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A geodesic v on the unit tangent sphere bundle 77 M of a Riemannian

manifold (M, g), equipped with the Sasaki metric gs, can be considered as a curve x
on M together with a unit vector field V' along it. We study the curves z. In
particular, we investigate for which manifolds (M, g) all these curves have constant
first curvature ;1 or have vanishing curvature x; for some i = 1,2 or 3.

1. Introduction

Let (M, g) be a Riemannian manifold and (T3 M, gs) its unit tangent sphere bundle
equipped with the Sasaki metric. Special geometric properties of the base man-
ifold (M, g) will be reflected in the geometry of (73M,gs) and, conversely, the
geometry of (11 M, gs) will influence, or even determine, that of (M, g). This (indi-
rect) approach to the study of the geometry of (M, g) has been successfully exploited
by the second and the fourth author in a series of papers where they study the cur-
vature of (T1 M, gs) in relation to that of (M, g) (see the survey [12] for an overview
of their results and for further references).

The study of the tangent bundle T'M and the unit tangent sphere bundle T3 M as
Riemannian manifolds was initiated in the late fifties and early sixties by Sasaki [34,
35]. He introduced a rather simple Riemannian metric gs on these bundles, now
known as the Sasaki metric, which is completely determined by the metric struc-
ture g on the base manifold M. Every geodesic v on (T'M, gs) (or on (T1M, gs)) can
be considered as a curve z on M with a (unit) vector field V' along it: v = (z, V).
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Sasaki derived the geodesic equation for v in terms of x and V and proved some
first results concerning the geodesics of (T'M, gs) (or (T1 M, gs)).

About a decade later, Chavel constructed Riemannian metrics on the three-
dimensional real projective space RP3, which is diffeomorphic to the unit tangent
sphere bundle of the two-sphere S?. These metrics are precisely the Sasaki met-
rics associated to arbitrary Riemannian metrics on S2. He investigated some global
properties of the geodesics of RP? with these metrics [15]. Klingenberg and Sasaki,
on the other hand, gave an explicit description of the curves x and the unit vector
fields V' along x, which together form a geodesic of (T1M, gs) in the case when
(M,g) is S? with its standard metric [24]. Using the same methods, Sasaki then
extended these results to base manifolds that are spaces of constant curvature of
any dimension [36]. Later, Gluck also determined the geodesics of the unit tangent
sphere bundle of a round sphere of any dimension in a very nice paper, using a
completely different approach [21].

For general base manifolds, it is much harder to obtain an explicit description
for all geodesics on the unit tangent sphere bundle. Only in the case when the
base manifold is two dimensional do we have a complete description, due to the
third author in [28]. In later work, he proved some interesting results for locally
symmetric base spaces [29], obtaining also Sasaki’s classification for the geodesics
of the tangent bundle of a space of constant curvature.

The inspiration for the present article comes from two results about the curves x
on M that are projections of geodesics v = (z,V) on (T1M, gs). The first result,
theorem 2.1 in this paper, is due to the third author [29] and says that the curve x
has constant curvatures if the base space (M, g) is locally symmetric. The second,
theorem 4.1, is due to Sasaki and states that the curve x has vanishing curvatures
K3, K4, ..., kn—1 if the base space (M, g) has constant curvature.

Both results are direct results: from special properties of the base manifold, one
deduces information about the geometry (in casu, the geodesics) of the unit tan-
gent sphere bundle. Now we are interested in possible converses, in indirect results.
Therefore, in §3, we consider Riemannian manifolds (M, g) such that all the pro-
jected geodesics of (T1M, gs) have constant first curvature. We cannot deduce from
this that (M, g) must be locally symmetric, but we do obtain some interesting par-
tial answers. In § 4, we investigate those Riemannian manifolds (M, ¢g) for which all
the projected geodesics of (71 M, gs) have vanishing first, second or third curvature.

2. Geodesics on T71 M and the projected curves

Let (M, g) be an n-dimensional Riemannian manifold, which we suppose to be
smooth and connected. By V we denote its Levi-Civita connection and by R its
Riemann curvature tensor, where we use the sign convention

R(X,Y)=1[Vx,Vy] = Vixy]
Any curve v(t) = (z(t), V(t)) in the unit tangent sphere bundle can be considered
as a curve z(t) in the base manifold M together with a unit vector field V'(t) along

it. If we equip 71 M with the Sasaki metric gg, then a curve v(t) = (z(¢), V(¢)) is a
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geodesic of (T1 M, gg) if and only if

Vi = —R(V,V;V)i,
) } (2.1)
vawv = —C ‘/,
where ¢? = g(V;V,V,;V) is a constant along z(t). (see, for example, [35]). For
a precise definition of the Sasaki metric gg and for a convenient mechanism for
computing on 77 M, the reader may consult [11].

In what follows, we are interested in the projections on the base manifold M of the
geodesics of (T1M, gs), i.e. in the curves x(t) = (7 o )(t) satisfying (2.1) for some
unit vector field V'(¢t) along x(t). At a point p € M and for given tangent vectors
v, w and y at p such that |v| = 1 and g,(v, w) = 0, there is a unique curve x(t)
satisfying (2.1) with z(0) = p, ©(0) = y, V(0) = v and V,V = w. This curve
is the projection of the unique geodesic v(t) of (T1M, gs) with initial conditions
7(0) = (p,v) and 4(0) = y" + w’. We can consider three types of geodesics.

(i) If y = 0, we obtain a great circle on the fibre 771(p) = S~ and z(¢) = p: a
vertical geodesic.

(ii) If w = 0, we obtain a curve y(t) = (z(t),V(¢)), where z(¢) is a geodesic of
(M, g) with a parallel vector field V along it, obtained by parallel translation
of v along x(t): a horizontal geodesic.

(iii) If both y and w are non-zero, we obtain a geodesic of oblique type. It is this
family of geodesics (and their projections) that we are most interested in. For
spaces of constant curvature, these were described explicitly in [36].

