4y/∂x∗ 4)x∗=0 = 0
as the numerical boundary condition as already mentioned.

Figures 12 and 13 compare nonlinear numerical and linear analytical results for
We = 1/(2ε2) = 250, 500 ; T = 2π/ω = 10, 25 and Au′ = 0.02 or 0.05. Figure 12 shows
the deformed sheet at t∗ = 35T and illustrates that the nonlinearity does not alter
the major characteristics of the sheet distortion as predicted by the linear analysis.
The envelope and its maximum amplitude observed in the nonlinear simulations
are well predicted by the linear analysis. However, in the nonlinear case additional
higher-harmonic components are observed as the sheet propagates downstream. These
higher harmonics persist on the sheet even when the disturbance front has travelled far
downstream along the undisturbed sheet. Note that we compare linear solutions that
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Figure 13. Dilational distortion of a semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (Au′ = 0.05, We = 1/(2ε2) = 500, T = 2π/ω = 25: − − −, linear limit
cycle (t∗ = nT , n ∈ I); ——, nonlinear transient).

have evolved after a long time to a time-periodic form with the nonlinear solutions
of an initial-value problem. This is more evident in figure 13.

Figure 13 illustrates a similar case as in figure 12, but for a higher Weber number (i.e.
lower surface tension), a lower forcing frequency ω = 2π/T and a higher amplitude
Au′ of the imposed velocity disturbance. This subsequently leads to a breakup of
the sheet due to thinning. In the nonlinear case, fluid is accumulating into fluid
lumps interspaced by one wavelength and connected by fluid threads. Increased sheet
thinning followed by sheet pinch-off is found to occur near the larger ligaments or
fluid lumps. However, figure 13 also shows that the corresponding breakup length of
the sheet predicted by linear theory is only slightly shorter than that predicted by the
nonlinear simulations. The nonlinear numerical solutions presented in figures 12 and
13 were obtained by using ∆t∗ = 0.0125 and ∆x∗ = 0.0625 as non-dimensional time
step and mesh size, respectively.

Figures 14 and 15 illustrate the dilational sheet distortion for two cases with low
Weber numbers, one slightly above and the other slightly below the critical value
Wecr,d = 8ω2 ≈ 0.5 corresponding to T = 2π/ω = 25.

Although the axial momentum disturbance imposed onto the sheet is higher in
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Figure 14. Dilational distortion of a semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (Au′ = 0.15, We = 1/(2ε2) = 1, T = 2π/ω = 25; linear limit cycle: −−−,
t∗ = nT (n ∈ I); nonlinear transient: − · − ·, t∗ = 2T ; ——, t∗ = 8T ).
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Figure 15. Dilational distortion of a semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (Au′ = 0.15, We = 1/(2ε2) = 0.4 < Wecr,d, T = 2π/ω = 25; linear limit
cycle: −−−, t∗ = nT (n ∈ I); nonlinear transient: − · − ·, t∗ = 2T ; ——, t∗ = 8T ).

these cases (i.e. Au′ = 0.15), the relatively higher surface tension (i.e. lower Weber
number) now prevents the sheet from breaking up with a decrease in the maximum
disturbance amplitude of the sheet for decreasing Weber number values. For the case
illustrated in figure 14, the lower Weber number (We = 1) results in a beat with
a significantly shorter wavelength than the one associated with the case illustrated
in figure 13. For the case shown in figure 15, the Weber number is 0.4 and below
the critical value Wecr,d such that, in agreement with linear theory, the numerical
solution does no longer show the characteristic beat behaviour. Also note that, as the
maximum disturbance amplitude decreases, agreement between the linear analytical
and nonlinear numerical solutions improves. The nonlinear simulations illustrated in
figures 14 and 15 employed ∆t∗ = 6.7× 10−3 and ∆x∗ = 0.2 or 0.375, respectively. As
for all the simulations presented in this paper, accuracy of the numerical solutions
was demonstrated by successive refinement of mesh size and/or time step.

A nonlinear analytical solution for modulated semi-infinite symmetric distorting
planar sheets such as those described above was given by Meier et al. (1992). However,
in their analysis which did not consider surface-tension effects, the details described
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(e.g. sheet thinning and breakup near fluid lumps, and characteristic beat of the
distorting sheets) could not be identified.

