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We consider axisymmetric Boussinesq convection in a shallow cylinder of radius L and
depth H(� L), which rotates with angular velocity Ω about its axis of symmetry aligned
to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for
which the onset of instability occurs on a long horizontal length scale provided that Ω is
sufficiently small. We investigate the nonlinear development by well-established two-scale
asymptotic expansion methods. Comparisons of the results with the direct numerical
simulations (DNS) of the primitive governing equations are good at sufficiently large
Prandtl number σ . As σ is reduced, the finite amplitude range of applicability of the
asymptotics reduces in concert. Though the large meridional convective cell, predicted
by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails
almost catastrophically, because of significant angular momentum transport at small σ ,
exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid
methods that build on the meridional streamfunction ψ derived from the asymptotics.
With ψ given, we solve the now linear azimuthal equation of motion for the azimuthal
velocity v by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large
Rayleigh number, found previously by Oruba et al. (J. Fluid Mech., vol. 812, 2017, pp.
890–904).
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1. Introduction

1.1. Background
The finite amplitude convection in a horizontal plane layer of Boussinesq fluid, rotating
with constant angular velocity Ω about an axis normal to the plane, and driven by
an unstable vertical temperature gradient, is a classical problem of continuing interest.
Recently, the study has gained a new focus through its possible applicability to the
study of tropical cyclones. For that, Oruba, Davidson & Dormy (2017, 2018) considered
axisymmetric convection in a large-aspect-ratio (penny-shaped) cylinder of radius L and
depth H(� L). Motion consists of two parts: (i) meridional flow driven by the buoyancy
(measured by the Rayleigh number Ra), which in turn stimulates (ii) azimuthal (or
swirling) motion, through the action of the Coriolis acceleration (measured by the inverse
Ekman number E−1 = H2Ω/ν, with kinematic viscosity ν. The precise form of the
convection depends on the nature of the top and bottom boundary conditions. Oruba
et al. (2017, 2018) assumed that the bottom boundary is rigid and the top boundary is
stress-free. They also assumed that the heat flux across the top and bottom boundaries
remains constant, as defined by the unperturbed applied vertical temperature gradient.
All these characteristics are summarised in figure 2 of Oruba et al. (2017). At moderate
Rayleigh numbers, they found that nonlinear convection consists of one large elongated
meridional cell that extends from the symmetry axis to the outer boundary, together with
the linked azimuthal flow driven by the Coriolis force. However, as Ra is increased and
motion intensifies, a region of reversed meridional flow appears near the axis (see Oruba et
al. 2018, figures 3–5), a feature commonly found in atmospheric vortices, where it is often
referred to as an ‘eye’. Our objective here is to explore such convection from an asymptotic
point of view, based on the small size of the aspect ratio

ε ≡ H/L(�1). (1.1)

Our asymptotic method has its limitations. For though it leads to an understanding of many
aspects of the convection, our approach falls short of explaining the strongly nonlinear eye
feature for the following reason. A consequence of the long length scale assumption (1.1)
is that at leading order, the asymptotic solutions of § 4 have separable form ensuring that
the axial profiles at all radii are similar. Such solutions cannot describe eyes with local
eddy structure.

A dominant feature of the meridional flow displayed in figures 3–5 of Oruba et al.
(2018) is the large cell, remarked on above, that extends from the symmetry axis (possibly
corrupted by the eye) to nearly the outer boundary. This is a well-known characteristic
of non-rotating Rayleigh–Bénard convection in a plane layer subject to constant heat
flux boundary conditions. When that system is unbounded in the horizontal direction,
linear solutions may be sought, characterised by a horizontal wavenumber k. For most
convection problems, the onset of instability occurs at a finite value of k = kc. However,
in the case of constant heat flux boundary conditions, onset is characterised by kc = 0.
The two length scale, L � H, feature of the convection has been exploited by Chapman &
Proctor (1980) and Chapman, Childress & Proctor (1980) to develop a weakly nonlinear
theory based on ε � 1. Demanding that the horizontal length L be finite is a prerequisite
for any application of the theory to a confined geometry.

The modus operandi for the non-rotating case is described comprehensively by
Chapman & Proctor (1980). Essentially, two-dimensional (2-D) convection is considered
relative to x (horizontal) and z (vertical) coordinates. At lowest order in ε, the temperature
perturbation θ from the linear (in z) conduction state is assumed to be a slowly varying
function of x and t alone, independent of z; more precisely, θ = f (X, τ ), dependent on
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the stretched variables X = εx and τ = ε4t. Consistency conditions at higher order in the
expansion determine the nonlinear amplitude equation

∂τ f = G′, (1.2a)

in a conservation law form (see e.g. Matthews & Cox 2000), where the prime denotes the
X derivative. Here,

G = −Aμ2g − Bg′′ + Cg3 − Dgg′ in which g = f ′, (1.2b,c)

where A, B, C and D are non-negative constants (Chapman & Proctor 1980, (3.15)),
and μ2 = ε−2(Ra − Rac)/Rac is a measure of the excess Rayleigh number, Ra − Rac,
above the critical value Rac for a horizontally unbounded layer. Similar conservation law
equations have been considered in other convective systems (Depassier & Spiegel 1981;
Cessi & Young 1992; Pons, Sagués & Bees 2004). Variants of (1.2), not in conservation
law form, have been studied by Sivashinsky (1982), and in higher dimensions (see (1.4)
below) by Cox (1998).

The symmetries of (1.2) are important, the most obvious being the invariance under a
shift of X. Further, the reflection X �→ −X admits two symmetries f �→ ±f with G �→ ∓G,
g �→ ∓g, g′ �→ ±g′, and so on. For the case D = 0, we have only odd powers of f and g
in (1.2), so without the spatial reflection, we have the additional symmetry f �→ −f with
G �→ −G, g �→ −g. However, when D 	= 0, this symmetry is lost, because of the quadratic
term −Dgg′ in (1.2b). On the one hand, the case D = 0 occurs when the physical system
exhibits up/down symmetry. Solutions for that case have been investigated at very large
Ra by Fiedler (1999) and compared with results from direct numerical simulations (DNS)
of the full governing equations. On the other hand, D 	= 0 occurs when that up/down
symmetry is broken. The latter is exactly the situation of interest to us, happening because
of our asymmetric boundary conditions, stress-free at the top and rigid at the bottom.
These various symmetries have consequences for the steady solutions of (1.2), namely
G = 0, portrayed in figures 4–6 of Chapman & Proctor (1980). For their model, g is
a measure of ψ (as it is for us), the streamfunction for the flow. So g �→ −g implies
ψ �→ −ψ , which, without reversing the sign of X, means a reversal of the flow direction.

The solution to the system (1.2) requires boundary conditions. On assuming spatial
periodicity of f , g, G, multiplication of (1.2a) with f and various integrations by parts
determine

1
2 dτ 〈〈f 2〉〉 = −〈〈gG〉〉 = Aμ2〈〈g2〉〉 − B〈〈(g′)2〉〉 − C〈〈g4〉〉, (1.3)

where dτ ≡ d/dτ , and 〈〈•〉〉 is the spatial average of • over a periodicity length.
Fortuitously, the contribution from D〈〈g2g′〉〉 = 1

3 D〈〈(g3)′〉〉 (= 0) vanishes, and the
remaining form (1.3) can be employed to show that the bifurcation from the zero to finite
amplitude state is necessarily via a supercritical pitchfork.

Dowling (1988) extended the Chapman & Proctor (1980) approach to the case when
the plane layer rotates rapidly about a vertical axis; he employs the Taylor number Ta =
E−2. The work is not totally comprehensive but does point to an amplitude equation (his
proposed (50), similar to (1.2)). However, in his (50), he retains a quadratic term like Dgg′
in (1.2b), which we believe vanishes because he limits his study to boundary conditions
with up/down symmetry. These include stress-free boundary conditions, often adopted
because of the mathematical simplifications that follow (see e.g. the related linear study of
Takehiro et al. 2002).
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With rotation, motion can no longer lie in an x–z plane, as the effect of the Coriolis
acceleration is to stimulate motion in the mutually orthogonal third y direction. So though
the convection studied by Dowling (1988) has components in all three directions, it is
said to be 2-D, as it depends on only two coordinates, x and z. Cox (1998), however,
went further by investigating fully three-dimensional motion. For that, he introduced the
stretched coordinate Y = εy, in addition to T(≡ τ), X of Chapman & Proctor (1980), and
extended the form of (1.2) to an amplitude equation for f = φ(X, Y, T).

Whereas Chapman & Proctor (1980) defined ε as an ad hoc aspect ratio, Cox (1998)
perturbs the constant flux boundary condition ∂zθ = 0 into one of the Robin type, ∂zθ +
αθ = 0, with α � 1. On making the choice ε = α1/4, Cox derives an amplitude equation
(his (3.2)), which, when solved subject to periodic boundary conditions, would appear to
be reducible to the form

∂Tf + f = ∇H · GH, gH = ∇Hf , (1.4a,b)

where ∇H ≡ (∂X, ∂Y), and GH , like G in (1.2a), is a function of gH and its space
derivatives. The contribution +f on the left-hand side of (1.4a) originates from the αθ term
in the Robin boundary condition with ε chosen to ensure that at the onset of instability,
the stretched horizontal critical wavenumber ε−1kc is order unity. For us, this additional
ingredient is an embellishment, and with the +f term ignored, (1.4) achieves conservation
law structure.

To investigate the onset of instability, Cox (1998) studied the 2-D extension (1.4) of
(1.2) to the rotating case E−1 	= 0. Essentially, for large Ekman number E, the coefficient
equivalent to B in (1.2b) is positive. On decreasing E, that coefficient decreases and
vanishes at some E = Ec (say, dependent on the stress boundary conditions adopted).
On decreasing E further, B changes sign and becomes negative. Once that happens, the
system becomes unstable to finite length scale disturbances and the two length scale
assumption no longer applies. A similar conclusion was reached in the analytic study of
Dowling (1988), albeit in the symmetric case (upper and lower boundaries stress-free),
whose results were later confirmed numerically by Calkins et al. (2015) as illustrated in
their figure 1(a). This consideration places the limit E > Ec on the applicability of the
long horizontal length scale approach.

The main thrust of Cox (1998) was the investigation of pattern formation for which
his 2-D formulation was essential. He focused attention on the stability of the rhombic
lattice (motivated by the Küppers & Lortz (1969) instability, but see Soward (1985) for
up/down asymmetry pertinent to us) and square cells. Our objective is one-dimensional in
nature, since it concerns the axisymmetric flows appropriate to cyclones and other related
geophysical flows. For our restricted class of flows, it is far simpler to adapt the original
Chapman & Proctor (1980) development to cylindrical geometry, rather than build on
either Dowling (1988) or Cox (1998). Specialising Cox’s results to that single coordinate
geometry is unsatisfactory because additional non-trivial work is needed to obtain our
amplitude equation from his general form. Unlike Cox (1998), we are able to obtain, via
our Appendices A–C, analytic expressions for the coefficients in the amplitude equation.

1.2. Objectives and outline
Our primary objective is to apply a variant of the amplitude modulation equation (1.2) to
axisymmetric rotating convection in a thin disc, as formulated in § 2. However, in the case
of rapid rotation, E � 1, it is well known that the onset of convection occurs on a short
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E1/3H horizontal length scale. So, by necessity, we need to restrict attention to E > Ec,
which for our problem is Ec ≈ 0.2274 (see (4.25a)).

