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Abstract

We consider the sum ) 1/y, where y ranges over the ordinates of nontrivial zeros of the Riemann
zeta-function in an interval (0, 7], and examine its behaviour as 7 — co. We show that, after subtracting
a smooth approximation (1/4rm) logZ(T/Zﬂ), the sum tends to a limit H ~ —0.0171594, which can be
expressed as an integral. We calculate H to high accuracy, using a method which has error O((log T)/T?).
Our results improve on earlier results by Hassani [ ‘Explicit approximation of the sums over the imaginary
part of the non-trivial zeros of the Riemann zeta function’, Appl. Math. E-Notes 16 (2016), 109-116] and
other authors.
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1. Introduction

Let the nontrivial zeros of the Riemann zeta-function {(s) be denoted by p = o + iy.
In order of increasing height, the ordinates of these zeros in the upper half-plane are
v1 = 1413 <y, <y3 <---.Define

GT)= > 1/,
0<y<T
where multiple zeros (if they exist) are weighted according to their multiplicity. We
consider the behaviour of G(T') as T — oco. Answering a question of Hassani [7], we
show in Theorem 2.1 of Section 2 that there exists

log*(T/27)
T)' (1.1)

There is an analogy with the harmonic series ), 1/n, which appears in the usual
definition of Euler’s constant:

H = Tlim (G(T) -

N
1
C:= lim (Z L logN) —0.577215.. .
n

N—ooo
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It is well known that one can compute C accurately using Euler—Maclaurin summation
or faster algorithms (see [1, 2, 5] and the references given there). However, it is not so
easy to compute H accurately, because of the irregular spacing of the nontrivial zeros

of £(s) (for which see [9]).
In Section 4 we consider numerical approximation of H, after giving some

preliminary lemmas in Section 3. If the definition (1.1) is used directly with the zeros
up to height 7, then the error is O((log T)/T). In Theorem 4.1 we show how to improve
this, without much extra computation, to O((log T)/T?). In Corollary 4.2 we give an
explicit bound on H with error of order 10~'8.

Finally, in Section 5, we comment briefly on related results in the literature.

2. Existence of the limit

Before proving Theorem 2.1, we define some notation. Let ¥ denote the set of
positive ordinates of zeros of {(s). Following Titchmarsh [11, Sections 9.2-9.3], if
0 < T ¢ F, then we let N(T) denote the number of zeros 8 + iy of {(s) with0 <y < T,
and S(T) denote the value of 7~! arg £/ (% + iT) obtained by continuous variation along
the straight lines joining 2, 2 + iT and % + iT, starting with the value 0. If T € ¥, we
could take S(T) = limgs_o[S(T — &) + S(T + 6)]/2, and similarly for N(T), but we avoid
this exceptional case. Note that N(T') and S(T) are piecewise continuous, with jumps
atT e 7.

By [11, Theorem 9.3], N(T') = L(T) + Q(T), where

LU):%KbAZJ—Q+Z and  O(T) = S(T) + O(1/T).

2n 8
An explicit bound from Trudgian [13, Corollary 1] is
0.29
QD=&H+7T, 2.1)

where (here and elsewhere) ¥ € R satisfies || < 1.

Let $1(7) := fOT S(#)dt. By [11, Theorems 9.4 and 9.9(A)], S(T) = O(log T) and
S1(T) = O(log T), and it follows from (2.1) that Q(T) = O(log T) also.

Explicit bounds on S;(T) are known. For certain constants ¢, Ag > 0, A; > 0 and
Ty > 0, there is a bound

[Si(T)—c|<Ag+AjlogT forall T > Ty. 2.2)

From [12, Theorem 2.2], we could take ¢ = S;(1687), Ay = 2.067,A; = 0.059 and T, =
1687. However, a small computation shows that (2.2) also holds for T € [2x, 1687].
Hence, we take Ty = 27 in (2.2).

Our first result is the following theorem.

THEOREM 2.1. The limit H in (1.1) exists. Also,

_(Tew 1

o t_2 1671"
where Q(T) = N(T) — L(T) is as above.

H
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PROOF. Suppose that 27 < T ¢ 7. Using Stieltjes integrals, and noting that y; > 27
and Q(2) = 3,

B 1 (TdNw (T dLw (T dO®)
=2 5=L el L

O0<y<T
T T

L[ (20, (20,

27T o t t r 2
_log®(T/2m)  O(T) 1 T 0(t)
= in + T — E + . t_2 dt. (23)

Thus,
log®(T/2n) (7 Q@) 1 log T
G(T)_—47T = znt—zd[—ﬁ'i‘O( T )

Letting T — oo, the last integral converges, so the limit of the left-hand side exists and
logz(T/Zﬂ)) N a0 U 1
4n Y 16

This completes the proof. O

H = lim (G(T) _

3. Two lemmas
We now give two lemmas that are used in the proof of Theorem 4.1.

LEMMA 3.1. If 2n < T ¢ F, then

T 2
o) o) 1 logi(T/2n)
——dt=G6GT)-—+ — - ———.
o 2 ( ) T 167 4
PROOF. This is just a rearrangement of (2.3) in the proof of Theorem 2.1. O

LEMMA 3.2. If T > 2rn and
< Ot
Ey(T) :=f %dt, (3.1)
T

then
4.27+0.121log T
T2 '
PROOF. To bound E,(T), we note that, from (2.1),
< (1) - f"" S() 0.19
T

|E2(T)] <

> S dt = (3.2)

T 2 T?

