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A geodesic ® on the unit tangent sphere bundle T1M of a Riemannian
manifold (M; g), equipped with the Sasaki metric gS , can be considered as a curve x
on M together with a unit vector ¯eld V along it. We study the curves x. In
particular, we investigate for which manifolds (M; g) all these curves have constant
¯rst curvature µ1 or have vanishing curvature µi for some i = 1; 2 or 3.

1. Introduction

Let (M; g) be a Riemannian manifold and (T1M; gS) its unit tangent sphere bundle
equipped with the Sasaki metric. Special geometric properties of the base man-
ifold (M; g) will be re®ected in the geometry of (T1M; gS) and, conversely, the
geometry of (T1M; gS) will in®uence, or even determine, that of (M; g). This (indi-
rect) approach to the study of the geometry of (M; g) has been successfully exploited
by the second and the fourth author in a series of papers where they study the cur-
vature of (T1M; gS) in relation to that of (M; g) (see the survey [12] for an overview
of their results and for further references).

The study of the tangent bundle T M and the unit tangent sphere bundle T1M as
Riemannian manifolds was initiated in the late  fties and early sixties by Sasaki [34,
35]. He introduced a rather simple Riemannian metric gS on these bundles, now
known as the Sasaki metric, which is completely determined by the metric struc-
ture g on the base manifold M . Every geodesic ® on (T M; gS) (or on (T1M; gS)) can
be considered as a curve x on M with a (unit) vector  eld V along it: ® = (x; V ).
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Sasaki derived the geodesic equation for ® in terms of x and V and proved some
 rst results concerning the geodesics of (T M; gS) (or (T1M; gS)).

About a decade later, Chavel constructed Riemannian metrics on the three-
dimensional real projective space RP 3, which is di¬eomorphic to the unit tangent
sphere bundle of the two-sphere S2. These metrics are precisely the Sasaki met-
rics associated to arbitrary Riemannian metrics on S2. He investigated some global
properties of the geodesics of RP 3 with these metrics [15]. Klingenberg and Sasaki,
on the other hand, gave an explicit description of the curves x and the unit vector
 elds V along x, which together form a geodesic of (T1M; gS) in the case when
(M; g) is S2 with its standard metric [24]. Using the same methods, Sasaki then
extended these results to base manifolds that are spaces of constant curvature of
any dimension [36]. Later, Gluck also determined the geodesics of the unit tangent
sphere bundle of a round sphere of any dimension in a very nice paper, using a
completely di¬erent approach [21].

For general base manifolds, it is much harder to obtain an explicit description
for all geodesics on the unit tangent sphere bundle. Only in the case when the
base manifold is two dimensional do we have a complete description, due to the
third author in [28]. In later work, he proved some interesting results for locally
symmetric base spaces [29], obtaining also Sasaki’s classi cation for the geodesics
of the tangent bundle of a space of constant curvature.

The inspiration for the present article comes from two results about the curves x
on M that are projections of geodesics ® = (x; V ) on (T1M; gS). The  rst result,
theorem 2.1 in this paper, is due to the third author [29] and says that the curve x
has constant curvatures if the base space (M; g) is locally symmetric. The second,
theorem 4.1, is due to Sasaki and states that the curve x has vanishing curvatures
µ3; µ4; : : : ; µn¡1 if the base space (M; g) has constant curvature.

Both results are direct results: from special properties of the base manifold, one
deduces information about the geometry (in casu, the geodesics) of the unit tan-
gent sphere bundle. Now we are interested in possible converses, in indirect results.
Therefore, in x 3, we consider Riemannian manifolds (M; g) such that all the pro-
jected geodesics of (T1M; gS) have constant  rst curvature. We cannot deduce from
this that (M; g) must be locally symmetric, but we do obtain some interesting par-
tial answers. In x 4, we investigate those Riemannian manifolds (M; g) for which all
the projected geodesics of (T1M; gS) have vanishing  rst, second or third curvature.

2. Geodesics on T1M and the projected curves

Let (M; g) be an n-dimensional Riemannian manifold, which we suppose to be
smooth and connected. By r we denote its Levi-Civita connection and by R its
Riemann curvature tensor, where we use the sign convention

R(X; Y ) = [rX ; rY ] ¡ r[X;Y ]:

Any curve ® (t) = (x(t); V (t)) in the unit tangent sphere bundle can be considered
as a curve x(t) in the base manifold M together with a unit vector  eld V (t) along
it. If we equip T1M with the Sasaki metric gS , then a curve ® (t) = (x(t); V (t)) is a
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geodesic of (T1M; gS) if and only if

r _x _x = ¡ R(V; r _xV ) _x;

r _xr _xV = ¡ c2V;

)

(2.1)

where c2 = g(r _xV; r _xV ) is a constant along x(t). (see, for example, [35]). For
a precise de nition of the Sasaki metric gS and for a convenient mechanism for
computing on T1M , the reader may consult [11].

In what follows, we are interested in the projections on the base manifold M of the
geodesics of (T1M; gS), i.e. in the curves x(t) = ( º ¯ ® )(t) satisfying (2.1) for some
unit vector  eld V (t) along x(t). At a point p 2 M and for given tangent vectors
v, w and y at p such that jvj = 1 and gp(v; w) = 0, there is a unique curve x(t)
satisfying (2.1) with x(0) = p, _x(0) = y, V (0) = v and ryV = w. This curve
is the projection of the unique geodesic ® (t) of (T1M; gS) with initial conditions
® (0) = (p; v) and _® (0) = yh + wv . We can consider three types of geodesics.

(i) If y = 0, we obtain a great circle on the  bre º ¡1(p) = Sn¡1 and x(t) = p: a
vertical geodesic.

(ii) If w = 0, we obtain a curve ® (t) = (x(t); V (t)), where x(t) is a geodesic of
(M; g) with a parallel vector  eld V along it, obtained by parallel translation
of v along x(t): a horizontal geodesic.

(iii) If both y and w are non-zero, we obtain a geodesic of oblique type. It is this
family of geodesics (and their projections) that we are most interested in. For
spaces of constant curvature, these were described explicitly in [36].