4.2.2. Sinuous case

For the case of sinuous distorting semi-infinite liquid sheets in a void, with time-
dependent forcing at the nozzle and We > 2, time-dependent boundary conditions
were specified for Y and v according to those employed for the corresponding
linear case discussed earlier (recall that, Y ′ = Y and v′ = v in the linear sinuous
case). As for the axial velocity component u(x∗ = 0, t∗) in the dilational case, a
phase shift of π/2 was employed within the specification of v(x∗ = 0, t∗) in order to
reduce oscillations generated in combination with the initial conditions employed, i.e.
y(x∗, t∗ = 0) = u(x∗, t∗ = 0) = 1 and Y (x∗, t∗ = 0) = v(x∗, t∗ = 0) = 0. For We < 2
only one boundary condition, i.e. a harmonic forcing of Y given by (4.14), was
specified at x∗ = 0 in accordance with linear theory. For both cases, i.e. We > 2 and
We < 2, the non-dimensional sheet velocity u and the non-dimensional sheet thickness
y at the nozzle were assumed to take their undisturbed values, i.e. u = y = 1, at all
times. Furthermore, the same numerical boundary condition was employed as in the
dilational case considered previously, i.e. (∂4y/∂x∗ 4)x∗=0 = 0. Also (∂4Y /∂x∗ 4)x∗=0 = 0
was specified as a numerical boundary condition in order to model appropriately
the highest-order spatial derivative of Y near the boundary. For the simulations
illustrated below the ‘angled-derivative’ scheme was used. The integration time step
for all the simulations was ∆t∗ = 0.025 with mesh sizes ranging from ∆x∗ = 0.05
to 0.17. For all the cases considered, the right-hand boundary of the computational
domain was not reached by any sheet disturbance within the simulation time. Also,
as in the dilational case, comparison between linear analytical and linear numerical
solutions showed that transient effects do not influence the long-time behaviour near
the nozzle or the development of the limit-cycle solution. This is not necessarily
true for thin annular sheets. In fact, the authors have recently observed that, for
modulated sinuous distorting annular sheets as considered by Mehring & Sirignano
(1998b), transient effects might lead to the development of a temporal instability on
the sheet. See also Lighthill (1965) in this context.

Figure 16 compares nonlinear numerical and linear analytical results for a case
with high forcing amplitude of the transverse sheet velocity v at the nozzle exit, i.e.
Av′ = 0.05. The forcing amplitude of the sheet centreline location Y at x∗ = 0 was
assumed to be zero. The Weber number for this case is We = 1/(2ε2) = 1000 and
the non-dimensional time period of the harmonic forcing is T = 2π/ω = 25. As
already noted within the analysis for dilational disturbed sheets, the linear solutions
presented here and in the previous section are solutions to a pure boundary-value
problem, while the corresponding nonlinear numerical solutions are the solutions to
an initial- and boundary-value problem.

Comparison between the linear limit-cycle solution and the nonlinear transient
solution in figure 16 shows that nonlinear effects become important as the disturbance
amplitude of the sheet grows in the downstream direction. As in the infinite sinuous
case analysed earlier, in the nonlinear case the sheet takes a sawtooth-like shape with
fluid agglomerating in its edges. This phenomenon was also observed by Asare et
al. (1981) in their experimental study on planar sheets modulated at the nozzle exit.
Also, similar to the observation made already for infinite sinuous distorting sheets,
figure 16 shows increased sheet thinning eventually leading to sheet pinch-off at points
interspaced by half a wavelength and located close to the maximum deflection region
of the sheet.
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Figure 16. Sinuous distortion of a semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (AY ′ = 0, Av′ = 0.05, We = 1/(2ε2) = 1000, T = 2π/ω = 25: − − −,
linear limit cycle (t∗ = nT , n ∈ I); ——, nonlinear transient).

