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Turbulent boundary layers at moderate Reynolds
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A recent assessment of available direct numerical simulation (DNS) data from
turbulent boundary layer flows (Schlatter & Örlü, J. Fluid Mech., vol. 659, 2010,
pp. 116–126) showed surprisingly large differences not only in the skin friction
coefficient or shape factor, but also in their predictions of mean and fluctuation
profiles far into the sublayer. While such differences are expected at very low
Reynolds numbers and/or the immediate vicinity of the inflow or tripping region, it
remains unclear whether inflow and tripping effects explain the differences observed
even at moderate Reynolds numbers. This question is systematically addressed by
re-simulating the DNS of a zero-pressure-gradient turbulent boundary layer flow by
Schlatter et al. (Phys. Fluids, vol. 21, 2009, art. 051702). The previous DNS serves as
the baseline simulation, and the new DNS with a range of physically different inflow
conditions and tripping effects are carefully compared. The downstream evolution
of integral quantities as well as mean and fluctuation profiles is analysed, and the
results show that different inflow conditions and tripping effects do indeed explain
most of the differences observed when comparing available DNS at low Reynolds
number. It is further found that, if transition is initiated inside the boundary layer at
a low enough Reynolds number (based on the momentum-loss thickness) Reθ < 300,
all quantities agree well for both inner and outer layer for Reθ > 2000. This result
gives a lower limit for meaningful comparisons between numerical and/or wind tunnel
experiments, assuming that the flow was not severely over- or understimulated. It is
further shown that even profiles of the wall-normal velocity fluctuations and Reynolds
shear stress collapse for higher Reθ irrespective of the upstream conditions. In addition,
the overshoot in the total shear stress within the sublayer observed in the DNS of Wu
& Moin (Phys. Fluids, vol. 22, 2010, art. 085105) has been identified as a feature of
transitional boundary layers.

Key words: transition to turbulence, turbulent boundary layers, turbulence simulation

1. Introduction and motivation
Since the first resolved direct numerical simulation (DNS) of turbulent channel

flows became available (Kim, Moin & Moser 1987) more than two decades ago, a
large number of DNS have been performed for various flow cases, from canonical
geometries (channels, boundary layers, pipes) to more complex ones. Mainly for
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6 P. Schlatter and R. Örlü
canonical geometries, the Reynolds number (Re) extent of the available simulation
data has constantly been increasing, finally reaching those ranges covered by well-
resolved (and well-controlled) experiments. In particular, channel flow has become the
prime area for simulations, given its geometrical simplicity and the ease of specifying
boundary conditions (periodicity). Hence, it was not surprising that a detailed
comparison between DNS and corresponding experiments in a (fully developed)
turbulent channel flow showed generally good agreement for the first- and second-
order moments as well as spectral distributions of the streamwise velocity component
(Monty & Chong 2009).

Although zero-pressure-gradient (ZPG) turbulent boundary layers (TBLs) have
been simulated extensively beginning with Spalart (1988b), DNS of truly spatially
developing TBLs have only recently become feasible that reach Reynolds numbers
comparable to those of DNS from moderate-Re channel flows (Skote, Haritonidis &
Henningson 2002). Furthermore, the recent comparison by Schlatter & Örlü (2010) of
published DNS data from ZPG TBL flows has revealed that there exists considerable
scatter between the various data sets even in basic integral quantities, e.g. up to 5 %
and 20 % in the shape factor H12 and skin friction coefficient cf , respectively. First-
and second-order velocity statistics not only differed within the wake region, but
throughout the entire boundary layer far into the buffer region. In that study it was
observed that various groups use slightly different definitions and methods to evaluate
boundary-layer quantities, therefore all data were re-evaluated based on a uniform
approach. Here, some of these previous comparisons are reproduced in order to set
the stage for the forthcoming comparisons. Note that the database has been updated
with the two new simulations by Wu & Moin (2010) and Lee & Sung (2011). In
figure 1 the shape factor H12 and the ratio of boundary-layer thicknesses as a measure
of the outer flow development are shown, while in figure 2 the skin-friction coefficient
cf and the magnitude of the fluctuating wall shear stress τ+w,rms to characterize the
near-wall region are depicted. In particular the shape factor can be regarded as a
good scalar indicator of the state of a ZPG boundary layer (Chauhan et al. 2009).
The complete references for the data used and the corresponding symbols are listed
in table 1. From the two figures it becomes obvious that considerable discrepancies
exist: some of these differences are seemingly related to inflow effects as the spread
appears to decrease with increasing streamwise coordinate in each simulation box
(e.g. for H12 or cf ). Other differences however are more systematic, as evidenced by
the fluctuating wall shear stress, τ+w,rms. Probably the most sensitive quantities when
it comes to an assessment of the region very close to turbulence transition (i.e. low
Reynolds numbers) are the ratios of integral boundary-layer thicknesses, such as the
displacement (δ∗) and momentum-loss (θ ) thicknesses, to the 99 % boundary-layer
thickness, δ99. The various DNS exhibit a large scatter at lower Reynolds numbers
which is clearly related to the different ways the flow is being brought through
transition.