Now we consider a curve z(t) satisfying (2.1), where @ # 0 and V;V # 0. Let
~v(t) = (z(t),V(t)) be the corresponding geodesic of (T1M, gs). As both

|5> = |2 + | VeV [? and |ViV|? =¢2

are constant, we can reparametrize v(t) (and x(¢)) so that |Z| = 1. Hence we can
take T = & as the first vector in the Frenet frame {T, Ny,..., N,_1} along z and
we have, for the first three covariant derivatives of ,

iV =V, & = k1 Ny,

i = ViVii = —k1 2T + K| Ny + k1k2Na,
PONR VR A (22)
= =3k T + (K — k1(k1? + K2?)) N1

+ (2K Ko + K1KL) No + K1k2k3 N3,

On the other hand, using (2.1), we can calculate
iV = —R(V,V)i,
i? = —(V4R)(V,V)i + R(V, V)%,
#® = —~(VER)(V, V)i + (V gy, v) D)V, V)i
+2(VaR)(V, V)R(V, V)i + R(V,V)(V&R)(V, V)i — R(V, V)3,

(2.3)

where we have put V = V;V for simplicity.
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Comparing (2.2) and (2.3), we find explicit expressions for the curvatures xq,
ko and kg of x(t), as well as for the normals N1, Ny and N3 (whenever they are
defined) in terms of ¢ and V. We will use these in the following sections. For future
use, we recall, from [29], the following result.

THEOREM 2.1. Let (M,g) be a locally symmetric space and v a geodesic of the
unit tangent bundle (T1M,gs). Then the projected curve x = 7o~y has constant
curvatures.

Indeed, for a symmetric space, formulae (2.3) reduce to
i®) = (~1)*R(V, V)Fi.

It is easy to see from this formula that #(*) has constant length for all k. Using
this and the corresponding formulae (2.2) for arbitrary 2% k=1,...,n—1, one
proves by induction that all curvatures k; are constant.

3. Projected geodesics with constant first curvature

In this section we investigate whether the converse of theorem 2.1 holds true.
Expressing that the curvatures x; of the projected geodesics are constant quickly
becomes rather complicated and of little practical use. For now, therefore, we only
consider the case when the first curvature k; is constant. We are not able to deduce
from this the local symmetry of the manifold (M, g) in the generic case, but we do
obtain a number of partial results.

We begin by relating the constancy of the first curvature k1 to a curvature con-
dition on (M, g).

PROPOSITION 3.1. Let (M, g) be a Riemannian manifold. Then, for any geodesic ~y
of (T1M, gs), the projected curve x = 7o~y has constant first curvature k1 if and
only if the curvature condition

g(VyR)(V, W)Y, R(V,W)Y) =0 (3.1)
is satisfied for all vector fields Y,V and W on M.

Proof. Comparing the expressions for (1) in (2.2) and (2.3), we see that the first
curvature k1 is given by

K3 =g(R(V, V)i, R(V,V)i),
and hence, using (2.1), we have

dd_lf =29((VaR)(V, V):E - R(V, V)2¢7 R(V, V):E)

=29((VzR)(V, V):E7 R(V, V):E)

At t = 0, we have dx?/dt = 2g((V,R)(v,w)y, R(v,w)y). As y,v,w € T,M can be
chosen arbitrarily, subject to the conditions |v| = 1 and g,(v,w) = 0, the constancy
of k1 for all projected geodesics clearly implies (3.1). The converse is immediate
from the expression for dx?/dt above. a
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As an immediate corollary, we see that it suffices to deal with locally irreducible
spaces.

COROLLARY 3.2. Let (M,g) be a (locally) reducible Riemannian manifold. Then
any geodesic of (T1M, gs) projects down to a curve with constant first curvature k1
if and only if the same property holds for each of the factors.

We would like to prove the converse of theorem 2.1 or, even stronger, to show
that the condition ‘x1 is constant for every projected geodesic’ already implies local
symmetry. As a first step in that direction, we have the following result.

PROPOSITION 3.3. Let (M, g) be a Riemannian manifold and assume that the cur-
vature condition (3.1) is fulfilled. Then (M, g) is a C-space.

We recall that a C-space is a Riemannian manifold (M,g) such that, for any
geodesic o in (M, g), the eigenvalues of the Jacobi operator R, := R(-,0)d are
constant along o. Any locally symmetric space is a €-space, but the converse does
not hold (see [2] and [26] for examples and more information).

Proof. Let o be a geodesic in (M, g). On a dense open subset of o, one can choose
smooth eigenfunctions A;, ¢ = 1,...,n, for R, and smooth unit vector fields F;,
i = 1,...,n, such that R, F; = \F;. Now, put Y = W =6 and V = E; in
condition (3.1). Then we find

0=9((VsRs)E;, RoEy)
=9(Vs(ME;) — Ro (Vs E;), MEy)

dX;
=\ (E —XNig(Vs By, Ei) — g(R, Ej, VdE‘))
_1ax
S 2.dt
So the eigenvalues of R, are constant along o and (M, g) is a C-space. O

REMARK 3.4. Any C-space has a cyclic-parallel Ricci tensor [2],
L3 : (Vxp)(X,X) =0.

Moreover, from (3.1), it follows immediately,

Ls: Y g((VxR)(E:, X)X, R(E;, X)X) =0,
i=1

where {F1,...,E,} is a local orthonormal frame. These conditions are known as
the odd Ledger conditions L3 and Ls. They appear in the study of D’Atri spaces
(i.e. spaces with volume-preserving geodesic symmetries up to sign) and, in par-
ticular, of harmonic spaces. For that reason, they have been studied extensively
(see [26] for more information).

COROLLARY 3.5. Let (M, g) be a Riemannian manifold such that, for any geodesic
v of (T1M, gs), the projected curve x = 7o~y has constant first curvature k1. Then
(M, g) is locally symmetric under each of the following additional assumptions.
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(a) The dimension of M is two or three.

(b) The dimension of M is four and (M, g) is a Hermitian Finstein, or a 2-stein,
or a Kdihler space.

c) (M,g) is a four-dimensional locally homogeneous space.

(
(d) (M,g) is semi-symmetric.

e) (M,g) is conformally flat.

) (
) (
(e) (
(f) (M,g) is a Damek-Ricci space or, more generally, (M,g) is an irreducible
non- ﬂat homogeneous space with non-positive curvature and algebraic rank

one.

Proof. (a) In [2], the classification of two- and three-dimensional C-spaces is given.
A two-dimensional €-space has constant curvature, and hence is locally symmetric.
Any three-dimensional C-space is locally isometric to a naturally reductive space.
Hence, by a result in [41] and [25], it is either locally symmetric or locally isometric
to

(i) SU(2) with a special left-invariant metric;
(ii) SL(2,R) with a special left-invariant metric;
(iii) the three-dimensional Heisenberg group with any left-invariant metric.