Now we consider a curve x(t) satisfying (2.1), where _x 6= 0 and r _xV 6= 0. Let
® (t) = (x(t); V (t)) be the corresponding geodesic of (T1M; gS). As both

j _® j2 = j _xj2 + jr _xV j2 and jr _xV j2 = c2

are constant, we can reparametrize ® (t) (and x(t)) so that j _xj = 1. Hence we can
take T = _x as the  rst vector in the Frenet frame fT; N1; : : : ; Nn¡1g along x and
we have, for the  rst three covariant derivatives of _x,

_x(1) = r _x _x = µ1N1;

_x(2) = r _xr _x _x = ¡ µ1
2T + µ0

1N1 + µ1µ2N2;

_x(3) = r _xr _xr _x _x

= ¡ 3µ1µ0
1T + (µ00

1 ¡ µ1(µ1
2 + µ2

2))N1

+ (2µ0
1µ2 + µ1µ0

2)N2 + µ1µ2µ3N3:

9
>>>>>>>=

>>>>>>>;

(2.2)

On the other hand, using (2.1), we can calculate

_x(1) = ¡ R(V; _V ) _x;

_x(2) = ¡ (r _xR)(V; _V ) _x + R(V; _V )2 _x;

_x(3) = ¡ (r(2)
_x _x R)(V; _V ) _x + (rR(V; _V ) _xR)(V; _V ) _x

+ 2(r _xR)(V; _V )R(V; _V ) _x + R(V; _V )(r _xR)(V; _V ) _x ¡ R(V; _V )3 _x;

9
>>>>>=

>>>>>;

(2.3)

where we have put _V = r _xV for simplicity.
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Comparing (2.2) and (2.3), we  nd explicit expressions for the curvatures µ1,
µ2 and µ3 of x(t), as well as for the normals N1, N2 and N3 (whenever they are
de ned) in terms of _x and V . We will use these in the following sections. For future
use, we recall, from [29], the following result.

Theorem 2.1. Let (M; g) be a locally symmetric space and ® a geodesic of the
unit tangent bundle (T1M; gS). Then the projected curve x = º ¯ ® has constant
curvatures.

Indeed, for a symmetric space, formulae (2.3) reduce to

_x(k) = ( ¡ 1)kR(V; _V )k _x:

It is easy to see from this formula that _x(k) has constant length for all k. Using
this and the corresponding formulae (2.2) for arbitrary _x(k), k = 1; : : : ; n ¡ 1, one
proves by induction that all curvatures µi are constant.

3. Projected geodesics with constant ¯rst curvature

In this section we investigate whether the converse of theorem 2.1 holds true.
Expressing that the curvatures µi of the projected geodesics are constant quickly
becomes rather complicated and of little practical use. For now, therefore, we only
consider the case when the  rst curvature µ1 is constant. We are not able to deduce
from this the local symmetry of the manifold (M; g) in the generic case, but we do
obtain a number of partial results.

We begin by relating the constancy of the  rst curvature µ1 to a curvature con-
dition on (M; g).

Proposition 3.1. Let (M; g) be a Riemannian manifold. Then, for any geodesic ®
of (T1M; gS), the projected curve x = º ¯ ® has constant ¯rst curvature µ1 if and
only if the curvature condition

g((rY R)(V; W )Y; R(V; W )Y ) = 0 (3.1)

is satis¯ed for all vector ¯elds Y , V and W on M .

Proof. Comparing the expressions for _x(1) in (2.2) and (2.3), we see that the  rst
curvature µ1 is given by

µ2
1 = g(R(V; _V ) _x; R(V; _V ) _x);

and hence, using (2.1), we have

dµ2
1

dt
= 2g((r _xR)(V; _V ) _x ¡ R(V; _V )2 _x; R(V; _V ) _x)

= 2g((r _xR)(V; _V ) _x; R(V; _V ) _x):

At t = 0, we have dµ2
1=dt = 2g((ryR)(v; w)y; R(v; w)y). As y; v; w 2 TpM can be

chosen arbitrarily, subject to the conditions jvj = 1 and gp(v; w) = 0, the constancy
of µ1 for all projected geodesics clearly implies (3.1). The converse is immediate
from the expression for dµ2

1=dt above.
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As an immediate corollary, we see that it su¯ ces to deal with locally irreducible
spaces.

Corollary 3.2. Let (M; g) be a (locally) reducible Riemannian manifold. Then
any geodesic of (T1M; gS) projects down to a curve with constant ¯rst curvature µ1

if and only if the same property holds for each of the factors.

We would like to prove the converse of theorem 2.1 or, even stronger, to show
that the condition `µ1 is constant for every projected geodesic’ already implies local
symmetry. As a  rst step in that direction, we have the following result.

Proposition 3.3. Let (M; g) be a Riemannian manifold and assume that the cur-
vature condition (3.1) is ful¯lled. Then (M; g) is a C-space.

We recall that a C-space is a Riemannian manifold (M; g) such that, for any
geodesic ¼ in (M; g), the eigenvalues of the Jacobi operator R¼ := R(¢; _¼ ) _¼ are
constant along ¼ . Any locally symmetric space is a C-space, but the converse does
not hold (see [2] and [26] for examples and more information).

Proof. Let ¼ be a geodesic in (M; g). On a dense open subset of ¼ , one can choose
smooth eigenfunctions ¶ i, i = 1; : : : ; n, for R ¼ and smooth unit vector  elds Ei,
i = 1; : : : ; n, such that R ¼ Ei = ¶ iEi. Now, put Y = W = _¼ and V = Ei in
condition (3.1). Then we  nd

0 = g((r _¼ R ¼ )Ei; R ¼ Ei)

= g(r _¼ ( ¶ iEi) ¡ R¼ (r _¼ Ei); ¶ iEi)

= ¶ i

µ
d ¶ i

dt
¡ ¶ ig(r _¼ Ei; Ei) ¡ g(R ¼ Ei; r _¼ Ei)

¶

=
1

2

d ¶ 2
i

dt
:

So the eigenvalues of R ¼ are constant along ¼ and (M; g) is a C-space.

Remark 3.4. Any C-space has a cyclic-parallel Ricci tensor [2],

L3 : (rX » )(X; X) = 0:

Moreover, from (3.1), it follows immediately,

L5 :

nX

i= 1

g((rXR)(Ei; X)X; R(Ei; X)X) = 0;

where fE1; : : : ; Eng is a local orthonormal frame. These conditions are known as
the odd Ledger conditions L3 and L5. They appear in the study of D’Atri spaces
(i.e. spaces with volume-preserving geodesic symmetries up to sign) and, in par-
ticular, of harmonic spaces. For that reason, they have been studied extensively
(see [26] for more information).

Corollary 3.5. Let (M; g) be a Riemannian manifold such that, for any geodesic
® of (T1M; gS), the projected curve x = º ¯ ® has constant ¯rst curvature µ1. Then
(M; g) is locally symmetric under each of the following additional assumptions.
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(a) The dimension of M is two or three.

(b) The dimension of M is four and (M; g) is a Hermitian Einstein, or a 2-stein,
or a K�ahler space.

(c) (M; g) is a four-dimensional locally homogeneous space.

(d) (M; g) is semi-symmetric.

(e) (M; g) is conformally ° at.

(f) (M; g) is a Damek{Ricci space or, more generally, (M; g) is an irreducible
non-° at homogeneous space with non-positive curvature and algebraic rank
one.

Proof. (a) In [2], the classi cation of two- and three-dimensional C-spaces is given.
A two-dimensional C-space has constant curvature, and hence is locally symmetric.
Any three-dimensional C-space is locally isometric to a naturally reductive space.
Hence, by a result in [41] and [25], it is either locally symmetric or locally isometric
to

(i) SU (2) with a special left-invariant metric;

(ii) SL(2; R) with a special left-invariant metric;

(iii) the three-dimensional Heisenberg group with any left-invariant metric.