Despite these differences between various DNS databases in general, and specifically
at low Reynolds numbers, a good agreement between a recent large-scale DNS and
an experiment with a similar setup and boundary conditions at Reθ ≈ 2500 has been
reported in Schlatter et al. (2009). Hence, there is a need to address why integral
quantities as well as higher-order turbulence statistics between various DNS of the
same flow differ substantially, even beyond the aforementioned Reynolds number at
which the good agreement between experiment and DNS was documented (Schlatter
et al. 2009). Some of the main possible candidates responsible for the discrepancies
have already been conjectured in Schlatter & Örlü (2010), such as the inflow
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Turbulent boundary layers: inflow and tripping effects 7
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FIGURE 1. Ratios of boundary-layer thicknesses, extracted from various literature DNS data
as a function of Reynolds number. (a) Shape factor, H12 = δ∗/θ . The solid line represents
integration of the composite profile by Chauhan, Monkewitz & Nagib (2009) including an
ad-hoc low-Re correction (cf. equation (8) in Chauhan et al. 2009), while the dash-dotted
lines indicate a 1 % tolerance. (b) Displacement thickness, δ∗, and momentum-loss thickness,
θ , over boundary layer thickness, δ99. The integral quantities from the various DNS profiles as
well as the solid lines in (b), which represent results from the composite profile (Chauhan
et al. 2009), are evaluated in a consistent manner by following the scheme outlined in
Schlatter & Örlü (2010). Symbols according to table 1.

Reynolds number and turbulence generation method, the settling length to reach a final
developed turbulent state, as well as box dimensions, boundary conditions and residual
pressure gradients. However, simulation resolution is probably of lesser importance, as
all the DNS included in the comparison can be considered well-resolved according to
present standards.

To what extent the differences due to the aforementioned causes persist in
statistical quantities and whether the outer layer actually completely forgets its
initial or upstream conditions and thus converges (or tends within the investigated
Re-range) to an asymptotic state has been the focus of various studies dating back
to Klebanoff & Diehl (1954). These authors investigated experimentally a boundary
layer that was tripped to turbulence. They found that a fully developed TBL
could be achieved essentially free from any distortions introduced by the tripping
process, i.e. independent of its initial conditions, beyond a certain development
length depending on the tripping device itself. However, the question regarding
the quantification of a sufficient development length and the appropriate tripping
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FIGURE 2. (a) Skin friction coefficient, cf , as a function of Reynolds number. Solid
line represents the correlation by Smits, Matheson & Joubert (1983) and dash-dotted
lines indicate a 5 % tolerance. (b) Fluctuating wall shear stress, τ+w,rms, as a function
of Reynolds number. Solid line represents correlation given in Schlatter & Örlü (2010),
i.e. τ+w,rms = 0.298+ 0.018 lnReτ . Symbols according to table 1.

method still remains open today as emphasized in the recent review article by
Marusic et al. (2010). When it comes to the Reynolds shear stress or the wall-normal
Reynolds normal stress, it has even been questioned whether there exists an asymptotic
state independent of upstream conditions at all, as highlighted by Castillo & Johansson
(2002) and Seo et al. (2004).

It is interesting to recall that the classical assessment of experimental data sets
by Coles (1954) states that ‘it is not obvious a priori that a state is ever reached
in which the dependence of the turbulent boundary layer on its early history is no
longer measurable in terms of the local mean properties of the flow’. Similarly, the
review on ZPG TBL flows by Fernholz & Finley (1996) identifies the tripping devices
as an important secondary factor that might explain differences between various
(experimental) data sets, while a more recent re-assessment of experimental data
from ZPG TBL flows by Chauhan et al. (2009) lists ‘three major local experimental
conditions existing in the tunnel for various data sets, i.e. an insufficient or excessive
transition trigger, a history of pressure-gradient and inadequate development length’ as
possible causes for differences in the outer part of the mean flow. One reason why
apparent differences between past and present experimental data sets could not solely
be traced back to initial or upstream conditions (in contrast to measurement-technique-
related shortcomings) is the ‘fact that in many experiments these effects (i.e. the initial
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Turbulent boundary layers: inflow and tripping effects 9

Reference/Label Reθ Method Symbol

Spalart (1988b) 300, 600,
1410

Spectral +
Spatio-temporal

Komminaho & Skote
(2002)

383−716 Spectral •
Tripping at Reθ ≈ 200

Domain up to Reθ ≈ 750
Khujadze &
Oberlack
(2004, 2007)

489−2807 Spectral
Tripping close to

respectively inflow
Domain length 1Reθ ≈ 500

�

Ferrante &
Elghobashi (2005)

2900 Finite differences ×
Rescaling and recycling

Domain Reθ = 2340–2900
Simens et al. (2009) 1000, 1550,

1968
Finite-difference/spectral �

Rescaling and recycling
Domain Reθ = 620–2140

Wu & Moin (2010) 80−1950 Finite differences second order ∗
Free-stream disturbances

Laminar inflow at Reθ = 80

Lee & Sung (2011) 2500 Finite differences second order �
Rescaling and recycling

Domain Reθ = 570–2560

All of the following simulations were performed in a single domain
using a spectral method

Schlatter et al.
(2009)

180−2500 Tripping at Reθ = 180 ——– (blue)

‘Baseline’ Optimized tripping parameters

Schlatter & Örlü
(2010)

180−4300 Tripping at Reθ = 180 – – – (blue)

Lower amplitude compared to
above

©

LA 180−2400 Low-amplitude tripping at
Reθ = 180

– – – (green)

TS 180−2000 Tollmien–Schlichting waves
(F = 120)

——– (green)

LF 180−2100 Low frequency tripping at
Reθ = 180

– – – (red)

HF 180−2500 High frequency tripping at
Reθ = 180

——– (red)

LR 55−2000 Tripping at Reθ = 55, LES - - - - - (black)
HR 750−2900 Tripping at Reθ = 750, LES - – - – - (black)

TABLE 1. List of employed DNS data, their Reynolds-number ranges and the key
characteristics of the turbulence generation mechanism. If more than three profiles have
been used from a given reference, only the range of Reynolds numbers is given.
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10 P. Schlatter and R. Örlü
or upstream conditions) are not, or only incompletely, documented’ (Marusic et al.
2010), a fact that is mainly related to the elaborate work associated with quantifying
the full set of initial and upstream conditions in experiments. A notable exception
in this respect is the seminal work by Erm & Joubert (1991) who studied the effect
of different tripping devices for various free-stream velocities on the evolution of
integral quantities such as shape factor, skin friction and wake parameter, as well as
profiles of mean and various fluctuating components. While their Reynolds numbers
for obtaining turbulent boundary layers were as low as Reθ = 509–581 depending on
tripping devices, the authors concluded that independent of tripping device an overall
agreement (mainly presented in outer scaling) could be reached for Reθ > 2175.

