Probability in the Engineering and Informational Sciences, 20, 2006, 1-44. Printed in the U.S.A.

NUMERICAL TRANSFORM
INVERSION USING GAUSSIAN
QUADRATURE

PETER DEN ISEGER

Cardano Risk Management

Rotterdam

The Netherlands

and
Erasmus University

Rotterdam

The Netherlands

E-mail: p.deniseger@ cardano.n/

Numerical inversion of Laplace transforms is a powerful tool in computational
probability. It greatly enhances the applicability of stochastic models in many fields.
In this article we present a simple Laplace transform inversion algorithm that can
compute the desired function values for a much larger class of Laplace transforms
than the ones that can be inverted with the known methods in the literature. The
algorithm can invert Laplace transforms of functions with discontinuities and sin-
gularities, even if we do not know the location of these discontinuities and singu-
larities a priori. The algorithm only needs numerical values of the Laplace transform,
is extremely fast, and the results are of almost machine precision. We also present
a two-dimensional variant of the Laplace transform inversion algorithm. We illus-
trate the accuracy and robustness of the algorithms with various numerical examples.

1. INTRODUCTION

The emphasis on computational probability increases the value of stochastic mod-
els in queuing, reliability, and inventory problems. It is becoming standard for mod-
eling and analysis to include algorithms for computing probability distributions of
interest. Several tools have been developed for this purpose. A very powerful tool
is numerical Laplace inversion. Probability distributions can often be characterized
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in terms of Laplace transforms. Many results in queuing and reliability among oth-
ers are given in the form of transforms and become amenable for practical compu-
tations once fast and accurate methods for numerical Laplace inversion are available.
Numerical Laplace inversion is much easier to use than it is often made to seem.
This article presents a new and effective algorithm for numerical Laplace inver-
sion. The new algorithm outperforms existing methods, particularly when the func-
tion to be inverted involves discontinuities or singularities, as is often the case in
applications.

The algorithm can compute the desired function values f(kA), k = 0,1,...,
M — 1 for a much larger class of Laplace transforms than the ones that can be
inverted with the known methods in the literature. It can invert Laplace transforms
of functions with discontinuities and singularities, even if we do not know the loca-
tion of these discontinuities and singularities a priori, and also locally nonsmooth
and unbounded functions. It only needs numerical values of the Laplace transform,
the computations cost M log(M) time, and the results are near machine precision.
This is especially useful in applications in computational finance, where one needs
to compute a large number of function values by transform inversion (cf. Carr and
Madan [8]). With the existing Laplace transform inversion methods, this is very
expensive. With the new method, one can compute the function values f(kA),
k=0,1,...,M — 1, at once in M log(M) time.

There are many known numerical Laplace inversion algorithms. Four widely
used methods are (1) the Fourier series method, which is based on the Poisson
summation formula (cf. Dubner and Abate [13], Abate and Whitt [4,5], Choudhury,
Lucantoni, and Whitt [9], O’Cinneide [17], and Sakurai [21]), (2) the Gaver-
Stehfest algorithm, which is based on combinations of Gaver functionals (cf. Gaver
[14] and Stehfest [22]), (3) the Weeks method, which is based on bilinear trans-
formations and Laguerre expansions (cf. Weeks [27] and Abate, Choudhury, and
Whitt [1,2]), and (4) the Talbot method, which is based on deforming the contour
in the Bromwich inversion integral (cf. Talbot [25] and Murli and Rizzardi [16]).

The new algorithm is based on the well-known Poisson summation formula
and can therefore be seen as a so-called Fourier series method, developed in the
1960s by Dubner and Abate [13]. The Poisson summation formula relates an infi-
nite sum of Laplace transform values to the z-transform (Fourier series) of the func-
tion values f(kA), k = 0,1,.... Unfortunately, the infinite sum of Laplace transform
values, in general, converges very slowly. In their seminal article, Abate and Whitt
[4] used an acceleration technique called Euler summation to accelerate the con-
vergence rate of the infinite sum of Laplace transform values. Recently, Sakurai
[21] extended the Euler summation to be effective for a wider class of functions. A
disadvantage of all the variants of the Fourier series methods is that unless one has
specified information about the location of singularities, the accelerating tech-
niques are not very effective and the convergence is slow.

We present a Gaussian quadrature rule for the infinite sum of Laplace trans-
form values. The Gaussian quadrature rule approximates accurately the infinite sum
with a finite sum. Then we compute the function values f(kA), k = 0,1,...,M — 1,
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efficiently with the well-known fast Fourier transform (FFT) algorithm (cf. Cooley
and Tukey [11]). For smooth functions, the results are near machine precision.
With a simple modification, we can handle known discontinuities in the points kA,
k =0,1,...., such that the running time of the algorithm is still insensitive to the
number of discontinuities and we get results near machine precision. We also extend
the Gaussian quadrature formula for the multidimensional Laplace transform and
present a multidimensional Laplace transform inversion algorithm. With this algo-
rithm, we can compute the function values f(k;A,,...,k;A;), k;=0,1,...,M — 1, at
once in M7 log(M/) time and the results are again of machine precision. We develop
a modification that gives results near machine precision for functions with singu-
larities and discontinuities on arbitrary locations. We also develop a modification
that is effective for almost all kinds of discontinuity, singularity, and local non-
smoothness. With this modification, we can obtain results near machine precision
in continuity points for almost all functions, even if we do not know the location of
these discontinuities and singularities a priori.

The accurateness and robustness of the algorithms is illustrated by examining
all of the Laplace transforms that are used in the overview article of Davies and
Martin (cf. [12]). We also demonstrate the effectiveness of the algorithm with an
application in queuing theory by computing the waiting time distribution for a M/D/1
queue.

2. OUTLINE OF THE METHOD

Letf be a complex-valued Lebesgue integrable function f, with e ““f(¢) € L'[0,00),
for all @ > c¢. The Laplace transform of fis defined by the integral

f(s):= fooe‘”f(t)dt, Re(s) > c. (2.1)
0

The Poisson summation formula relates an infinite sum of Laplace trans-
form values to the z-transform (damped Fourier series) of the function values f(kA),
k=0,1,....

THEOREM 2.1 (PSF): Suppose that f € L'[0,00) and f is of bounded variation.
Then for all v € [0,1),

i fla+2mi(k+v)) = i e ke~ 2Tk r (k) (2.2)
k=0

k=—o0

here, f(t) has to be understood as (f(t*) + f(t7))/2, the so-called damping factor
a is a given real number, and i denotes the imaginary number N —1.

A proof of this classical result can, for instance, be found in Abate and Whitt
[4] or Mallat [ 15]. The right-hand side of (2.2) is the (damped) Fourier series of the
function values { f(k); k = 0,1,...}. In this article we present a Gaussian quadrature
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rule for the left-hand side of (2.2); that is, we approximate this infinite sum with a
finite sum,

> B.f(a+ir, + 2miv),
k=1

with {8} given positive numbers and the {A,} given real numbers. In Appendix A
the reader can find these numbers for various values of n. We can compute the
function values { f(k);k = 0,1,...,M — 1} by

S o 2) S o 250)
— cos a-+i ; .
Mz Jj=0 Mz =1 ! ! Mz

here, M, is a given power of 2. With the well-known FFT algorithm (cf. Cooley and
Tukey [11]) we can compute these sums in M,log(M,) time. We can compute the
function values f(kA), k= 0,1,..., by applying (2.3) to the scaled Laplace transform

~ ( 1 .[s
fA S) - A f A ’
which is the Laplace transform of the function f,(z) = f(Az).

3. THE GAUSSIAN QUADRATURE RULE
We associate with the left-hand side of (2.2) an inner product, say <"'>Qn'

DEFINITION 3.1: Let the inner product {-,-), be given by

e~ S )5
f:8), = T |27 (k+ v)|? ! 2mi(k + v) § 2mi(k+v) )

Having 1(s) = 1 and Wf(s) = s 'f(s~"), we can write the left-hand side of
(2.2) as (¥f, 1), . The idea is to approximate this inner product with a Gaussian
quadrature rule. As usual, we associate with the inner product (-,-), the norm
Ilo,, which induced the sequence space L*(Q,). We say that a function f be-
longs to L*(Q,) iff the sequence { f(1/2mi(k + v))} belongs to L*(Q,). Let the
polynomials {¢?;n € Ny} be given by

g2 (s) = p,(s) = (=1)"e"2"p,(=s),
where

n o (k+n)! (—s)F

pa(s) =\2n+1>

k=0 (}’l_k)' k!

The following result holds.

https://doi.org/10.1017/50269964806060013 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060013

NUMERICAL TRANSFORM INVERSION 5

THEOREM 3.2: The set {q};j = 0,1,...} is a complete orthogonal set of polynomi-
als in L*(Q,).

The proof is given in Appendix E.
We can now easily obtain the desired Gaussian quadrature rule (cf. Definition
C.1 in Appendix C). We denote this quadrature rule with (-, ).