Each of these can be equipped with a Sasakian structure compatible with the metric,
possibly up to a homothety, which leaves the condition (3.1) invariant (see, for
example, [6]). The result then follows from proposition 3.6 further on.

(b) A four-dimensional Hermitian Einstein space, which is at the same time a
C-space, is locally symmetric (see [13, corollary 30]).

For a four-dimensional manifold, the property of being 2-stein is equivalent to
being pointwise Osserman [20,37], i.e. at each point p, the eigenvalues of the Jacobi
operators Ry do not depend on the choice of unit vector y 2 TpM , though they may
depend on p. Combining this with the C-property, we see that the manifold must
be globally Osserman, i.e. the eigenvalues of Ry are independent of both the unit
vector y 2 TpM and p 2 M . But then, using a result of Chi in [17], the manifold is
either ®at or locally isometric to a rank-one symmetric space.

A K�ahler manifold whose Ricci tensor is cyclic-parallel has parallel Ricci tensor
(see [38]), and hence it is either Einstein or a local product of Einstein spaces. If we
start from a four-dimensional K�ahler manifold, which is also a C-space, it is either
(Hermitian) Einstein or a local product of Einstein spaces of dimensions at most
three. In both cases, the manifold must be locally symmetric.

(c) Four-dimensional locally homogeneous spaces with cyclic-parallel Ricci tensor
have been completely classi ed in [14], after partial results in [33]. We distinguish
three cases.

(i) If all Ricci eigenvalues are equal, the manifold is Einstein. From a theorem of
Jensen [23], the manifold must be locally symmetric.

(ii) If at most three Ricci eigenvalues are distinct, then three cases can occur.
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(a) (M4; g) is locally symmetric.

(b) (M4; g) is a local product of R and a speci c three-dimensional manifold.
If we impose the condition (3.1), then, from corollaries 3.2 and 3.5 (a),
we  nd that (M4; g) must again be locally symmetric.

(c) (M4; g) is locally isometric to a speci c four-dimensional Lie group. How-
ever, this Lie group does not satisfy condition (3.1), since, as pointed out
in [14, p. 134], it does not even satisfy the weaker Ledger condition L5.

(iii) If all four Ricci eigenvalues are distinct, then the resulting spaces do not
satisfy the Ledger condition L5 either (see again [14, p. 134]).

(d) A semi-symmetric space which is also a C-space is locally symmetric (see [8]).
(e) As the Ricci tensor » of a C-space is cyclic-parallel, its scalar curvature ½ is

constant. As (M; g) is also conformally ®at, it follows that the Ricci tensor is a
Codazzi tensor, i.e. (rX » )(Y; Z) = (rY » )(X; Z). Hence the Ricci tensor is parallel
and the same holds for the Riemann curvature tensor R.

(f) In both cases, the C-space property implies symmetry (see [3,18]).

To  nish the above proof, we still need the following result.

Proposition 3.6. Let (M; g) be a Sasakian space and suppose that, for any geo-
desic ® of (T1M; gS), the projected curve x = º ¯ ® has constant ¯rst curvature µ1.
Then (M; g) has constant curvature 1.

Proof. We refer to [5] for the basic de nitions and formulae in contact and Sasakian
geometry. Here we recall only that a Sasakian space (M; g) is equipped with a unit
Killing vector  eld ¹ such that R(X; Y ) ¹ = g( ¹ ; Y )X ¡ g( ¹ ; X)Y . The (1; 1)-tensor
 eld ’ given by ’X = ¡ rX ¹ satis es ’2 = ¡ Id + ² « ¹ , where ² is the one-form
dual to ¹ . Then

(rY R)( ¹ ; W )Y = rY (g(Y; W ) ¹ ¡ ² (Y )W ) ¡ R(rY ¹ ; W )Y

= ¡ g(Y; W )’Y + g(’Y; Y )W + R(’Y; W )Y

= ¡ g(Y; W )’Y + R(’Y; W )Y:

The condition (3.1) for V = ¹ then yields

0 = g((rY R)( ¹ ; W )Y; R( ¹ ; W )Y )

= ¡ g(Y; W )g(R( ¹ ; W )Y; ’Y ) + g(R(’Y; W )Y; R( ¹ ; W )Y )

= g(Y; W ) ² (Y )g(W; ’Y ) + g(Y; W )g(R(’Y; W )Y; ¹ ) ¡ ² (Y )g(R(’Y; W )Y; W )

= ² (Y )(g(Y; W )g(’Y; W ) ¡ g(R(’Y; W )Y; W )):

Now, take a unit vector W orthogonal to ¹ and put Y = ¹ + W + ’W . Then the
above equality reduces to

0 = ¡ 1 + g(R(’W; W )W; ’W ):

So (M; g) is a Sasakian space with constant ’-sectional curvature 1, and hence
is locally isometric to a unit sphere.
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Remark 3.7. Sasakian spaces belong to the larger class of contact metric (k; · )-
spaces de ned in [7]. These contact metric spaces are characterized by the curvature
condition

R(X; Y ) ¹ = k( ² (Y )X ¡ ² (X)Y ) + · ( ² (Y )hX ¡ ² (X)hY ) (3.2)

for all vector  elds X and Y , where h = ( 1
2
) L ¹ ’, L ¹ being the Lie derivative in the

direction of ¹ . The geometry of these spaces has been studied in [7] and [9], and
the non-Sasakian (k; · )-spaces have been explicitly classi ed in [10]. In particular,
the curvature tensor R and its covariant derivatives are completely determined
by condition (3.2). By a straightforward calculation using the explicit expressions
for R and rR, one can verify that a non-Sasakian contact metric (k; · )-space of
dimension 2n + 1 satisfying (3.1) has k = · = 0 and, hence, is locally isometric to
Rn + 1 £ Sn(4). In particular, it is locally symmetric.

From the condition (3.1), we can deduce a second condition on the Jacobi oper-
ators.

Proposition 3.8. Let (M; g) be a Riemannian manifold and suppose that, for any
geodesic ® of (T1M; gS), the projected curve x = º ¯ ® has constant ¯rst curvature µ1.
Then, for any vector ¯eld Y , it holds that R0

Y ¯ RY + RY ¯ R0
Y = 0, where RY =

R(¢; Y )Y and R0
Y = (rY R)(¢; Y )Y , or, equivalently, along any geodesic ¼ of (M; g)

the operator R2
¼ is parallel.

Proof. Put W = Y in (3.1) and polarize with respect to V . In this way, we get

0 = g(R0
Y U; RY V ) + g(R0

Y V; RY U ) = g((RY ¯ R0
Y + R0

Y ¯ RY )U; V )

and the proposition follows.

Corollary 3.9. Let (M; g) be a Riemannian manifold and suppose that, for any
geodesic ® of (T1M; gS), the projected curve x = º ¯ ® has constant ¯rst curvature µ1.
If the sectional curvature K of (M; g) is either strictly positive or strictly negative,
then (M; g) is locally symmetric.