In the framework of the present study, the influence of varying upstream conditions
is studied in a systematic way. The previous DNS of a ZPG TBL flow by Schlatter
et al. (2009) serves as the baseline simulation, as it has been already demonstrated
that accurate comparisons with experiments could be achieved at Reθ = 2500 given
the particular upstream parameters. We thus proceed by re-simulating that DNS,
however with physically different upstream conditions, i.e. by varying the tripping
parameters (amplitude, frequency etc.), and the inflow Reynolds number (i.e. the
location of the tripping). In that sense, the present investigation can be seen as a
direct continuation of Schlatter & Örlü (2010), since it enables the direct assessment
of various turbulence generation mechanisms and the possibility to define various
measures to discern the starting point from which a ZPG TBL flow can be considered
independent of its upstream history. Although Jiménez et al. (2008) and Simens
et al. (2009) investigated the effect of turbulent inflow conditions specifically for their
DNS of a ZPG TBL, their conclusion, i.e. that a distance of at least 300 initial
momentum-loss thicknesses has to be passed before the effect of the artificial inflow
is forgotten, is not necessarily of a general nature, but rather specific to the employed
recycling method. Note in this respect also that a recent large-scale DNS by Sillero
et al. (2011) reaching the higher Reθ = 6650, starting with a series of auxiliary
simulation domains for the generation of proper inflow conditions, appears to reach
fully developed conditions only towards the end of the simulation box. This shows
that the required inflow length is actually larger than previously expected, indicating a
Reynolds-number dependence. The present work, on the other hand, can more closely
be related to systematic wind tunnel experiments, in which the flow undergoes forced
laminar–turbulent transition and various tripping devices are tested by studying the
downstream evolution of the boundary layer. In this respect it can be seen as the
numerical counterpart of the study by Erm & Joubert (1991) with the advantage of
having access to the full characteristics of initial and upstream conditions (which is
rarely accomplished in experiments; see Marusic et al. 2010). We therefore focus in
this study on tripping mechanisms and corresponding parameters likely to be found in
experiments, thereby excluding boundary-layer receptivity to free-stream disturbances
(see e.g. Brandt, Schlatter & Henningson 2004). To the authors’ knowledge there is no
previous study investigating the effects of different turbulence generation mechanisms,
i.e. inflow length and tripping effects, in spatially developing flows, so the current
investigation is especially significant in this respect.

The present paper will conclude that different inflow conditions and residual tripping
effects do indeed explain most of the differences observed when comparing available
DNS data. It will also be shown that if transition is initiated at a low enough Reynolds
number (based on the momentum-loss thickness) Reθ < 300, all quantities agree well
for both inner and outer layer for Reθ > 2000. Also, a previously observed overshoot
in the total shear stress within the sublayer observed in the DNS of Wu (2010) up
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Turbulent boundary layers: inflow and tripping effects 11

to Reθ = 1900 (see also Wu & Moin 2009a, 2010) has been identified as a feature
of transitional boundary layers. Based on these results a lower limit for a meaningful
comparison between numerical and/or wind tunnel experiments can be established,
i.e. Reθ > 2000.

The paper is organized as follows. In § 2 the simulation approach is briefly
introduced together with a quantification of the tripping parameters. The comparisons
between the various cases is given in § 3 for integral quantities, mean flow, Reynolds
normal and shear stresses. Finally, § 4 summarizes the present findings and ends with
practical guidelines.

2. Existing and new direct numerical simulations
In this paper numerical simulations of turbulent boundary layers developing in

the downstream direction on top of a smooth wall are considered. The inflow is
laminar Blasius flow. Transition to turbulence is induced a short distance downstream
of the inlet via a volume force (trip forcing) acting in the near-wall region.
Therefore, all our cases induce transition and turbulence from the wall; free-stream
disturbances and the corresponding receptivity processes are therefore not considered.
Wall-induced transition is, however, close to experimental setups in wind tunnels,
and thus especially relevant. Furthermore, we chose to model a real tripping device
(such as roughness, vibrating ribbons etc.) using a volume force as described
below; this approximation is assumed to not influence the flow development further
downstream of the tripping location. For the main part of the present investigation
the DNS of a ZPG TBL by Schlatter et al. (2009), here serving as the baseline
simulation, was re-simulated, however with different tripping parameters to examine
these effects on the turbulent boundary layer developing downstream. In particular,
simulations with a lower tripping amplitude (LA), lower (LF) and higher (HF) tripping
frequency, and ‘classical transition’ via exponential growth of Tollmien–Schlichting
(TS) waves were considered as the turbulence-generation mechanisms. Additionally,
a simulation with tripping at a considerably higher Re (HR) was considered, since
this is a common way to reach cost-efficiently a high Reynolds number (Khujadze
& Oberlack 2007), and finally one with tripping at a considerably lower Re (LR),
similar to Wu & Moin (2010). In the following two subsections a brief description
of the numerical method and the exact details of the formulation of the trip
forcings is given. Finally, in § 2.3 visualizations of the flow are provided in order
to appreciate the structural differences during transition due to the various tripping
parameters.