Each of these can be equipped with a Sasakian structure compatible with the metric,
possibly up to a homothety, which leaves the condition (3.1) invariant (see, for
example, [6]). The result then follows from proposition 3.6 further on.

(b) A four-dimensional Hermitian Einstein space, which is at the same time a
C-space, is locally symmetric (see [13, corollary 30]).

For a four-dimensional manifold, the property of being 2-stein is equivalent to
being pointwise Osserman [20,37], i.e. at each point p, the eigenvalues of the Jacobi
operators R, do not depend on the choice of unit vector y € T,, M, though they may
depend on p. Combining this with the €-property, we see that the manifold must
be globally Osserman, i.e. the eigenvalues of R, are independent of both the unit
vector y € Tp,M and p € M. But then, using a result of Chi in [17], the manifold is
either flat or locally isometric to a rank-one symmetric space.

A Kahler manifold whose Ricci tensor is cyclic-parallel has parallel Ricci tensor
(see [38]), and hence it is either Einstein or a local product of Einstein spaces. If we
start from a four-dimensional Kahler manifold, which is also a €-space, it is either
(Hermitian) Einstein or a local product of Einstein spaces of dimensions at most
three. In both cases, the manifold must be locally symmetric.

(¢) Four-dimensional locally homogeneous spaces with cyclic-parallel Ricci tensor
have been completely classified in [14], after partial results in [33]. We distinguish
three cases.

(i) If all Ricci eigenvalues are equal, the manifold is Einstein. From a theorem of
Jensen [23], the manifold must be locally symmetric.

(ii) If at most three Ricci eigenvalues are distinct, then three cases can occur.
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(a) (M*,g) is locally symmetric.

(b) (M*,g) is alocal product of R and a specific three-dimensional manifold.
If we impose the condition (3.1), then, from corollaries 3.2 and 3.5 (a),
we find that (M*, g) must again be locally symmetric.

(c) (M*,g) is locally isometric to a specific four-dimensional Lie group. How-
ever, this Lie group does not satisfy condition (3.1), since, as pointed out
in [14, p. 134], it does not even satisfy the weaker Ledger condition Ls.

(iii) If all four Ricci eigenvalues are distinct, then the resulting spaces do not
satisfy the Ledger condition Ls either (see again [14, p. 134]).

(d) A semi-symmetric space which is also a E€-space is locally symmetric (see [8]).

(e) As the Ricci tensor p of a €-space is cyclic-parallel, its scalar curvature 7 is
constant. As (M, g) is also conformally flat, it follows that the Ricci tensor is a
Codazzi tensor, i.e. (Vxp)(Y,Z) = (Vyp)(X, Z). Hence the Ricci tensor is parallel
and the same holds for the Riemann curvature tensor R.

(f) In both cases, the C-space property implies symmetry (see [3,18]). O

To finish the above proof, we still need the following result.

PROPOSITION 3.6. Let (M, g) be a Sasakian space and suppose that, for any geo-
desic v of (T1'M, gs), the projected curve x = 7o~y has constant first curvature K.
Then (M, g) has constant curvature 1.

Proof. We refer to [5] for the basic definitions and formulae in contact and Sasakian
geometry. Here we recall only that a Sasakian space (M, g) is equipped with a unit
Killing vector field £ such that R(X,Y)& = ¢g(£,Y)X — g(&, X)Y. The (1, 1)-tensor
field ¢ given by X = —V x€ satisfies ¢? = —Id4+n ® &, where 7 is the one-form
dual to £. Then

(VyR)(& W)Y = Vy (g(Y, W) —n(Y )W) — R(Vy§, W)Y
=—g(Y, W)Y + g(Y, Y)W + R(eY, W)Y
=—g(Y,W)pY + R(pY,W)Y.
The condition (3.1) for V' = ¢ then yields
0=g((VyR)(§, W)Y, R(§, W)Y)

=—g(Y,W)g(R(, W)Y, 0Y) + g(R(¢Y, W)Y, R(§, W)Y)

=g(Y,Wn(Y)g(W, oY) + g(Y,W)g(R(pY, W)Y, &) — n(Y)g(R(pY, W)Y, W)

=n(Y)(g(Y,W)g(eY, W) = g(R(¢Y, W)Y, W)).

Now, take a unit vector W orthogonal to £ and put Y = £ + W + oW. Then the
above equality reduces to

0=—1+g(R(eW, W)W, oW).

So (M, g) is a Sasakian space with constant ¢-sectional curvature 1, and hence
is locally isometric to a unit sphere. O
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REMARK 3.7. Sasakian spaces belong to the larger class of contact metric (k, p)-
spaces defined in [7]. These contact metric spaces are characterized by the curvature
condition

RX,Y)E=k(n(Y)X —n(X)Y) + pu(n(Y)hX —n(X)hY) (3.2)

for all vector fields X and Y, where h = (%)Eg @, L¢ being the Lie derivative in the
direction of ¢. The geometry of these spaces has been studied in [7] and [9], and
the non-Sasakian (k, u)-spaces have been explicitly classified in [10]. In particular,
the curvature tensor R and its covariant derivatives are completely determined
by condition (3.2). By a straightforward calculation using the explicit expressions
for R and VR, one can verify that a non-Sasakian contact metric (k, u)-space of
dimension 2n + 1 satisfying (3.1) has k = 4 = 0 and, hence, is locally isometric to
R+ x S7™(4). In particular, it is locally symmetric.

From the condition (3.1), we can deduce a second condition on the Jacobi oper-
ators.

PROPOSITION 3.8. Let (M, g) be a Riemannian manifold and suppose that, for any
geodesic y of (T1 M, gs), the projected curve x = mwovy has constant first curvature K.
Then, for any vector field Y, it holds that R}, o Ry + Ry o Rf, = 0, where Ry =
R(-, Y)Y and Ry, = (VyR)(-, Y)Y, or, equivalently, along any geodesic o of (M, g)
the operator R2 is parallel.

Proof. Put W =Y in (3.1) and polarize with respect to V. In this way, we get
0=g(RyU,RyV) +g(RyV,RyU) = g((Ry © Ry + Ry o Ry)U,V)
and the proposition follows. O

COROLLARY 3.9. Let (M,g) be a Riemannian manifold and suppose that, for any
geodesic vy of (T1 M, gs), the projected curve x = mwoy has constant first curvature K.
If the sectional curvature K of (M, g) is either strictly positive or strictly negative,
then (M, g) is locally symmetric.