DEFINITION 3.3: The inner product {-,-)on is given by

n

(£:8)or = 2 el f(up)g" (up)-
k=1
The {u} are the zeros of the polynomial q!. The so-called Christophel numbers
{a}'} are positive numbers given by

1
3.1)

ap = - .
> gy (up)|?
i=1

It is well known (cf. Szegd [24]) that the roots of orthogonal polynomials are
all distinct and lie on the support of the inner product; thus, the roots {u}} are all
distinct and lie on the imaginary axis. Having 1(s) = 1 and W/ (s) = s~'f(s "), we
approximate (\Iff: W1), with our Gaussian quadrature rule and obtain the quadra-
ture formula

v

n f R 1 o R o]
> “|2f<—) ~ 3 femile+v) =3 exp(-2miku) (k)

v v
k=1 |:uk M k=—o0

where the last identity follows from the PSF formula (2.2). In Appendix F we explain
how we can compute the numbers {u}} and {«} efficiently. Considering that only
the real part yields the quadrature formula

i a,l’z Re (f(i» ~ i cos(2mkv) f(k), 3.2)
=1 |l My =0

we used here that the a are real. Similarly to the Abate and Whitt algorithm (cf.
[4]), we use a damping factor for functions with support contained in [0,00); that is,
we take the Laplace transform f(a + s), which is the Laplace transform of e ~“f ().
This yields the quadrature rule

F(v) =~ i e *cos(2mkv)f(k), 3.3)
k=0

where

F(v) = i a,fz Re(f(a + i))
= |yl My
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It remains to compute the function values f(k), k = 0,1,...,M — 1. We can realize
this by the discrete Fourier series inversion formula

1 1
~t's 2W(J+E)k F 2 (3.4)
~ — cos - , .
M, = M, M,

with M, a given power of 2. With the well-known FFT algorithm (cf. Cooley and
Tukey [11]), we can compute the sums (3.4) in M, log(M,) time. In Appendix H we
discuss the details of this approach.

Remark 3.4: The quadrature rule is also valid for a function f with support (—oo,0).
Formula (3.3) then reads as

oo

F(v) =~ > cosQmkv)e “*f(kA).
k=—c0
Remark 3.5: For smooth functions on (—0o0,00) or [0,c0), the quadrature formula is
extremely accurate. In Appendix G and, in particular, Theorem G.3 we prove that
for smooth functions, the approximation error of (3.3) is approximately

(n—D'n! =2 (i —14 a)

2 je—i277jv

Qn—1) = 2n+1)!

1
> (=1 , @3.5)

with @ some number in (0,2). This implies that if we compute the function values
f(kA), k= 0,1,..., by inverting the Laplace transform

o) =~ £( 2
fA §) = Af A )
with (3.4), the approximation error is of the order O(A?""!). Formula (3.5) shows

also that if

feV(G—1+a)
2n+1)!

is bounded, then the quadrature formula converges faster than any power of n.

Remark 3.6: The convergence of the quadrature rule is insensitive for discontinu-
ity in £ = 0 (cf. Remark G.4 in Appendix G).

Remark 3.7: Gaussian quadrature is a standard method for the numerical evalua-
tion of integrals (cf. Stoer and Bulirsch [23]). Piessens (cf. [18,19]) tried to apply
Gaussian quadrature directly on the Bromwich inversion integral. He reports
in [19] for the first Laplace transform of Table 1 (cf. Section 4.2) an average
approximation error of 1.0e-4 for a 17-point quadrature rule (for the values
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TABLE 1. Results for Analytical Test Functions

No. Function Laplace Transform
1 Jo(x) (s2+1)"1/2

2 exp(—x/2) (s+ !

3 exp(—0.2x)sin(x) ((s+02)2+1)!

4 1 5!

5 X s72

6 xexp(—x) (s+1)2

7 sin(x) (s2+ 17!

8 xcos(x) (s2—=D(s>2+1)2
No. A=1/16 A=1 A =10
1 le-15 le-15 Se-13

2 le-15 le-15 3e-16
3 2e-16 le-15 3e-12
4 le-15 le-15 le-15

5 3e-15 Se-15 6e-15

6 2e-16 3e-16 2e-16
7 le-15 le-15 Se-12
8 4e-16 6e-15 2e-12

Note: The mean absolute error ZkM:U] |e(kA)|/(1 + e(kA)) is presented
for the inversion of eight analytical functions in the points {0,
1/16,...,31/16},{0,1,...,31}, and {0,10,...,310}. From this table, we
can conclude that for analytical functions, the results are almost of

machine accuracy.

t=0,1,...,12). Our method gives an average approximation error of 1.0e-15 (cf.

Table 1).

4. A SIMPLE LAPLACE TRANSFORM INVERSION ALGORITHM

In this section we explain how we can approximate the quadrature rule (3.2) with a
simpler quadrature rule. In addition to this approximation being easier to imple-
ment, it is also numerically more stable. Therefore, we strongly recommend using

this quadrature rule.

4.1. The Algorithm

We start by writing the PSF (cf. (2.2)) as

k=—o0
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with
R R 1
Toals) = f(py +5),  py=a+2mi (v - E)' 4.2)

Applying the quadrature rule on the left-hand side of (4.1) yields the approximation

Z ka(i)tk +a+2miv) = 2 e 2mkvoTak (), 4.3)
k=1 k=0
with
05
M= —=—m and B,=—77. (4.4)
C i C )

Considering only the real part yields the formula

F(v) =~ i cos(2mkv)e *f(k), 4.5)
k=0
with
F.(v) = 2 B.Re( f(a+ i), + 2miv)). (4.6)
k=1

We make F, periodic by defining £,(0) and £,(1) equal to

kEnl'B" 5 Re( f(a+id,) + fla + id, + 20)).

It remains to compute the function values f(k), k = 0,1,...,M — 1. We can realize
this by the discrete Fourier series inversion formula

ak M,—1 . .
flk) ~ ¢ > cos<2AZJk>Fa< / > 4.7)

M, = 2 M,

with M, a given power of 2.

Finally, we show how to simplify (4.7). Since the coefficients of the polynomi-
als g, k=1,2,..., are real, we can order the roots {u}} such that the u{-> and %5,
are pairs of conjugate numbers. It follows from (3.1) that the Christophel numbers
a?? and a2, are equal. Using this symmetry, (4.4), and the symmetry cos(27v) =
cos(2m (1 — v)) yields (for n is even) that (4.7) can be simplified to

ak M2—1 k .
f(k) ~ ;7 z cos(zm )F;( / ), 4.8)

2 j=0 M, M,
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where

n/2

2> BiRe(fla+ir, + i2av)), 0<v<l
Fwy=14
> BeRe(fla+id) + fla+ir,+i2m)), v=0.

k=1

In Appendix A the reader can find these numbers for various values of n. With the
well-known FFT algorithm (cf. Cooley and Tukey [11]), we can compute the sums
(4.8) in M,log(M,) time. In Appendix H we discuss the details of the discrete Fou-
rier inversion formula (4.8). We can now present our Laplace inversion algorithm.

Algorithm

Input: f, A, and M, with M a power of 2
Output: f(€A), € =0,1,...,M — 1
Parameters: M, = 8M, a = 44/M,, and n = 16

Step 1. For k = 0,1,...,M, and j = 1,2,...,n/2, compute the numbers

2imk
R A atir + L2
f}k = Re f M2 ’ fk = X 2 ijj“k’
A !

n/2

and fo = Z Z,Bj(ﬁo +f;M2)'

Step 2. For € = 0,1,...,M, — 1, compute the numbers
1Mt 2tk
fo=— L cos( )
CoM, 2 M,

with the backwards FFT algorithm.
Step 3. Set f(£A) = e*‘f, for € = 0,1,...,M — 1.

In Appendix H we discuss the details of Steps 2 and 3 of the algorithm.

Remark 4.1: We can compute the function values f(kA), k = 0,1,..., by applying
the quadrature rule to the scaled Laplace transform

A (5) 1 /s
s)=—f1—|
Ja IXAWN
Remark 4.2: Extensive numerical experiments show that n = 16 gives, for all smooth
functions, results attaining the machine precision. For double precision, we choose

a = 44/M, and M, = 8M. For n = 16, we need 8 Laplace transform values for the
quadrature rule and we use an oversampling factor of M, /M = 8; thus, on average,
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we need 64 Laplace transform values for the computation of 1 function value. The
method can be efficiently implemented with modern numerical libraries with FFT
routines and matrix /vector multiplication routines (BLAS). If we are satisfied with
less precision, then we can reduce the oversampling factor and/or the number of
quadrature points. For other machine precisions, it is recommend to choose a some-
what larger than —log(e)/M,, with e the machine precision.

Remark 4.3: The choice of the parameter M, is a trade-off between the running
time and the accuracy of the algorithm. The actual running time is M,log(M,);
hence, from this perspective, we want to choose M, as small as possible. However,
in Step 3 of the algorithm we multiply the results with a factor exp(af) = exp(44€/
M,); to obtain a numerically stable algorithm, we want to choose M, as large as
possible. We recommend choosing M, = 8M.

Remark 4.4: Since the Gaussian quadrature rule is exact on the space of polynomi-
als of degree 2n — 1 or less, we obtain that

(90,90) 1
1 —cos(2mv) 1—cos(mv)’

k}: CY;(" = <1’1>Q:]' = <1’1>QU =
=1

This is clearly minimal for v = 0.5. This shows that (4.6) is numerically more stable
than the original Gaussian quadrature formula.

Remark 4.5: 1If n is odd, then one of the {u);k =1,2,...,n} is equal to zero. The
evaluation of (3.2) can be a problem in this case. To avoid this, we take n even.