Proof. Take any unit vector y and a unit vector v orthogonal to y such that Ryv =
¶ v. Then ¶ = K(y; v) and, from the assumption about the sectional curvature
of (M; g), it follows that ¶ is non-zero. Furthermore, we have

Ry(R0
yv) = ¡ R0

y(Ryv) = ¡ ¶ R0
yv:

If R0
yv is non-zero, then K(y; R0

yv) = ¡ ¶ . But this is impossible, since all sectional
curvatures must have the same sign. Hence R0

yv = 0 for all y and v as above, and
we must have rR = 0.

4. Projected geodesics with vanishing curvature ·i

The starting point for this section is the following result by Sasaki [36].

Theorem 4.1. Let (M; g) be a space of constant curvature. Then the projection
x = º ¯ ® of any geodesic ® of (T1M; gS) has constant curvatures µ1 and µ2 and
vanishing third curvature µ3.
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Remark 4.2. In [30, theorem 4], it was claimed, incorrectly, that this property
holds for the larger class of two-point homogeneous spaces (see also the proof of
theorem 4.17 further on).

In what follows, we investigate what spaces (M; g) are such that all projected
geodesics of (T1M; gS) have vanishing curvature µi for some i = 1; 2; 3.

4.1. ·1 ´ 0

Comparing (2.2) and (2.3), we see that µ1N1 = ¡ R(V; _V ) _x. Hence we have the
following result.

Proposition 4.3. Let (M; g) be a Riemannian space for which every projected
geodesic of (T1M; gS) is a geodesic of (M; g). Then (M; g) is ° at.

4.2. ·2 ´ 0

Next, take a non-®at space (M; g) and a geodesic ® (t) = (x(t); V (t)) of (T1M; gS)
for which the projected curve x(t) has non-zero  rst curvature. Suppose that µ2 ² 0.
Then we get from (2.2) and (2.3)

(r _xR)(V; _V ) _x ¡ µ0
1

µ1
R(V; _V ) _x = R(V; _V )2 _x + µ1

2 _x (4.1)

or, equivalently,

jR(V; _V ) _xj2(r _xR)(V; _V ) _x ¡ g((r _xR)(V; _V ) _x; R(V; _V ) _x)R(V; _V ) _x

= jR(V; _V ) _xj2(R(V; _V )2 _x + jR(V; _V ) _xj2 _x): (4.2)

Note that this last expression also holds for geodesics ® (t) = (x(t); V (t)) such that
x(t) has µ1 = 0.

Proposition 4.4. Let (M; g) be a Riemannian space. Then any geodesic ® of
(T1M; gS) projects to a curve x of M for which µ2 ² 0 if and only if

R(V; W )2Y = ¡ jR(V; W )Y j2Y; (4.3)

jR(V; W )Y j2(rY R)(V; W )Y = g((rY R)(V; W )Y; R(V; W )Y )R(V; W )Y (4.4)

for all vector ¯elds V , W and Y on M with jY j = 1.

Proof. Put t = 0 in (4.2) to obtain

jR(v; w)yj2(ryR)(v; w)y ¡ g((ryR)(v; w)y; R(v; w)y)R(v; w)y

= jR(v; w)yj2(R(v; w)2y + jR(v; w)yj2y):

Because we suppose that µ2 ² 0 for any projected geodesic, we can take y, v and w
arbitrarily, as long as jyj = 1. Replacing y by ¡ y and comparing the result with
the above, we obtain the conditions (4.3) and (4.4).

Using the condition (4.3), we can deal at once with locally reducible spaces and
odd-dimensional manifolds.
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Proposition 4.5. Let (M; g) be a locally reducible manifold and suppose that con-
dition (4.3) holds. Then (M; g) is ° at.

Proof. Let v and w be arbitrary tangent vectors at p 2 M . Condition (4.3) then
says that any tangent vector y at p is an eigenvector of R(v; w)2. Hence

R(v; w)2 = ¡ ¶ 2 Id; where ¶ depends only on v and w: (4.5)

Moreover, if ¶ = 0, then R(v; w) = 0 by the skew-symmetry of R(v; w).
Now decompose (M; g) in factors (M; g) = (M1; g1) £ (M2; g2). Take any v1,

w1 tangent to M1 and y2 tangent to M2. Obviously, R(v1; w1)2y2 = 0, and hence
¶ (v1; w1) = 0 and R(v1; w1) = R1(v1; w1) = 0. Consequently, (M1; g1) must be ®at.
Similarly, (M2; g2) is ®at.

Proposition 4.6. Let (M; g) be an odd-dimensional manifold and suppose that
condition (4.3) holds. Then (M; g) is ° at.

Proof. Take arbitrary tangent vectors v and w to M at a point p. Because R(v; w)
is a skew-symmetric operator on an odd-dimensional vector space, there exists a
non-zero tangent vector y at p such that R(v; w)y = 0. Hence, from (4.5), it follows
that ¶ (v; w) = 0 and also R(v; w) = 0. As v and w were arbitrary, as well as the
point p, we have R ² 0.

Condition (4.4) implies a nice geometric property.

Proposition 4.7. Let (M; g) be a Riemannian space satisfying condition (4.4).
Then (M; g) is a P-space.

We recall that a P-space is a Riemannian manifold (M; g) such that, for any
geodesic ¼ in (M; g), the eigenspaces of the Jacobi operator R¼ are parallel along ¼ .
Again, any locally symmetric space is a P-space, but many examples exist that are
not locally symmetric. Actually, the locally symmetric spaces are precisely those
Riemannian manifolds that are at the same time C- and P-spaces. (Again, we refer
to [2] for the proof of this statement and for further information and examples.)

Proof. Let ¼ be a geodesic in (M; g) and let ¶ be a smooth non-zero eigenfunc-
tion for R ¼ , de ned on an open dense subset of ¼ . Choose a corresponding unit
eigenvector  eld V : R¼ V = ¶ V . If we put Y = W = _¼ in (4.4), we can write

R0
¼ V = ¬ R ¼ V = ¬ ¶ V;

where ¬ is some function along ¼ which we need not specify. On the other hand,
the left-hand side of this equation can be rewritten as

R0
¼ V = r _¼ (R¼ V ) ¡ R ¼ (r _¼ V ) =

d ¶

dt
V + ¶ r _¼ V ¡ R¼ (r _¼ V ):

Combining these last two formulae, we obtain
µ

d ¶

dt
¡ ¬ ¶

¶
V + ( ¶ r _¼ V ¡ R ¼ (r _¼ V )) = 0:

Taking the interior product with V , we get that d ¶ =dt = ¬ ¶ and, consequently,
R ¼ (r _¼ V ) = ¶ r _¼ V . This means that r _¼ V is also an eigenvector  eld corresponding
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to the eigenfunction ¶ , so this eigenspace is parallel along ¼ . Since this holds for
all the eigenspaces corresponding to non-zero eigenfunctions, it must also be true
for the eigenspace corresponding to the zero eigenfunction. Hence (M; g) is a P-
space.

Combining proposition 4.7 with proposition 3.3, we get the following.