A preliminary restructuring of the § 2 governing equations is undertaken in § 3 to
prepare for the implementation of the Chapman & Proctor (1980) expansion procedure
in § 4. The lowest-order terms are considered in § 4.1, leading to a linear problem for the
vertical z structure, whose solution is summarised in Appendix A. The next-order problem
is formulated in § 4.2. The consistency condition for its solution, considered in § 4.3, leads
to a radial amplitude modulation equation ∂Tf = R−1(RG2)

′ in (5.1a) (cf. (1.2a)), in which
R = εr is the stretched radius. Here, G2 from (4.23a) contains coefficients analogous to
A–D in (1.2b), which are evaluated from analytic results derived in Appendices B and C.
An amplitude equation of structure similar to the Cartesian type (1.2) was developed by
Dowling (1988). Significantly, his Cartesian symmetry X �→ −X is lost in our cylindrical
geometry, for which there is no corresponding R �→ −R symmetry. Consequences of
this lack of symmetry begin to emerge in § 5, when the thermal energy balance (5.7) is
considered in § 5.2. It contains the extra term σ−12FWW〈〈R−1g3〉〉 with no counterpart in
the Cartesian version (1.3).

The weakly nonlinear analysis of § 6 builds on the linear solution of § 6.1 and brings
into sharp focus, in § 6.2, the complications that occur once the basic state bifurcates. In
a non-rotating system, two finite amplitude modes emerge through a pitchfork bifurcation
distinguished by the direction of motion in the large meridional cell, identified essentially
by the sign of the streamfunction ψ . Due to the lack of the reflectional symmetry R �→ −R
with ψ �→ −ψ , weak nonlinearity affects ψ differently on the two branches, ψ ≷ 0, of
the pitchfork. On increasing the rotation rate from zero, the pitchfork tilts and changes its
character locally, becoming a transcritical instability (see Guckenheimer & Holmes 1983),
whose implications are discussed at the end of § 6.2.1. The subcritical instability ψ > 0
corresponds to upwelling on the axis, as found in the full nonlinear DNS of Oruba et al.
(2017, 2018). The question of whether or not such solutions, presumably lying on an upper
branch of the ‘bent’ pitchfork, are accessible via the amplitude modulation equation (5.1),
is addressed by comparison, in § 7, of its solutions to the DNS solutions of the complete
governing equations. DNS solutions linked to the stable lower supercritical branch are
also found, but we expect that with increasing rotation rate, the upper branch solutions are
generally realised upon time stepping from most initial states.

The comparisons of maximum |ψ | on the flow domain for the non-rotating case with
only meridional motion, in § 7.1, are good up to large Ra. This is surprising because
on increasing Ra, boundary layers form on either the outer R = 1 or the inner R = 0
boundaries. In this context, a boundary layer is a region where the horizonal length scale
is comparable to or less than the vertical length scale. Solutions of (5.1) cannot capture
such boundary layer structure, because there the length scale separation, implicit in the
assumption (1.1), does not hold. The solution in the mainstream outside such boundary
layers may or may not provide a useful approximation of the DNS of the complete problem.
We emphasise this matter in the final paragraph of § 5.1.

For the rotating case, considered in § 7.2, the asymptotics gives good agreement with
the DNS only at moderate E ≥ O(1) and Prandtl number σ ≥ O(1). The limitation on
E is anticipated, because, as previously noted, the long length scale assumption at the
instability bifurcation applies only to E > Ec ≈ 0.2274. On decreasing the value of σ , we
find in § 7.2.1 that the meridional motion fares moderately well. However, that is not the
case for the azimuthal velocity v investigated in § 7.2.2, for which inertia has such a strong
effect that the long length scale assumption is violated with a consequent failure of the
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asymptotics. As the meridional motion does not seem to be influenced strongly by the
azimuthal flow, we undertake hybrid calculations. That is, we substitute ψ , as found by the
asymptotics, into the azimuthal momentum equation (2.8a), which we solve in isolation
by DNS to obtain v. In § 7.2.3, we adjust our hybrid approach to test its worth against
the large-Rayleigh-number DNS of Oruba et al. (2017). We end with a few concluding
remarks in § 8.

2. The rotating frame extension of the Chapman & Proctor (1980) problem in
cylindrical geometry

Relative to cylindrical polar coordinates (r, ϕ, z), we consider axisymmetric Boussinesq
fluid in a disc-shaped container of radius L, depth H, with gravity −gẑ, rotating with
angular velocity Ω = Ω ẑ. At time t, the fluid has velocity u(r, z, t) = (u, v,w), pressure p,
viscosity ν, and thermal diffusivity κ . Relative to some appropriate reference temperature,
the temperature is −βz + θ(r, z, t). Motion is governed by the equations

σ−1Dtu + E−12ẑ × u = −∇p + Ra θ ẑ + ∇2u (Dt = ∂t + u · ∇), (2.1a)

Dtθ = u · ẑ + ∇2θ (∇ · u = 0), (2.1b)

in which units used are distance H, time (t) H2/κ , velocity (u) κ/H, and temperature
perturbation (θ ) βH, and where the Rayleigh, Ekman and Prandtl numbers are

Ra = gαβH4/(κν), E = ν/(H2Ω), σ = ν/κ, (2.2a–c)

respectively.
We apply zero perturbation heat flux and zero mass boundary conditions

n̂ · ∇θ = 0, n̂ · u = 0 (2.3a,b)

(for outward unit normal n̂) on all boundaries. In view of incompressibility ∇ · u = 0 and
the boundary condition (2.3b), there is no total vertical mass flux∫ 1/ε

0
rw dr = 0, (2.4)

where ε = H/L (see (1.1)). So on integrating the heat conduction equation (2.1b)
throughout the entire domain 0 < r < ε−1, 0 < z < 1, we deduce that∫ 1

0

∫ 1/ε

0
rθ dr dz = const., (2.5)

independent of t.
The upper boundary is assumed to be stress-free so that

∂zu = ∂zv = 0 at z = 1, (2.6a)

while the lower and outer boundaries are assumed to be rigid:

u = v = 0 at z = 0, (2.6b)

v = w = 0 at r = ε−1. (2.6c)

The asymmetric boundary conditions (2.6b,c) correspond to Case C of Chapman &
Proctor (1980). It is important to note that their non-dimensionalisation, based on the depth
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H = 2d with boundary conditions at z = ±1, is different from ours. Since we consider
only the asymmetric Case C, our non-dimensionalisation, based on boundaries at z = 0
and 1, is a more convenient choice for that system.

We introduce

(u, v,w) = (−r−1 ∂zψ, rω, r−1 ∂rψ), (2.7a)

∇ × u = (−r ∂zω,−r−1Dψ, r−1 ∂r(r2ω)), (2.7b)

where
D = r ∂r(r−1 ∂r)+ ∂2

z . (2.7c)

Then r times the azimuthal component of the momentum equation for rω, and −r−1 times
the azimuthal component of the vorticity equation for −r−1Dψ , determine

σ−1Dt(r2ω)− 2E−1 ∂zψ = D(r2ω), (2.8a)

σ−1[Dt(r−2Dψ)+ ∂z(ω
2)] + 2E−1 ∂zω = Ra r−1 ∂rθ + r−2D2ψ, (2.8b)

respectively, which are to be solved subject to the boundary conditions

ψ = ∂r(r−1 ∂rψ) = ∂rω = ∂rθ = 0 at r = 0 (0 < z < 1), (2.9a)

ψ = ∂rψ = ω = ∂rθ = 0 at r = � (0 < z < 1), (2.9b)

ψ = ∂zψ = ω = ∂zθ = 0 at z = 0 (0 < r < �), (2.9c)

ψ = ∂2
zψ = ∂zω = ∂zθ = 0 at z = 1 (0 < r < �). (2.9d)

We find it useful to express the heat conduction equation (2.1b) in the form

Dtθ = r−1 ∂rϕ + ∂2
z θ, where ϕ = ψ + r ∂rθ, (2.10a,b)

satisfies the boundary conditions

ϕ = 0 at r = 0 and �, (2.10c)

implied by (2.9a,b).

3. Formulation of the small-ε problem

Our formulation and development of the small ε = H/L (1.1) case, as explained in § 1,
largely follows Chapman & Proctor (1980) and is essentially a variant of Dowling (1988).
We set r = ε−1R, ∂r = ε ∂R and ω = ε2E−1� , and write

u = (−εR−1 ∂zψ, εE−1R�, ε2R−1 ∂Rψ), ϕ = ψ + R ∂Rθ. (3.1a,b)

As the time scale of interest is very long, we set t = ε−4T and ∂t = ε4 ∂T , but base the
material derivative Dt = ε2DT on the velocity time scale ε−2 such that

DT• = R−1 J(ψ, •)+ ε2 ∂T•, J(ψ, •) ≡ (∂Rψ) ∂z• − (∂zψ) ∂R•. (3.2a,b)

We also set
Ra = Rac + ε2μ2, (3.3)

where Rac is the critical Rayleigh number for the onset of steady convection in the limit
ε → 0.
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Following our variable changes (3.1)–(3.3), the governing equations (2.1) become

∂2
z θ = ε2Nθ , (3.4a)

∂2
z� + 2R−2 ∂zψ = ε2R−1N� , (3.4b)

∂4
zψ − 2E−2R2 ∂z� + Rac R ∂Rθ = ε2RNψ, (3.4c)

in which the terms O(ε2) and smaller appear on the right-hand side. They are

Nθ = DTθ − R−1 ∂Rϕ, (3.5a)

N� = σ−1R−1DT(R2�)−Δ(R�), (3.5b)

Nψ = σ−1R[DT(R−2Dψ)+ E−2 ∂z(�
2)]

− 2∂2
z [Δ(R−1ψ)] − ε2Δ2(R−1ψ)− μ2 ∂Rθ, (3.5c)

in which
Δ• ≡ ∂R[R−1 ∂R(R•)], D• ≡ ∂2

z • +ε2RΔ(R−1•). (3.6a,b)

The esoteric introduction of Δ anticipates the importance of R−1ψ and R� , on which it
acts in (3.5b,c) (see particularly (4.3a) and (4.5a) below).

Since the definite z integral, the z-average, and the difference of the boundary values are
used repeatedly, we define

〈•〉b
a ≡

∫ b

a
• dz, 〈•〉 ≡ 〈•〉1

0, [[•]] ≡ •(1)− •(0). (3.7a–c)

An immediate application is to the z-average of the heat conduction equation (3.4a).
Since the left-hand side average vanishes, 〈∂2

z θ〉 = [[∂zθ ]] = 0 (use (2.3a)), the remaining
right-hand side average must vanish too, leaving 〈Nθ 〉 = 0. The evaluation is simplified by
the identity 〈J(ψ, θ)〉 = ∂R〈ψ ∂zθ〉 (integrate by parts and note that ψ = 0 on both z = 0
and z = 1). Accordingly, the z-average of (3.4a), together with (3.5a) and (3.2), determines
the heat conservation law

ε2 ∂T〈θ〉 = R−1 ∂R(RG), RG = 〈ϕ〉 − 〈ψ ∂zθ〉. (3.8a,b)

Here, G may be interpreted as radial heat flux, which satisfies

G(0, T) = G(1, T) = 0, (3.9)

in view of the boundary conditions (2.9a,b) and (2.10c).
On multiplying (3.8a) by R, integrating between R = 0 and R = 1, and applying the

boundary conditions (3.9), we obtain

dT〈〈θ〉〉 = 0 (3.10)

(where dT = d/dT), which is equivalent to (2.5), where

〈〈•〉〉 =
∫ 1

0
〈•〉 R dR (3.11)

is a suitably scaled volume integral. Further, on multiplying (3.4a) by θ , application
of (3.11) determines 〈〈θ ∂2

z θ〉〉 = ε2〈〈θNθ 〉〉. Then use of (3.5a), followed by various
integrations by parts, leads to the total thermal energy balance

1
2ε

2 dT〈〈θ2〉〉 = −ε−2 〈〈(∂zθ)
2〉〉 − 〈〈R−1ϕ(∂Rθ)〉〉. (3.12)

Since the term −ε−2 〈〈(∂zθ)
2〉〉 is negative, the only possible thermal energy source is

−〈〈R−1ϕ(∂Rθ)〉〉, a feature that emphasises the importance of ϕ, also present in (3.8b).
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We now consider the angular momentum equation (3.4b). On integration once with
respect to z, subject to the boundary conditions ∂z� = ψ = 0 on z = 1, it yields

∂z� + 2R−2ψ = −ε2R−1〈N� 〉1
z , (3.13a)

which on substitution into (3.4c) determines

∂4
zψ + 4E−2ψ + Ra R ∂Rθ = ε2R[Nψ − 2E−2〈N� 〉1

z ]. (3.13b)

4. The small-ε expansion

In this section, we develop expansions of the variables Y = [θ, ψ, ϕ,�,G](R, z, T) in the
form Y = Y0 + ε2Y2 + · · · . Our objective is the construction of the amplitude modulation
equation (5.1), stated in § 5, where its solution is discussed. The development extends
(Chapman & Proctor 1980) with some parallels to Dowling (1988). Since the lowest-order
solution is of separable form expressible as the Hadamard product Y0 = R(R, T) ◦ Z(z),
the compact differential operator notations

•′ ≡ ∂R•, •̇ ≡ dz•, (4.1a,b)

∂+
R • ≡ R−1 ∂R(R•), ∂−

R • ≡ R ∂R(R−1•) (4.1c,d)

(where dz = d/dz) turn out to be useful.