Remark 4.6: The Gaussian quadrature formula (3.3) is extremely accurate for smooth
inverse functions (cf. Appendix G and Remark 3.5). Since the smoothness of the
inverse function f implies that the function

e 'f(t)  withs? = a + 27vi 4.9)

is a smooth function too, we can expect that the modified quadrature formula is
extremely accurate for smooth functions. All of the numerical examples support
this statement (cf. Section 4.2). In fact, many numerical experiments show that the
modified formula performs even better. The reason for this is that the modified
quadrature formula is numerically more stable.

4.2. Numerical Test Results

To test the method, we examined all of the Laplace transforms that are used in the
overview article by Davies and Martin (cf. [12]). In this subsection we discuss the
results for eight analytical test functions. These results are presented in Table 1. The
inversions are done in 32 points and so M = 32. We have taken M, = 8M = 256,
a =44/M,, and n = 16. The computations are done with double precision. We have
taken A = 1/16, A =1, and A = 10. We see that for smooth functions the approxi-
mation error seems to be independent of A. The reason for this is that the approx-
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imation error is dominated with round-off error. From all of the examples, we can
conclude that the method is very accurate, robust, and fast. In Section 6.2 we dis-
cuss the other test functions that are used in the overview article by Davies and
Martin (cf. [12]).

5. MULTIDIMENSIONAL LAPLACE TRANSFORM

Let f be a complex-valued Lebesgue integrable function with e~ 1**Yf(x,y) €
L'(R?2). The two-dimensional Laplace transform of fis defined by the integral

f(s, r) = Joofooe’(”“”f(x, y) dxdy, Re(s) > c¢;,Re(r) > ¢,. (5.1)
o Jo

In order to extend the algorithm of Section 4 to a two-dimensional Laplace trans-
form algorithm, we need the two-dimensional Poisson summation formula (PSF2).

THEOREM 5.1 (PSF2): Iff € L'(R%) and f is of bounded variation, then for all v

and w € [0,1),
Gab(vyw) = Gab(v, w)7 (5'2)
where
Gov,w)= > > fla+2mik+v),b+2mi(j+ ) (5.3
k=—o0 j=—o0
and

G = 3, emsheerinive i )

k=0 j=0
here, f(x,y) has to be understood as

JOGhy D)+ y )+ y ) +f(yT)
1 .

Similarly as in the one-dimensional case, we associate with (5.3) an inner prod-
uct; we call this inner product (-,-), .

DEFINITION 5.2: Let the inner product (-,-), be given by
(s @0, = 2w [ lup Pf (uy,up) g * (uf,u?),
ks j

where u} = 1/Q2mi(k + v)).

Having 1(s,r) = 1 and ¥f(s,r) = s 'r 'f(s~',r~ "), we can write (5.3) as
(Wf,¥1), . The idea is to approximate this inner product with a Gaussian quad-
rature rule. Similarly as in the one-dimensional case, we associate with the inner
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product (-,-), ~ the norm ||, ~and introduce the sequence space L*(Q,,,). We
say that a function f belongs to L*(Q,,,) iff the sequence {f (uy,u’)} belongs to

L*(Q,,). Let the polynomials {g{’} be given by

ai’(s,r) = g/ (s)g;"(r).
The following result holds.

THEOREM 5.3: The set{q;’;j =0,1,...} is a complete orthogonal set of polynomi-
als in L*(Q,,).

The proof is given in Appendix E.
We can now easily obtain the desired Gaussian quadrature rule. We denote this
quadrature rule by (-, ), .

DEFINITION 5.4: The inner product {-,-)on is given by

(£.8)on, = 2 2 aa? (i) (). (5.4)
k=1j=1
The {u}} are the zeros of the polynomial q!. The so-called Christophel numbers
{ay} are positive numbers given by

1

o) =

> lgrup))?
i=1

Having 1(s,r) = 1 and ¥f(s,r) = s 'r 'f(s~',r~'), we approximate
(¥f,1),, with Gaussian quadrature rule (5.4). By considering the real part of the
quadrature formula, we obtain

[e’e]

E,(v,0) = > 3 Re(f(a+2mi(k+v),b+27i(j+ ) (5.5)

k=—00 j=—00

= § > e *e b cos(i2m (kv + jw)) f(k,j),

k=0,=0
with
- non . 1 1
Fu(v,0) = 3 X By Re|fla+—.b+— ),
k=1j=1 Hi My
where
ay aj“’
Bl = o
TR Tl

The second equation in (5.5) follows from PSF2 (cf. (5.2)).
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As in Section 4, we approximate quadrature rule (5.5) with a numerically more
stable quadrature rule. Again, we start by writing the PSF2 (cf. (5.1)) as

I:Iab(v’ w) = Hab(v’ w)7

where

[o'e}

A,wo) = 3 X Re(f(ps+iQk+Dmpl+i@Qj+1)m),  (5.6)
k=—00 j=—00
with
1 1
py=a+2milv——| and p,=b+2wmi|v— -],
2 2
and

H,(v,0) = i i e %e b cos(i2m (kv + jw)) f(k,j).
k=0,=0

Applying the quadrature rule to (5.6) yields the approximation

Fp(v,0) =~ H,,(v,0) = H,,(v,0), (5.7)
with
Ey(v,0) = X, > By Re(flid, + a + 2miv, i, + b + 2miw)),
k=1j=1
where
A § gy
K= —a an = .
i Dol P

We make F,, periodic by defining

0,0) = F,(1,0) = = (F0,0) + F,(1,0)),

| =

- _ 1
F(v,0) = F(v,1) = 2 (F(v,0) + F,(v,1))
and by defining £,(0,0), £,(0,1), £,(1,0), and F,(1,1) all equal to

j—‘ (£.(0,0) + £,(0,1) + £,(1,0) + £,(1,1)).

https://doi.org/10.1017/50269964806060013 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060013

14 P. den Iseger

It remains to compute the function values f(k,j), k = 0,1,...,M;, — 1 and j = 0,
1,...,M, — 1. We can realize this by the discrete Fourier series inversion formula

ak pbj M=l Ny—l 1l /
£ > > cos<2'n'<— + ]_m)) F:lb(—,ﬂ), (5.8

Nl N210m0 Nl N2 Nl N2

where N, and N, are given powers of 2. With the well-known (two-dimensional)
FFT algorithm (cf. Cooley and Tukey [11]), we can compute the sums (5.8) in
NlNzlog(Nl N2) time.

Algorithm

Input:f, Ay, Ay, My, and M, with M, and M, powers of 2
Output:f(€A1,mA2), { = 0,1,...,M1 - 1, m = 0,1,...,M2 -1
Parameters: N, = 8M,, N, = 8M,, a = 44/N,, b = 44/N,, and n = 16

Step 1. For k=0,1,...,N,j=12,...,n,m=0,1,...,N,,and [ = 1,2,...,n,
compute the numbers

1 ) 2imk\ 1 ) 2imm
]jk,m—Re fl— y a+iA; + N, ,A—z b+ii, + N, ,

and the numbers

n n

2 2 'jl /klm

A

1 1
f}cm_A A

Set

. 1 . . . 1 .
Jom = 5 (fom +fN1m)’ Jro= E (fro +ka2)’

R I . R N
Joo = Z (oo +f1v10 +f01v2 +f1v, Nz)'

Step 2. For € =0,1,...,N; — 1l and m = 0,1,...,N, — 1, compute the numbers

1 1 Ca 277k 277mj
fom = f cos(
TNy N, 2 20 Y N,

with the backwards FFT algorithm.

Step 3. Set f(£A,,mA,) = e“e?™f,, for € = 0,1,...,M; — 1 and m = 0,
1,...,M2_ 1.
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Remark 5.5: We can compute the function values f(kA,, jA,), k,j = 0,1,..., by
applying the quadrature rule to the scaled Laplace transform

f () 11 /s r
s,r)=— —fl —, — .
o 5\,
Remark 5.6: In a similar way, we can invert higher-dimensional transforms and

compute the function values f(k,A,...,k;Ay), k; = 0,1,...,M; — 1, at once in
I, M;log (TT2, M) time.

Remark 5.7: We have tested the two-dimensional Laplace transform inversion with
many numerical experiments. All of these experiments show that the two-dimensional
inversion algorithm is extremely accurate for smooth functions. In Section 6 we
discuss the number of modifications to obtain the same accurate results for non-
smooth functions. We discuss them in the context of the one-dimensional inversion
algorithm. The modifications can also be used in combination with the two-
dimensional Laplace transform inversion algorithm.

6. MODIFICATIONS FOR NONSMOOTH FUNCTIONS

In Appendix G we prove that the inversion algorithm is extremely accurate for smooth
functions. In the following subsections we present a number of modifications to
obtain the same accurate results for nonsmooth functions. In Section 6.1 we discuss
a modification for piecewise smooth functions. With this modification, we can obtain
results near machine precision for functions with discontinuities in the points kA,
k € Z. In Section 6.2 we discuss a modification for functions with singularities at
arbitrary locations. With this modification, we can obtain results near machine pre-
cision for functions with discontinuities at arbitrary but a priori known locations. In
Section 6.3, we discuss a modification that is effective for almost all kinds of dis-
continuity, singularity, and local nonsmoothness. With this modification, we can
obtain results near machine precision in continuity points for almost all functions,
even if we do not know the discontinuities and singularities a priori. The modifi-
cations of the next subsections can, in principle, also be used in combination with
other Fourier series methods. The effectiveness of the modifications in combina-
tion with other Fourier series methods is a subject for future research.