Nonlinear effects similar to those described in the previous paragraph (for fairly
large Weber numbers) and as already observed for infinite periodically disturbed
sheets were also observed for Weber numbers below the critical value Wecr,s = 2 (e.g.
We = 1.5) and a sinuous forcing of the sheet centreline or transverse nozzle location
only. (See figure 17.) Note that, as already stated, for We < 2 linear theory suggests
that only one boundary condition is to be specified at the nozzle exit. Accordingly,
the beat behaviour resulting from a superposition of waves with wavenumbers l1 and
l2, as predicted by linear theory for We > 2, is not observed in this case.

Similar to figure 17, figure 18 illustrates the distortion of a liquid sheet with a high
surface-tension coefficient of the liquid (i.e. low Weber number). However, in this
particular case We > Wecr,s, i.e. We = 10. As in the dilational case shown in figure 13,
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Figure 17. Sinuous distortion of semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (AY ′ = 4, We = 1/(2ε2) = 1.5 < Wecr,s, T = 2π/ω = 25; linear limit
cycle: −−−, t∗ = nT (n ∈ I); nonlinear transient: − · − ·, t∗ = 12T ; ——, t∗ = 12.7T ).

the momentum disturbance imposed onto the sheet at the nozzle exit is so high that the
sheet eventually disintegrates after t∗ > 5T and close to the nozzle exit located at x∗ =
0. However, similarly to figure 14 for dilational disturbances, the characteristic beat
behaviour predicted by linear theory is still observed for this highly nonlinear case.

For the various Weber numbers considered above and for small beat amplitudes,
linear and nonlinear results agree very well in the disturbed flow regions (not illus-
trated). An experimental observation of the prescribed beat behaviour was made by
Hashimoto & Suzuki (1991) for rather small beat amplitudes on modulated sinuous
distorting planar sheets.

5. Conclusions
An unsteady one-dimensional system of equations has been derived governing the

nonlinear sinuous (antisymmetric) and/or dilational (symmetric) distortion of thin
inviscid planar two-dimensional liquid sheets in a void. The governing equations rep-
resent the leading-order equations obtained from the fully two-dimensional problem
after series expansion of the dependent flow variables in terms of [y − y(x, t)] where
y denotes the direction perpendicular to the undisturbed sheet or main flow direction
and y(x, t) is the instantaneous location of the sheet centreline in the y-direction. Sim-
ilar governing equations were previously derived and employed by Matsuuchi (1976),
Erneux & Davis (1993) and Ramos (1996) for the case of dilational disturbances on
infinite sheets only.

For dilational disturbances on infinite sheets, an exact solution for nonlinear
periodic travelling waves of constant shape is found similar to those identified by
Matsuuchi (1976) and Sirignano & Mehring (1996). The numerical solution using
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Figure 18. Sinuous distortion of semi-infinite planar liquid sheet harmonically forced at x∗ = 0
with forcing frequency ω (AY ′ = 0, Av′ = 0.28, We = 1/(2ε2) = 10, T = 2π/ω = 25; linear limit
cycle: −−−, t∗ = nT (n ∈ I); nonlinear transient: − · − ·, t∗ = 2T ; ——, t∗ = 5T ).

the exact waveform for the initial condition maintains constant waveform with time
indicating that the exact solution is stable and providing a benchmark for the finite-
difference computations. The ‘modulational’ instability reported by Matsuuchi (1974,
1976) is also identified by nonlinear numerical simulations and for various initial
conditions (i.e. wavelength ratios and initial disturbance amplitudes of nonlinear
and/or linear travelling waves).