4.1. The O(1) problem for the vertical z structure
The lowest-order problem is very simply built on the assumption that thermal diffusion
in the radial direction is negligible, with (3.4a) approximated by ∂2

z θ0 = 0. Integration
subject to ∂zθ0 = 0 at z = 0 and 1 determines

θ0 = f (R, T). (4.2)

Then neglecting the right-hand side of (3.13b), we see that

R−1ψ0 = Rac g(R, T)P(z), where g = f ′ (4.3a,b)

(notation (4.1a)), provided that P(z) solves

L(P) ≡ ....
P + 4E−2P = −1, (4.4a)

(notation (4.1b)) (cf. Dowling 1988, (25)). The boundary conditions (2.9c,d) require

P(0) = P(1) = Ṗ(0) = P̈(1) = 0. (4.4b)

We summarise the solution in Appendix A. It lacks the simplicity of Dowling’s equations
(26) and (27), applicable to the case of stress-free boundaries.

On neglecting the right-hand side of (3.13a), we obtain

R�0 ≡ 2 g(R, T)W(z), (4.5a)

on use of (4.2) and (4.3), provided that

Ẇ = −Rac P(z), giving W = −Rac〈P〉z
0, (4.5b,c)

after integration subject to W(0) = 0 (see (4.8a)), implied by � = 0 at z = 0.
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On further use of (4.2) and (4.3), the lowest-order approximation of (3.1b) is

R−1ϕ0 = R−1ψ0 + ∂Rθ0 = −g(R, T) Q̈(z), (4.6a)

where
Q̈ = −Rac P(z)− 1, giving Q̇ = W(z)− z, (4.6b,c)

after integration, and without loss of generality, the boundary condition choice Q̇(0) = 0.
Hence, on neglect of the left-hand side of (3.8a), integration of its remaining right-hand
side with respect to R implies that RG0 is a constant. Then the boundary conditions (2.9a,b)
and (2.10c) establish that G0 = 0. In turn, substitution of (4.6a) into (3.8b), recalling that
∂zθ0 = 0 implies 〈ψ0 ∂zθ0〉 = 0, yields sequentially

R−1〈ϕ0〉 = 〈G0〉, 〈Q̈〉 = 0, Rac〈P〉 = −1, (4.7a–c)

on use of (4.6a,b). Performing the integral in (4.7b) gives [[Q̇]] = 0, which, having chosen
Q̇(0) = 0, yields Q̇(1) = 0. So finally, (4.6c) implies that W(1) = 1, and in summary,

W(0) = 0, W(1) = 1, Q̇(0) = Q̇(1) = 0. (4.8a–c)

Our P,W,Q notation is adopted to follow the development in (3.8), (3.10) of Chapman &
Proctor (1980).

Finally, we note the useful z-average identities

〈Ẇ•〉 = −〈W•̇〉 + •(1), 〈Q̈•〉 = −〈Q̇•̇〉, (4.9a,b)

which follow from integration by parts and use of the boundary values (4.8). At this early
stage, the emergence of Q̇ in (4.6c), as a derivative, appears contrived because its integral
Q(z) is determined only up to an arbitrary constant of integration. Nevertheless, the way
our solution method unfolds, Q itself appears only within the z-average 〈Q̈Q〉, which on

integration by parts takes the unique value −〈Q̇2〉 (see (4.9b). Other useful related results
are

−〈Q̈W〉 = 〈Q̇Ẇ〉
= −Rac〈PQ̇〉

}
= 〈Q̇(Q̈ + 1)〉 = 〈Q̇〉. (4.10)

4.2. The O(ε2) problem
Just as for the O(1) problem, we begin our O(ε2) study with the heat conduction equation
(3.4a), whose right-hand side Nθ (3.5a) is determined at leading order by two terms,
R−1 J(ψ0, θ0) = −Rac g2Ṗ and ∂Rϕ0 = −(Rg)′Q̈. The ensuing Nθ may be integrated with
respect to z so that the corresponding integral of (3.4a) gives

∂zθ2 = −Rac Pg2 + Q̇ ∂+
R g, (4.11a)

which, in view of (4.4b) and (4.8c), satisfies the boundary conditions ∂zθ2 = 0 at z = 0, 1.
Multiplication of (4.11a) by R−1ψ0 = Rac Pg (see (4.3a)) provides the useful result

− R−1ψ0 ∂zθ2 = Rac[Rac P2g3 − PQ̇g ∂+
R g]. (4.11b)

Moreover, a further integration of (4.11a), which notes −Rac〈P〉z
0 = W from (4.5c), yields

θ2 = Wg2 + Q ∂+
R g + f2(R, T), (4.12a)

where f2(R, T), like f (R, T) introduced in (4.2), is at this stage an unknown function,
whose value (not needed by us) is fixed only by closure at a higher order. Indeed, since

951 A5-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.761


Slowly rotating Bénard convection

Q(z) is defined only up to an arbitrary constant Q̂, the corresponding contribution Q̂ ∂+
R g

may be absorbed by f2. The radial derivative of (4.12a) determines

∂Rθ2 = 2Wgg′ + QΔg + g2, g2 = f ′
2, (4.12b,c)

where we have recalled that ∂R∂
+
R = Δ (see (3.6a) and (4.1c)).

Our next objective is to solve the inhomogeneous equation (3.13b) for ψ2. The
leading-order terms on its right-hand side are determined from

N� = 2σ−1 Rac(PẆ − ṖW)g ∂+
R g − 2WΔg, (4.13a)

Nψ = σ−1[Ra2
c(P
...
Pg ∂+

R g − ṖP̈g ∂−
R g)+ 8E−2WẆR−1g2]

− 2 Rac P̈Δg − μ2g (4.13b)

(notation (4.1c,d)). Together with the additional contribution −Rac R ∂Rθ2 (use (4.12b))
from its left-hand side, (3.13b) determines

∂4
zψ2 + 4E−2ψ2 = R[Nψ − Rac ∂Rθ2 − 2E−2〈N� 〉1

z ], (4.14)

with Nψ , N� given by (4.13). The equation must be solved subject to ψ2 = ∂ψ2/∂z = 0
at z = 0, and ψ2 = ∂2ψ2/∂z2 = 0 at z = 1. The solution may be expressed in the form

R−1ψ2 = P(Rac g2 + μ2g)+ PDΔg + PWgg′

+ σ−1[PPPg ∂−
R g + (P+

PP + P+
WW)g ∂

+
R g + PWWR−1g2]. (4.15a)

Here, the various P•(z) functions solve

L(PD) = (4/E2)〈W〉1
z − Rac(2P̈ + Q), L(PW) = −2 Rac W, (4.15b,c)

L(PPP) = −Ra2
c ṖP̈, L(P+

PP) = Ra2
c P
...
P, (4.15d,e)

L(P+
WW) = −(4 Rac/E2)〈PẆ − ṖW〉1

z , L(PWW) = (8/E2)WẆ, (4.15f,g)

subject to the boundary conditions P•(0) = Ṗ•(0) = P•(1) = P̈•(1) = 0 of (4.4b). So, on
multiplying each of (4.15b–g) by P(z), taking the z-average, integrating by parts and noting
the property L(P) = −1 from (4.4a), we obtain the important result

〈P•〉 = −〈P•L(P)〉 = −〈PL(P•)〉 (4.16)

(an extension of the technique employed in Appendix A of Chapman & Proctor 1980).
Armed with the result (4.15a), we may now use (3.13a) to obtain

R ∂z�2 = −2R−1ψ2 − 〈N� 〉1
z , (4.17)

which, upon integration subject to �2 = 0 at z = 0, determines �2. However, that result
is not needed to close our problem, as we now demonstrate.

4.3. Closure
The amplitude equation for f follows from (3.8a,b), which at lowest order yields

∂T〈θ0〉 = ∂+
R G2 ≡ R−1(RG2)

′, (4.18a)

RG2 = 〈φ2〉 − 〈ψ0 ∂zθ2〉 = 〈ψ2〉 + R ∂R〈θ2〉 − 〈ψ0 ∂zθ2〉. (4.18b)

The terms on the right-hand side of (4.18b) are determined respectively by the mean values
of (4.15a), (4.12b) and (4.11b). Collecting them together and noting that the two terms
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involving f ′
2 cancel, because Rac〈P〉 = −1 in (4.7c) implies (1 + Rac〈P〉)f ′

2 = 0, we are
left with

G2 = −μ2 Ra−1
c g − FDΔg − FW

Q gg′ − FQ g ∂+
R g + Fθg3

− σ−1[FPP g∂−
R g + (F+

PP + F+
WW)g∂

+
R g + FWWR−1g2]. (4.19)

Here, the coefficients of the terms independent of σ are

Ra−1
c = −〈P〉, FD = −〈PD〉 − 〈Q〉, (4.20a,b)

FW
Q = −〈PW〉 − 2〈W〉,

FQ = Rac〈PQ̇〉 = −〈Q̇〉,
}

Fθ =
{

Ra2
c〈P2〉,

Rac〈ṖW〉, (4.20c,d)

where the reductions in (4.20c,d) have respectively involved (4.10) and (4.5b). The
remaining coefficients of the terms proportional to σ−1 are

FPP = −〈PPP〉, F+
PP = −〈P+

PP〉, (4.20e, f )

F+
WW = −〈P+

WW〉, FWW = −〈PWW〉. (4.20g,h)

Each of the six 〈P•〉 = −〈PL(P•)〉 in (4.20b,c,e–h) are evaluated following various
integrations by parts and repeated use of (4.5b,c), (4.6b,c) and (4.10), giving

FD = 2 Rac〈Ṗ2〉 − 〈Q̇2〉 − R−1
c 〈W2〉

= 2 Rac〈Ṗ2〉 − (1 + R−1
c )〈W2〉 + 2〈zW〉 − 1

3 , (4.21a)
1
2FW

Q = FQ = −〈Q̇〉 = −〈W〉 + 1
2 , (4.21b)

1
2F+

PP = FPP = 1
2 Ra2

c〈Ṗ3〉, (4.21c)
2
3F+

WW = FWW = −(4/E2)〈ṖW2〉 = −(8/E2)Rac〈P2W〉, (4.21d)

where in (4.21a) we have introduced the alternative measure

Rc = E2 Rac/4, (4.22)

of Rac. Aided by the identities (4.21b–d), we may reduce (4.19) to

G2 = −μ2 Ra−1
c g − FDΔg − FQσg(3g′ + R−1g)− σ−12FWWR−1g2 + Fθg3, (4.23a)

where

FQσ = FQ + σ−1(FPP + 1
2FWW). (4.23b)

In the non-rotating case E−1 = 0, the E = ∞ coefficient FWW(E) in (4.23) vanishes. The
other coefficients are linked to A–D introduced in (1.2b), and their values follow from
Table 1, Case C of Chapman & Proctor (1980), which after appropriate scaling (different
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units) yields

Rac(∞) = 16/A = 320, (4.24a)

FD(∞) = B/4 = 58/693, (4.24b)

Fθ (∞) = C = 760/567, (4.24c)

FQσ (∞) = D/6 = 1/18 + (5/126)σ−1, (4.24d)

composed of

FQ(∞) = 1/18, FPP(∞)+ 1
2FWW(∞) = 5/126. (4.24e, f )

For the finite E rotating case, the linear problem (4.4) is addressed in Appendix A by
considering the Ekman layer style equations (A3) for velocities U(z), V(z) (see (A2)),
which relate to Ṗ, W (see (A1b,c)). Since all the F•(E) coefficients (4.20d) and (4.21a–d)
needed to define G2 in (4.23a) depend on Ṗ and W, we are able to determine their values
in terms of U and V in Appendix B. Remarkably, the needed z-averages (B1), as well as
Ra−1

c = 4E−2R−1
c (see (4.20a) and (4.22)) determined by (A6), may be expressed entirely

in terms of the end point values (A5), (A10) at z = 0 and 1 of the linear solution. The
derivation of the integral results (B2)–(B5) is relegated to Appendix C.