6.1. Piecewise Smooth Functions

In this subsection we discuss a modification for piecewise smooth functions. With
this modification, we can obtain results near machine precision for functions with
discontinuities in the points kA, k € Z. The discontinuities of such a function are
represented as exponentials in the Laplace transform. To be more precise, suppose
that the function fis a piecewise smooth function with discontinuities in the points
k, k € Z. We can write the Laplace transform fas
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F(s) = Vis,e) = S e Bf(s),

with ]i the Laplace transforms of functions that are smooth on [0,00). The function
fis then given by

F6) = f=;

here, we use the translation property. Since the f; are smooth functions on [0,00), the
quadrature rule is accurate. Hence,

EB e ](a+27nu)f(lAk+su) ~ 2 e a(k+])eft2rr(k+/)vf(k)

k=0

oo

2 —ak —lzﬂkv‘f;(k ])
k=j
with s = a + 2riv. On the other hand,

2 2 IB e j(a+27ﬁv)f;‘(i/\k+ sg) — Z 2 e ](a+27nv)f(l/\k+s )
J k=1 j

k=1

n
E BiV(id, + 55, e T2V,
k=1

Combining the above equations yields

[e’e]

3 e e () ~ 3 BV iA+ g e ),
k=1

We now proceed as in Section 4 and compute the function values f(k), k = 0,
1,...,M — 1, with

where

F(v) = E B.Re(V(id, + a + 2miv,e 97 27V)),
k=1

Remark 6.1: 1If fis piecewise smooth, with discontinuities in the points ka, k € Z,
we can write the Laplace transform f as f(s) = V(s,e ). We scale the Laplace
transform to
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m ([ Ssm m sm
j— f R = — V —, e*sm
o a a a

and can obtain the values { f(ka/m)} with high precision.
As an example, consider the Laplace transform

N e
fls)="—.
S

We then obtain the quadrature formula

2 ,BkRe<
k=1

efamefiZﬂ'mu
a+ik +2miv)
Algorithm

Input: V: f(s) = V(s,e ), A, and M, with M a power of 2
Output: f(€A), € =0,1,...,M — 1

Parameters: M, = 8M, a = 44/M,, and n = 16

Step 1. For k=0,1,...,M, and j = 1,2,...,n, compute the numbers

s 1 ) 2imk 2imk
fix = Re|V A a+ik; + M, ,exp| —|a+ o,

and the numbers

f 12 Bf d f fo +fM2
= — fi an = .
S NE Rl 0 2
Step 2. For € = 0,1,...,M, — 1, compute the numbers

1 Mt 27k
= — . COS
=0, Zofk ( M, )

with the backwards FFT algorithm.
Step 3. Set f(€A) = e®‘f, for € =0,1,...,M — 1.

In Appendix H we discuss the details of Steps 2 and 3 of the algorithm.

We test this modification on two discontinuous test functions. The results are
presented in Table 2. The inversions are done in 32 points and so M = 32. We have
taken M, = 256 = 8M and A = 1/16 and we have taken a = 44/M,. In addition to
the choice of the previous parameters, we have taken n = 16.
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TABLE 2. Results for Noncontinuous Test Functions

No. Function Laplace Transform MAE
17 H(t—1) s~ lexp(—s) 2e-15
18 Square wave s7H(1 + exp(—s))7! 8e-15

Note: The mean absolute error (MAE) is presented for the inversion of two noncon-
tinuous functions in the points 0,1/16,..., 31/16. We have used the modification of
Section 6.1. From this table, we can conclude that for noncontinuous functions the
results are also very accurate. We mention that, even in the discontinuity points, we
have a precision of 15 digits.

We can conclude that our method is also very accurate, robust, and fast for
discontinuous functions. In the next subsection we show the effectiveness of the
modification of this subsection with an application from queuing theory.

6.1.1. An application in queuing theory. Consider the M/G/1 queue arrival
rate A and general service time distribution B with first moment up. It is assumed
that p = Aup < 1. It is well known that the distribution of the stationary waiting
time W is given by (see, e.g., Asmussen [6])

W(x) = P{W=x}=(1—-p) >, p"By"(x), (6.1)

n=0

with By(x) = (1/up) [, (1 — B(t)) dt. The Laplace transform W of W is given by

. _l 1—0p
Wis) =1 1—B(s)\’
o)

As an example, consider the M/D/1 queue; that is, the service times are determin-
istic, with mean 1. For this case, the Laplace transform W is given by

6.2)

. 1 1-—
(s) = - &

s1—p(l—e*)/s 6.3)

Observe that W(s) contains the factor exp(—s). Therefore, introduce the function

1 1—p
V(s,z) = =

. 6.4
s 1=p(d—2)/s 6.4)

For this choice, it follows that W(s) = v(s,exp(—s)) and, therefore, we can apply
the modification of Section 6.1. We have calculated the waiting time distribution
for p = 0.7, 0.8, 0.9, and 0.95. By comparing our results with results of the algo-
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TABLE 3. Results for the Waiting Time
Distribution in the M/D/1 Queue

p MAE
0.7 3e-14
0.8 Se-14
0.9 8e-14
0.95 le-13

Note: The mean absolute error (MAE) is presented for the inver-
sion of the Laplace transform of the limited distribution of the
waiting time in an M/D/1 queue. We have taken p = 0.7, 0.8,
0.9, and 0.95. We have calculate the values W(k), k= 0,1,...,63.
We have taken A = 1, n = 16 and a = 44/M,.We used the mod-
ification of Section 6.1.

rithm in Tijms [26, p. 381], it appears that we can calculate the waiting time dis-
tribution with near machine accuracy in a fraction of a second; see Table 3.

Remark 6.2: We can generalize the above approach to a service distribution

D(x) = 2 Pk l{xék}'
k=1
‘We then obtain
l—p

1- p<1 - pkzk>/s
k=0

1
V(s,z) = =
S

6.2. Functions with Singularities

In this subsection we discuss a modification for functions with singularities at arbi-
trary locations. With this modification, we can obtain results near machine preci-
sion for functions with discontinuities at arbitrary but a priori known locations.
Suppose that there is a singularity in ¢+ = «a, with « € R. We then consider the
function

fi(x) = w(x)f (x), (6.5)

where the so-called window function w is a trigonometric polynomial with period 1,
w(0) =1, and w(a) = 0, and q is a positive integral number. Hence, the function f,,
is smooth in t = a and

(k) =f(k), k=0,1,....
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We can compute the function values f (k) by inverting the Laplace transform £, with
the algorithm of Section 4. The following class of window functions gives results
near machine precision:

cos(pma)

w(x) = (cos(pﬂ'x) — sin(pwx))

sin(pra)
— (Aeipﬂ'x + Be—ipﬂ'x)Z, P e N,

where the coefficients A and B are given by

1 1 cos(prma) 1 1 cos(pma)
A=|\-—-—————| and B=|(-+———"—
2 2i sin(prwa) 2 2i sin(pma)

and p is chosen such that (pamod 1) is close to 3. We obtain by the modulation
property that

R 29 (2q R
f.(s)=> A2 kBrf(s + 2ap (g — k).
=0\ k
Remark 6.3: Suppose that there are singularities in the points «;, j = 1,2,...,m.

Then we can multiply the windows; that is, we take

w(o) = [Lwf(),

where w; is a trigonometric polynomial with period 1, w;(0) = 1, and w;(«a;) = 0.
Remark 6.4: 1f we want to compute f(kA), we have to replacefw with (l/A)fw(s/A).

If there is a singularity in # = 0, then A and B are not defined. Consider, there-
fore, the function

mX

w(x) = sin? (7> (6.6)

The function w has period 2, w(1) =1, w(a) = 0, and dw(a)/da = 0. Hence, f,, is
smooth in t = 0 and

fok+1) = f2k+ 1), k=0,1,....

) \24 i/ Dx _ —i(m/2)x\2q
sin| —
( ( 2 )) ( 2i )
29 24 (D
= (l) 24( q)(_l)qkei‘n'(qk)x
2) =0\ k
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and the modulation property that

. 1\ 24 (2¢ .
fuls) = > > ( )(—1)q_qu(s + im(q — k)).
=0\ k

We can compute the function values f(2k + 1), with the algorithm of Section 4. If
we want to compute f(A(2k + 1)), we have to replace f,, with (1/A) f,,(s/A).

Remark 6.5: For singularities at ¢ = 0 of the order x%, 0 < a < 1, we can obtain
with g = 1 results near machine precision. For singularities at # = O of the order x ¢,
—1 < a <0, with g = 2 we can obtain results near machine precision. For discon-
tinuities and singularities at arbitrary #, we recommend using g = 6.

Remark 6.6: Since the composite inverse function f,,(fA) is a highly oscillating
function, we recommend choosing n = 32. With this choice, we obtain results near
machine precision. If the inversion point is close to a singularity, we can compute
f(2) accurately by inverting the scaled Laplace transform

fiu(t) = w(t)f(At),

with A small enough. The price we have to pay for a small A is that M becomes
large (M ~ t/A).