2.1. Numerical method
All the present simulations are performed using a fully spectral method to solve the
time-dependent, incompressible Navier–Stokes equations (Chevalier et al. 2007). In
the wall-parallel directions, Fourier series with full dealiasing are used whereas the
wall-normal direction is discretized with Chebyshev polynomials. Periodic boundary
conditions in the streamwise direction are combined with a spatially developing
boundary layer by adding a ‘fringe region’ at the end of the domain; similar
techniques have already been employed by Spalart (1988a) and Bertolotti, Herbert
& Spalart (1992). In this region, the governing Navier–Stokes equations are augmented
by a linear forcing which reduces the fluctuation level in the layer, and causes vertical
inflow in order to reduce the boundary-layer thickness. In consequence, the flow at
the inlet (x = 0) is laminar Blasius flow at the specified inlet Reynolds number, free
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12 P. Schlatter and R. Örlü
from any disturbances from the downstream end of the physical domain (Nordström,
Nordin & Henningson 1999). Note that a truly spatially developing boundary layer is
simulated, and the fringe region is purely a numerical method to achieve this with
high accuracy compatible with Fourier discretization. For further details on the exact
simulation setup the reader is referred to Schlatter et al. (2009).

The various runs in this study are summarized in table 1, together with their
Reynolds-number range. The numerical resolution and box dimensions for cases LA,
TS, LF and HF are exactly the same as the baseline case (Schlatter et al. 2009),
i.e. 1x+ = 12, 1ymax+ = 8.6, 1z+ = 6.4 obtained with a grid of 3072 × 301 × 256
spectral collocation points in the streamwise, wall-normal and spanwise direction,
respectively. Cases LR and HR are well-resolved large-eddy simulations (LES), with
resolutions similar to the previous LES study by Schlatter et al. (2010c). In addition
to the aforementioned baseline and new simulations, the DNS described by Schlatter
& Örlü (2010) over the extended range of Reθ = 180–4300 is included here as well to
indicate the trends beyond the Re-range covered by the new simulations.

2.2. Numerical tripping
The tripping is implemented as a weak random volume force acting in the wall-
normal direction. The main inputs are amplitude, spanwise length scale and temporal
frequency. Although a direct association with a specific shape of an experimental
tripping device is impossible, the flow features downstream of the tripping and
the corresponding transition mechanisms are expected to resemble what a physical
trip would have induced. For instance, it appears natural that the amplitude and
the vertical shape of the trip can be associated with the height of a roughness
element, whereas the time scales relate to the shedding characteristics of a real trip;
similarly the spanwise scale is associated with the physical scales of the trip. Formally,
the specific force, entering the Navier–Stokes equations on the right-hand side, is
written as

F2 = exp([(x− x0)/`x]2− [y/`y]2)g(z, t), (2.1)

where the two parameters `x and `y denote the spatial Gaussian attenuation of
the forcing region. The force thus appears as a Gaussian blob centred around the
streamwise position x0 and the wall (y = 0). The actual forcing function g(z, t) is
allowed to vary both in time t and the spanwise direction z to be able to impose
temporal and spanwise frequencies. The force is composed as follows:

g(z, t)= At[{1− b(t)}hi(z)+ b(t)hi+1(z)]. (2.2)

Here, b(t) = 3p2 − 2p3, p = t/ts − i and i = int(t/ts) with int(·) denoting the integer
part of the argument. The temporal fluctuations are thus implemented as third-order
Lagrange interpolants with time scale ts (Chevalier et al. 2007). The mechanism is
illustrated in figure 3(a). The time evolution is split into intervals i = 0, . . . of length
ts, which are characterized by a random value of hi(z). In between, the value of the
function g(t) is interpolated using a third-order polynomial, ensuring continuity in the
zeroth- and first-order derivative. The hi(z) are random harmonic signals with unit
amplitude for all wavenumbers below 2π/zs, and zero amplitude for all waves above
2π/zs. The shape of the forcing g(z, t) is thus fully described by two parameters, the
spanwise scale zs and the temporal scale ts. With this specific formulation, the trip
forcing is independent of the time step used in a simulation, and, provided that a
suitable pseudo-random number generator is used, accurate restarts of a simulation are
possible without introducing any errors or discontinuities.
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FIGURE 3. (a) Sample evolution of tripping function g(t) according to (2.2); symbols
indicate the change-over points at times t = i ts for At = 1. (b) Normalized temporal power
spectrum of the tripping amplitude. The cutoff time scale is denoted by ts = 1.

In figure 3(b), the resulting temporal spectrum is shown; the spectral energy is
equipartioned until the temporal cutoff length ts is reached, which is followed by
a steep decrease of the energy ∼f−6 towards zero, as a consequence of the third-
order polynomial ansatz for g. The trip forcing thus includes fluctuations which are
uniformly distributed in both wavenumber and frequency with scales larger than zs

and ts. For all the cases, the location of the forcing is chosen to be very close to
the (laminar) inlet at x0 = 10δ∗0 with δ∗0 denoting the displacement thickness of the
inflowing laminar Blasius boundary layer. The attenuation length in both streamwise
and wall-normal directions is chosen as `x = 4δ∗0 and `y = δ∗0 . For the baseline case,
a temporal cutoff scale ts = 4δ∗0/U∞ and a spanwise cutoff scale zs = 1.7δ∗0 has been
chosen. For case LA, the amplitude is reduced to 25 %, in case LF the temporal scale
is increased by a factor of 5, and in case HF the frequency is increased by a factor of
4 and zs is halved. Cases LR and HR use similar scales and amplitudes as the baseline
run. In case TS, instead of a random tripping, harmonic disturbances are introduced
with non-dimensional frequency F = 120, corresponding to a circular frequency of
ω0 = 10−6F Reδ∗0 . This forcing is two-dimensional, i.e. spanwise uniform. In order to
trigger secondary instability and subsequent breakdown to turbulence, small-amplitude
white noise is also included, superimposed onto the harmonic signal. This type of
forcing can be viewed as a numerical counterpart of a vibrating ribbon, inducing
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14 P. Schlatter and R. Örlü
disturbances at a given frequency. More information about this forcing is given in
Schlatter et al. (2010b).