The explicit formulae assembled in Appendices A–C show that

FD ≷ 0 when E ≷ Ec ≈ 0.2274, (4.25a)

in agreement with the value (E−1 =) Ω1 = 4.3966 given on p. 1347 of Cox (1998). The
positivity

Fθ > 0 (4.25b)

is guaranteed by (4.20d). We also have

FWW < 0, (4.25c)

increasing monotonically through negative values to zero, as E → ∞. Moreover,

FQ > 0, (4.25d)

increasing from zero at E = 0 monotonically to 1/18 (see (4.24e)), as E → ∞, while

FPP + 1
2FWW ≷ 0 when E ≷ Ē ≈ 0.4650, (4.25e)

specifically increasing from −0.5 at E = 0 monotonically to 5/126 (see (4.24f )), as E →
∞. All the behaviours (4.25) pertain to the plots of F• versus E in figure 1. Each plot is
restricted to the range E > Ec, where FD > 0 (see figure 1b), necessary for the application
of our long radial length scale asymptotic assumption. The values of Rac(E), FD(E) and
Fθ (E) portrayed in figures 1(a–c) are normalised by their E → ∞ values (4.24a–c).

Since the algebra required to determine the results described in Appendices A–C is so
intricate, we undertook a numerical check for some specific values of E. That involved
the direct numerical solution of (4.4) for P(z), including, of course, Rac = −1/〈P〉 (see
(4.7c)). Whence the values of the other F•(E) coefficients in (4.20) and (4.21), needed
for (4.23), were obtained directly by numerical integration. The results for the selected
E-values are identified by the dots in figure 1, in perfect agreement with the analytic
results.
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Figure 1. Plots of (a) Rac/Rac(∞), (b) FD/FD(∞), (c) Fθ /Fθ (∞), and (d) FQ (solid black), 1
2FWW (grey)

and FPP + 1
2FWW (dashed black) versus E on the range E > Ec ≈ 0.2274; FD(Ec) = 0 (see (4.25a)).

5. Amplitude modulation. I. The problem

To recap, the heat conservation law (3.8a) leads to the amplitude equation

∂Tf = ∂+
R G2 ≡ R−1(RG2)

′ (5.1a)

(see (4.18a)), with G2 defined by (4.23). It is to be solved subject to some given initial
temperature θ0 = f (R, 0) and, for T > 0, the vanishing heat flux boundary conditions

g(0, T) = g(1, T) = 0, G2(0, T) = G2(1, T) = 0, (5.1b,c)

at R = 0 and 1. Equation (5.1b) identifies zero diffusive flux ∂Rθ0 = f ′ = g = 0, which
is fortuitously consistent with the kinematic boundary condition ψ0 = Rac Rg P(z) = 0.
Equation (5.1c) then follows as explained below (3.9).

5.1. Axial and outer boundary layer considerations
In addition to the thermal and kinematic boundary conditions (5.1b,c), the equations of
motion (2.8) are subject to stress boundary conditions embedded within (2.9). Relevant to
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that are the tangential components of velocity

R−1 ∂Rψ0 = Rac ∂
+
R g P(z), R�0 = 2g W(z), (5.2a,b)

and the vertical and azimuthal stresses proportional to

∂R(R−1 ∂Rψ0) = RacΔg P(z), R ∂R�0 = 2 ∂−
R g W(z), (5.3a,b)

all on a cylinder R = const. Their appropriate application almost certainly leads to
a viscous layer near the outer boundary R = 1 of radial extent 1 − R = O(ε), i.e. in
a relatively small roughly square region, not accessible by our asymptotics. Though
consideration of this layer is needed to determine the solution in the boundary layer, it
ought not to influence the ‘mainstream’ solution elsewhere at leading order, so we consider
it no further.

As our solutions of the amplitude equation (5.1) have g ∝ R as R ↓ 0, the vertical
velocity and angular velocity determined by (5.2) are finite on the axis R = 0, while
in turn the stresses (5.3) vanish there, as required. The outer boundary R = 1 is more
interesting. Consideration of the expression (4.23a) for G2 shows that together, g(1, T) = 0
and G2(1, T) = 0 (see (5.1b,c)) imply

Δg = 0 at R = 1. (5.4)

This means that whereas the azimuthal velocity (5.2b) is brought to rest (g = 0), as
required by (2.9b), the vertical velocity (5.2a) is not (∂+

R g 	= 0), contrary to (2.9b).
Interestingly, a similar problem would arise in the case of a stress-free outer boundary.
In that case, the vertical stress (5.3a) vanishes (Δg = 0), while the azimuthal stress (5.3b)
does not (∂−

R g 	= 0, essentially g′ 	= 0 again).
Whether the outer boundary is rigid or stress-free, only one (but not both) of the stress

boundary conditions can be met, so a boundary layer is required. Interestingly, for the
non-rotating problem E−1 = 0, there is no azimuthal flow. So for that case, the problem
with a stress free boundary Δg = 0 (see (5.3a) and (5.4)) at R = 1 does not require a
boundary layer, whereas the case of a rigid boundary, needing ∂+

R g = 0, does.
We cannot overemphasise our assumption that the R length scale is large compared to ε.

So whenever solutions of (5.1) vary significantly on that relatively short ε length scale, i.e.
the vertical extent, our asymptotic assumption is violated and the solution of (5.1) must be
viewed with suspicion. The worth of such solutions can be assessed only by comparison
with the DNS of the complete problem, a matter that we address in § 7.

5.2. The thermal energy balance (3.12)
Our understanding of the nature of the convection and flow is aided by consideration of
the thermal energy equation (3.12). The fact that θ0 in (4.2) is independent of z, implying
∂zθ0 = 0, has important consequences, which include 〈ϕ0〉 = 0 (see (4.7a)). In turn, the
leading-order terms on the right-hand side of (3.12) vanish,

− ε−2〈〈θ2
0 〉〉 − 2〈〈θ0θ1〉〉 = 0, −〈〈R−1ϕ0(∂Rθ0)〉〉 = 0, (5.5a,b)

leaving only O(ε2) terms. What remains, involving ϕ2 = ψ2 + R ∂Rθ2 (see (3.1b)), is

1
2 dT〈〈θ2

0 〉〉 = −〈〈(∂zθ2)
2〉〉 − 〈〈(R−1ϕ0(∂Rθ2)〉〉 − 〈〈(R−1ψ2 + ∂Rθ2)(∂Rθ0)〉〉. (5.6)
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Aided by the expressions (4.11a) for ∂zθ2, (4.12b) for ∂Rθ2 and (4.15a) for R−1ψ2, the
right-hand side may be evaluated tediously. A more direct derivation of the result,

1
2 dT〈〈f 2〉〉 = −〈〈gG2〉〉 = μ2 Ra−1

c 〈〈g2〉〉 − FD〈〈(∂+
R g)2〉〉+ σ−12FWW〈〈R−1g3〉〉 − Fθ 〈〈g4〉〉,

(5.7)
follows from evaluating the weighted average 〈〈f ∂Tf 〉〉 using (5.1a) and integrating by parts.
The resulting integral is evaluated using the formula (4.23a) for G2. In it, the term with
the coefficient FQσ evaporates because 〈〈g2(3g′ + R−1g)〉〉 = 〈〈R−1[Rg3]′〉〉 = 0. Evidently,
instability is driven by the term μ2 Ra−1

c 〈〈g2〉〉 when μ2 > 0, and damped by the term
−Fθ 〈〈g4〉〉 (< 0) (see (4.25b)). The diffusive term −FD〈〈(∂+

R g)2〉〉damps only when E >
Ec (FD > 0), otherwise when E < Ec (FD < 0), it drives the instability (see (4.25a)). The
sign of 〈〈R−1g3〉〉 in the term σ−12FWW〈〈R−1g3〉〉 is important in determining the nature of
the convection, as we argue in the next paragraph. Further consequences are highlighted
by our weakly nonlinear theory of § 6.2 below.

Typically, the meridional flow consists of a single (horizontally elongated) cell, for
which the direction of circulation may be identified by the sign of the z-average of the
scaled vertical velocity, namely

W(R, T) = 〈R−1 ∂Rψ0〉 = (∂+
R g)Rac〈P〉 = −∂+

R g, (5.8)

(use (4.7c)), evaluated on the axis R = 0. There, (5.8) determines

W(0, t) = −1
2 g′(0, T)

{
> 0 upwelling,
< 0 downwelling.

(5.9)

So, for a single cell with g(R, T) < 0 (> 0) on 0 < R < 1, we have upwelling
(downwelling) on the axis. With that scenario 〈〈R−1g3〉〉 < 0 (> 0), and since FWW < 0
from (4.25c), the term σ−12FWW〈〈R−1g3〉〉 > 0 (< 0) renders the upwelling state to be
preferred. This term, however, vanishes in both the infinite Prandtl number limit σ → 0
and the non-rotating limit E → ∞ for which FWW ↑ 0.

6. Amplitude modulation. II. The bifurcation, for the case E > Ec

For E > Ec, where FD > 0 (see (4.25a)), we reduce the number of independent parameters
and highlight the role of various terms by the introduction of the scaled variables
(remember too that Fθ > 0)

T = F−1
D t, ( f , g) = −

√
FD/Fθ (f, g), G2 = −

√
F3

D/Fθ G. (6.1a–c)

Since R−1ψ0 = Rac g(R, T)P(z) from (4.3a) and Rac〈P〉 = −1 from (4.7c), we expect ψ0
and g to take opposite signs. To avoid that anomaly, we have reversed signs in (6.1b,c). In
terms of the new variables, (5.1a) becomes

∂tf = ∂+
R G ≡ R−1(RG)′, with ∂tg = ΔG, (6.2a,b)

on differentiation with respect to R (f′ = g, see (4.3b)), where

G = −λg −Δg + αg(3g′ + R−1g)− (β/σ)R−1g2 + g3, (6.2c)

in which

λ = μ2

Rac FD
= Ra − Rac

ε2 Rac FD
, or equivalently, Ra = Rac(1 + ε2λFD) (6.3a,b)
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(see (3.3)) and

α = FQσ√FDFθ
, β = − 2FWW√FDFθ

(>0). (6.3c,d)

The value of α takes the sign of FQσ = FQ + σ−1(FPP + 1
2FWW) (see (4.23b)). Since

FQ > 0 from (4.25d), it follows that FQσ > σ−1(FPP + 1
2FWW) > 0 when E > Ē (see

(4.25e)). Of course, FQ may exceed zero for smaller E, but all our comparisons of
asymptotic results with DNS in § 7 are undertaken for E > Ē (> Ec) and correspond
to α > 0. The positivity of β follows because FWW < 0 (see (4.25c)). Significantly,
−FWW ↓ 0 implying β → 0 as E → ∞, so it follows that β/σ ↓ 0 when either E → ∞
or σ → ∞.

