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Abstract

We consider the sum
∑

1/γ, where γ ranges over the ordinates of nontrivial zeros of the Riemann

zeta-function in an interval (0, T], and examine its behaviour as T → ∞. We show that, after subtracting

a smooth approximation (1/4π) log2(T/2π), the sum tends to a limit H ≈ −0.0171594, which can be

expressed as an integral. We calculate H to high accuracy, using a method which has error O((log T)/T2).

Our results improve on earlier results by Hassani [‘Explicit approximation of the sums over the imaginary

part of the non-trivial zeros of the Riemann zeta function’, Appl. Math. E-Notes 16 (2016), 109–116] and

other authors.
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1. Introduction

Let the nontrivial zeros of the Riemann zeta-function ζ(s) be denoted by ρ = σ + iγ.

In order of increasing height, the ordinates of these zeros in the upper half-plane are

γ1 ≈ 14.13 < γ2 < γ3 < · · · . Define

G(T) :=
∑

0<γ6T

1/γ,

where multiple zeros (if they exist) are weighted according to their multiplicity. We

consider the behaviour of G(T) as T → ∞. Answering a question of Hassani [7], we

show in Theorem 2.1 of Section 2 that there exists

H := lim
T→∞

(

G(T) −
log2(T/2π)

4π

)

. (1.1)

There is an analogy with the harmonic series
∑

1/n, which appears in the usual

definition of Euler’s constant:

C := lim
N→∞

( N
∑

n=1

1

n
− log N

)

= 0.577215 . . . .
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It is well known that one can compute C accurately using Euler–Maclaurin summation

or faster algorithms (see [1, 2, 5] and the references given there). However, it is not so

easy to compute H accurately, because of the irregular spacing of the nontrivial zeros

of ζ(s) (for which see [9]).
In Section 4 we consider numerical approximation of H, after giving some

preliminary lemmas in Section 3. If the definition (1.1) is used directly with the zeros

up to height T , then the error is O((log T)/T). In Theorem 4.1 we show how to improve

this, without much extra computation, to O((log T)/T2). In Corollary 4.2 we give an

explicit bound on H with error of order 10−18.
Finally, in Section 5, we comment briefly on related results in the literature.

2. Existence of the limit

Before proving Theorem 2.1, we define some notation. Let F denote the set of

positive ordinates of zeros of ζ(s). Following Titchmarsh [11, Sections 9.2–9.3], if

0 < T < F , then we let N(T) denote the number of zeros β + iγ of ζ(s) with 0 < γ 6 T ,

and S(T) denote the value of π−1 arg ζ( 1
2
+ iT) obtained by continuous variation along

the straight lines joining 2, 2 + iT and 1
2
+ iT , starting with the value 0. If T ∈ F , we

could take S(T) = limδ→0[S(T − δ) + S(T + δ)]/2, and similarly for N(T), but we avoid

this exceptional case. Note that N(T) and S(T) are piecewise continuous, with jumps

at T ∈ F .
By [11, Theorem 9.3], N(T) = L(T) + Q(T), where

L(T) =
T

2π

(

log

(

T

2π

)

− 1

)

+
7

8
and Q(T) = S(T) + O(1/T).

An explicit bound from Trudgian [13, Corollary 1] is

Q(T) = S(T) +
0.2ϑ

T
, (2.1)

where (here and elsewhere) ϑ ∈ R satisfies |ϑ| 6 1.

Let S1(T) :=
∫ T

0
S(t) dt. By [11, Theorems 9.4 and 9.9(A)], S(T) = O(log T) and

S1(T) = O(log T), and it follows from (2.1) that Q(T) = O(log T) also.
Explicit bounds on S1(T) are known. For certain constants c, A0 > 0, A1 > 0 and

T0 > 0, there is a bound

|S1(T) − c| 6 A0 + A1 log T for all T > T0. (2.2)

From [12, Theorem 2.2], we could take c = S1(168π), A0 = 2.067, A1 = 0.059 and T0 =

168π. However, a small computation shows that (2.2) also holds for T ∈ [2π, 168π].