Proof. Take any unit vector y and a unit vector v orthogonal to y such that R,v =
Av. Then A = K(y,v) and, from the assumption about the sectional curvature
of (M, g), it follows that A is non-zero. Furthermore, we have

Ry(R,v) = =Ry (Ryv) = —AR,v.

If R;v is non-zero, then K (y, R;jv) = — ). But this is impossible, since all sectional
curvatures must have the same sign. Hence R;v = 0 for all y and v as above, and
we must have VR = 0. O

4. Projected geodesics with vanishing curvature k;
The starting point for this section is the following result by Sasaki [36].

THEOREM 4.1. Let (M,g) be a space of constant curvature. Then the projection
x = moy of any geodesic v of (T1 M, gs) has constant curvatures k1 and ko and
vanishing third curvature Ks.
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REMARK 4.2. In [30, theorem 4], it was claimed, incorrectly, that this property
holds for the larger class of two-point homogeneous spaces (see also the proof of
theorem 4.17 further on).

In what follows, we investigate what spaces (M, g) are such that all projected
geodesics of (T1M, gg) have vanishing curvature «; for some i = 1,2, 3.

4.1. k1 =0

Comparing (2.2) and (2.3), we see that k1 N; = —R(V, V)i. Hence we have the
following result.

PROPOSITION 4.3. Let (M,g) be a Riemannian space for which every projected
geodesic of (T1M,gs) is a geodesic of (M, g). Then (M, g) is flat.

4.2. ko =0

Next, take a non-flat space (M, g) and a geodesic y(t) = (z(t), V(t)) of (T1 M, gs)
for which the projected curve z(t) has non-zero first curvature. Suppose that ko = 0.
Then we get from (2.2) and (2.3)

!

(VaR)(V, V)i — LRV, V)i = R(V, V)2 + 1% (4.1)
K1
or, equivalently,
[R(V,V)i[*(VaR)(V, V)i — (Ve R)(V, V)i, R(V, V)#)R(V, V)i
= [R(V,V)i&|*(R(V, V)% + |R(V, V)& |*%). (4.2)

Note that this last expression also holds for geodesics v(t) = (z(t), V(¢)) such that
x(t) has k1 = 0.

PROPOSITION 4.4. Let (M,g) be a Riemannian space. Then any geodesic vy of
(T1M, gs) projects to a curve x of M for which ke =0 if and only if

R(V,W)2Y = —|R(V, W)Y Y, (4.3)
|R(V, W)Y|2(VYR)(Vﬂ W)Y = g((VYR)(Vﬂ W)Y, R(V, W)Y)R(V, W)Y (4'4)

for all vector fields V., W and Y on M with |Y| = 1.
Proof. Put t =0 in (4.2) to obtain
|R(v, w)y*(VyR) (v, w)y — g((Vy R) (v, w)y, R(v, w)y) R(v, w)y
= |R(v,w)y|*(R(v,w)?y + [R(v, w)yl*y).

Because we suppose that «o = 0 for any projected geodesic, we can take y, v and w
arbitrarily, as long as |y| = 1. Replacing y by —y and comparing the result with
the above, we obtain the conditions (4.3) and (4.4). O

Using the condition (4.3), we can deal at once with locally reducible spaces and
odd-dimensional manifolds.
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PROPOSITION 4.5. Let (M, g) be a locally reducible manifold and suppose that con-
dition (4.3) holds. Then (M, g) is flat.

Proof. Let v and w be arbitrary tangent vectors at p € M. Condition (4.3) then
says that any tangent vector y at p is an eigenvector of R(v,w)?. Hence

R(v,w)?> = =A\?1d, where X\ depends only on v and w. (4.5)

Moreover, if A = 0, then R(v, w) = 0 by the skew-symmetry of R(v,w).

Now decompose (M, g) in factors (M,g) = (M, g1) X (Ma,g2). Take any v,
w1 tangent to M; and yo tangent to Ms. Obviously, R(vl,w1)2y2 = 0, and hence
A(vy,wr) = 0 and R(v1,w1) = Ri(v1,w1) = 0. Consequently, (M7, g1) must be flat.
Similarly, (M, g2) is flat. O

PROPOSITION 4.6. Let (M,g) be an odd-dimensional manifold and suppose that
condition (4.3) holds. Then (M, g) is flat.

Proof. Take arbitrary tangent vectors v and w to M at a point p. Because R(v, w)
is a skew-symmetric operator on an odd-dimensional vector space, there exists a
non-zero tangent vector y at p such that R(v, w)y = 0. Hence, from (4.5), it follows
that A(v,w) = 0 and also R(v,w) = 0. As v and w were arbitrary, as well as the
point p, we have R = 0. O

Condition (4.4) implies a nice geometric property.

PROPOSITION 4.7. Let (M, g) be a Riemannian space satisfying condition (4.4).
Then (M, g) is a P-space.

We recall that a B-space is a Riemannian manifold (M, g) such that, for any
geodesic o in (M, g), the eigenspaces of the Jacobi operator R, are parallel along o.
Again, any locally symmetric space is a P-space, but many examples exist that are
not locally symmetric. Actually, the locally symmetric spaces are precisely those
Riemannian manifolds that are at the same time € and P-spaces. (Again, we refer
to [2] for the proof of this statement and for further information and examples.)

Proof. Let o be a geodesic in (M, g) and let A be a smooth non-zero eigenfunc-
tion for R,, defined on an open dense subset of 0. Choose a corresponding unit
eigenvector field V: R,V = AV.If we put Y = W = ¢ in (4.4), we can write

RV = aR,V = a\V,

where « is some function along o which we need not specify. On the other hand,
the left-hand side of this equation can be rewritten as

R;V = V[',(RUV) — RU(V[',V) = %V + AVsV — RU(V[',V).

Combining these last two formulae, we obtain

(dd—i\ — aA)V + ()\V[',—V - RU(V(,V)) =0.

Taking the interior product with V, we get that d\/dt = aX and, consequently,
R;(V;V) = AV;V. This means that V;V is also an eigenvector field corresponding
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to the eigenfunction A, so this eigenspace is parallel along o. Since this holds for
all the eigenspaces corresponding to non-zero eigenfunctions, it must also be true
for the eigenspace corresponding to the zero eigenfunction. Hence (M, g) is a -
space. O

Combining proposition 4.7 with proposition 3.3, we get the following.