6.1. The linear problem
The linearised version of the amplitude equations (6.2a,b) are

∂tf = −∂+
R (λg +Δg), ∂tg = −Δ(λg +Δg). (6.4)

Note that f is determined only up to an arbitrary constant, which we ignore below in order
to reduce clutter. The solutions that satisfy the boundary conditions (5.1b,c) are

−j−2
m ∂+

R g = f = −j−1
m Am(t) J0( jmR), (6.5a)

g = f′ = Am(t) J1( jmR), (6.5b)

Δg = −j2mg, (6.5c)

G = −(λg +Δg) = (−λ+ j2m)g, (6.5d)

where jm is the mth zero of the Bessel function J1, chosen such that g(0, t) = g(1, t) = 0
(see (6.5b)), with the consequence G(0, t) = G(1, t) = 0 by (6.5d), provided that

dtAm = j2m[λ− j2m]Am (6.6)

(where dt ≡ d/dt). The requirement λ = μ2/(Rac FD) > 0 (see (6.3a)) for instability is
met only when FD > 0, which requires E > Ec ≈ 0.2274 (see (4.25a) and figure 1b).

The steady modes dtAm = 0 correspond to

λ = λm = j2m. (6.7)

The lowest mode m = 1 is identified by the first non-zero zero of J1, namely

j1 ≈ 3.83171, λ1 ≈ 14.68197. (6.8a,b)

Thus, correct to O(ε2), the critical Rayleigh number determined by (6.3b) is

Ra†
c = Rac(1 + ε2j21FD). (6.9)

We note that ψ ∝ Rg ∝ R J1( j1R) is maximised when dR[R J1( j1R)] = 0, or equivalently,
J0( j1R) = 0. Thus the first zero of J0 determines the location

RM0 ≈ 0.6276 (6.10a)

of the maximum, which itself is proportional to RM0 J1( j1RM0), where

J1( j1RM0) ≈ 0.5191. (6.10b)

As a corollary, f ∝ J1( j0R) reverses sign across RM0.
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6.2. Small-amplitude expansion about critical
For our finite amplitude solutions, a useful measure of supercriticality, relative to Ra†

c of
(6.9), is

ℵ = λ− j21
j21

= Ra − Ra†
c

Ra†
c − Rac

. (6.11)

In the following two subsubsections, we consider a small-amplitude expansion

j21ℵ = λ− j21 = δΛ1 + δ2Λ2 + · · · , (6.12a)

[f, g] − δ[f0, g0](R, t) = δ2[f1, g1](R, t)+ δ3[f2, g2](R, t)+ · · · (6.12b)

(ε2 � δ � 1) for the lowest steady m = 1 mode (6.5a,b), which solves

� g0 = 0, where � • ≡ (Δ+ j21)• (6.12c,d)

(see (6.5c,d)). The objective is to construct the equation governing the slow evolution of
the amplitude A1(t). The positive parameter δ (� 1) is chosen at our convenience to aid
identification of the terms, which balance at various orders of δ (> 0).

6.2.1. The case β/σ = O(1)
For this generic case, we consider only the leading-order terms δΛ1 and δ2[f1, g1] on the
right-hand sides of (6.12a,b). Anticipating evolution on the slow time scale δ−1, we write

A1(t) = A(T1), T1 = δt, ∂t = δ ∂T1, dt = δ dT1 . (6.13)

Then at O(δ), (6.2a,c) determine

R−1[R � g1]′ = −∂T1 f0 + R−1[−Λ1Rg0 + αRg0(3g′
0 + R−1g0)− (β/σ)g2

0]′ (6.14)

(notation (6.12d)), where significantly the cubic term +g3 in (6.2c), being smaller by
another factor O(δ), has been omitted.

We take the radial average of (6.14) weighted by J0( j1R) to eliminate the left-hand side
and so obtain

j−2
1 dT1A = Λ1A + N2(β/σ)A

2. (6.15)

Here, we have used the property

〈〈g2
0(3g′

0 + R−1g0)〉〉 = 〈〈R−1 dR(Rg3
0)〉〉 = 0, (6.16a)

as g0(1, t) = 0, to eliminate the term proportional to α, and noted that

〈〈J2
0( j1R)〉〉 = 〈〈J2

1( j1R)〉〉 = 1
2 J2

0( j1) ≈ 0.0811. (6.16b)

In addition, since 〈〈R−1 J3
1( j1R)〉〉 ≈ 0.0821, we have

N2 = 〈〈R−1 J3
1( j1R)〉〉/〈〈J2

1( j1R)〉〉 ≈ 1.0124. (6.16c)

The bifurcation of the steady trivial solutions A = 0 of (6.15) at Λ1 = 0 to the
neighbouring finite amplitude solutions

A = −Λ1σ/(βN2) ≷ 0 for Λ1 ≶ 0, (6.17)

since N2(β/σ) > 0, is transcritical (see Guckenheimer & Holmes 1983; Cross &
Hohenberg 1993, figure 6). Obviously, the solutions A > 0 (upwelling on the axis) for
Λ1 < 0 are unstable and will evolve to a large amplitude for which the weakly nonlinear
theory developed here no longer applies. We expand on this matter next.
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6.2.2. The case β/σ = O(δ)
To capture the stabilising term +g3 of (6.2c) omitted in (6.14), we consider the case β/σ =
O(δ). In practice, this limit restricts our analysis to the case E � 1 of slow rotation, but
nevertheless reveals, in more detail, the nature of possible finite amplitude solutions of
(6.2a). Since the magnitude of the term N2(β/σ)A2 in (6.15) is reduced by a factor O(δ),
we reduce ℵ in (6.12a) by the same amount. Accordingly, we set

Λ1 = 0, (6.18)

while lengthening the time scale:

A1(t) = A(T2), T2 = δ2t, ∂t = δ2 ∂T2, dt = δ2 dT2 . (6.19)

Then at O(δ), (6.14) simplifies leaving us with only the α term on the right-hand side.
After integration of what remains and application of the end point conditions G = 0 at
R = 0 and 1, where g0 = 0 too, we obtain

� g1 = αg0(3g′
0 + R−1g0), (6.20a)

with solution
g1 = αg0f0 = −A2αj−1

1 J0( j1R) J1( j1R), (6.20b)

vanishing at R = 0 and 1. In this way, correct to the lowest two orders, we have

f = δf0[1 + 1
2αδf0], (6.21a)

g = f′ = δg0[1 + αδf0]. (6.21b)

Consideration of the maximum of R(g0 + δg1) reveals a shift in the linear value RM0 from
(6.10a) for the maximum of ψ to RM given by the solution of

j1 J0( j1R) = αδA[J2
0( j1R)− J2

1( j1R)]. (6.22a)

The Taylor series expansion of J0( j1R) about RM0, at which J0( j1RM0) = 0, reveals the
lowest-order result

RM − RM0 = αj−2
1 δg0(RM0) = αδAj−2

1 J1( j1RM0), (6.22b)

with J1( j1RM0) ≈ 0.5191 (see (6.10b)). The result (6.22b) quantifies the outward (inward)
shift of the maximum of |ψ | for solutions that upwell (downwell), A > (<) 0, on the axis.

The O(δ2) terms in (6.2a,c) give

R−1[R � g2]′ = −∂T2 f0+R−1[−Λ2Rg0+α(3R(g0g1)
′ + 2g0g1)− δ−1(β/σ)g2

0 − Rg3
0]′;

(6.23a)
cf. (6.14). As in § 6.2.1, we take the radial average of (6.23a) weighted by J0( j1R) to
eliminate the left-hand side. Recalling that g1 = αg0f0 (6.20b), evaluation of the term
proportional to α is aided by the identity

g0(3(g0g1)
′ + 2R−1g0g1) = 2 ∂+

R (g
2
0g1)− αg4

0. (6.23b)

In this way, we obtain

j−2
1 dT2A = Λ2A + N2(β/σ)δ

−1A2 − ΥN3A3, Υ = 1 + α2, (6.24a,b)

in which
N3 = 〈〈J4

1( j1R)〉〉/〈〈J2
1( j1R)〉〉 ≈ 0.2517, (6.25)

since 〈〈J4
1( j1R)〉〉 ≈ 0.02041.
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Equation (6.24a), albeit valid only when β/σ = O(δ), reveals the nature of the
bifurcation beyond the transcritical regime identified in § 6.2.1 for β/σ = O(1). As the
steady finite amplitude solutions A satisfy

Λ2 + N2(β/σ)A − ΥN3A2 = 0, (6.26)

the transcritical bifurcation at Λ2 = 0, described by (6.17), becomes the tangent to the
parabola (6.26). For that, there are two positive A solutions on Λmin < Λ2 < 0, which
coalesce at Λ2 = Λmin with value A = Amin, where

Λmin = −1
2

N2(β/σ)Amin, Amin = N2(β/σ)

4ΥN3
(N2(β/σ) > 0). (6.27a,b)

Presumably, for Λmin < Λ2 < 0, only the upper branch A > Amin is stable, whereas for
Λ2 > 0, both the positive and negative A branches are stable. This presumption suggests
that large-amplitude solutions of the DNS for the full problem (2.8)–(2.9) exist in the
generic case β/σ = O(1), but are not accessible by the weakly nonlinear theory of § 6.2.1.

6.2.3. The non-rotating case E−1 = 0
Interestingly, the transcritical instability identified by (6.17) degenerates when β/σ = 0.
That happens in the non-rotating case E−1 = 0, upon which we comment briefly here.
It is a special case of that in § 6.2.2 with the quadratic term N2(β/σ)δ

−1A2 absent from
(6.24a). As a consequence, the bifurcation at Λ2 = 0 is a pure pitchfork. For Λ2 > 0,
the two steady-state solutions ±|A| are determined by the vanishing of what remains of
(6.24a), which, noting j21ℵ = δ2Λ2 (see (6.12a)), gives

|δA|2 = j21ℵ/(ΥN3). (6.28)

We emphasise that the symmetry of the bifurcation (6.28), possessing solutions ±|A|, is a
low order result. Taken to next order, the solution (6.21), in which f0 and g0 are proportional
to A, is clearly not invariant under the sign change A �→ −A. Moreover, both correction
terms αδf0 in (6.21a,b) change sign, as R crosses RM0, at which f0 = 0, as noted below
(6.10b). The shift of the maximum (6.22b) for each, obtained using (6.24b) and (6.28), is

RM − RM0 = ± 1
j1

√
α2ℵ

(1 + α2)N3
J1( j1RM0). (6.29)

7. The steady solutions: asymptotics (ε � 1) versus DNS

The steady solutions of the reduced asymptotic equation (5.1a), meeting the end point
conditions (5.1c), satisfy G2 = 0. In the rescaled units (6.1), the nonlinear problem
becomes: solve G = 0 (see (6.2c)) subject to g = 0 at R = 0 and 1 (see (5.1b)). From
these, we deduce the streamfunction ψ and azimuthal velocity v, which we compare with
the steady DNS solution. The DNS solution is obtained by time integrating the complete
problem (2.8)–(2.9) discretised with finite differences until a steady state is reached. We
compare the reduced asymptotic and the DNS solution for the case � = 10, i.e.