Remark 6.7: The idea of smoothing through the use of multiplying smoothing func-
tions has been discussed in the context of Euler summation by O’Cinneide [17] and
Sakurai [21]. O’Cinneide called the idea “product smoothing.”

We end this subsection with the results for eight test functions with singulari-
ties that were in the overview article of Davies and Martin (cf. [12]). These results
are presented in Table 4. The inversions are done in 32 points and so M = 32. We
have taken M, = 256 = 8 M, and for all of the examples, we have taken a = 44/M,.
We have used the window function w () = sin(7r¢/2)?, and we have taken g accord-
ing to Remark 6.5. In addition to the choice of the previous parameters, we have
taken n = 32. The computations are done with double precision. We have taken A =
1/16, A =1, and A = 10. We see that, for smooth functions, the approximation error
seems to be independent of A. The reason for this is that the approximation error is
dominated with round-off errors and the error caused by the oscillation of the win-
dow function.

From all of the examples, we can conclude that the method is very accurate,
robust, and fast for functions with singularities.

6.3. A Robust Laplace Inversion Algorithm

In this subsection we discuss a modification that is effective for almost all kinds of
discontinuity, singularity, and local nonsmoothness. With this modification, we can
obtain results near machine precision in continuity points for almost all functions,
even if we do not know the discontinuities and singularities a priori. As in Sec-
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TABLE 4. Results for Continuous Nonanalytical
Test Functions

No. Function Laplace Transform
9 (mx)"V2 cos(2x/?) sT2exp(—s™)

10 (mx)~1/? s 12

11 — v —In(x) s 'n(s)

12 (e—x/4 _ e—x/2)(4,n.x3)—l/2 (s + %)1/2 _ (s + 3,1)1/2
13 e (mx3)T1/2 exp(—4s'/?)

14 sin(x)/x arctan(1/s)

15 x!/3 r(3)s™ 43

16 x4 rG)s—*

No. A=1/16 A=1 A=10
9 3e-14 8e-15 3e-15
10 le-14 4e-15 4e-15
11 2e-15 le-14 2e-14
12 3e-15 8e-16 4e-16
13 3e-16 4e-16 le-14
14 le-14 le-15 Te-16
15 9e-15 le-14 2e-14
16 8e-15 le-14 2e-14

Note: In the table the mean absolute error Efzole(A(Zk + 1)/(1 + e(AQ2k + 1))
is presented for the inversion of eight functions with singularities in x = 0. We have
computed the function values in the points {1/16, 3/16,...,63/16},{1, 3,...,63},
and {10,30,..., 630}.

tion 6.2, we compute the function value f(k) by inverting the Laplace transform of
the function

Lo () = wi (D) f(0),

but now the window function depends on the point k; that is, for the computation of
each function value f(k) we use a different window function. We choose the win-
dow function such that the e-support {t;|e”“f, (1)| = €} of f,, is contained in
[k — &8, k + 8], with § given positive control parameters, € a given tolerance, and
wy (k) = 1. The advantage of this construction is that it is sufficient that the function
fis smooth on [k — 8, k + 8], in order that the function f,, is smooth on [0,c0).
Thus, we only need that the function fis smooth on [k — &, k + 8] to compute f (k)
accurately with the quadrature rule. Hence, we can obtain results near machine pre-
cision in continuity points for almost all functions.
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A second advantage is that we can efficiently invert the resulting z-transform.
As the e-support of f,, is contained in [k — &, k + 8] implies that

é Re(fwk (iA; + 2miv + a)) ~ 2 w,(j)f(j)e 7 cos(2mjv)
= 2 w)f(e 7 cos2mjv)
JEk—5. k+5]

(the first equation follows from (4.5)) and the N-point discrete Fourier transform
computes the numbers

fk = 2 fk+jN

(cf. Appendix H), we can compute the function values f (k) efficiently with an N-point
discrete Fourier transform (N =1 + 2|5]).

We can construct the window functions with the desired properties as follows:
Let w be a smooth bounded function satisfying

lw(t)| =e, t€[-P/2,-8]U[8,,P/2], w(0) =1,

with P a given positive number. We choose the damping factor a such that

€
le “f(t)| = ———— fort>P. (6.7)
sup  [w(x)]
x€[—P/2,P/2]

We extend w to a periodic function with period P by setting
w(t+ kP) = w(t), t€[-P/2,P/2), and kE Z.
The desired window function wy is defined by
we(t) = w(t— k).

We will now show how we can efficiently evaluate the Fourier series £,

F(v) = E B;Re( £, (iA; + 2miv))
j=1
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for k=10,1,...,M — 1. Since w has period P and w is smooth, we can expand w in
a fast converging Fourier series. Thus, we can write

o0
we(t) =w(t—k)y= > ez”i”‘/PAje’2’T’:7’/P,
j=—o

with

1 P/2
A= —f w(t)e?™i/P dt.
P J_pp

This yields that the Laplace transform of f,, is given by
7 —_ S 2ijk/P F 27le
fwk(s)—AE e A fls+ e +al. (6.8)
J=—0o

Since w is a smooth periodic function, the {A;} converge rapidly to zero. Hence, we
can approximate f,, accurately with

N J ; . 2ij
Fols) = D emimira; f<s + Tj + a), 6.9)

j==1

for J large enough. Hence,

; .
y J
F(v) = Re( > eZ”Uk/PAjG(v + 1—3>>,

j=—J
with
Gv) = ,ka(a + Ay + 27iv).
k=1

Moreover, if J is a multiple of P, then

P-1 -1 I
F(v) = Re( > 2wkt N AmP+lG(U +m + ;)), (6.10)
=0

m=—L
with L = J/P. We make F periodic by defining F(0) and F.(1) equal to

1
5 (F(0) + F(1)).

We can compute the sums (6.10) in Llog(L) + J time with the FFT algorithm (cf.
Cooley and Tukey [11]). It remains to compute the function values f(k), k = 0,
1,...,M — 1. We can realize this by the discrete Fourier series inversion formula
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ek -1 27jl j
— > COS(T F\=< |
m i=o m m

with m =1+ 2| 8] and [ = kmod(71). If § = 1, then

flk) =

flk) ~ (—1)"6“"&(%)-

Let us finally define the window function w. A good choice is the so-called
Gaussian window (cf. Mallat [15]). The Gaussian window is defined by

1/1V
wo-en(5(7))

with o a given scale parameter. Given a prespecified tolerance €, the scale param-

eter o is chosen such that
1/6\
exp| —=| — <ee. (6.11)
2\o

We can compute the numbers A; by

1 (P2 1/ 1tV B 1 [ 1/ 1tV .
— expl —=| — | |e?™ P dt~ — exp| —=| —| |e?™ /" dt
P —P/2 2 ag P —o0 2 (o2

S 42

p 2\ P

The truncation parameter L (in (6.10)) is chosen as

oN2mT 1
L = arg min {L: P oXP (—5 (27TL)20'2> < e} (6.12)

and 6 is chosen as 6 = 1.
Algorithm

Input: f, e (desired precision), A, and M, with M a power of 2
Output: f(€A), € =0,1,...,M — 1
Parameters: P = 8M, 6 = 1, L (cf. (6.12)), o (cf. (6.11)), and n = 48

Step 1. For k= —PL,...,PL — 1 andj = 1,2,...,n, compute the numbers

2imk
R | a+id +im+
f]\'k:Re f P ’

A
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for k= —PL,...,PL — 1, compute the numbers

L 12 N
Jie = Z 2 ijj“k’
j=1

and forj = 0,1,..., P — 1, compute the numbers

L—1

8 = E A,pijfnpss
m=—L

oN\2m 1 (27 \?
A= exp(—= (=] o2).
P 2\ P

Step 2. Compute f; = Re(E_l’:O1 e?™Pg), fork=0,1,..., P — 1, with the FFT
algorithm.

Step 3. Compute f(kA) with f(kA) = (—1)*ef,, for k =0,1,...,M — 1.

with

Remark 6.8: The composite inverse functions f,, are highly peaked; therefore we
recommend choosing n = 48. With this choice, we obtain results near machine
precision.

Remark 6.9: For an arbitrary window function, we can also compute the coeffi-
cients A; efficiently with the fractional FFT (cf. [7]). Since |w(t)| < e for
[-P/2,—6,] U [b,,P/2], we can write this discrete Fourier transform as

1 2 k k
A~ — 3wl = |eCmimwm ~ S gy = | e@miPEN)

PN =—=p \N —s=km=s, \M

with M a power of 2. This expression can be efficiently computed with the frac-
tional FFT.

Remark 6.10: 1f the inversion point is close to a singularity, we can compute f(¢)
accurately by inverting the scaled Laplace transform

S (8) = wi (1) f(A1).

To be more precise, suppose that f is smooth on the interval [k — &, k + &, ] and that
the function w; has e-support contained in [k — 8, k + 8]. If we choose A = §,/86,
then f,, is a smooth function. The price we have to pay for a small A is that the
period of wy is large and that we need a larger number of terms for an accurate
approximation of the Fourier series (6.8).