2.3. Flow visualization
The disturbances introduced into the flow as discussed in § 2.2 will all lead to

laminar–turbulent transition, but following different routes depending on the forcing
parameters as apparent from the visualizations given in figure 4. Here, the streamwise
development of the flow is shown by means of isocontours of vortical structures,
identified by the λ2 criterion (Jeong & Hussain 1995).

We start our description with the case in which harmonic forcing is applied close
to the inlet, case TS, depicted in figure 4(a). The non-dimensional frequency F is
chosen such that a considerable part of the flow domain is linearly unstable, leading
to exponentially growing Tollmien–Schlichting (TS) waves of the same frequency
further downstream. Owing to the low-amplitude superimposed white noise, secondary
instability is triggered close to Branch II (Rex = 590 000 based on streamwise
distance from the leading edge), which manifests itself in the generation of 3-
shaped vortices, which break down to a localized turbulent spot via the formation
of hairpin vortices. Commonly, this transition scenario is referred to as the classical
route via linearly unstable primary disturbances with subsequent secondary instability.
The flow structures during turbulent breakdown are more clearly seen in an enlarged
view, figure 5(a). The hairpin vortices quickly give rise to a packet of hairpins,
forming an incipient turbulent spot. These spots quickly spread and merge, such that
a short distance downstream of Branch II the full spanwise extent of the domain is
turbulent. Note that the 3-vortices initially appear in a staggered pattern, being thus of
subharmonic (H) type.

The remaining cases, figure 4(b–g), are all obtained with varying parameters for the
trip forcing as described earlier. For the baseline case, figure 4(e), quick transition is
induced at approximately the same streamwise distance across the whole span of the
flow (concentrated breakdown), indicating that the intermittency γ (i.e. the time of
the flow being turbulent) quickly rises from zero to unity over a short downstream
distance of ∼10δ∗0 . The transition mechanism is highlighted in figure 5(c). The trip
forcing induces a comparatively small displacement of the flow in the wall-normal
direction. Via the lift-up effect (Landahl 1980), after which a fluid particle initially
retains its original momentum when displaced vertically, relatively strong streamwise
streaks are quickly formed, which subsequently break down to turbulence via the
formation of hairpin vortices (Schlatter et al. 2010a) on top of low-speed streaks.
Similar behaviour is also observed for cases HF, LR, and HR (see visualizations in
figure 4d,f,g). The latter two cases are characterized by a different Reynolds number
at the inlet, and are thus not directly comparable to the other cases. We have also
performed an additional simulation in which the trip force only contains the random
spanwise variation (with fine spanwise scale as in case HF), but is steady in time
(i.e. ts →∞). This specific choice of parameters can be thought of as resembling
the effect of small-scale roughness. The flow behaviour consists of an initially steady
array of streaks, which then quickly breaks down to fully random turbulence in a very
similar manner to case HF. Since all characteristics are very similar to case HF we do
not further discuss that case.

On the other hand, cases LF and LA (figure 4b,c), tend to form incipient turbulent
spots (similar to bypass transition caused by free-stream disturbances as e.g. described
in Brandt et al. 2004), which then grow while travelling downstream and eventually
merge to produce a fully turbulent flow. In those cases, the intermittent character of
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(b)

(c)

(d)

(e)

( f )

(a)

(g)

FIGURE 4. Visualization of the streamwise development of vortical structures by means of
isocontours of λ+2 = −0.005 (measured at Reθ = 1100, Jeong & Hussain 1995), coloured
with the streamwise velocity, from blue (low) to red (high). The streamwise extent of the
computational domain is roughly twice as long as shown. Visualizations correspond to: (a)
TS; (b) LF; (c) LA; (d) HF; (e) baseline (Schlatter et al. 2009); (f ) LR; and (g) HR. The
respective downstream positions corresponding to Reθ = 1100 are indicated by the spanwise
lines. Flow from left to right.
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(b) (c)(a)

FIGURE 5. Close-up of the transitional flow structures for selected cases: (a) TS; (b) LF; and
(c) baseline. Same colour coding and isosurfaces as figure 4.

the flow at low Reθ becomes evident. Note that the individual turbulent spots share all
the characteristics of canonical spots as e.g. described by Emmons (1951), as can be
seen from the close-up in figure 5(b). In particular the characteristic arrow-head shape,
and the overhang region at the downstream end of the spot are clearly visible. Cases
LF and LA mainly differ in the frequency of spots, shifting the transition location
upstream for case LA.

3. Statistical analysis and discussion
In this section, the results from the various simulations are presented and compared.

Starting with integral quantities in § 3.1, inner- and outer-layer convergence of mean
and fluctuating components in §§ 3.2–3.3, the section is ended by discussing the more
controversial behaviour of Reynolds and total shear stress in § 3.4.