ε = 0.1, (7.1)

in the following subsections. There, all results displayed in the figures pertain to the
unscaled variables r (= 10R), ψ and v = rω, as they appear in (2.7a). For each DNS
displayed we give Ra, E and σ .
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1(a)

(b)

(c)
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Figure 2. No rotation case (E−1 = 0, σ = 0.1, Ra = 330). A comparison in the r–z plane of results obtained
from DNS with asymptotics (labelled A): (a) ψDNS > 0, (b) ψA > 0, (c) ψDNS < 0, and (d) ψA < 0. Colour
scale from −1.3 (blue) to 0 (green) to 1.3 (red).

To formulate the asymptotic amplitude equation G = 0, we need the coefficients λ, α
and β/σ appearing in G (see (6.2c)). The formula (6.3a) determines λ as a function of Ra
and E, while α, β/σ in (6.3c,d) are functions of E and σ . Rather than λ, supercriticality
may be measured by ℵ = j−2

1 λ− 1 (see (6.11)).
As announced in the paragraph following (6.3) before the start of § 6.1, all our results

pertain to E > Ē (> Ec), for which the parameters α, β are both positive.

7.1. The non-rotating case, E−1 = 0
For the case E−1 = 0, σ = 0.1, Ra = 330, we compare in figure 2 the streamlines obtained
from the DNS (figures 2a,c) and the asymptotics (figures 2b,d). Relative to the onset values
Rac = 320, Ra†

c ≈ 323.9321, the supercriticality (6.11) of the finite amplitude solution is

ℵ ≈ 1.54315, or equivalently λ ≈ 37.33844. (7.2a,b)

The remaining G coefficients in (6.2c) are β = 0 and

α ≈ 0.1659 + 0.11848σ−1 ≈ 1.3506 for σ = 0.1. (7.2c)

As we stressed in § 6.2.3, the pitchfork bifurcation at Ra†
c sheds two solutions: one

characterised by upwelling on the axis, near which ψ > 0 (figures 2a,b); the other
characterised by downwelling on the axis, near which ψ < 0 (figures 2c,d). Though
the bifurcation is symmetric with the infinitesimal maximum of |ψ | at R = RM0, on
increasing λ that maximum shifts outwards for the ψ > 0 solutions and inwards for
the ψ < 0 solutions. Such behaviour was predicted by (6.22b) for the case of small
but finite amplitude motion. However, the value |RM − RM0| ≈ 0.2696 determined from
(6.29), though qualitatively plausible, overestimates the shifts visible in figure 2, because
ℵ ≈ 1.54315 from (7.2a) is too large for the small-δ asymptotics of § 6.2 to provide
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quantitative accuracy. By contrast, the excellent agreement of the DNS (figures 2a,c) with
the numerical solutions (figures 2b,d) of

(R−1(Rg)′)′ = −λg + αg(3g′ + R−1g)+ g3, (7.3)

namely G = 0 (see (6.2c)) with β = 0, is most encouraging.
We can make an interesting comparison of the contour plots in figure 2 with those in

figure 4(b) of Chapman et al. (1980) for their internally heated case exhibiting up/down
asymmetry like us. We may capture the structure of the steady-state version of their
Cartesian asymptotic equation (15) by dropping the curvature terms in (7.3), where, in
our § 1 notation, R has become X. This leaves g′′ = −λg + 3αgg′ + g3, but note the sign
reversal in (6.1b). The location X = XM of their maximum |ψ | occurs at the mid-point
XM0 = 0.5 at onset but, on increasing λ shifts towards the downwelling side boundary due
to the quadratic nonlinearity 3αgg′, exactly as we predict in (6.29) and find (figures 2a–d)
for R = RM .

In figure 3, we plot the maximum value of |ψ | on the entire domain, but signed
depending on whether the solution describes upwelling (ψ > 0) or downwelling (ψ < 0)
on the symmetry axis R = 0. We note that at given Ra, the amplitude max |ψ | of the
upwelling solution is greater than that for the downwelling solution. This is a finite
amplitude effect that the weakly nonlinear calculation (δ � 1) in § 6.2.3 could not identify,
at any rate to the order taken. Note too that the solution portrayed in figure 2 at Rac = 330
is very close to the bifurcation point in figure 3, yet, as already mentioned, is outside
the range of validity of our small-δ weakly nonlinear asymptotics of § 6.2. Bearing those
limitations in mind, it is remarkable how well our long length scale (small-ε) asymptotic
amplitude equation (7.3) works, giving good maximum amplitude up to remarkably large
Ra = 2000 and beyond (not portrayed). A partial asymptotic explanation is provided in the
second paragraph of § 7.2.3 (below).

7.2. The rotating case, E(> Ec) finite
The small-δ analysis of § 6.2.1 identified a transcritical bifurcation, for which the
subcritical branch is presumably unstable. The origin of that instability is encapsulated
by the quadratic term (β/σ)R−1g2 in the expression (6.2c) for G. The analysis of § 6.2.2,
valid for sufficiently small β/σ , identified possible recovery on a stable steady solution
upper branch. Whether or not such a branch exists for finite β/σ remains a matter of
speculation, a consideration that emphasises the importance of the size of β/σ . From a
general point of view, complications that limit the validity of the approach are likely, as E
decreases towards Ec. Furthermore, the importance of the (β/σ) term must increase with
decreasing σ . In the following subsubsections, we investigate how far we can decrease E
and σ and yet still obtain useful asymptotic results.

7.2.1. Meridional flow
Inspection of the asymptotic results illustrated in figure 1 shows that the coefficients
(4.20), which appear in our expression (4.23) for G2 of our amplitude equation (5.1a), vary
measurably, only on decreasing E from ∞, at about E = 1. On further decrease of E, the
variation becomes more significant. So, as a tentative first step, we consider the case E = 1,
σ = 0.3 (moderately small), Ra = 345. Relative to the critical values Rac ≈ 325.3612,
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Figure 3. Bifurcation diagram for the no-rotation case (E−1 = 0, σ = 0.1), showing sign(ψ)max |ψ | as a
function of Ra. Black dots indicate DNS; green squares indicate asymptotics.

Ra†
c ≈ 329.0900, supercriticality is measured by

ℵ ≈ 4.26679 or equivalently, λ ≈ 77.3269. (7.4a,b)

The remaining G coefficients are

α ≈ 0.4868, β ≈ 0.1043, β/σ ≈ 0.34772. (7.4c–e)

We illustrate the streamlines for ψ ≷ 0 in figures 4(a–d) following the style of figure 2
and exhibiting many of the same features. To highlight any differences between the
asymptotics and DNS, we plot horizontal and vertical cross-sections in figures 4(e, f ),
respectively. The agreement is almost perfect except for the steep descent curves, ψ > 0,
in figure 4(e) between about r = 8 and the end r = 10 (recall that r = 10R). This may
be explained by the outer boundary layer caused by the outer rigid boundary condition
∂rψ |r=10 = 0 (see (2.9b)), which is not met by the asymptotic solution. A similar, but
weaker boundary layer is evident in the more gently sloping ascent curves, ψ < 0.

Other than the presence of rotation in figure 4, the use of the lower Prandtl number
σ = 0.1 in figure 3 is significant as it increases the influence of inertia. We will return to
this point in § 7.2.2

We test matters further in figure 5, which addresses the case E = 0.5 at the same Prandtl
number σ = 0.3 but increased Rayleigh number Ra = 360. Relative to the critical values
Rac ≈ 341.4403, Ra†

c ≈ 344.5690, supercriticality is measured by

ℵ ≈ 4.95105, or equivalently, λ ≈ 87.3732. (7.5a,b)

The remaining G coefficients are

α ≈ 0.2498, β ≈ 0.4453, β/σ ≈ 1.4843. (7.5c–e)
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Figure 4. Rotating case (E = 1, σ = 0.3, Ra = 345): (a) ψDNS > 0, (b) ψA > 0, (c) ψDNS < 0, and (d) ψA <

0. Colour scales from 0 (green) to 2.5 (red) in (a,b), and from −2.2 (blue) to 0 (green) in (c,d). (e) Horizontal
cross-sections at z = 0.5, and ( f ) vertical cross-sections at r = 5, of the ψ fields shown in (a–d). DNS (ψDNS)
in red; asymptotics (ψA) in black.

There is not much change in the streamline patterns of figures 5(a–d) from that displayed
in figures 4(a–d). Indeed, the cross-sections in figures 5(e, f ) compare well with similar
right-hand boundary layer discrepancies visible in figure 5(e). However, a more worrying
feature of that figure is the small but clearly evident differences outside that layer between
r = 0 and r = 8, which cannot be explained by boundary layer arguments. Indeed, studies
of even more testing cases of smaller σ and/or E reveal even greater ψ differences. For
them, the key to the failure is linked to the azimuthal motion due to the rotation.

7.2.2. Azimuthal flow
In § 7.2.1 we considered only the meridional flow. The complete solution involves the
interaction of the meridional and azimuthal flows through their coupling via the Coriolis
force. In this subsubsection, we investigate that interaction by considering the azimuthal
velocity v = rω (see (2.7a)). We portray the DNS and asymptotic results for v in
figures 6(a,b,d,e) and 7(a,b,d,e) for the cases that correspond to figures 4(a–d) and 5(a–d),
respectively. However, in style, there is one important new addition in figures 6(c, f ) and
7(c, f ) that we describe as ‘hybrid’, which for the moment must be ignored together with
the extra dashed curves in figures 6(g,h) and 7(g,h). On their omission, the remaining
comparisons of the DNS and asymptotics are visibly poor. To avoid possible confusion,
we stress that, unlike figures 4(e) and 5(e), where the upper ψ > 0 curves correspond
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Figure 5. Rotating case (E = 0.5, σ = 0.3, Ra = 360). Same as figure 4. Colour scales from 0 (green) to 3
(red) in (a,b), and from −2 (blue) to 0 (green) in (c,d).

to the top figures 4(a,b) and 5(a,b), in figures 6(g) and 7(g), the lower v < 0 curves
correspond to the top figures 6(a–c) and 7(a–c). Generalised and expressed succinctly,
v ≶ 0 corresponds to ψ ≷ 0 almost everywhere, with some notable exceptions near the
axis.

The discrepancies visible in the azimuthal flow contour plots in figures 6(a,b,d,e)
and 7(a,b,d,e) are brought into sharp focus by comparing the red DNS and black
asymptotic curves in figures 6(g) and 7(g), which describe radial cross-sections.
Together, they indicate that for the case of up/downwelling on the axis, the asymptotics
over/underestimate the (correctly predicted by the DNS) magnitude |rv| of the angular
momentum advected away from/towards the rotation axis in the neighbourhood of the
upper boundary. This asymptotic failure is a low Prandtl number effect, i.e. the increased
role of inertia, exacerbated by curvature effects manifested by the various powers of
r in the angular momentum equation (2.8b), which lead to large azimuthal velocity
gradients that violate the long radial length scale assumption on which the asymptotics
is based. Though the asymptotic trends are not far off the mark near the outer boundary
r = 10, particularly for the v < 0 (corresponding to ψ > 0) curves, they are definitely
unsatisfactory elsewhere.

The upshot of the above assessment is that the feedback of the azimuthal flow on
the meridional flow is relatively weak in the parameter ranges considered. That said,
the azimuthal flow clearly influences the meridional flow as evinced by the fact that the
critical Rayleigh number is a function of E. So we may suppose that though our azimuthal
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Figure 6. Rotating case (E = 1, σ = 0.3, Ra = 345): (a) vDNS < 0, (b) vA < 0, (c) vH < 0, (d) vDNS > 0, (e)
vA > 0, and ( f ) vH > 0. Colour scales from −0.35 (blue) to 0+ (i.e. a little positive) (green) in (a–c), and from
0 (green) to 0.6 (red) in (d–f ). (g) Horizontal cross-sections at z = 0.5, and (h) vertical cross-sections at r = 5,
of the v fields shown in (a–f ). DNS (vDNS) in red; asymptotics (vA) in solid black; hybrid (vH) in dashed black.

flow predicted by the asymptotics is flawed, it is sufficiently accurate to generate a totally
acceptable meridional flow as illustrated in figures 4 and 5.