We end this subsection with a discussion of the numerical results for eight test
functions with singularities that were used in the overview article of Davies and
Martin (cf. [12]). These results are presented in Table 5. The inversions are done in
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TABLE 5. Results for Continuous Nonanalytical
Test Functions

No. A=1/16 A=1 A=10

9 3e-14 2e-14 Te-15
10 de-14 le-14 de-15
11 Te-15 2e-14 2e-14
12 5e-15 le-15 6e-16
13 3e-16 9e-16 9e-17
14 le-14 3e-15 8e-16
15 le-14 2e-14 2e-14
16 le-14 2e-14 2e-14

Note: The mean absolute error 224:0] le((k + 1)A)|/(1 + e((k + 1)A)) is
presented for the inversion of eight functions with singularities in ¢t = 0 of
Table 4. We have computed the function values in the points {1/16, 1/8...,
31/16},{1,2,...,31}, and {10,20,...,310}. From this table, we can conclude
that for functions with singularities the results are near machine accuracy.

32 points and so M = 32. We have taken P = 256 = 8 M, and for all of the examples,
we have taken a = 44/M,. In addition to the choice of the previous parameters, we
have taken n = 48, o = 6V2, and L = 6. The computations are done with double
precision. We have taken A = 1/16, A =1, and A = 10. We see that the approxima-
tion error seems to be independent of A. The reason for this is that the approxima-
tion error is dominated with round-off error and the error caused by the highly peaked
window function. We also test the method on two discontinuous functions. These
results are presented in Table 6. For this example, we have taken A = 1/16. From all
of the examples, we can conclude that the method is very accurate, robust, and fast.

TABLE 6. Results for Noncontinuous Test Functions

No. Function Laplace Transform MAE
17 H(t—1) s lexp(—s) le-13
18 Square wave s + exp(—s))7! le-13

Note: The mean absolute error (MAE) is presented for the inversion of two noncon-
tinuous functions in the points 0, 1/16...,15/16, 17/16,...,31/16. From this table,
we can conclude that for noncontinuous functions, the results are also very accurate.
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APPENDIX A
Some Weights and Nodes for the Quadrature Rule

A; B; Aj B
n=16 n =48
4.44089209850063e-016 1 0 1
6.28318530717958 1.00000000000004 6.28318530717957 1
12.5663706962589 1.00000015116847 12.5663706143592 1
18.8502914166954 1.00081841700481 18.8495559215388 1
25.2872172156717 1.09580332705189 25.1327412287183 1
34.296971663526 2.00687652338724 31.4159265358979 1
56.1725527716607 5.94277512934943 37.6991118430775 1
170.533131190126 54.9537264520382 43.9822971502571 1
50.2654824574367 1
n=32 56.5486677646182 1.00000000000234
0 1 62.8318530747628 1.00000000319553
6.28318530717958 1 69.1150398188909 1.00000128757818
12.5663706143592 1 75.3984537709689 1.00016604436873
18.8495559215388 1 81.6938697567735 1.00682731991922
25.1327412287184 1 88.1889420301504 1.08409730759702
31.4159265359035 1.00000000000895 95.7546784637379 1.3631917322868

37.6991118820067

1.00000004815464

105.767553649199

1.85773538601497

43.9823334683971 1.00003440685547 119.58751936774 2.59022367414073
50.2716029125234 1.00420404867308 139.158762677521 3.73141804564276
56.7584358919044 1.09319461846681 168.156165377339 5.69232680539143
64.7269529917882 1.51528642466058 214.521886792255 9.54600616545647
76.7783110023797 2.4132076646714 298.972429369901 18.8912132110256
96.7780294888711 4.16688127092229 497.542914576338 52.7884611477405

133.997553190014 8.3777001312961 1494.71066227687 476.448331869636

222.527562038705 23.6054680083019

669.650134867713 213.824023377988

Note: A; and B; for n = 16, 32, and 48.

We tabulated only the numbers A; and 8; for j = 1,2,...,n/2. The numbers A, _; are
given by —A; — 277. The numbers S, ; coincide with 3;.

APPENDIX B
The Fourier Transform

We start by introducing the Fourier transform over the space L'(—o0,00) of Lebesgue inte-
grable functions. For a function f € L!(—o0,00) and pure imaginary s, the Fourier integral
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fori= [ epera
is properly defined. In fact,

Foi= [ rwla=i, ®.1)

and f is a continuous function. If the support of f is contained in [0,00), then we call f the
Laplace transform of f. If f € L'(—ico, io0), the space of complex-valued Lebesgue integra-
ble functions, satisfies (1/27i) [~ /| f(s)|ds < co, then the inverse Fourier integral is prop-
erly defined.

THEOREM B.1. Iff € L'(—o00,00) and f € L'(—ico, io0), then
1 ioo R
f(t) = —J e"f(s)ds
2 J i
is properly defined and
1 i R .
== [ 1folds =171,
Tl J—joo

This theorem can be found in any text about Fourier transforms; we have taken it from
Mallat [15]. It follows immediately that f € L!(—ioo, ico) iff fis a continuous function.

APPENDIX C
Gaussian Quadrature

DErFINITION C.1 (Gaussian Quadrature (cf. Szeg6 [24])): Let the inner product {-,-) be
given by

(fig)= ff(t)g*(t)u(dt),

with u a given positive measure and 1 a subinterval of the real axis or a subinterval of the
imaginary axis. Let {q;} be an orthogonal set w.r.t. this inner product. Let the inner product
(+5")n given by

n

(&= 2 o ) g™ (ug),
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with {u;;k = 0,1,...,n — 1} the simple roots of q, and the strictly positive numbers {ay;
k=0,1,...,n — 1}, the so-called Christophel numbers, be given by

1 A 1 1

n
q=—"-"=

Z} |qj(”k>|2

A,y 0q,(w) g ()

with A,, the highest coefficient in q,,. The roots {u;;k = 0,1,...,n — 1} € L. The inner product
(+,)n is called the Gaussian quadrature rule and is the unique nth-order quadrature rule

satisfying
<p51>n = <P,1> fOV allp € Ton—1s

where 1, is the space of polynomials with degree not exceeding n and 1 is the constant
Sfunction 1(¢) = 1.

APPENDIX D
Legendre Polynomials

The Legendre polynomials {¢,;n € Ny} are a complete orthogonal polynomial set in
L*([0,1]). These polynomials {¢,;n € Ny}, ¢,:[0,1] = R are given by

\[2 +1
(1) = +D"(z"(1 — 0,

with D the differential operator.
Consider the polynomials

" (k+n)! (—s)k

pa(s)=\2n+1> ——

k=0 (l’l_k)' k!

A routine computation shows that the Laplace transform ¢, of the nth Legendre polynomial
¢, is given by

. ! 1 1 1
b0 - [ ersoa= (5 (1) e (1)),
0 N N N

4, (s) = (p,(s) = (=1)"e>""p,(=s))

Introduce

and ¥f(s) = s7'f(s™"). Since exp(—s~") = exp(—i27v) on {(i27(k + v))"Lk € 7}, it
follows that

q; =¥, (D.1)

on {(i27(k + v))~ !,k € Z}. This identity is crucial for Appendixes E and F.
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APPENDIX E
Proofs of Theorems 3.2 and 5.3

ProOF oF THEOREM 3.2: Recall that

. 1 1 1
d,(s) = — (m(-) —(=D""p, (--))
N S N

a4, (s) = (p,(s) = (=1)"e>™"p,(=s)),

and Wf(s) = s~ 1f(s™"). Since exp(—s~') = exp(—i27v) on {(i27(k + v))"Lk € 7}, it
follows that ¢ = W¢,, on {(i27(k + v))~ !,k € Z}. Hence,

<qll;t’ q:>QU = <q,q§1n7 \I")i;n >Qv'

Let
0,0 = [ ,0- 0,0 du

Since

(0, Vh,)o = > b,(i27(k+ ) (i2m(k +v))

k=—o0

i B, (127 (k + v))

k=—oc0

and the function ®,,,, is of bounded variation and in L', we can apply the PSF (Theorem 2.1)
and obtain that

<q:«n q:)QU = <‘I’Q§m, \I,(z;n>Qv = ¢mn(0) = <¢m? ¢n>

This proves that the {¢;} are orthogonal.
Define

0¥ = 3 flizm(k-+ e irion

k=—o0

Since
[ee]

> f(i2m(k+ )| < oo,

k=—o0

range(Q, Vf) € L2([0,1]). Since {¢} is a complete orthogonal set in L2([0,1]), we obtain
that
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2 |fi2m (k +v))|> = |Q,¥f|? = 2 KQ,Wf, )2

k=—c0
Since
<e—27ri(v+j)"¢k> = $A(27Tl(7—7 +]))5

we obtain that

o]

> KO W) = 3 KU, Who, I = X (W iq)o, 1%
k=0 k=0 k=0
in the last step, we use g = ¥, on {(i27(k + v))~!, k € Z}. Thus,
> K¥fiae, = X |f2m(k+ )
k=0 k=—oc0

We obtain from Parseval’s theorem (cf. Conway [10, Thm. 4.13]) that {g}'} is a complete
orthogonal set in L?(Q,). [ |

PRrROOF OF THEOREM 5.3: Since for f(s,r) = fi(s)f2(r) and g(s,r) = g,(s)gi(r),
<f» g>QW = <f1’g1>Q,,<f27g2>Qw7

the orthogonality of {qi;’} follows from the orthogonality of the sets {g¢} and {q}'} Let
Wf(s,r) and W, f(s,r) denote s~ 'r 1 f(s~1, r~") and s~'f(s~, r), respectively. Since

(Uha2 0., = €0, V0,s

we obtain that

HMS

; KW, qee g ;0 (g 0,000, |

Using the fact that the sets {g;} and {g{’} are both complete orthogonal in L*(Q,) and
L*(Q,,), respectively, yields by Parseval’s theorem (cf. Conway [10, Thm. 4.13]) that

> 2 ¥haido,.4),

k=0 =0

Jj=

i | Fmi(k + v),2mi(j + w)|*

k=

We obtain from Parseval’s theorem that {g;"} is a complete orthogonal set in L*(Q,,). Nl
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APPENDIX F
The Computation of {u}} and {a}'}

Let us begin with analyzing the matrix representation of the multiplication operator w.r.t. the
basis {g}}.