3.1. Integral and global quantities
The streamwise development of vortical structures emerging from a low-amplitude
tripping mechanism, shown in figure 4, indicates that a considerable portion of the
domain is affected by the way the flow is triggered and consequently will yield a
different Reθ at which laminar–turbulent transition is induced and concluded. A direct
and overall assessment of the boundary layer development can be obtained through the
boundary-layer thickness, δ99, as well as its integral counterparts, i.e. the displacement
thickness, δ∗, and momentum-loss thickness, θ . The ratio of the latter two integral
quantities, the shape factor H12, as function of Reθ is depicted in figure 6(a) for all
utilized simulations and is considered ‘a good indicator of the state of a ZPG boundary
layer’ (Chauhan et al. 2009). These quantities have been evaluated in a consistent
manner by direct integration of the mean velocity profiles over the entire domain
height. Starting from the laminar value of a Blasius boundary layer, H12 ≈ 2.59, the
different cases reach a common trend line at around Reθ = 1000, where the difference
between the various simulations is within ±1 %. The scatter further reduces to below
±0.35 % at around Reθ = 2000, which is well below the tolerances given by the ‘H12

criterion’ proposed by Chauhan et al. (2009) to identify well-developed ZPG TBL
flows. The flow case tripped at a high Re (HR) is naturally outside the given margins,
and it is interesting to note that even at Reθ = 2500 it is not only 2 % below the
value shared by all other flow cases, but still exhibits the opposite Re-trend, i.e. it
increases with increasing Reθ , something that can also be observed in the simulations
by Khujadze & Oberlack (2007), which were similarly tripped at a high Re. This
confirms the conclusion drawn in Schlatter & Örlü (2010), that ‘the necessary inflow
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FIGURE 6. (Colour online) Ratios of boundary-layer thicknesses. (a) Shape factor, H12,
and (b) displacement thickness, δ∗, and momentum-loss thickness, θ , over boundary-layer
thickness, δ99, as a function of Reynolds number, Reθ , for various types of tripping. For the
meaning of the line styles in this and subsequent figures, see table 1.

length for developed turbulence at higher Re is longer’ and emphasizes that tripping
at relatively high Re (while at first glance being a cost-efficient method to reach high
Reθ ) does not imply that the simulated flow case represents a canonical ZPG TBL flow,
not even at a considerably higher Reθ ≈ 2900 considerably downstream of the tripping
location. This effect can also be observed in the very recent large-scale DNS by Sillero
et al. (2011) reaching up to Reθ = 6650 in which the shape factor appears to be
slightly lower than the one predicted by Monkewitz, Chauhan & Nagib (2007) based
on experiments or foreseen through the high-Re simulation of Schlatter & Örlü (2010);
nevertheless H12 approaches the common trend towards the more downstream parts of
their simulation box. In consequence, Sillero et al. (2011) introduce an accommodation
length x̃ related to the convection of structures during their turnover time, which is
especially important for the convergence of the largest fluctuations. This length, scaled
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18 P. Schlatter and R. Örlü
by the local boundary thickness, increases with Reθ , making simulations with inflow
positions further downstream gradually more expensive.

A more sensitive measure of the growth of the boundary layer can be obtained from
the boundary-layer thicknesses δ∗ and θ themselves, normalized by the 99 % thickness,
as shown in figure 6(b). In particular, the simulation denoted as ‘baseline’ indeed
turns out to be an accurate basis, since all other simulations eventually converge onto
the trend prescribed by it. Also the simulation initiated at a lower Reynolds number,
LR, nicely agrees with the baseline case starting from Reθ = 400. Note that although
the high-Re DNS (Schlatter & Örlü 2010) appears to be slightly below the baseline
simulation, this is mainly caused by a different way of evaluating the integrals which
yields differences when considerably different domain heights are used (cf. Schlatter
& Örlü 2010). Comparing the data in figure 6(b) and the collection of DNS data in
figure 1(b), shows that most literature simulations actually overpredict the two ratios
δ99/δ

∗ and δ99/θ , and seem to show a decreasing trend for low Reθ followed by a slow
increase for higher Reθ . The present simulations indicate that such an overprediction
and change of Re-trend is in fact due to a flow that has not sufficiently settled at low
Reynolds numbers, which might also be the case for at least some of the literature data
collected in table 1. In that regard it is interesting to see that the only truly periodic
(and thus fully developed) simulation by Spalart (1988b) shows the same increasing
trend for both quantities at all Reθ .

The skin-friction coefficient cf for the present simulations is depicted in figure 7(a)
and clearly shows that for all simulations the inflow is laminar (i.e. cf ,lam ≈ 0.441Re−1

θ

from the Blasius solution). Depending on tripping, laminar–turbulent transition is
induced at different Reθ , and all except the LF and LA cases exhibit typical overshoots
of cf as a result of transition, after which they settle on a common cf distribution
indicating a rather quick adaptation of the near-wall turbulence. The very different
behaviours of the simulations in the region Reθ = 200–1000 is of course due to
the transition mechanism; cases LA and LF are going through a region with the
intermittent appearance of turbulent spots embedded in laminar flow which lead to
the characteristic cf curves with a comparatively slow increase towards the turbulent
value, as known from bypass transition (Brandt et al. 2004). On the other hand, the
friction coefficient pertaining to case TS remains essentially at its laminar value during
the slow exponential growth of the TS-waves, and shows a sharp increase when the
secondary instability takes over. As apparent from the trends in the shape factor and
skin-friction distributions, the baseline simulation, the LA, HF and LR cases, as well
as the high-Re simulation adapt to the turbulent distributions for Reθ < 700, which
again underlines that most of the simulations presented here relate closely to the cases
in the experimental counterpart study by Erm & Joubert (1991) and other experimental
investigations (Murlis, Tsai & Bradshaw 1982).

The root mean square (r.m.s.) value of wall shear stress (τ+w,rms) is shown in
figure 7(b) and, irrespective of tripping mechanism, the curves also indicate a fast
convergence towards the classical value of 0.4 (Alfredsson et al. 1988) with a small
increase with Reynolds number, coming from the growing influence of the outer
spectral peak as recently documented by Örlü & Schlatter (2011). It is interesting to
point out that even when including the HR case the difference in τ+w,rms between all
cases is within 2 %, thereby making the DNS by Wu & Moin (2009a, 2010) with more
than 10 % higher values (irrespective of Re) appear quite different from all simulations
presented here (see also the discussion in Örlü & Schlatter 2011).
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FIGURE 7. (Colour online) (a) Skin friction factor, cf , and (b) fluctuating magnitude of the
wall-shear stress, τ+w,rms, as a function of Reynolds number, Reθ . The thick grey line indicates
the laminar (Blasius) skin friction.