Also, using integration by parts,

fw@dt:—SI(T)_c+2fm Sl(t)_cdt. (3.3)
. T

t2 T2 t3
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Using (2.2),
f S@ 4 181D ¢ +2f S0 -d
r £ T? T s
< Ap+AlogT +2f Ao +A110gtdt
T2 T 3
2A0+0.5A; +2A,log T
Sk i B (3.4)
T2
Using (3.2),
2A0+0.5A; +0.1 +2A,logT
[Ea(T)| ¢ SR T S O
Inserting the values Ag = 2.067 and A; = 0.059 gives the result. O

The bound (3.4) might be improved by using a result of Fujii [6, Theorem 2] to
bound the integral of S;(r)/# in (3.3), although we are not aware of any explicit
version of Fujii’s estimate. The bound would then be dominated by the term —S;(T)/T?
in (3.3). This term is o((log T)/T?) if and only if the Lindel6f hypothesis (LH) is
true; see [11, Theorem 13.6(B) and Note 13.8]. Thus, obtaining an order-of-magnitude
improvement in the bound on E,(T) is equivalent to proving LH.

4. Numerical approximation of H

We consider two methods to approximate H numerically. The first method truncates
the sum and integral in the definition (1.1) at height T > 2re, giving an approximation
with error E(T) = O((log T)/T). An explicit bound

H=G(T)-

1og%772n)4_Aﬂ(2log7‘+ 1) @

4 T

follows from Lehman [8, Lemma 1]. Lehman gives A = 2, but, from [3, Corollary 1],
we may take A = 0.28. Thus, we can obtain about five decimal places by summing
over the first 10° zeros of {(s), that is, to height T = 600270. In this manner we find
H ~ —-0.01716. It is difficult to obtain many more correct digits because of the slow
convergence. However, the result is sufficient to show that H is negative, which is
significant in the proof of [3, Lemma 8].

Convergence can be accelerated using Theorem 4.1, which improves the error bound
E(T) = O((log T)/T) of (4.1) to E»(T) = O((log T)/T?). Note that the error term E»(T)
is a continuous function of 7. This is unlike E(7"), which has jumps for T € F.

THEOREM 4.1. Forall T > 2n,

1 1\ log*(T/2re)+1 7
(; - ?) S T L L LB, (4.2)

H =
4 8T

0<y<T

where E5(T) is as in (3.1) and |E5(T)| < (4.27 +0.121og T)/T>.
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TABLE 1. Numerical estimation of H using Theorem 4.1.

n H estimate

10 —-0.017372393877
100 —0.017159765533
1000 —0.017159603500
10000 —0.017159404875

100000 —-0.017159404244
1000000  —0.017159404307

PROOF. First assume that 7 ¢ . From Theorem 2.1 and Lemma 3.1,

Q(T) log*(T/2n)

H = G(T) - = el 21O
but Q(T) = N(T) — L(T), so
~ 1 1\ log(T/2m)—1 71  logX(T/2x)
H= 3 ) g T B

0<y<T

Simplification gives (4.2) and a continuity argument shows that (4.2) holds if 7" € F.
Finally, the bound on E;(T) follows from Lemma 3.2. O

COROLLARY 4.2. Let H be defined by (1.1). We have
H = —0.0171594043070981495 + (107 '%).

PROOF. This follows from Theorem 4.1 by an interval-arithmetic computation using
the first n = 10'° zeros, with T = y,, ~ 3293531632.4. m]

To illustrate Theorem 4.1, we give some numerical results in Table 1. The first
column (n) gives the number of zeros used and the second column is the estimate of H
obtained from (4.2), using T = v,,.. The first incorrect digit of each entry is underlined.

5. Related results in the literature

Biithe [4, Lemma 3] gives the inequality

G(T) <

log*(T/2
M for T > 5000. (5.1)
T

In [3, Lemma 8], we give a different proof of (5.1), and show that it holds for 7 > 4re.
Hassani [7] shows (in our notation) that

2
G(T) = W +o(1)
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and gives numerical bounds for the ‘O(1)’ term. A similar bound is given in
[10, Lemma 2.10]. Hassani does not prove existence of the limit (1.1), but asks (see
[7, page 114]) whether it exists. We have answered this in our Theorem 2.1.

In fact, Hassani works with

1 1 log(2r)
Ay := ——(—1 2yy - ——1] )
N ;yﬂ 1710 v = = — log yy
SO in our notation
log?(yn/27)  log?(2n)
Ay = Glyy) - =20 D8 T

A 4

Thus, the (hypothetical) limit to which Hassani refers is, in our notation,

log%(2
+0g(ﬂ)
JT

H = 0.2516367513127059665 + F(107'8).

This is consistent with the value 0.25163 that Hassani gives based on his calculations
using 2 - 10° nontrivial zeros. Hassani also uses an averaging technique to obtain
values in the range [0.2516372,0.2516375], but apparently decreasing, without an
obvious limit. The acceleration technique of Theorem 4.1 is more effective and has
the virtue of giving a rigorous error bound.
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