PROPOSITION 4.8. Let (M, g) be a Riemannian space and suppose that any geodesic
v of (T1 M, gs) projects to a curve x of M with constant k1 and vanishing ke. Then
(M, g) is locally symmetric.

REMARK 4.9. In [31], Nomizu and Yano defined a circle in a general Riemannian
manifold (M, g) as a curve with constant non-vanishing first curvature x; and van-
ishing second curvature xs. The projected curves x in proposition 4.8 can there-
fore be described more geometrically as being either geodesics (k1 = 0) or circles

(k1 #0).

In the rest of this subsection, we consider locally symmetric spaces (M, g) for
which all projected geodesics of (T3 M, gs) are curves with vanishing second curva-
ture ko, i.e. for which the curvature equality (4.3) holds. Clearly, all two-dimensional
locally symmetric spaces satisfy this requirement. For higher-dimensional locally
symmetric spaces, we expect to find only flat spaces. This is based partly on the
results about reducible manifolds and odd-dimensional spaces above, but also on
the explicit description of the geodesics of the unit tangent sphere bundles of spaces
of constant curvature in [36], in view of the fact that these spaces are the ‘simplest’
locally symmetric manifolds. As a first step, we show that the curvature condi-
tion (4.3) has profound implications for the rank of a symmetric space.

PROPOSITION 4.10. Let (M, g) be an irreducible locally symmetric space and sup-
pose that (4.3) holds. Then the rank of its universal covering equals one.

Proof. Let (M , ) be the connected and simply connected globally symmetric space
that is locally isometric to (M, g). If (M, g) satisfies (4.3), then the same holds
for (M, §). We can consider M as the quotient manifold G/H, where G = Io(M)
is the connected component of the isometry group of M and H is the isotropy
subgroup of G at some fixed point o € M.

If we denote by @ and f) the Lie algebras of the groups G and H, respectively,
then we have a decomposition of the vector space g in the form ¢ = m @ [), where
the subspace m satisfies [, m] C m and [m, m] C §). This subspace can be identified
with 7, M and, under this identification, the curvature tensor of (]\Zf, g) at o is given

by Ro(X,Y)Z = —[[X,Y], Z]. Furthermore, fixing a maximal Abelian subalgebra a
of m, the rank of M, rk M, equals the dimension of a.

Assume first that (M, g) is an irreducible symmetric space of non-compact type.
We work with the root space decomposition of § with respect to the maximal Abelian
subalgebra a (see, for example, [19,22,27]). For every linear function a: a — R, we

define the vector subspace
0o ={X €g|[A X]=a(A)X for all A€ a}.

A linear function a # 0 is called a root of @ and g, the corresponding root space,
if g, # {0}. If we denote by A the set of all roots, then we have the direct sum
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§=0® Y da

ac

decomposition

Since a is Abelian, we have a C gg. Moreover, if o € A, then also —« € A, and the
corresponding root spaces are isomorphic.

Now, let m,,, a € A, be the image of g, with respect to the projection map of
g = m @ b onto m. The following assertions are immediate consequences of [19,
proposition 2.14.2]:

(i) dimm, = dim@q;
(i) My =M_q =MN (Ao D F_a);

(iii) m=a® > . ,+ Mo where AT is a subset of A such that AT N (—A%) =0 and
A= AT U(Sa).

Next, we assume that the rank of M is at least two, i.e. dima > 2. Fix a
root ap € AT and choose two non-zero vectors U,V € a such that ag(U) = 1
and ao(V) = 0. Take a non-zero element

Yem, :Y=YT+Y" YTeq,, Y €0.,.

Then [U,Y] = YT — Y~ is a non-zero vector in § N (§a, & §_a,) and [V,YE] = 0.
Hence

R,(U,Y)V = —[[U,Y],V] = 0.

But the curvature operator R, (U, Y) satisfies condition (4.5) and hence A(U,Y) = 0.
So, Ro(U,Y)Z = —[[U, Y], Z] = 0 for any Z € m.

Since [U,Y] is non-zero, the linear subspace f = {W € b | [W,m] = {0}} is
non-trivial. But f is an ideal of @. Indeed, for P e m, Q € ) and W € f, we have

[P +Q,W]m] = [[P,W],m] — [[W,m],Q] + [[Q,m], W]

and each of the terms evaluates to 0 by the definition of f. According to [22, theo-
rem 3.3, p. 173], however, the isotropy subgroup H contains no non-trivial normal
subgroups of GG. This gives a contradiction, hence dim @ = 1 and the proposition is
proved for symmetric spaces of non-compact type.

Next we assume that M = CN;’/PNI is a symmetric space of compact type and rank
greater than or equal to two. Let G/H be its dual symmetric space of non-compact
type and denote by @ and g the Lie algebras corresponding to G and G, respectively.
Suppose that a Cartan decomposition § = m @) is given as before. It is well known
(see, form example, [22]) that § can be identified with the subalgebra im @ b of the
complexification a€ of g and we obtain a Cartan decomposition for §: § = im® 0.
Moreover, if a is a maximal Abelian subalgebra of m, then ia is a maximal Abelian
subalgebra of im. In particular, rk(G/H) = rk(G//H). Putting U = iU/, V = iV and
Y = 1Y in the previous computation, we obtain a contradiction in this case too. O

Before dealing with rank-one symmetric spaces of arbitrary dimensions, we first
look at the four-dimensional case.

https://doi.org/10.1017/5S0308210500002882 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002882

Geodesics on the unit tangent bundle 1221

PRrROPOSITION 4.11. There do not exist four-dimensional locally irreducible sym-
metric spaces for which (4.3) holds.

Proof. From propositions 4.5 and 4.10, we know that we only have to consider the
four-dimensional spaces of non-zero constant curvature and the four-dimensional
Kahler spaces of non-zero constant holomorphic sectional curvature. For these, we
have explicit expressions for the curvature tensor, and we can check condition (4.3)
directly.

For a space of constant curvature ¢, ¢ # 0, we take three linearly independent
vectors x, y, z such that g(x,y) = 0 and calculate

R(z,y)%z = —*(g(z,2)g(y, 2)y + 9(y,v)9(x, 2)z),

which is not proportional to z if z is not orthogonal to both z and y.
For a space of constant holomorphic sectional curvature ¢, ¢ # 0, take tangent
vectors « and z such that x, Jx and z are linearly independent. Then

R(z, J2)% = —dcg (e, 2)(3g(x, =)z + 3g(Jw, 2) Tz + g(w,3)2),
which is not proportional to z if z is not orthogonal to both = and Jz. O
By means of submanifold theory, we can now prove the following definitive result.