Proposition 4.8. Let (M; g) be a Riemannian space and suppose that any geodesic
® of (T1M; gS) projects to a curve x of M with constant µ1 and vanishing µ2. Then
(M; g) is locally symmetric.

Remark 4.9. In [31], Nomizu and Yano de ned a circle in a general Riemannian
manifold (M; g) as a curve with constant non-vanishing  rst curvature µ1 and van-
ishing second curvature µ2. The projected curves x in proposition 4.8 can there-
fore be described more geometrically as being either geodesics (µ1 = 0) or circles
(µ1 6= 0).

In the rest of this subsection, we consider locally symmetric spaces (M; g) for
which all projected geodesics of (T1M; gS) are curves with vanishing second curva-
ture µ2, i.e. for which the curvature equality (4.3) holds. Clearly, all two-dimensional
locally symmetric spaces satisfy this requirement. For higher-dimensional locally
symmetric spaces, we expect to  nd only ®at spaces. This is based partly on the
results about reducible manifolds and odd-dimensional spaces above, but also on
the explicit description of the geodesics of the unit tangent sphere bundles of spaces
of constant curvature in [36], in view of the fact that these spaces are the `simplest’
locally symmetric manifolds. As a  rst step, we show that the curvature condi-
tion (4.3) has profound implications for the rank of a symmetric space.

Proposition 4.10. Let (M; g) be an irreducible locally symmetric space and sup-
pose that (4.3) holds. Then the rank of its universal covering equals one.

Proof. Let ( ~M; ~g) be the connected and simply connected globally symmetric space
that is locally isometric to (M; g). If (M; g) satis es (4.3), then the same holds
for ( ~M; ~g). We can consider ~M as the quotient manifold G=H, where G = I0(M )
is the connected component of the isometry group of ~M and H is the isotropy
subgroup of G at some  xed point o 2 ~M .

If we denote by g and h the Lie algebras of the groups G and H , respectively,
then we have a decomposition of the vector space g in the form g = m © h, where
the subspace m satis es [h;m] » m and [m;m] » h. This subspace can be identi ed
with To

~M and, under this identi cation, the curvature tensor of ( ~M; ~g) at o is given
by ~Ro(X; Y )Z = ¡ [[X; Y ]; Z]. Furthermore,  xing a maximal Abelian subalgebra a
of m, the rank of ~M , rk ~M , equals the dimension of a.

Assume  rst that ( ~M; ~g) is an irreducible symmetric space of non-compact type.
We work with the root space decomposition of g with respect to the maximal Abelian
subalgebra a (see, for example, [19,22,27]). For every linear function ¬ : a ! R, we
de ne the vector subspace

g¬ = fX 2 g j [A; X ] = ¬ (A)X for all A 2 ag:

A linear function ¬ 6= 0 is called a root of g and g¬ the corresponding root space,
if g¬ 6= f0g. If we denote by ¤ the set of all roots, then we have the direct sum
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decomposition

g = g0 ©
X

¬ 2 ¤

g¬ :

Since a is Abelian, we have a » g0. Moreover, if ¬ 2 ¤ , then also ¡ ¬ 2 ¤ , and the
corresponding root spaces are isomorphic.

Now, let m¬ , ¬ 2 ¤ , be the image of g¬ with respect to the projection map of
g = m © h onto m. The following assertions are immediate consequences of [19,
proposition 2.14.2]:

(i) dimm¬ = dimg¬ ;

(ii) m¬ = m¡ ¬ = m \ (g¬ © g¡ ¬ );

(iii) m = a©
P

¬ 2 ¤ + m¬ where ¤ + is a subset of ¤ such that ¤ + \ ( ¡ ¤ + ) = ; and
¤ = ¤ + [ ( ¡ ¤ + ).

Next, we assume that the rank of ~M is at least two, i.e. dim a > 2. Fix a
root ¬ 0 2 ¤ + and choose two non-zero vectors U; V 2 a such that ¬ 0(U ) = 1
and ¬ 0(V ) = 0. Take a non-zero element

Y 2 m¬ 0 : Y = Y + + Y ¡; Y + 2 g¬ 0 ; Y ¡ 2 g¡ ¬ 0 :

Then [U; Y ] = Y + ¡ Y ¡ is a non-zero vector in h \ (g¬ 0
© g¡ ¬ 0 ) and [V; Y §] = 0.

Hence
~Ro(U; Y )V = ¡ [[U; Y ]; V ] = 0:

But the curvature operator ~Ro(U; Y ) satis es condition (4.5) and hence ¶ (U; Y ) = 0.
So, ~Ro(U; Y )Z = ¡ [[U; Y ]; Z] = 0 for any Z 2 m.

Since [U; Y ] is non-zero, the linear subspace k = fW 2 h j [W;m] = f0gg is
non-trivial. But k is an ideal of g. Indeed, for P 2 m, Q 2 h and W 2 k , we have

[[P + Q; W ];m] = [[P; W ];m] ¡ [[W;m]; Q] + [[Q;m]; W ]

and each of the terms evaluates to 0 by the de nition of k . According to [22, theo-
rem 3.3, p. 173], however, the isotropy subgroup H contains no non-trivial normal
subgroups of G. This gives a contradiction, hence dim a = 1 and the proposition is
proved for symmetric spaces of non-compact type.

Next we assume that ~M = ~G= ~H is a symmetric space of compact type and rank
greater than or equal to two. Let G=H be its dual symmetric space of non-compact
type and denote by ~g and g the Lie algebras corresponding to ~G and G, respectively.
Suppose that a Cartan decomposition g = m©h is given as before. It is well known
(see, form example, [22]) that ~g can be identi ed with the subalgebra im © h of the
complexi cation gC of g and we obtain a Cartan decomposition for ~g: ~g = im © h.
Moreover, if a is a maximal Abelian subalgebra of m, then ia is a maximal Abelian
subalgebra of im. In particular, rk(G=H) = rk( ~G= ~H). Putting ~U = iU , ~V = iV and
~Y = iY in the previous computation, we obtain a contradiction in this case too.

Before dealing with rank-one symmetric spaces of arbitrary dimensions, we  rst
look at the four-dimensional case.
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Proposition 4.11. There do not exist four-dimensional locally irreducible sym-
metric spaces for which (4.3) holds.

Proof. From propositions 4.5 and 4.10, we know that we only have to consider the
four-dimensional spaces of non-zero constant curvature and the four-dimensional
K�ahler spaces of non-zero constant holomorphic sectional curvature. For these, we
have explicit expressions for the curvature tensor, and we can check condition (4.3)
directly.

For a space of constant curvature c, c 6= 0, we take three linearly independent
vectors x, y, z such that g(x; y) = 0 and calculate

R(x; y)2z = ¡ c2(g(x; x)g(y; z)y + g(y; y)g(x; z)x);

which is not proportional to z if z is not orthogonal to both x and y.
For a space of constant holomorphic sectional curvature c, c 6= 0, take tangent

vectors x and z such that x, Jx and z are linearly independent. Then

R(x; Jx)2z = ¡ 1
4 c2g(x; x)(3g(x; z)x + 3g(Jx; z)Jx + g(x; x)z);

which is not proportional to z if z is not orthogonal to both x and Jx.