3.2. Mean velocity profiles
In order to highlight small but significant and important differences in the mean
velocity profiles within the inner region it is customary to consider the velocity
gradient in terms of the so-called Kármán measure or log-law indicator function
(Spalart 1988b), since depicting the mean velocity profile in conventional inner scaling
will barely expose subtle differences. The log-law indicator function Ξ = y+ dU+/dy+,
which is commonly employed to measure the von Kármán constant, κ , in the overlap
region (Österlund et al. 2000), since it asymptotes to κ−1 in a logarithmic region,
is presented in figure 8. The four subfigures show curves clustered around distinct
Reynolds numbers Reθ = 670, 1100, 1550, and 2000. Note that the profiles for the
TS, LF and LR cases are not shown for Reθ = 2000, since these cases might already
be affected by the outflow conditions. Additionally, the DNS data by Simens et al.
(2009), who employ a rescaling and recycling method and thereby avoid the simulation
of laminar–turbulent transition, are included as well in figure 8(b–d). It is apparent
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FIGURE 8. (Colour online) Profiles of the indicator function (Ξ = y+ dU+/dy+ versus y+)
in the inner region of the ZPG TBL flow. Dashed vertical lines indicate the upper boundary
of the overlap region, i.e. y+/Reτ = 0.2. Profiles are grouped according to their Reynolds
number: (a) Reθ = 670; (b) Reθ = 1100; (c) Reθ = 1550; (d) Reθ = 2000. Horizontal lines
indicate the levels corresponding to κ−1 = 0.38, 0.40, and 0.42. Data by Simens et al. (2009)
at around the same Reθ are depicted as black squares; only a reduced number of interpolated
data points is shown in order to ease readability.

that the curves for Ξ within the inner region, i.e. the region below y+ ≈ 0.2δ+

(indicated by the dashed vertical lines), show a good agreement for all data from
Reθ = 1100 onwards; only the LF case requires a longer development length in
accordance with the slower convergence as already discussed with regard to integral
quantities.

Although the highest Reynolds number considered here is far from being sufficient
to reach an asymptotic logarithmic region or even deduce an accurate value for the
log-law constants, the collection of profiles follows the general trend of the composite
profile proposed by Monkewitz et al. (2007). An exception in this respect is the HR
case which exhibits a considerably lower peak value at y+ ≈ 10. This is probably
not related to its lower numerical resolution since the LR case has the same grid
spacing and agrees well with the main body of DNS cases. Hence, it can be concluded
that tripping at a considerably high Reynolds number leaves its imprints even within
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the inner region of the streamwise mean velocity profile despite a comparatively
long development length, a trend that also does not vanish towards the end of the
simulation domain, i.e. Reθ = 2900.

Focusing now on the outer region, i.e. the secondary peak located at ∼0.7δ+99, the
baseline simulation and cases HF and LR have already reached a value of ∼4.8
at Reθ = 1100, whereas the data pertaining to cases still undergoing transition show
considerably lower values of around 4. Gradually, all simulations converge and at
Reθ = 2000 most differences have vanished, except for case HR, which is clearly not
fully developed at this Reθ . At this point it is interesting to note that the profile by
Simens et al. (2009) follows surprisingly closely the TS case for all Reθ , even though
the latter case is going through transition very late and reaches a first turbulent state
only at Reθ = 1100.

The excellent agreement of the velocity gradients (an exception being the HR
case), however, does not imply that the velocity profiles agree. This can especially be
evinced when considering the deviation of the mean velocity profile from a reference
profile (such as the log-law or, as done here, the composite profile description by
Chauhan et al. 2009) as depicted in figure 9. While there exist considerable differences
for the compilation around Reθ = 670, owing to the different development lengths
needed to initiate and in particular complete laminar–turbulent transition, all profiles
agree within ±0.025uτ (uτ denoting the friction velocity) at the latest at Reθ = 1550,
an exception being again the HR case. Interestingly, the latter case deviates by up to
0.2uτ from the other cases and follows closely the trend of the DNS by Khujadze
& Oberlack (2007), which was tripped at a considerably higher Re as well. This
incorrect behaviour is still present at the end of the simulation domain of the HR
case (as for the DNS by Khujadze & Oberlack 2007), i.e. at Reθ ≈ 2800. Also
included in the compilation are the profiles from the DNS by Simens et al. (2009)
and Wu & Moin (2010) for comparison. The profiles underline the conclusions already
deduced from the integral quantities, i.e. that the near-wall turbulence convergences
rapidly, and that with increasing Re the curves within the inner layer not only agree
with each other, but also collapse onto the same curve irrespective of the Reynolds
number for a successively larger Re-range, thereby laying the foundation for the law
of the wall. On the other hand, in the outer region, much longer inflow lengths are
needed to reach similar behaviours at a given Reynolds number; for the given data a
good agreement is reached at Reθ = 2000 and higher (excluding case HR for reasons
discussed previously).