THEOREM 4.12. Let (M, g) be a non-flat locally symmetric space and suppose that
any geodesic v of (T1'M, gs) projects to a curve x in M with vanishing second
curvature ko. Then (M, g) is two dimensional.

Proof. From proposition 4.5, it follows that (M, g) is locally irreducible and propo-
sition 4.10 tells us that the rank of (M, g) must be one. Because of propositions 4.6
and 4.11, we only have to deal with rank-one symmetric spaces of dimension at least
six. In [16], Chen and Nagano have described all maximal totally geodesic subman-
ifolds of these spaces. It follows at once from their list that there always exists a
four-dimensional totally geodesic submanifold. But then, clearly, this submanifold
is itself locally symmetric and also satisfies condition (4.3). Hence it must be flat
by the previous proposition. This implies that the rank of the ambient symmetric
space is at least four, which gives a contradiction. O

REMARK 4.13. In the appendix we give an alternative proof for the above theorem,
which uses the Hurwitz function on the one hand and a simple relation between
the rank and the dimension of an irreducible symmetric space on the other.

Combining proposition 4.8 with theorem 4.12, we obtain the final result.

THEOREM 4.14. Let (M,g) be a Riemannian manifold. Then any geodesic v of
(T1M, gs) projects to a curve x of M which is either a geodesic or a circle if and
only if (M, g) is either flat or a two-dimensional space of constant curvature.

4.3. k3 =0

In this subsection, we investigate a possible converse to theorem 4.1. Again, we
start by relating the vanishing of k3 to a curvature condition on the base manifold.
Contrary to the previous discussions, we start at once with locally symmetric spaces.
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PROPOSITION 4.15. Let (M, g) be a locally symmetric space. Then any geodesic ~y
of (T1M, gs) projects to a curve x in M for which k3 = 0 if and only if

R(V,W)3Y + (k3 + k3)R(V,W)Y =0 (4.6)

for all vector fields V, W and Y on M. The coefficient k3 + k3 only depends on V
and W, not on Y. Its value is given by

2 [RV.W)°Y]?

2
R = TRV WY

for any Y such that R(V, W)Y # 0.

Proof. Condition (4.6) follows as before by comparing the expressions for 3
in (2.2) and (2.3), taking into account this time the local symmetry of (M, g).

In order to show that x? + k3 does not depend on Y, take arbitrary vectors v
and w at a point p in M and two vectors y; and yo for which R(v, w)y; # 0,7 = 1,2.
Put \; = (k% + K3)(v,w,y;). Then

R(v, w)?(cos Oy + sinys) = —A1 R(v,w)(cosOy1) — Ao R(v, w)(sin Oys).

This should be proportional to R(v,w)(cos Oy, + sinfy2) for all values of 6. Hence
A1 = Ao
The expression for k3 + k3 follows at once from (4.6). a

Again, the reducible case is easy to deal with.

PROPOSITION 4.16. Let (M, g) be a reducible locally symmetric space and suppose
that (4.6) holds. Then (M,g) factors into a flat component and an irreducible
locally symmetric space satisfying (4.6). Conversely, for any such product, the con-
dition (4.6) holds.

Proof. The only non-trivial statement is that one of the factors in the decomposition
of (M, g) must be flat. So, suppose (M, g) = (M1, g1) x (M2, g2) with both factors
non-flat. Then take Y7, Vi3, Wi tangent to M; and Ys, Vo, Wy tangent to My
such that R;(V;,W;)Y; # 0 for ¢ = 1,2. Next, consider the operator R(cosfV; +
sin@Va, cos Wy + sin@Ws) for 6 € (0, 3m). It satisfies (4.6) by assumption. As the
corresponding 2 + k3 is independent of the vector Y, putting first Y = ¥; and
then Y = Y5, we find the equality

|Ry(Vi, W1)2Y1[? _ sin49|R2(V2’W2)2Y2|2
|R1(V1, Wh)Y1[? |Ro(Va, Wa)Ya|?

cos* 0

Note that R;(V;, Wi)QYi is non-zero for ¢ = 1,2, since otherwise we would have
0 = g;(R;(V;, W:)?Y:,Y:) = —|R;(Vi, W;)Y;|?, contrary to the hypothesis. But then
we see that the above inequality cannot be valid for all § € (0, %w), which gives a
contradiction. Hence one of the factors must be flat. O

We now prove a converse of theorem 4.1 within the class of locally symmetric
spaces.
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THEOREM 4.17. Let (M™,g), n = 3, be a locally symmetric space such that the
projection x = wo~y of any geodesic v of (T1 M, gs) has vanishing third curvature k3.
Then (M™, g) is either a space of constant curvature or a local product of a flat space
and a space of constant curvature.

Proof. The result is clearly valid in dimension three. We first exclude the four-
dimensional Kahler manifolds of constant holomorphic sectional curvature ¢, ¢ # 0.
For such a manifold, we can calculate explicitly

Rz, Jx)z = —%c(g(ac7 2)Jz —g(Jz,2)x + g(z,x)J2),

R(z,Jx)’z = $g(w,2)*(Tg(w,2)Ja — Tg(Jo, 2)x + g(z,2)J2).

If we take linearly independent vectors =, Jx and z such that z is not orthogonal to
both z and Jz, then these two expressions are not proportional, and condition (4.6)
is not fulfilled.

Without loss of generality, we may assume that (M™, g) is complete and simply
connected. If the rank of M is one and if (M", g) has non-constant sectional curva-
ture, then it contains a totally geodesic complex projective plane CP? or a totally
geodesic complex hyperbolic plane CH? (see, for example, [16,42]), and the above
calculation shows that condition (4.6) is not fulfilled.