On the basis that our asymptotically predicted ψ is good, we solved the azimuthal
component of the momentum equation, namely (2.8a) for the angular velocity ω, with that
ψ , subject to the ω boundary conditions appearing in (2.9). We call the solutions of this
linear problem ‘hybrid’ solutions. The hybrid solutions in figure 6 agree very well with the
DNS, vindicating the hybrid approach. On the one hand, this indicates that the asymptotics
is on the right track, but that its parameter range of validity is limited. For more testing
parameter values, the hybrid and DNS v shown in figure 7 continue to compare reasonably
well, but discrepancies are beginning to emerge. They can be explained from the evidence
in figure 5(e) that the asymptotic ψ results, on which the hybrid v-solution builds, are
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Figure 7. Rotating case (E = 0.5, σ = 0.3, Ra = 360). Same as figure 6. Colour scales from −1 (blue) to 0+
(i.e. some positive) (green) in (a–c), and from 0 (green) to 0.8 (red) in (d–f ).

losing a little accuracy. Evidently, on pushing the parameter values much further, the
asymptotic ψ will be too poor to enable the construction of useful hybrid results.

An important feature of the asymptotics is that, at lowest order, the vertical z profile is
the same for all r, though, of course, the profile amplitude changes. With this restriction,
if v has only one sign at some r, then it cannot exhibit a sign reversal at another r. That
means that the DNS and hybrid solutions, portrayed in figures 7(a,c), exhibiting a sign
reversal across the contour beginning on the axis at z ≈ 0.5 and terminating on the lower
boundary just beyond r = 8, cannot be described by our asymptotics shown in figure 7(b).

7.2.3. A large Ra application
Oruba et al. (2017) portray results for the case E = 0.1, σ = 0.5, with Ra = 15 000 in
their figure 3(a–d). From our point of view, the parameter values E = 0.1 < Ec outside
the domain of validity for the amplitude modulation equation (5.1), and Ra large, are
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Figure 8. Rotating case (E = 0.1, σ = 0.5, Ra = 15 000): (a) ψDNS, and (b) ψE∞. Colour scale from −100
to 100. (c) Horizontal cross-sections at z = 0.5, and (d) vertical cross-sections at r = 5, of ψ/r for the ψ fields
shown in (a,b): DNS (ψDNS/r) in red; E−1 = 0 (ψE∞/r) in green.
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Figure 9. Rotating case (E = 0.1, σ = 0.5, Ra = 15 000): (a) vDNS, and (b) vH . Colour scale from −100 to
100. (c) Horizontal cross-sections at z = 0.5, and (d) vertical cross-sections at r = 5, of the v fields shown in
(a,b): DNS (vDNS) in red; hybrid (vH) in dashed green.

extreme. Nevertheless, it is instructive to make a tentative comparison of the DNS results,
recalculated and displayed as ψDNS and vDNS in our figures 8 and 9, with results from a
yet more extreme version of our hybrid approach outlined below. Our idea is motivated
by the encouraging comparison in figure 3 of our max|ψ | amplitudes for the DNS and
asymptotic evaluation of ψ in no-rotation cases at largish Ra. Their robustness suggests
that such ψ = ψE∞ (for E−1 = 0) might provide a plausible approximation of ψDNS at
finite rotation (i.e. for E−1 	= 0) – at any rate from a qualitative point of view.

To assess our hypothesis, we plot asymptotic ψE∞ results in figure 8 for the parameter
values of Oruba et al. (2017) but, of course, by definition replace their E = 0.1 with
E−1 = 0. For that case, we recall that Rac = 320, Ra†

c ≈ 323.9321, while, for their large
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Ra = 15 000, we have

ℵ ≈ 3732.3350, or equivalently, λ ≈ 54812.7155, (7.6a)

in place of (7.2a,b). Noting that β = 0 and

α ≈ 0.1659 + 0.11848σ−1 ≈ 0.4028 for σ = 0.5, (7.6b)

in place of (7.2c), the large-λ asymptotic mainstream solution of (7.3) is

g ≈
√
λ ≈ 234.1212. (7.6c)

This corresponds to the approximate solution

0 = G2/g ≈ −μ2 Ra−1
c + Fθg2 = −μ2 Ra−1

c + Ra2
c〈P2〉 g2 (7.7a)

of (5.1a), noting (4.23a) and (4.20d). It describes the balance between the buoyant
driving and the nonlinear convection of heat as traced via R−1 J(ψ0, θ0) = −Rac g2Ṗ and
(4.11a,b). Moreover, (7.7a) determines the leading-order result

R−1ψ0 = Rac g P(z) ≈ μRa−1/2
c P(z)/〈P2〉1/2

(7.7b)

(see (4.3a)) and, on use of (εμ)2 = Ra − Rac (see (3.3)), equivalently

ψ0

r
≈

√
Ra − Rac

Rac

P(z)

〈P2〉1/2 , (7.7c)

independent of r. The result (7.7c) holds everywhere except in the boundary layers,
roughly square regions adjacent to the lateral boundaries r = 0 and r = 10, where the
solution is invalid. Those layers are evident in figure 8(c), which describes the horizontal
cross-section r−1ψE∞ (∝ g) (note the factor r−1 absent in previous cross-sections). In
the mainstream 2 � r � 8, the agreement of r−1ψE∞ with r−1ψDNS for the rotating case,
E = 0.1, is qualitatively remarkable, in view of the tenuous assumptions made. It suggests
that rotation modifies but does not control the meridional flow. From this point of view,
figure 8 sheds new light on the no-rotation upper branch results portrayed in figure 3.
There, only results up to Ra = 2000 are illustrated, but calculations up to Ra = 30 000
(> 15 000, used in figure 8) were also performed. As the percentage errors ceased to
change over that considerable extension, those results are not reported here. The same
asymptotic–DNS agreement is also evident on the right of figure 8(c), from which the
similar sizes of maxψE∞ and maxψDNS (albeit for E = 0.1) may be estimated.

We undertook a hybrid calculation (referred to as ‘hybrid-{E = ∞}’), employing ψ =
ψE∞ derived from the E−1 = 0 asymptotics described above, rather thanψA, for which the
asymptotics is irrelevant in the case of interest, E = 0.1. The vH contours for that hybrid
calculation are illustrated in figure 9(b). Beyond r ≈ 0.5, they compare favourably with
the DNS illustrated in figure 9(a). A more precise quantitative measure comes from the
horizontal cross-section in figure 9(c). The failure of vH , relative to the true vDNS, for r � 5
is readily traced to the singular behaviour of r−1ψE∞(∝ g) for small r. The maximum
of vH is located at r ≈ 0.3, which also measures the width of the ψE∞ boundary layer
visible near r = 0 in figure 8(c). The presence of strong vH on 0.3 � r � 5 stems from
the overestimation of the strength of the meridional flow, as measured by ψE∞ over that
domain. Such strong flow advects the angular momentum rvH and pertains to the proposal

951 A5-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.761


A.M. Soward, L. Oruba and E. Dormy

in Oruba et al. (2017, 2018) that at large Ra, angular momentum tends to be constant on
streamlines.

At Ra = 360, not far above critical, both vDNS and vH portrayed in figures 7(a) and 7(c)
are generally negative except for a small region close to the lower boundary but terminating
before r = 9, where vDNS and vH are both positive. Interestingly, as Ra is increased, that
region of positive v expands to largely fill all the space except for a small region near
the outer boundary. This feature is illustrated by vDNS in figure 9(a). Remarkably, in view
the almost draconian hybrid hypothesis employed, it is also captured by vH in figure 9(b).
The encouraging agreement vindicates the long horizontal length scale hypothesis for the
meridional cell, which is possibly stabilised by the differential rotation caused by angular
momentum transport.

8. Conclusions

Studies of rotating convection (see e.g. Guervilly, Hughes & Jones (2014), and references
therein) reveal that large-scale vortices are a common feature. They are particularly
relevant to atmospheric vortices, such as tropical cyclones and tornadoes. Our asymptotic
study has addressed issues raised by the DNS results obtained by Oruba et al. (2017, 2018)
for axisymmetric convection in a shallow cylinder.

Unlike Guervilly et al. (2014), who adopted isothermal boundary conditions on the
temperature top and bottom, we follow Oruba et al. (2017) and adopt constant heat flux
boundary conditions. This choice is significant, because for sufficiently large E (small
rotation), the onset of instability occurs on a long horizontal length scale. We have taken
advantage of this feature and (like Dowling (1988) and Cox (1998) before us) applied the
two length scale asymptotic approach pioneered by Chapman & Proctor (1980) for the
non-rotating case.

Our investigation of cylindrical geometry highlights effects not apparent in the earlier
asymptotic studies, particularly the absence of the X �→ −X, ψ �→ −ψ symmetry that
occurs in Cartesian geometry. Even without rotation, that absence is apparent on
comparison of the E → ∞ limit of the heat flux function G2 in (4.23a), containing various
powers of R, with the Cartesian version (1.2b,c), possessing only constant coefficients.
Despite this difference, it is encouraging to find that we have no new coefficients and that
the Chapman & Proctor (1980) values (4.24) also apply to us. Furthermore, instability
occurs via a pitchfork bifurcation in both the Cartesian and cylindrical cases. In the latter,
one branch corresponds to upwelling on the axis, the other to downwelling.

With rotation (E finite), the pitchfork persists in the infinite Prandtl number (σ )
limit. However, on decreasing E = ν/(H2Ω) and/or σ = ν/κ , the pitchfork bends at the
bifurcation point to reveal locally a transcritical bifurcation that we describe in § 6.2.1,
with the subcritical upwelling branch unstable and the supercritical downwelling branch
stable. DNS simulations of the complete governing equations suggest that the subcritical
branch loses stability but regains stability on the larger amplitude upwelling branch of the
bent pitchfork. Indeed, at large enough Rayleigh number Ra, the axial upwelling leads to
‘eye’ formation: a region of reversed meridional flow on the axis (see e.g. Oruba et al.
(2017), figure 5, for Ra = 20 000). Such features, which have vertical z profiles dependent
on r, lie outside the scope of our asymptotics, which is based at lowest order on a vertical
z profile, independent of r.

It is significant that our long horizontal length scale asymptotic requirement is met at
the bifurcation only when E > Ec (see (4.25a)) and that the small-amplitude theory of
§ 6.2.2 is valid only for sufficiently large σ . This means that, on decreasing the value of

951 A5-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.761


Slowly rotating Bénard convection

the kinematic viscosity ν, both E and σ decrease in concert, with the consequence that the
role of inertia, manifest by the Coriolis acceleration or advected momentum, increases.