THEOREM FE.1: Let M:LzQu - L%Jv be the multiplication operator defined by Mf(s) =
sf(s). The matrix representation of M, M, w.r.t. the basis {q} is given by

1 1+ exp(—i2mv) ]
2 1 —exp(—i2mv) !

C, 0 -G, ,
C, 0
where
1 1
C,=—
2 \4n? -1

Let M”:ngg - LZQ:; be the multiplication operator defined by M, f(s) = sf(s). The matrix
representation of M,,, M,,, w.r.t. the basis {qy; k = 0,1,...,n — 1} is given by

[ 1 1+ exp(—i2mv) T

1

E 1 —exp(—i2mv)
C, 0 -,
c, - —C,,
0

L n—1

Proor: Since
(Mf, 8)o, = (sf, 80, = (.57 8o, = —(fiMg)o,,

M 1is a skew adjoint operator. Since g, is orthogonal to 7,_, the space of polynomials with
degree less or equal n — 1, we obtain that

(Mg}, q7)p, =0 forj<k—1.

Since M is skew adjoint, we obtain that

(Mg}, q7)0, =0 forj>k+1.
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Let A, be the coefficient of s” in ¢ and let B, be the coefficient of s”~! in g?. It can be easily
verified that

(2n)!

Ay =N+ T —= ()" = e ™),
nl

B = 2+]w_ln*l]+*i2ﬂ'u
L= NI D (e,

Comparing the coefficient of s” in Mg, , and g, respectively yields that
A,_, 1 1

(Mqy_1,q)0, = =5 T
: © An 2 4]’!2_1

Comparing the coefficients of s in Mg} — (Mg} ,q}. )0, 4+ and g, respectively yields
that

oy~ BB 1
U, : = - =Y, n= B
Bodnlon™ 4 AL

n

and

B,., | 1+exp(—i2mv)

Mqg,q5)0, = — ’
(Mqq,4q0)o, A1 2 1—exp(—i2mv)

Expanding Mg, in {g}'} yields the desired result for the operator M. Since for all f € L,
(figiedor =0,
we obtain the desired result for the operator M,,. u

THEOREM F.2: The numbers {u}} are the eigenvalues of M,. The Christophel numbers
{a}} are given by |(v,q)|¥/ |1 — exp(—i2mv)|?, with the {v;} the normalized eigenfunc-
tions (Jui| = 1) of M,,.

PrOOF: Let p be an arbitrary polynomial in 775,,—. Since the matrix M,, is skew self-adjoint,
we obtain by the spectral theorem (cf. Conway [10]) that

| 2

|<vk,%’>gn
= L2 = _Verere,]
<P(Mn)1,1>Q",’ Zp(/\k)|<1,vk>gu| Ep()\k) I —eXp(—i27Tv)\2’

with {a,} the eigenvalues and {v;} the normalized eigenfunctions (||v.| = 1) of M,,. Further,
since M,, and M are tridiagonal, we obtain that

(p(M,)q8.a8)er  (P(M)gd.ad)o,
[l —exp(—i2@v)|*> |1 —exp(—i2mv)|?

(p1,1)g; =(pL,1),,.
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Since the Gaussian quadrature rule is the unique nth-order quadrature rule satisfying
<P’1>n = <P:1> for allp 677-2;17]»

we obtain the result. |

Remark F.3: Since the matrix M, is skew self-adjoint, we can efficiently compute the eigen-
values {u}} and eigenvectors {v,} with the QR algorithm (cf. Stoer and Bulirsch [23]).

APPENDIX G
Error Analysis

Let us start by giving an alternative formula for the Christophel numbers {e}'}.

LEMMA G.1: The Christophel numbers {«'} are given by

AT\ -1
afv = v v v —v vy’
An*l qn*l(luj ) an*l(_yk)
where A}, is the coefficient of s" in q..
PrOOF: Let €; be the Lagrange polynomial defined by €;(u}) = &;;, with 6y; = 1 if k =
and 8; = 0 if k # j. Then (g;_,,¢;) = a/qy_,(u}). On the other hand, (¢;,q)_,) =

B;/A%_,, with A}, the coefficient of s”~! in gy, and B; the coefficient of s ! in ;.
Since B; = A},/Dg,/(u}), we obtain the identity

Ay - 1 -1 -
@ = —v v)"®
! A, q,?—l(:“_;)) Dq, (=)

Before we can give an error estimate for the quadrature rule, we need the following

technical lemma.

LemMA G.2: Let the integration operator 1:L*([0,1]) — L*([0,1]) be given by
If(x) = f f(t)dt.
0

Form = 0,1,...,n — 1, the estimate

Is" g 1lgz = 11",

is valid.

Proor: Since by the PSF (Theorem 2.1) 117 b1l = Ils"qy-1 10, and [s™"gy— [l :A||A;I,’," e,
and [s™qy_y 1o, = [M™e,|, with e, the nth unit vector, we only have to prove that | M,"e, | =
| M™e,]|. Introduce the directed graph G with vertices {0,1,...} and edges V™~ ={V; ;,} and
V* ={V, ;-1}. Let G, be the subgraph of G with vertices {0,1,...,n — 1} and edges V~ =
Vijes Jj=n—2}and V© ={V, ;_1; j = n — 1}. Let the weight of the path { ji,..., .} be
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given by H,, oM, ; . LetS;" and §,§" be the set of all paths from n — 1 to k of length m in
G and G, respectively. The remainder of the proof consists of the following steps:

(1) <Mmernek> = ExES;:" ;;1 1Mx Xpt1 and <Mrllnenvek> = ExEﬁ[" Z’=1 Mx,,x,,ﬂ'
(2) The weight of each path in Sk has the same sign.
3) KM e, e)l = KM™e,,e)| and [M;'e, | = [M,"e,|.

Proof of Step (1): We will prove this result by induction. Clearly, the result is true for
m = 1. Since

Syl =Sy (k— 1L,k U LSy, (k+1,k)},
we obtain
m+1 ~ T
> H Jpdp1 Mk—lk > H Mj,,/,)+l M 21 My
j€ski, Pl j€s, ' p=l jesytr=

=M, (M7, e, )+ M (M7, e, )

= <Mm+len’ek>s

where the second equation follows from the induction hypotheses and the last equality fol-
lows from the fact that the matrix M is tridiagonal (Theorem F.1) with only the first element
on the diagonal nonzero and m =n — 1.

Proof of Step (2): Since each path from n — 1 to k contains exactly (m — (n — 1 — k))/2
edges of the set V™~ and (m + (n — 1 — k))/2 edges of the set V*, the weight of each path in
S has the same sign.

Proof of Step (3): Since $" is a subset of S7" and each path in S” has the same sign, we
obtain

m

m
‘(Mr:nernek)‘ = 2 H XpXp+1 E H MX,,X1)+] = |<Mmen7ek>|'
xES xesp !l p=1
The desired result follows from
R n—1 R n—1 R R
1M e,|? = 3 M e, e)]> = X (M™e,,e)]> < [M™e, | u
k=0 k=0

We can now give an error estimate for the quadrature rule.
THEOREM G.3: The error of the quadrature formula
E,f = (¥f,¥1)o, = (¥}, ¥1)g;

is given by

S e O+ g
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where %) denotes the kth-order derivative of f and

1 1
W= [ nGe e 0s, 0ava

with ¢, the nth Legendre polynomials given by

\2n+1
(1) = +D"<z"<1 — 0,

where D denotes the differential operator. Furthermore, the remainder §f is bounded by

N1 11", 1||2 &
= - : + DIR. 4+2m)
&l =5 _min = 2(1 R, fE=2m,
with
07 X<0
R h(x) = 1
| [ [ rG+ees+0amo,ava c=o
o Jo
Moreover,

\/— (n—1) n!

a0 e M) @€+,

| 2
IRl = @n+ 1) ——— ) 152"
JN (2n + 1)! g

n—1 5 2n—=1) [(2n—2))?
e _(n—12)2< (4n—3)! >

where

1= [

J

Thus, for smooth functions,

1 (=Dt 2 U —1+a)
~ (=) D e
2 2n-=1! 3 Q2n+1)!

with o some number in (0,2).
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Proor: The proof consists of the following steps:
(1) The functional E, can be expanded as
A 1 1 . J—
Ef=—5 === 2 ¢ """ g, VV;Df, 1)y, (G.1)
2 \4n? —1j=0 b
where V; is given by
0, y<0

V.h(y) = 1
ih(3) foh(j+t+y)¢n(z)dz, y=0.