Next, assume that M is irreducible and of rank two. We first treat the case when
M is of compact type and consider the classification of maximal totally geodesic
submanifolds in rank-two symmetric spaces according to Chen and Nagano [16].
According to this classification, (M™, g) contains a totally geodesic CP? unless M
is SU(3)/S0(3), GE(2,2), GE(2,3), GH(2,2), SU(3) or Sp(2). So, if M is not one
of these spaces, condition (4.6) is not fulfilled by the above calculation. The real
Grassmannian G(2,2) is isometric to S? x S? and thus we may ignore it. If M is
GT(2,3), GH(2,2), SU(3) or Sp(2), it contains a totally geodesic Riemannian prod-
uct of two spaces of non-zero constant curvature and, from proposition 4.16, we see
that condition (4.6) does not hold. Thus the only remaining space is SU(3)/SO(3).

Let M = SU(3)/S0(3), G = SU(3) and K = SO(3) the isotropy group of G
at o € M. Denote the Lie algebras of G and K by @ and f, respectively. Then
g = 5u(3) is the Lie algebra of all skew-Hermitian traceless (3 x 3)-matrices with
complex coefficients and f = $0(3) is the Lie algebra of all skew-symmetric (3 x 3)-
matrices with real coefficients. Let 111 be the linear subspace of § consisting of all
skew-Hermitian traceless (3 x 3)-matrices with purely imaginary coefficients, which
gives us the usual Cartan decomposition ¢ = f ® m of g. We identify m with the
tangent space T,M of M at o in the usual way. Then the Riemannian curvature
tensor R, of M at o is given by R,(A, B)C = —[[4, B],C] for all A, B,C € m. We
now define

0 0 0 0 i 0 i 0
0 01, B=10 0 0}, C=1i 00
0 i 00 0 00

—i

A:

o O

By a straightforward calculation we get that R,(4, B)3A = —16R,(A, B)A on
the one hand and R,(A, B)>C = —4R,(A, B)C on the other, which implies that
condition (4.6) is not fulfilled.

https://doi.org/10.1017/5S0308210500002882 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002882

1224 J. Berndt, E. Boeckz, P. T. Nagy and L. Vanhecke

If M is of non-compact type and rank two and different from SL(3,R)/SO(3), we
can use duality to find a suitable totally geodesic submanifold in M showing us that
condition (4.6) is not fulfilled. Using the standard Cartan decomposition of 8[(3,R),
we can describe the Riemannian curvature tensor R, of SL(3,R)/SO(3) at a point
o as the negative of the curvature tensor of SU(3)/SO(3), which easily implies that
also in this case condition (4.6) is not fulfilled. Altogether, it now follows that if M
is an irreducible Riemannian symmetric space of rank two, then condition (4.6) is
not fulfilled.

Now we consider the case that M is of rank two and reducible. From proposi-
tion 4.16, it follows that M is isometric to R x M7 where M; is a complete sim-
ply connected Riemannian symmetric space of rank one. Using, again, the totally
geodesic CP?- and CH?-argument, we see that condition (4.6) is not fulfilled if
M, has non-constant curvature. We have thus proved the theorem for all locally
symmetric spaces of rank one or two.

We now investigate the case that the rank of M is greater than two. We first
assume that M is irreducible and of compact type. Let G be the identity component
of the full isometry of M, 0 € M, and K the isotropy group of G at o. Let ¢ = f ®m
be the corresponding Cartan decomposition of g at 0. We choose a maximal Abelian
subspace @ in 11 and denote by A the restricted root system of the semisimple
symmetric pair (g,f) with respect to a. This induces the root space decompositions

f=f0)a @f(a) and M=a® @m(a).

acA aEA

Let A be a set of simple roots in A. We fix two simple roots in A and denote by
A’ the closed subsystem in A generated by these two simple roots. Recall that a
subsystem A’ of A is called closed if A’ = —A’ and if o, € A’ and a+ 3 € A
implies o + 8 € A’. We now define ' C f and m/ C m by

t = @ (), E()]t (o) @ @ f(a) and M =d & @ m(a),

ac A’ acA! acA’

where [-, ¢ o) denotes the f(0)-component and a’ C a is the dual space of the linear
span of A’. Moreover, we define

g=ton.

Since A’ is a closed subsystem of A, general properties of root systems imply that
' is a subalgebra of g and ' is a subalgebra of f. It is easy to see that the centre of
@’ is trivial, which implies that (g’,f’) is a semisimple symmetric pair (see also [40]).
Denote by G’ the connected Lie subgroup of G with Lie algebra ¢’ and consider the
orbit M’ = G’ - 0 of G’ through o. Since @’ is invariant under the Cartan involution
corresponding to the decomposition @ = f @ 01, this orbit is totally geodesic in M.
Hence it is also a symmetric space and, by construction, semisimple and of rank
two. Thus M’ is a totally geodesic Riemannian symmetric space of compact type
and with rank two. Since M’ is of compact type, it has no Euclidean factor, and
since we already know that condition (4.6) is not fulfilled for such symmetric spaces,
this implies that condition (4.6) is not fulfilled for M as well.

In the non-compact case, we can use duality to produce a suitable totally geodesic
submanifold and apply an analogous argument.
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Finally, if M is reducible, the assertion follows from proposition 4.16 by taking
into account the solution for the irreducible case. O

Appendix A.

In this appendix we give an alternative proof for theorem 4.12 based on a simple
relation between the rank and the dimension of an irreducible Riemannian sym-
metric space.

LEMMA A.1. The rank tk M of an irreducible Riemannian symmetric space (M, g)
satisfies 2rk M < dim M.

First proof. In [4, pp. 312-317], all irreducible symmetric spaces are listed, along
with their dimensions and their rank. A case-by-case check reveals that the above
inequality holds. O

Second proof. As in the proof of proposition 4.10, we consider the symmetric space
(M, g) as a quotient manifold G/H and take a Cartan decomposition § = m @
of the Lie algebra g of G. Again, we first treat the case where M is an irreducible
symmetric space of non-compact type. We fix a maximal Abelian subalgebra a of m
and consider the corresponding root space decomposition of g,

E=0® Y da,

ac
and the associated decomposition of 11,
m=ad Z my, (A1)
acAT

where AT N (—=AT) =0 and AT U (=A1) = A, the set of all roots. Recall also that
dimm, = dimg, > 1 for any o € A™.
Now define the subspace b of a by

b={VealaV)=0forall a € AT}.