By means of submanifold theory, we can now prove the following de nitive result.

Theorem 4.12. Let (M; g) be a non-° at locally symmetric space and suppose that
any geodesic ® of (T1M; gS) projects to a curve x in M with vanishing second
curvature µ2. Then (M; g) is two dimensional.

Proof. From proposition 4.5, it follows that (M; g) is locally irreducible and propo-
sition 4.10 tells us that the rank of ( ~M; ~g) must be one. Because of propositions 4.6
and 4.11, we only have to deal with rank-one symmetric spaces of dimension at least
six. In [16], Chen and Nagano have described all maximal totally geodesic subman-
ifolds of these spaces. It follows at once from their list that there always exists a
four-dimensional totally geodesic submanifold. But then, clearly, this submanifold
is itself locally symmetric and also satis es condition (4.3). Hence it must be ®at
by the previous proposition. This implies that the rank of the ambient symmetric
space is at least four, which gives a contradiction.

Remark 4.13. In the appendix we give an alternative proof for the above theorem,
which uses the Hurwitz function on the one hand and a simple relation between
the rank and the dimension of an irreducible symmetric space on the other.

Combining proposition 4.8 with theorem 4.12, we obtain the  nal result.

Theorem 4.14. Let (M; g) be a Riemannian manifold. Then any geodesic ® of
(T1M; gS) projects to a curve x of M which is either a geodesic or a circle if and
only if (M; g) is either ° at or a two-dimensional space of constant curvature.

4.3. ·3 ´ 0

In this subsection, we investigate a possible converse to theorem 4.1. Again, we
start by relating the vanishing of µ3 to a curvature condition on the base manifold.
Contrary to the previous discussions, we start at once with locally symmetric spaces.
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Proposition 4.15. Let (M; g) be a locally symmetric space. Then any geodesic ®
of (T1M; gS) projects to a curve x in M for which µ3 ² 0 if and only if

R(V; W )3Y + (µ2
1 + µ2

2)R(V; W )Y = 0 (4.6)

for all vector ¯elds V , W and Y on M . The coe± cient µ2
1 + µ2

2 only depends on V
and W , not on Y . Its value is given by

µ1
2 + µ2

2 =
jR(V; W )2Y j2
jR(V; W )Y j2

for any Y such that R(V; W )Y 6= 0.

Proof. Condition (4.6) follows as before by comparing the expressions for _x(3)

in (2.2) and (2.3), taking into account this time the local symmetry of (M; g).
In order to show that µ2

1 + µ2
2 does not depend on Y , take arbitrary vectors v

and w at a point p in M and two vectors y1 and y2 for which R(v; w)yi 6= 0, i = 1; 2.
Put ¶ i = (µ2

1 + µ2
2)(v; w; yi). Then

R(v; w)3(cos ³ y1 + sin ³ y2) = ¡ ¶ 1R(v; w)(cos ³ y1) ¡ ¶ 2R(v; w)(sin ³ y2):

This should be proportional to R(v; w)(cos ³ y1 + sin ³ y2) for all values of ³ . Hence
¶ 1 = ¶ 2.

The expression for µ2
1 + µ2

2 follows at once from (4.6).

Again, the reducible case is easy to deal with.

Proposition 4.16. Let (M; g) be a reducible locally symmetric space and suppose
that (4.6) holds. Then (M; g) factors into a ° at component and an irreducible
locally symmetric space satisfying (4.6). Conversely, for any such product, the con-
dition (4.6) holds.

Proof. The only non-trivial statement is that one of the factors in the decomposition
of (M; g) must be ®at. So, suppose (M; g) = (M1; g1) £ (M2; g2) with both factors
non-®at. Then take Y1, V1, W1 tangent to M1 and Y2, V2, W2 tangent to M2

such that Ri(Vi; Wi)Yi 6= 0 for i = 1; 2. Next, consider the operator R(cos ³ V1 +
sin ³ V2; cos ³ W1 + sin ³ W2) for ³ 2 (0; 1

2 º ). It satis es (4.6) by assumption. As the
corresponding µ2

1 + µ2
2 is independent of the vector Y , putting  rst Y = Y1 and

then Y = Y2, we  nd the equality

cos4 ³
jR1(V1; W1)2Y1j2
jR1(V1; W1)Y1j2 = sin4 ³

jR2(V2; W2)2Y2j2
jR2(V2; W2)Y2j2 :

Note that Ri(Vi; Wi)
2Yi is non-zero for i = 1; 2, since otherwise we would have

0 = gi(Ri(Vi; Wi)
2Yi; Yi) = ¡ jRi(Vi; Wi)Yij2, contrary to the hypothesis. But then

we see that the above inequality cannot be valid for all ³ 2 (0; 1
2 º ), which gives a

contradiction. Hence one of the factors must be ®at.

We now prove a converse of theorem 4.1 within the class of locally symmetric
spaces.
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Theorem 4.17. Let (M n; g), n > 3, be a locally symmetric space such that the
projection x = º ¯ ® of any geodesic ® of (T1M; gS) has vanishing third curvature µ3.
Then (M n; g) is either a space of constant curvature or a local product of a ° at space
and a space of constant curvature.

Proof. The result is clearly valid in dimension three. We  rst exclude the four-
dimensional K�ahler manifolds of constant holomorphic sectional curvature c, c 6= 0.
For such a manifold, we can calculate explicitly

R(x; Jx)z = ¡ 1
2 c(g(x; z)Jx ¡ g(Jx; z)x + g(x; x)Jz);

R(x; Jx)3z = 1
8
c3g(x; x)2(7g(x; z)Jx ¡ 7g(Jx; z)x + g(x; x)Jz):

If we take linearly independent vectors x, Jx and z such that z is not orthogonal to
both x and Jx, then these two expressions are not proportional, and condition (4.6)
is not ful lled.

Without loss of generality, we may assume that (M n; g) is complete and simply
connected. If the rank of M is one and if (M n; g) has non-constant sectional curva-
ture, then it contains a totally geodesic complex projective plane CP 2 or a totally
geodesic complex hyperbolic plane CH2 (see, for example, [16,42]), and the above
calculation shows that condition (4.6) is not ful lled.

Next, assume that M is irreducible and of rank two. We  rst treat the case when
M is of compact type and consider the classi cation of maximal totally geodesic
submanifolds in rank-two symmetric spaces according to Chen and Nagano [16].
According to this classi cation, (Mn; g) contains a totally geodesic CP 2 unless M
is SU (3)=SO(3), GR(2; 2), GR(2; 3), GH (2; 2), SU(3) or Sp(2). So, if M is not one
of these spaces, condition (4.6) is not ful lled by the above calculation. The real
Grassmannian GR(2; 2) is isometric to S2 £ S2 and thus we may ignore it. If M is
GR(2; 3), GH (2; 2), SU (3) or Sp(2), it contains a totally geodesic Riemannian prod-
uct of two spaces of non-zero constant curvature and, from proposition 4.16, we see
that condition (4.6) does not hold. Thus the only remaining space is SU (3)=SO(3).