Hence, we take T0 = 2π in (2.2).
Our first result is the following theorem.

THEOREM 2.1. The limit H in (1.1) exists. Also,

H =

∫ ∞

2π

Q(t)

t2
dt −

1

16π
,

where Q(T) = N(T) − L(T) is as above.
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PROOF. Suppose that 2π 6 T < F . Using Stieltjes integrals, and noting that γ1 > 2π

and Q(2π) = 1
8
,

G(T) =
∑

0<γ6T

1

γ
=

∫ T

2π

dN(t)

t
=

∫ T

2π

dL(t)

t
+

∫ T

2π

dQ(t)

t

=
1

2π

∫ T

2π

log(t/2π)

t
dt +

[

Q(t)

t
+

∫

Q(t)

t2
dt

]T

2π

=
log2(T/2π)

4π
+

Q(T)

T
−

1

16π
+

∫ T

2π

Q(t)

t2
dt. (2.3)

Thus,

G(T) −
log2(T/2π)

4π
=

∫ T

2π

Q(t)

t2
dt −

1

16π
+ O

(

log T

T

)

.

Letting T → ∞, the last integral converges, so the limit of the left-hand side exists and

H = lim
T→∞

(

G(T) −
log2(T/2π)

4π

)

=

∫ ∞

2π

Q(t)

t2
dt −

1

16π
.

This completes the proof. �

3. Two lemmas

We now give two lemmas that are used in the proof of Theorem 4.1.

LEMMA 3.1. If 2π 6 T < F , then
∫ T

2π

Q(t)

t2
dt = G(T) −

Q(T)

T
+

1

16π
−

log2(T/2π)

4π
.

PROOF. This is just a rearrangement of (2.3) in the proof of Theorem 2.1. �

LEMMA 3.2. If T > 2π and

E2(T) :=

∫ ∞

T

Q(t)

t2
dt, (3.1)

then

|E2(T)| 6
4.27 + 0.12 log T

T2
.

PROOF. To bound E2(T), we note that, from (2.1),
∫ ∞

T

Q(t)

t2
dt =

∫ ∞

T

S(t)

t2
dt +

0.1ϑ

T2
. (3.2)

Also, using integration by parts,
∫ ∞

T

S(t)

t2
dt = −

S1(T) − c

T2
+ 2

∫ ∞

T

S1(t) − c

t3
dt. (3.3)
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Using (2.2),
∣

∣

∣

∣

∣

∫ ∞

T

S(t)

t2
dt

∣

∣

∣

∣

∣

6
|S1(T) − c|

T2
+ 2

∫ ∞

T

|S1(t) − c|

t3
dt

6
A0 + A1 log T

T2
+ 2

∫ ∞

T

A0 + A1 log t

t3
dt

=
2A0 + 0.5A1 + 2A1 log T

T2
. (3.4)

Using (3.2),

|E2(T)| 6
2A0 + 0.5A1 + 0.1 + 2A1 log T

T2
.

Inserting the values A0 = 2.067 and A1 = 0.059 gives the result. �

The bound (3.4) might be improved by using a result of Fujii [6, Theorem 2] to

bound the integral of S1(t)/t3 in (3.3), although we are not aware of any explicit

version of Fujii’s estimate. The bound would then be dominated by the term −S1(T)/T2

in (3.3). This term is o((log T)/T2) if and only if the Lindelöf hypothesis (LH) is

true; see [11, Theorem 13.6(B) and Note 13.8]. Thus, obtaining an order-of-magnitude

improvement in the bound on E2(T) is equivalent to proving LH.