Then b centralizes g, since

Voo X% = e - xe =0

acA aEAt
for any V € b, Xy € o, Xo € Go. Hence we have R,(Y,Z)b = —[[Y, Z], 0] = {0}
and, by the de Rham decomposition, M is the product manifold M = B x M’,
where B is a Euclidean factor satisfying T, B = b. As M is irreducible by hypothesis,
b = {0}. Consequently, the number of linearly independent equations in the defining
system of equations for b, {a(V)=0] a € AT, V € a}, is greater than or equal to
dima =rk M. So, also using (A 1), we have

dim M —rk M = dimm — dima > [AT] > rk M,

where |AT]| is the cardinality of A*. This proves the lemma for symmetric spaces
of non-compact type.
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For a symmetric space M of compact type, consider its dual symmetric space M
of non-compact type (cf. the proof of proposition 4.10). Then

dim M = dim M > 2rk M = 21k M,
and the lemma is proved also in this case. O

Third proof. Let M = G/H be a Riemannian symmetric space of non-compact
type with Iwasawa decomposition G = KAN for G. Then AN is a solvable Lie
group acting simply transitively on M. Furthermore, dim A = rk M and N is the
nilradical of AN. In 1966, Mubarakzianov proved (see [32]) that the dimension of
the nilradical of a solvable Lie algebra is greater than or equal to one half of the
sum of the dimension of the Lie algebra and of its centre. Since AN is centreless,
we have

kM =dimA =dim AN —dim N =dim M —dim N < %dimM.
Using duality as before, we get the same result in the compact case. O
With this inequality, we can give an alternative proof for theorem 4.12.

Proof of theorem 4.12. Let (M, g) be a non-flat locally irreducible symmetric space
satisfying the hypothesis of theorem 4.12. Then, at 0 € M, we have R,(X,Y)? =
—AX,Y)?1Id for all X,Y € T,M and A\(X,Y) = 0 if and only if R,(X,Y) = 0. By
the skew-symmetry of R,(X,Y), we get

gO(RO(X’ Y)Z’ RO(X’ Y)W) = _gO(RO(X’ Y)2Z’ W) = A(X’ Y)QgO(Z’ W)' (A 2)

If Ro(X,Y) # 0, then (1/|A(X,Y)|)Ro(X,Y) is an almost complex structure on
T,M. In particular, dim M is even.

Recall that an operator T on a Euclidean vector space (11, (-, -)) is called a simslar-
ity if it satisfies (TZ, TW) = op(Z, W) for all Z, W € m, where o7 is a scalar factor
(see [39]). From (A 2), we see that all curvature operators R,(X,Y), X, Y € T, M,
are similarities of (T,M, go).

Now consider the symmetric space M = G/H with a decomposition § = m® §
as before. In particular, [m,m] C §, m can be identified with T, M and R,(X,Y) =
—ad([X,Y])m. In the proof of proposition 4.10, we showed that the subspace f =
{W e b | [W,m = {0}} is an ideal of g contained in §) and that, consequently,
f = {0} (see [22, theorem 3.3, p. 173]). Hence, for any vector U € m = T, M, the
subspace {X € m | R,(U, X) = — ad([U, X])m = 0} coincides with ay = {X € m |
[U, X] = 0}.

Next we recall that an element U € m is called a regular vector if a; is an Abelian
subalgebra of m (and hence ay is a maximal Abelian subalgebra of nt). According
to [19, p. 79], such vectors exist in N. So, let U be a regular vector. But then the
kernel of the linear map Ry : mt — End(m) : X — R,(U, X) is a maximal Abelian
subalgebra ay of m. Hence

dim(Ry(m)) = dimm — dim ayy = dim M — vk M.

On the other hand, the linear subspace Ry (1) C End () consists of similarities
of M, so we have
dim(Ry(m)) < max{dim S},
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where S ranges over all linear subspaces of End (i) consisting of similarities of .
From [39, theorem 2.12], we obtain

max{dim S} = p(n),
where the Hurwitz function p: Ny — Ny is given by

2m+1 ifm =0 (mod4),
p(2Mn,) = 4 2m ifm=1,2 (mod4),
2m+2 if m =3 (mod4),

with ng an odd number. Combining the above equalities and inequalities, we get
n—rk M < p(n). (A3)
Finally, from lemma A.1, we obtain
n < 2p(n). (A4)

We will see that this inequality is only satisfied for a few values of n.
For that purpose, we fix an odd integer ng and investigate the function

Kng @ M Kng (M) = 2™ng — 2p(2ng).

We are interested in those m, ng for which k,,(m) < 0. Computing
2Mng —2 if m =0 (mod4),
2Mng —4 if m=1 (mod4),

(1) = g (m) = § 200 T4 M= o)
2"™ng — 8 if m =2 (mod4),
2Mng —1 if m =3 (mod4),

we see at once that k,,(m) is monotonely increasing for m > 4. Furthermore, we
have

m 1 2 3 4 m =5
Fng(m) | 2ng —4 | 4ng —8 | 8ng — 16 | 16ng — 18 | K, (m) >0

WV

So the inequality kn,(m) < 0 is satisfied only for ng = 1 and m = 1,2,3,4. Hence
dim M € {2,4,8,16}.

It remains to show that the dimension of M cannot be 4, 8 or 16. For dim M = 4,
this was done in proposition 4.11. For dim M = 16, the inequality (A 3) says that
rk M > 7. However, from the list of irreducible symmetric spaces in [4, pp. 312-317],
we see that rk M < 7 when dim M = 16. So we can also exclude this possibility.

At this point, we have proved theorem 4.12, provided the dimension of M is
different from eight. Dealing with this last case is somewhat more involved. We
proceed as in the proof of theorem 4.12, using totally geodesic submanifolds. First,
we list all eight-dimensional irreducible symmetric spaces from [4, pp. 312-317]
and we note that the rank of these spaces is at most two. Explicitly, we have the
rank-one symmetric spaces

CP*, RP8, HP? and their non-compact duals
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and the rank-two symmetric spaces

Go

G2(CY), R, Srr i su )

, SU(3) and their non-compact duals.

It suffices to show that all these symmetric spaces have a totally geodesic sub-
manifold of dimension between three and seven. Indeed, these submanifolds are
themselves locally symmetric and satisfy the curvature condition (4.3), hence they
are flat. Consequently, the rank of the ambient space must be greater than two,
which gives a contradiction.

In [16], a desired totally geodesic submanifold for each of the symmetric spaces
above is given, except for Go(C*). However, this symmetric space is isometric to
the real Grassmann manifold G5 (R®) of oriented two-planes in R® and has CP? as
totally geodesic submanifold (see [1, p. 9]). So, the possibility that the dimension
of M equals eight can also be excluded. O
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