Let M = SU(3)=SO(3), G = SU(3) and K = SO(3) the isotropy group of G
at o 2 M . Denote the Lie algebras of G and K by g and k, respectively. Then
g = su(3) is the Lie algebra of all skew-Hermitian traceless (3 £ 3)-matrices with
complex coe¯ cients and k = so(3) is the Lie algebra of all skew-symmetric (3 £ 3)-
matrices with real coe¯ cients. Let m be the linear subspace of g consisting of all
skew-Hermitian traceless (3 £ 3)-matrices with purely imaginary coe¯ cients, which
gives us the usual Cartan decomposition g = k © m of g. We identify m with the
tangent space ToM of M at o in the usual way. Then the Riemannian curvature
tensor Ro of M at o is given by Ro(A; B)C = ¡ [[A; B]; C ] for all A; B; C 2 m. We
now de ne

A =

0

@
i 0 0

0 0 0

0 0 ¡ i

1

A ; B =

0

@
0 0 i

0 0 0

i 0 0

1

A ; C =

0

@
0 i 0

i 0 0

0 0 0

1

A :

By a straightforward calculation we get that Ro(A; B)3A = ¡ 16Ro(A; B)A on
the one hand and Ro(A; B)3C = ¡ 4Ro(A; B)C on the other, which implies that
condition (4.6) is not ful lled.
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If M is of non-compact type and rank two and di¬erent from SL(3; R)=SO(3), we
can use duality to  nd a suitable totally geodesic submanifold in M showing us that
condition (4.6) is not ful lled. Using the standard Cartan decomposition of sl(3; R),
we can describe the Riemannian curvature tensor Ro of SL(3; R)=SO(3) at a point
o as the negative of the curvature tensor of SU (3)=SO(3), which easily implies that
also in this case condition (4.6) is not ful lled. Altogether, it now follows that if M
is an irreducible Riemannian symmetric space of rank two, then condition (4.6) is
not ful lled.

Now we consider the case that M is of rank two and reducible. From proposi-
tion 4.16, it follows that M is isometric to R £ M1 where M1 is a complete sim-
ply connected Riemannian symmetric space of rank one. Using, again, the totally
geodesic CP 2- and CH2-argument, we see that condition (4.6) is not ful lled if
M1 has non-constant curvature. We have thus proved the theorem for all locally
symmetric spaces of rank one or two.

We now investigate the case that the rank of M is greater than two. We  rst
assume that M is irreducible and of compact type. Let G be the identity component
of the full isometry of M , o 2 M , and K the isotropy group of G at o. Let g = k ©m
be the corresponding Cartan decomposition of g at o. We choose a maximal Abelian
subspace a in m and denote by ¢ the restricted root system of the semisimple
symmetric pair (g; k) with respect to a. This induces the root space decompositions

k = k(0) ©
M

¬ 2 ¢

k( ¬ ) and m = a ©
M

¬ 2 ¢

m( ¬ ):

Let ¤ be a set of simple roots in ¢ . We  x two simple roots in ¤ and denote by
¢ 0 the closed subsystem in ¢ generated by these two simple roots. Recall that a
subsystem ¢ 0 of ¢ is called closed if ¢ 0 = ¡ ¢ 0 and if ¬ ;  2 ¢ 0 and ¬ +  2 ¢
implies ¬ +  2 ¢ 0. We now de ne k 0 » k and m0 » m by

k 0 =
M

¬ 2 ¢ 0

[k( ¬ ); k( ¬ )]k (0) ©
M

¬ 2 ¢ 0

k( ¬ ) and m0 = a0 ©
M

¬ 2 ¢ 0

m( ¬ );

where [¢; ¢]k (0) denotes the k(0)-component and a0 » a is the dual space of the linear
span of ¢ 0. Moreover, we de ne

g0 = k 0 © m0:

Since ¢ 0 is a closed subsystem of ¢ , general properties of root systems imply that
g0 is a subalgebra of g and k 0 is a subalgebra of k. It is easy to see that the centre of
g0 is trivial, which implies that (g0; k 0) is a semisimple symmetric pair (see also [40]).
Denote by G0 the connected Lie subgroup of G with Lie algebra g0 and consider the
orbit M 0 = G0 ¢ o of G0 through o. Since g0 is invariant under the Cartan involution
corresponding to the decomposition g = k © m, this orbit is totally geodesic in M .
Hence it is also a symmetric space and, by construction, semisimple and of rank
two. Thus M 0 is a totally geodesic Riemannian symmetric space of compact type
and with rank two. Since M 0 is of compact type, it has no Euclidean factor, and
since we already know that condition (4.6) is not ful lled for such symmetric spaces,
this implies that condition (4.6) is not ful lled for M as well.

In the non-compact case, we can use duality to produce a suitable totally geodesic
submanifold and apply an analogous argument.
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Finally, if M is reducible, the assertion follows from proposition 4.16 by taking
into account the solution for the irreducible case.

Appendix A.

In this appendix we give an alternative proof for theorem 4.12 based on a simple
relation between the rank and the dimension of an irreducible Riemannian sym-
metric space.

Lemma A.1. The rank rk M of an irreducible Riemannian symmetric space (M; g)
satis¯es 2 rk M 6 dim M .

First proof. In [4, pp. 312{317], all irreducible symmetric spaces are listed, along
with their dimensions and their rank. A case-by-case check reveals that the above
inequality holds.

Second proof. As in the proof of proposition 4.10, we consider the symmetric space
(M; g) as a quotient manifold G=H and take a Cartan decomposition g = m © h
of the Lie algebra g of G. Again, we  rst treat the case where M is an irreducible
symmetric space of non-compact type. We  x a maximal Abelian subalgebra a of m
and consider the corresponding root space decomposition of g,

g = g0 ©
X

¬ 2 ¤

g¬ ;

and the associated decomposition of m,

m = a ©
X

¬ 2 ¤ +

m¬ ; (A 1)

where ¤ + \ ( ¡ ¤ + ) = ; and ¤ + [ ( ¡ ¤ + ) = ¤ , the set of all roots. Recall also that
dimm¬ = dimg¬ > 1 for any ¬ 2 ¤ + .

Now de ne the subspace b of a by

b = fV 2 a j ¬ (V ) = 0 for all ¬ 2 ¤ + g:

Then b centralizes g, since
·
V; X0 +

X

¬ 2 ¤

X ¬

¸
=

X

¬ 2 ¤ +

¬ (V )(X ¬ ¡ X¡ ¬ ) = 0

for any V 2 b, X0 2 g0, X ¬ 2 g¬ . Hence we have Ro(Y; Z)b = ¡ [[Y; Z]; b] = f0g
and, by the de Rham decomposition, M is the product manifold M = B £ M 0,
where B is a Euclidean factor satisfying ToB = b. As M is irreducible by hypothesis,
b = f0g. Consequently, the number of linearly independent equations in the de ning
system of equations for b, f ¬ (V ) = 0 j ¬ 2 ¤ + ; V 2 ag, is greater than or equal to
dima = rk M . So, also using (A 1), we have

dim M ¡ rk M = dimm ¡ dima > j ¤ + j > rk M;

where j ¤ + j is the cardinality of ¤ + . This proves the lemma for symmetric spaces
of non-compact type.
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For a symmetric space ~M of compact type, consider its dual symmetric space M
of non-compact type (cf. the proof of proposition 4.10). Then

dim ~M = dim M > 2 rk M = 2 rk ~M;

and the lemma is proved also in this case.