For infinite periodically disturbed sheets, comparison with fully two-dimensional
nonlinear simulations shows that the proposed reduced-dimension approach provides
representative nonlinear sheet dynamics for both sinuous and dilational disturbances.
Both one-dimensional and two-dimensional simulations illustrate that the sinuous and
dilational mode of sheet distortion are nonlinearly coupled, resulting in sheet thinning
and possibly breakup at each half-wavelength and at points close to the maximum
deflection region of infinite sinuous distorting sheets. The nonlinear coupling observed
between the sinuous and dilational modes suggests that the ‘modulational’ instability
observed for nonlinear dilational waves might also appear in the superposition of
finite-amplitude sinuous waves. The nonlinear one- and two-dimensional simulations
also indicate that the sheet distortion, observed for sinuous sheet disturbances in a
void and with large disturbance amplitudes, is dominated by the interaction between
the first-harmonic dilational and fundamental sinuous modes as suggested by Clark
& Dombrowski (1972) with only minor contributions due to higher-harmonic sinuous
modes such as those observed by Jazayeri & Li (1996) for the case of an aerodynam-
ically forced sheet. The nonlinear transverse oscillation of sinuous disturbed sheets
observed by Rangel & Sirignano (1991) for aerodynamically forced sheets is also
observed in the present analysis for an ambient gas of zero density; in the limit of
negligible gas density, the results of Rangel & Sirignano (1991) agree with these new
results.
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In agreement with previous linear one- and two-dimensional analyses of infinite
periodically disturbed liquid sheets, the linear analysis of the dimensionally reduced
system of equations shows that for thin sheets, i.e. sheets with disturbance wavelengths
significantly larger than the sheet thickness, dilational waves are dispersive (with an
inverse relationship between wave velocity and wavelength), sinuous waves are non-
dispersive and both waveforms are decoupled by linear analysis. The exact nonlinear
analysis also demonstrates that dilational waves on thin sheets are dispersive with
wave velocity proportional to the reciprocal of wavelength. Due to the dispersive
nature of the wave phenomenon, any deviation in the initial nonlinear waveform from
the exact solution will result in an unsteady waveform that involves higher harmonics.

Linear and nonlinear analyses of liquid sheets emanating from a nozzle or atomizer
with harmonic forcing at the orifice are presented and compared. The simulations
show that the nonlinearity does not change some of the character of the sheet
distortion identified by the linear analysis; as in the linear case, a sinuous or dilational
forcing of the sheet leads (in general) to a sheet distortion characterized by a long-
wavelength envelope of a short-wavelength oscillation. However, in the nonlinear case
with dilational forcing of the sheet at the nozzle exit, higher harmonics are observed
in the unsteady waveform. Also, for nonlinear dilational distorting sheets at high
forcing amplitudes of the streamwise velocity component, fluid accumulates into fluid
lumps connected by fluid threads, eventually leading to sheet breakup at points close
to these fluid blobs.

For a sinuous forcing at the nozzle exit at large Weber numbers or Weber numbers
below 2, the nonlinear sheet distortion is similar to the one observed for infinite
periodically disturbed sheets, i.e. the sheet takes a sawtooth-like shape with fluid
agglomerating in its edges and the possiblity of sheet breakup at points close to
the fluid lumps (as in the dilational case) and interspaced by half a wavelength. In
none of the observed cases did the nonlinearity lead to continuous steepening of the
capillary waves. However, at points of sheet pinch-off, the formation of a singularity
in the streamwise velocity component is observed.

For the nonlinear distortion of infinite periodically disturbed thin sheets, the
proposed reduced-dimension approach is found to represent accurately the nonlinear
sheet dynamics with CPU times that are three orders of magnitude smaller than a fully
two-dimensional discrete-vortex-method simulation of the interfacial-flow problem.
Furthermore, when compared with an Eulerian method using a VOF/CSF (volume-
of-fluid/continuum-surface-force) technique to track the interface location (Kothe &
Mjolsness 1992), the reduced-dimension approach provided more accurate solutions
to the nonlinear thin sheet problem at significantly shorter CPU times (assuming
comparable spatial and temporal resolution in both cases).

The proposed approach is readily extendable to nonlinear analyses of axisymmetric
disturbances to thin annular sheets (Mehring & Sirignano 1998a, b) and to thin
conical sheets, and to three-dimensional disturbances to thin planar sheets (Kim
& Sirignano 1997, 1998). For the annular axisymmetric case, nonlinear analyses
have also been presented by Panchagnula, Sojka & Bajaj (1998) for dilationally
distorting sheets only and by Lee & Wang (1988, 1989), the latter for the initial-
and boundary-value problem of a collapsing sheet forming a liquid shell. To the
knowledge of the authors, a nonlinear analysis of the conical case has not been
reported so far. The computational savings by using a reduced-dimension approach
will be considerable for these geometrically more complex thin sheet configurations
compared to other nonlinear simulations using ‘general-purpose’ solution techniques
designed for interfacial flows of complex topology.
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