In the rotating case, within the limitations just described, our asymptotic theory
compares well with the DNS at moderate Ra for E > Ec and σ sufficiently large.
However, on increasing the vigour of the motion by either increasing Ra and/or decreasing
σ , the asymptotic theory becomes inadequate. This deficiency originates not in the
meridional momentum equations (see § 7.2.1) but rather in the angular momentum
equation. Essentially, the asymptotics cannot cope with the vigorous advection of angular
momentum identified in the DNS. To assess this aspect, we adopted hybrid methods in
§§ 7.2.2 and 7.2.3, whereby meridional flows predicted by the asymptotics were employed
in DNS simulations of the angular momentum equation alone. The results are illuminating.
They culminate in the successful qualitative agreement of the hybrid-{E = ∞} results
with the DNS results of Oruba et al. (2017) portrayed in our figures 8 and 9, notably
for the low Ekman number case E = 0.1 < Ec, outside the range of validity of both the
original asymptotic and hybrid methods. It is no surprise to find that angular momentum
transfer plays a significant role, as it is essential for the formation of vortex-like structures.
The process is magnified on approaching the axis, where it is largely responsible for the
discrepancy emerging in the hybrid-{E = ∞} results visible in figures 9(a–c). That such
a long radial length scale meridional cell (see figures 9a–c) is apparently robust even for
E < Ec is presumably due to the stabilising role of the differential rotation.
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Appendix A. The solution of the linear problem

We re-state the zeroth order problem for P (4.4) and W (4.5) in terms of new variables U
and V (also Rc = E2 Rac/4, (4.22)) defined by the relations

P(z) = 1
2 E〈U〉1

z , W(z) = Rc(V(z)+ z − V(0)), (A1a,b)

Ṗ(z) = −1
2 EU(z), Ẇ(z) = Rc(V̇(z)+ 1), (A1c,d)

where the limits and constants are arranged such that P(1) = 0 and W(0) = 0. We write[−ER−1 ∂ψ0/∂z
R�0

]
= 2Rc

[ U(z)
V(z)+ z − V(0)

]
g(R, T), (A2)

so that U(z) and V(z) satisfy the homogeneous equations

V̈ − 2𝔢2U = 0, Ü + 2𝔢2V = 0, 𝔢 = E−1/2. (A3a–c)

On the one hand, the equivalence of Ẅ + Rac Ṗ = 0 (the differential of (4.5b)) and (A3a)
is self-evident. On the other hand, noting that W = −Rac〈P〉z

0 (see (4.5c)), the integral
...
P − R−1

c W + z = const. of (4.4a) is equivalent to (A3b) on identification of the constant
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of integration with V(0), as yet unknown. Together, (4.5b) and (A1d) determine

Rac P(z) = −Rc(V̇(z)+ 1). (A4)

Accordingly, the boundary conditions (4.4b) become

U(0) = U̇(1) = V̇(0)+ 1 = V̇(1)+ 1 = 0. (A5)

Finally, on taking the z-average of (A4), the identity Rac〈P〉 = −1 from (4.7c) gives

1 = Rc(V(1)− V(0)+ 1) ≡ Rc([[V]] + 1). (A6)

The complex combination
Z(z) = U(z)+ iV(z) (A7)

solves (A3) when

Z̈ − 2i𝔢2Z = 0, or equivalently, EZ̈ − 2iZ = 0. (A8a,b)

The solution satisfying Ż(1) = −i (see (A5)) is

Z(z) = Z(1) cosh[𝔢(1 + i)(z − 1)] − 1
2𝔢

−1(1 + i) sinh[𝔢(1 + i)(z − 1)]. (A9)

The application of the remaining boundary conditions U(0) = V̇(0)+ 1 = 0 at z = 0
determines the unknown Z(1) = U(1)+ iV(1) in (A9). After routine but cumbersome
calculations, we obtain

U(1)+ iV(1) = Z(1) = −1
2 (𝔢Δ)

−1[(sinh 𝔢 − sin 𝔢)2 + i(cosh 𝔢 − cos 𝔢)2], (A10a)

together with the other remaining z = 0 values

V(0) = 1
2(𝔢Δ)

−1[(cosh 𝔢 − cos 𝔢)2 + (sinh 𝔢 + sin 𝔢)(sinh 𝔢 − sin 𝔢)], (A10b)

U̇(0) = Δ−1(sinh 𝔢 − sin 𝔢)(cosh 𝔢 − cos 𝔢), (A10c)

where
Δ = 1

2 [sinh(2𝔢)− sin(2𝔢)]. (A10d)

Appendix B. The G2 coefficients

The study of the amplitude equation ∂Tf = R−1(RG2)
′ (see (5.1a)) needs the values of the

coefficients (4.20d) and (4.21) that complete the definition of G2 in (4.23). We now rewrite
those coefficients, which are z-averages of various combinations of Ṗ in (A1c) and W in
(A1b), in terms of U , V instead:

R−1
c 〈W〉 = 〈V〉 + 1

2 − V(0), 4E−2〈Ṗ2〉 = 〈U2〉, (B1a,b)

R−1
c 〈zW〉 = 〈zV〉 + 1

3 − 1
2V(0), −8E−3〈Ṗ3〉 = 〈U3〉, (B1c,d)

R−2
c 〈W2〉 = 〈V2〉 + 2〈zV〉 − 2V(0) 〈V〉 + V2(0)− V(0)+ 1

3 , (B1e)

−2R−1
c E−1〈ṖW〉 = 〈UV〉 + 〈zU〉, (B1f )

−2R−2
c E−1〈ṖW2〉 = 〈UV2〉 + 2〈zUV〉 − 2V(0) 〈UV〉 − 2V(0) 〈zU〉 + 〈z2U〉. (B1g)

In Appendix C, we evaluate complex z-averages involving Z (see (A7)) that embed those
in (B1), and simply extract here the needed real and imaginary parts.
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From (C2), the z-averages linear in U and V , in addition to 〈U〉 = 0, are

〈zU〉 = −1
2 ER−1

c , 〈z2U〉 = 1
2 E[−1 − 2V(1)+ E U̇(0)], (B2a,b)

〈V〉 = 1
2 E U̇(0), 〈zV〉 = 1

2 EU(1). (B2c,d)

From (C5b,d,f ), we may derive the following quadratic z-averages:

〈U2〉 = Ir + Jr + K, 〈UV〉 = Ii + Ji, (B3a,b)

〈V2〉 = −Ir − Jr + K, 2〈zUV〉 = Ii + Hi. (B3c,d)

Here, 4I = 4(Ir + iIi) (see (C3)), evaluated at z = 1 and 0, yields the two alternative
forms

4Ir =
{

[U(1)]2 − [V(1)]2,

E U̇(0)− [V(0)]2,
4Ii =

{
2U(1)V(1)− 1

2 E,
1
2 E[[U̇(0)]2 − 1],

(B4a,b)

respectively (cf. (C4a,b)), while, on writing J = Jr + iJi, H = Hr + iHi, (C6) gives

8E−1Jr = −U(1)− V(0) U̇(0), 8E−1Ji = 1 − R−1
c , (B4c,d)

4E−1K = −U(1)+ V(0) U̇(0), 8E−1Hi = −2V(1)+ E U̇(0). (B4e, f )

To obtain (B4d), we have noted that in (C6a), [[V]] = −1 + R−1
c (see (A6)), while for

(B4f ), we have noted that in (C6c), [[Z2]] = −1
2 iE[[Ż2

]] (see (C4)) with value (C4b).
The solutions of the simultaneous (C9) determine the only two needed cubic z-averages:

〈U3〉 = − 3
10

E[U(1)]2 + 1
30

E2[U̇(0)]3 = E
30

U(1) [−9U(1)+ 4V(1) U̇(0)], (B5a)

〈UV2〉 = − 1
10

E[U(1)]2 + 1
15

E2[U̇(0)]3 = E
30

U(1) [−3U(1)+ 8V(1) U̇(0)]. (B5b)

Appendix C. Differentials and z-averages

We consider differentials that we can integrate to determine relations between the various
integrals of U and V appearing in (B1). The essential strategy is to employ the property
EZ̈ − 2iZ = 0 from (A8b) to cast integrands as differentials so that z-averages may be
integrated with results determined by the end point values of Z and Ż at the boundaries
z = 0 and 1. The useful jump identities

[[Ż]] = −U̇(0) and [[YŻ]] = −i [[Y]] − Y(0) U̇(0), (C1a,b)

for any complex function Y(z), follow from the boundary conditions (A5).
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C.1. Linear means
On making the substitution E−1Z = −1

2 iZ̈ in the left-hand sides of each of the following,
integration by parts, possibly aided by (C1), yields

E−1〈Z〉 = −1
2 i [[Ż]] = 1

2 i U̇(0), (C2a)

E−1〈zZ〉 = −1
2 i[[zŻ − Z]] = −1

2(1 + [[V]])+ 1
2 iU(1)

= −1
2R−1

c + 1
2 iU(1) (use (A6)), (C2b)

E−1〈z2Z〉 = −1
2 i([[z2Ż − 2zZ]] + 2〈Z〉)

= 1
2 (−1 − 2V(1)+ E U̇(0))+ iU(1). (C2c)

C.2. Quadratic integrals
Here, we take advantage of the Wronskian property

4I ≡ 4(Ir + iIi) = Z2 + 1
2 iEŻ2 = complex const., (C3)

independent of z, i.e. dzI ≡ dI/dz = 0 (use (A8b)). The trivial consequence [[I]] = 0
implies

[[Z2]] = [U(1)]2 − [[V2]] + 2iU(1)V(1) (C4a)

= −1
2 iE[[Ż2

]] = E{U̇(0)+ 1
2 i [U̇(0)]2} (use (C1b); Y = Ż) , (C4b)

a result compatible with the identities (B4a,b). Also useful is

[[ZZ∗]] = [U(1)]2 + [[V2]] = 2[U(1)]2 − [[(Z2)r]], (C4c)

where, as usual, the subscript r denotes the real part.
Our approach is similar to that of § C.1, but rather than integrate by parts, we proceed

directly with the construction of differentials. Accordingly, to establish the identities
(C5a,c,e) below, we perform the differentiation on their right-hand sides and make use
of the identity EZ̈ = 2iZ in (A8b). Their z-averages determine (C5b,d,f ) in

Z2 = dz[2Iz − 1
4 iEZŻ], 〈Z2〉 = 2(I + J ), (C5a,b)

ZZ∗=dz[ 1
4 iE(ZŻ∗−ŻZ∗)], 〈ZZ∗〉 = 2K, (C5c,d)

zZ2 = dz[Iz2 − 1
4 iE(zZŻ − 1

2Z2)], 〈zZ2〉 = I + H, (C5e, f )

where, aided by (C1b),

8E−1J = −i [[ZŻ]] = −[U(1)+ V(0) U̇(0)] − i [[V]], (C6a)

4E−1K = 1
2 i [[ZŻ∗−ŻZ∗]] = −U(1)+ V(0) U̇(0), (C6b)

8E−1H = −i [[2zZŻ − Z2]] = −2[U(1)+ iV(1)] + i [[Z2]]. (C6c)
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C.3. Cubic integrals
We repeat the strategy leading to (C5) at the cubic level to construct

3Z3 = −iE dz[4IŻ + 1
2Z2Ż], 3〈Z3〉 = 4iEI U̇(0)+ 4P, (C7a,b)

5Z2Z∗=iE dz[4IŻ∗ − ŻZZ∗+1
2Z2Ż∗], 5〈Z2Z∗〉 = −4iE U̇(0)I + 4Q, (C7c,d)

in which sequential use of (B4b) and (B4a) yields

8Ii U̇(0) = E[[U̇(0)]2 − 1] U̇(0) = E[U̇(0)]3 − [U(1)]2 + [[V2]] = E[U̇(0)]3 − [[(Z2)r]],
(C8a)

and where, again aided by (C1b),

8E−1P = −i [[Z2Ż]] = −i [V(0)]2 U̇(0)− [[Z2]], (C8b)

8E−1Q = i [[−2ŻZZ∗+Z2Ż∗]] = 3i [V(0)]2 U̇(0)− 2[[ZZ∗]] − [[Z2]]. (C8c)

Substituting (C8) into (C7b,d), noting (C4) and taking real parts yields

3〈U3〉 − 9〈UV2〉 = 3〈Z3〉r = −1
2 E2[U̇(0)]3, (C9a)

5〈U3〉 + 5〈UV2〉 = 5〈Z∗Z2〉r = 1
2 E2[U̇(0)]3 − 2E[U(1)]2. (C9b)
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