Third proof. Let M = G=H be a Riemannian symmetric space of non-compact
type with Iwasawa decomposition G = KAN for G. Then AN is a solvable Lie
group acting simply transitively on M . Furthermore, dim A = rk M and N is the
nilradical of AN . In 1966, Mubarakzianov proved (see [32]) that the dimension of
the nilradical of a solvable Lie algebra is greater than or equal to one half of the
sum of the dimension of the Lie algebra and of its centre. Since AN is centreless,
we have

rk M = dim A = dim AN ¡ dim N = dim M ¡ dim N 6 1
2 dim M:

Using duality as before, we get the same result in the compact case.

With this inequality, we can give an alternative proof for theorem 4.12.

Proof of theorem 4.12. Let (M; g) be a non-®at locally irreducible symmetric space
satisfying the hypothesis of theorem 4.12. Then, at o 2 M , we have Ro(X; Y )2 =
¡ ¶ (X; Y )2 Id for all X; Y 2 ToM and ¶ (X; Y ) = 0 if and only if Ro(X; Y ) = 0. By
the skew-symmetry of Ro(X; Y ), we get

go(Ro(X; Y )Z; Ro(X; Y )W ) = ¡ go(Ro(X; Y )2Z; W ) = ¶ (X; Y )2go(Z; W ): (A 2)

If Ro(X; Y ) 6= 0, then (1=j ¶ (X; Y )j)Ro(X; Y ) is an almost complex structure on
ToM . In particular, dim M is even.

Recall that an operator T on a Euclidean vector space (m; h¢; ¢i) is called a similar-
ity if it satis es hT Z; T W i = ¼ T hZ; W i for all Z; W 2 m, where ¼ T is a scalar factor
(see [39]). From (A 2), we see that all curvature operators Ro(X; Y ), X; Y 2 ToM ,
are similarities of (ToM; go).

Now consider the symmetric space M = G=H with a decomposition g = m © h
as before. In particular, [m;m] » h, m can be identi ed with ToM and Ro(X; Y ) =
¡ ad([X; Y ])jm . In the proof of proposition 4.10, we showed that the subspace k =
fW 2 h j [W;m] = f0gg is an ideal of g contained in h and that, consequently,
k = f0g (see [22, theorem 3.3, p. 173]). Hence, for any vector U 2 m ¹= ToM , the
subspace fX 2 m j Ro(U; X) = ¡ ad([U; X])jm = 0g coincides with aU = fX 2 m j
[U; X] = 0g.

Next we recall that an element U 2 m is called a regular vector if aU is an Abelian
subalgebra of m (and hence aU is a maximal Abelian subalgebra of m). According
to [19, p. 79], such vectors exist in m. So, let U be a regular vector. But then the
kernel of the linear map RU : m ! End(m) : X 7! Ro(U; X) is a maximal Abelian
subalgebra aU of m. Hence

dim(RU (m)) = dimm ¡ dim aU = dim M ¡ rk M:

On the other hand, the linear subspace RU (m) » End(m) consists of similarities
of m, so we have

dim(RU (m)) 6 maxfdim Sg;
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where S ranges over all linear subspaces of End(m) consisting of similarities of m.
From [39, theorem 2.12], we obtain

maxfdim Sg = » (n);

where the Hurwitz function » : N0 ! N0 is given by

» (2mno) =

8
><

>:

2m + 1 if m ² 0 (mod 4);

2m if m ² 1; 2 (mod 4);

2m + 2 if m ² 3 (mod 4);

with n0 an odd number. Combining the above equalities and inequalities, we get

n ¡ rk M 6 » (n): (A 3)

Finally, from lemma A.1, we obtain

n 6 2 » (n): (A 4)

We will see that this inequality is only satis ed for a few values of n.
For that purpose, we  x an odd integer n0 and investigate the function

µn0 : m 7! µn0 (m) = 2mn0 ¡ 2 » (2mn0):

We are interested in those m, n0 for which µn0 (m) 6 0. Computing

µn0 (m + 1) ¡ µn0 (m) =

8
>>><

>>>:

2mn0 ¡ 2 if m ² 0 (mod 4);

2mn0 ¡ 4 if m ² 1 (mod 4);

2mn0 ¡ 8 if m ² 2 (mod 4);

2mn0 ¡ 1 if m ² 3 (mod 4);

we see at once that µn0 (m) is monotonely increasing for m > 4. Furthermore, we
have

m 1 2 3 4 m > 5

µn0
(m) 2n0 ¡ 4 4n0 ¡ 8 8n0 ¡ 16 16n0 ¡ 18 µn0

(m) > 0

So the inequality µn0 (m) 6 0 is satis ed only for n0 = 1 and m = 1; 2; 3; 4. Hence
dim M 2 f2; 4; 8; 16g.

It remains to show that the dimension of M cannot be 4, 8 or 16. For dim M = 4,
this was done in proposition 4.11. For dim M = 16, the inequality (A 3) says that
rk M > 7. However, from the list of irreducible symmetric spaces in [4, pp. 312{317],
we see that rk M < 7 when dim M = 16. So we can also exclude this possibility.

At this point, we have proved theorem 4.12, provided the dimension of M is
di¬erent from eight. Dealing with this last case is somewhat more involved. We
proceed as in the proof of theorem 4.12, using totally geodesic submanifolds. First,
we list all eight-dimensional irreducible symmetric spaces from [4, pp. 312{317]
and we note that the rank of these spaces is at most two. Explicitly, we have the
rank-one symmetric spaces

CP 4; RP 8; HP 2 and their non-compact duals
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and the rank-two symmetric spaces

G2(C4); G2(R6);
G2

SU (2) £ SU (2)
; SU (3) and their non-compact duals:

It su¯ ces to show that all these symmetric spaces have a totally geodesic sub-
manifold of dimension between three and seven. Indeed, these submanifolds are
themselves locally symmetric and satisfy the curvature condition (4.3), hence they
are ®at. Consequently, the rank of the ambient space must be greater than two,
which gives a contradiction.

In [16], a desired totally geodesic submanifold for each of the symmetric spaces
above is given, except for G2(C4). However, this symmetric space is isometric to
the real Grassmann manifold G +

2 (R6) of oriented two-planes in R6 and has CP 2 as
totally geodesic submanifold (see [1, p. 9]). So, the possibility that the dimension
of M equals eight can also be excluded.
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