4. Numerical approximation of H

We consider two methods to approximate H numerically. The first method truncates

the sum and integral in the definition (1.1) at height T > 2πe, giving an approximation

with error E(T) = O((log T)/T). An explicit bound

H = G(T) −
log2(T/2π)

4π
+ Aϑ

(

2 log T + 1

T

)

(4.1)

follows from Lehman [8, Lemma 1]. Lehman gives A = 2, but, from [3, Corollary 1],

we may take A = 0.28. Thus, we can obtain about five decimal places by summing

over the first 106 zeros of ζ(s), that is, to height T = 600270. In this manner we find

H ≈ −0.01716. It is difficult to obtain many more correct digits because of the slow

convergence. However, the result is sufficient to show that H is negative, which is

significant in the proof of [3, Lemma 8].

Convergence can be accelerated using Theorem 4.1, which improves the error bound

E(T) = O((log T)/T) of (4.1) to E2(T) = O((log T)/T2). Note that the error term E2(T)

is a continuous function of T . This is unlike E(T), which has jumps for T ∈ F .

THEOREM 4.1. For all T > 2π,

H =
∑

0<γ6T

(

1

γ
−

1

T

)

−
log2(T/2πe) + 1

4π
+

7

8T
+ E2(T), (4.2)

where E2(T) is as in (3.1) and |E2(T)| 6 (4.27 + 0.12 log T)/T2.
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TABLE 1. Numerical estimation of H using Theorem 4.1.

n H estimate

10 −0.017372393877

100 −0.017159765533

1000 −0.017159603500

10000 −0.017159404875

100000 −0.017159404244

1000000 −0.017159404307

PROOF. First assume that T < F . From Theorem 2.1 and Lemma 3.1,

H = G(T) −
Q(T)

T
−

log2(T/2π)

4π
+ E2(T),

but Q(T) = N(T) − L(T), so

H =
∑

0<γ6T

(

1

γ
−

1

T

)

+
log(T/2π) − 1

2π
+

7

8T
−

log2(T/2π)

4π
+ E2(T).

Simplification gives (4.2) and a continuity argument shows that (4.2) holds if T ∈ F .

Finally, the bound on E2(T) follows from Lemma 3.2. �

COROLLARY 4.2. Let H be defined by (1.1). We have

H = −0.0171594043070981495 + ϑ(10−18).

PROOF. This follows from Theorem 4.1 by an interval-arithmetic computation using

the first n = 1010 zeros, with T = γn ≈ 3293531632.4 . �

To illustrate Theorem 4.1, we give some numerical results in Table 1. The first

column (n) gives the number of zeros used and the second column is the estimate of H

obtained from (4.2), using T = γn. The first incorrect digit of each entry is underlined.

5. Related results in the literature

Büthe [4, Lemma 3] gives the inequality

G(T) 6
log2(T/2π)

4π
for T > 5000. (5.1)

In [3, Lemma 8], we give a different proof of (5.1), and show that it holds for T > 4πe.

Hassani [7] shows (in our notation) that

G(T) =
log2(T/2π)

4π
+ O(1)
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and gives numerical bounds for the ‘O(1)’ term. A similar bound is given in

[10, Lemma 2.10]. Hassani does not prove existence of the limit (1.1), but asks (see

[7, page 114]) whether it exists. We have answered this in our Theorem 2.1.

In fact, Hassani works with

∆N :=

N
∑

n=1

1

γn

−

(

1

4π
log2 γN −

log(2π)

2π
log γN

)

,

so in our notation

∆N = G(γN) −
log2(γN/2π)

4π
+

log2(2π)

4π
.

Thus, the (hypothetical) limit to which Hassani refers is, in our notation,

H +
log2(2π)

4π
= 0.2516367513127059665 + ϑ(10−18).

This is consistent with the value 0.25163 that Hassani gives based on his calculations

using 2 · 106 nontrivial zeros. Hassani also uses an averaging technique to obtain

values in the range [0.2516372, 0.2516375], but apparently decreasing, without an

obvious limit. The acceleration technique of Theorem 4.1 is more effective and has

the virtue of giving a rigorous error bound.
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