(2) By the definition of the functional E,),

E, (g7 (s, D) = (q¥ WV, . W)y, — (gl WV, f,¥1)gp. (G.2)

The term (q,?,lilfﬁ\lfl)gu is equal to

=] 1 1
GV fﬂﬂk“’”f f fPk+j+1+u¢, (¢, (y)dydr.  (G3)
k=0 0 Jo

(3) The term (g, 4y YR D[, V1) 5n

is bounded by

177y IR f 4727

(4) We can estimate W;h and | R; [, by

(n—1)! n!
— 2 _ (2n—1) ;3
W h = \(2n) 1(2n_ D! 2 1) h (), @€ (j,j+2),

| 2
IRl = @n+ 1) | ——— ) 152"],.
SN 2n + 1)! i

Proof of Step (1): Let g(s) = sf(s); then
(W, W)y, = —(Vg, 1), and (Wf,W1)gn = —(Vg, 1)y

Let P, be the interpolation polynomial of g in {u}}, where the {u}} are the zeros of g.
Since the quadrature rule is exact for polynomials of degree n — 1, we obtain that

(P, Do, = (P, Dgr = (W8, Dgr.
Hence,
E,f = (¥3, Dor —(Wg, 1), = —(Wh, Do,
with

h(s) = &(s) = WP, ().
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Since for s € {2mi(k + v)} (cf. (D.1))

_s$ll(_s)
P 1’
q,"(=s7")
we obtain
—(Wh, 1)y, = (Vk, V1), , (G4
with
k(s) = sh(s),(=s)W(s),
where
Wis) = 1 1
0==3 4, (=s7")

The following observations show that kisa proper Laplace transform, satisfying the condi-
tions for the PSF (Theorem 2.1):

(1) Since P,_; interpolates Wg in {u}}, the function kis holomorphic in {1/u}}.
(2) Since ¢,(—s) = O(s") and 1/g,"(—s~ ') = O(s") in a neighborhood of zero, k is
holomorphic in a neighborhood of zero.
(3)
k(s) 1—(=1)"e* .
— > ———————  ass — *ioo.
fis) T = (=nyenm BT

(4) k is holomorphic in the right half-plane IT = {s; Re(s) > 0}. Thus,

(Wk,W1)o, = X e k(j),
j=0
with
1 —a+ico R
k(x) = — f e*k(s) ds, a>0.
27 Jaioo
Since W is holomorphic in the plane except in the points {1/u}} and converges uniformly to

zero as |s| — oo, we obtain

0 forx=0

W = n
) > res<

. 1
eS*W(s);s = —U> for x < 0.
k
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Hence, we obtain for x < 0,

n ex/,u}’ 1
W(x) = — I E— (G.5)
=1 4y Dq,"(—u})
1 X/.U,
- af —— gy (),
402 -1 j=1 oy

where the last equality follows from Lemma G.1. Since the support of W is (—00,0], we
obtain

k(x) = f ) j RO+ 14 9) (1) AW () dy,

=f Jf(”(x+t+y)¢n(t)dtW(—y)dy;

in the last equality we use that ¢, is orthogonal on each polynomial of degree less than n. By
(G.5) and the definition of the inner product (-,-),» (Definition 3.3), this yields

k(j)=—= <q,’;-1‘1"7,~7(2’, Y1),

2 \/
with V; given by

0, y<0

V.h(y) = 1
ih(3) foh(j+z+y)¢n(z)dt, y=0.

Proof of Step (2): Since for s € {27i(k + v)},
gr (57 = (1 lse g, (=),
the first term of (G.2) is equal to
(=1 le 2,1 (=) Vi f @), W),

We obtain from the PSF (Theorem 2.1) that this is equal to
=] 1 1
(=17t X emirmirie f f fOk+j+1+u)d, (), (y)dydr. (G.6)
k=0 0 Yo

We obtain from (G.1) that the second term of (G.2) is equal to

1 o= -
E e*tZﬂ'kv<qu7|qvil\PR#kf(Z),\Pl)Q",
4n? —1 k=0 e ! h

| =

https://doi.org/10.1017/50269964806060013 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060013

42 P. den Iseger

with
O> x < O

R h(x) = Lot
fojoh(j+t+y+x)<f)n(t)¢,,(y)dydt, x=0.

Proof of Step (3): Since ¢, is orthogonal on 77,,_;, we obtain R;p,, | = 0 for p,, | €
T5,—1. Hence,

(g7 Q:—IWRj+kD2ﬁ Wl)Q;’ =(= 1)n7Iefizm<Rj+kf(4+2m)52mqrf—1,Q:—1>Q:j
for 0 = m = (n — 1). Hence,

|<q:*1quleq,Rj-%—kf(Z)’\Ijl)Q'J' = 51}P|R/+kf(4+2m)(s)| ‘(Szmq:: 1a‘1n—1>Q3|

= ”Rj+kf(4+2m) ||1|<92mq}zj 1a‘1n—1>Q;j , (G.7)

the last inequality follows from (A.1). We obtain from Lemma G.2 that

s> g1, q—1 ozl = 11" by

Proof of Step (4): Recall that

\N2n+1
Bul1) = === DM (1 "),

Integration by part and using
D" R(t"(1—1)")| ), = 0, k=1,...,n,

yields that

wjh:jofoh<j+r+y>¢n<t>¢,ﬂ<y)dydr

=1(2n)? - (n—l)' ff R V(j+t+y)B,(t)B,_,(y)dydt,

@n—1)! (2n+ !

where B, is the density of the Beta distribution; that is,

B,(1) = (2n_+’1)v "1 ="

Since the Beta distribution is a probability distribution, we obtain by the mean value theorem
that

Ve T M ), g e (it

2n—=1)! 2n+1)!
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Similarly,

R = [ [ G+ 00,000, 0)dv

:(2n+])<m> J f D> h(j+x+1t+y)B,(t)B,(y)dydt

n! 2
IRk, = (2n+1) <m) [D>"h];.

By a similar argument, we obtain

Hence,

@2n—1) [ (2n—2)))?
‘|1n71¢71*1||2 = . u
(n—11%\ (4n—3)!
Remark G.4: It follows from Theorem G.3 that the approximation error does not depend on
the discontinuity of fint = 0

APPENDIX H

On the Inversion of the z-Transforms
THEOREM H.1: Let

F(v) = §) frexp(—2mikv).

k=—c0
The following inversion formula holds

lNI

k k i
(5 )en(omig) = S g

. (H.1)
Jorj=0,1,

N—-1.

ProOOF: Since for integral k and m, exp(—i27km) = 1, we obtain that

<k> 2 i fn,N+,eXp< 27le}%> exp(—2arikm)

Jj=0 m=—c0

- e ( 2mj—> S e
j=0

m=-—oo

Hence,

k k 1 N1 k k
— Fl — e 2wij— | = Fyl — Je 2mij— |,
N <N> Xp( ”"’N) N2 N( ) Xp( ””N)
with

N

N—1

Fy(v) = E exp(—2mijv) E Junj
j=0

m=—o0
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Formula (H.1) follows from

1 N1 k k oo
- 2 FN<_) CXP<27”']'_> = 2 S u
N

N m=—oo

Remark H.2: This result is sometimes called the discrete Poisson summation formula (cf.
Abate and Whitt [3]). In their article Abate and Whitt presented an efficient inversion algo-
rithm for the inversion of z-transforms (also called generating functions) of discrete proba-
bility distributions.

We proceed as the article by Abate and Whitt [3]. It follows immediately from Theorem
H.1 that if the discretization error

é:j = 2 f;th+j

m#0, mel.

b5 ol

In general, it is hard to ensure that the discretization error &, is small. However, for a special
class of z-transforms, we can easily control the discretization error €. A z-transform f belongs
to the Hilbert space H2(U) if f € L2(T) and f, = 0, for k < 0 (cf. Rudin [20, , Chap. 17]).
Since f; = 0, for k < 0, we obtain that the inverse sequence of the z-transform f"(z) = f(rz)
is given by {r*f.;k € N}. Hence, r *f = f, and

is small, then

fjr: r - E f;nN+/

m=1

=2}

mN gr
2 r mN-+j
m=1

is of order O(r"). Hence, we can make £/ arbitrarily small by choosing r small enough. The
conclusion is that if f € H?(U), then we can efficiently compute the numbers f; with arbi-
trary precision, with the following algorithm.

Step 1. Set f7(z) = f(rze), k= 0,1,...,m>

Step 2. Compute f’(zk) — f. with the m, points FFT algorithm and set f, = r £,
k=0,1,....,m

Remark H.3: On one hand, we want to choose r as small as possible, since then the discret-
ization error is as small as possible. On the other hand, we multiply f;" by the factor r~%;
hence, a small r makes the algorithm numerically unstable. Suppose that we want to compute
the values { fi; kK = 0,1,...,m — 1} with a precision of e. We can control both the discretiza-
tion error and the numerical stability by using an m, = 2”m (with p a positive integral num-
ber) discrete Fourier transform (FFT) and choose r = € /"2, The discretization error is then
of magnitude € and the multiplication factor is bounded by €'/2”. For double precision, we

recommend the parameter values p = 3 and r = exp(—44/27m).
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