It might seem an exaggeration to highlight and scrutinize the differences in the mean
velocity profiles in such detail as done in figure 9; however, it should be kept in
mind that these differences penetrate into the viscous sublayer. There, the observed
differences are not negligible when recalling that DNS data are often utilized to
validate scaling laws and determine the related constants or parameters in the near-wall
region, be it for the mean velocity profile (Durst et al. 1996; Örlü, Fransson &
Alfredsson 2010) or higher-order moments (Buschmann, Indinger & Gad-el-Hak 2009;
Buschmann & Gad-el-Hak 2010). In particular experimentalists have been exploiting
near-wall data from mainly DNS or correlations based on them, for instance, to
extract the wall skin friction (Kendall & Koochesfahani 2008; Alfredsson, Örlü &
Schlatter 2011) or determine the wall position in experimental investigations (Örlü
et al. 2010; Alfredsson et al. 2011) as well as to propose refined Pitot tube corrections
for turbulent flows near walls (McKeon et al. 2003).
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FIGURE 9. (Colour online) Deviation of the inner-scaled mean velocity profile from the
modified Musker profile (Chauhan et al. 2009) in the inner region of the ZPG TBL
flow. Dashed vertical lines indicate the wall-normal boundary of the overlap region,
i.e. y+/Reτ = 0.2. Profiles are grouped according to their Reynolds number: (a) Reθ = 670;
(b) Reθ = 1100; (c) Reθ = 1550; (d) Reθ = 2000. Data by Wu & Moin (2010) (Reθ =
670, 1000, 1410, 1840, stars), Simens et al. (2009) (Reθ = 1100, 1550, 1968, black squares)
and Khujadze & Oberlack (2007) (Reθ = 1663, 2055, open squares) are depicted as well;
note that only a reduced number of interpolated data points is shown in order to ease
readability.

3.3. Inner- and outer-layer convergence

All of the previous figures clearly indicate a consistent trend in terms of convergence
towards a general quantitative behaviour, which essentially follows the trend prescribed
by the baseline simulation by Schlatter et al. (2009). The topic of inner- and
outer-layer convergence has so far been discussed in terms of integral and global
quantities as well as the streamwise mean velocity profile. In order to generalize
the conclusions on convergence into a general trend at a fixed Reynolds number,
i.e. independence of upstream effects, it is natural to consider higher-order moments,
and in particular the streamwise velocity r.m.s. profile. To ease the assessment of
convergence at both different wall-normal positions and Reynolds numbers, contours

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.324


Turbulent boundary layers: inflow and tripping effects 23

102

101

500 1000 1500 20000 2500

103

100

500 1000 1500 20000 2500

800

600

400

200

1000

(a)

(b)

FIGURE 10. Contours of constant root-mean-square values (in steps of 1u+rms = 0.25) of
the streamwise velocity fluctuations u+rms as a function of Reynolds number in inner scaling
against an (a) logarithmic and (b) linear ordinate. For clarity only the baseline (blue), TS
(green), HF (red), and HR (black) cases are shown.

of u+rms in a streamwise/wall-normal plane are depicted in figure 10 against both a
linear and a logarithmic wall-normal axis in order to enhance the inner and outer
layer, respectively. For clarity only the TS, HF and HR cases are shown here in
addition to the baseline simulation, where – when excluding the HR case – the TS
case exhibits the largest discrepancy, i.e. the slowest convergence. Focusing on the
near-wall region (highlighted in the semi-logarithmic representation) in figure 10(a) a
collapse of the contour lines beyond the near-wall peak of the r.m.s. profile (y+ ≈ 15)
covering the entire inner region of the boundary layer can be observed for Reθ > 1000,
indicating that inner-layer convergence is rather quickly obtained. This perception also
goes along, both qualitatively and quantitatively, with the short development length for
converged statistics in terms of the skin-friction coefficient or the magnitude of the
fluctuating wall shear stress apparent from figure 7.
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For the outer layer, as shown in figure 10(b), the TS case represents the slowest

convergence: only for Reθ > 2000 has the flow forgotten its history and the outer layer
reached a common trend prescribed by the baseline simulation and approached by all
other (not shown) cases. The general behaviour of an unconverged turbulent flow is
that the boundary layer appears to be too thick (in inner units). This is consistent with
the scaled boundary-layer thickness δ99 shown in figures 1 and 6. Note that even at
the end of the simulation domain the HR case has not yet reached the common trend,
thereby indicating that tripping at considerably high Re is indeed not a cost-efficient
way to obtain data from a fully developed ZPG TBL flow, as already apparent from
the differences observed in the mean velocity profile. These observations go along
with the conclusions drawn from the shape factor, shown in figure 6, and should
be kept in mind when considering DNS (even in long simulation boxes) that were
initiated at a high Re (Sillero et al. 2011), as well as LES with equivalent approaches
(Inoue & Pullin 2011).

An interesting observation with respect to the HR case is that, while convergence is
not reached for the shape factor or the skin-friction coefficient nor for the mean and
r.m.s. profiles in the inner and outer layers, only the viscous sublayer seems to exhibit
convergence. This is particularly emphasized when considering the magnitude of the
wall shear stress fluctuations (see figure 7b), which even for the HR case converges
onto the general trend prescribed by all other simulations. This makes it in particular
difficult to explain the considerably higher τ+w,rms values obtained in the DNS by Wu &
Moin (2009a, 2010) (see also discussion in Örlü & Schlatter 2011).

The reminiscence of upstream and history effects within the outer region of the
TBL and the related slow convergence of the same quantities can also be observed
in the classical representations of mean and r.m.s. profiles depicted in figure 11
for all simulations at Reθ = 1100 and 2000. While the law of the wall has clearly
been established in the streamwise mean velocity profile and the r.m.s. profile
collapses (slightly Re-dependent as is well-known) onto a single curve within the
inner region, the outer region exhibits remarkable differences in the wake region
and considerably differing fluctuation levels. The general trend is, as already stated
above, that unconverged flows tend to display a thicker boundary layer. It is, however,
gratifying that if transition is initiated at a low enough Reθ < 300, all streamwise
velocity statistics agree well for both inner and outer layer for Reθ > 2000, an
exception being the HR case. It is also worth noting in this respect that the above
statement applies to higher-order statistics of the streamwise velocity fluctuations, such
as skewness and flatness factors (not shown here), alike. These deductions confirm the
experimental conclusions by Erm & Joubert (1991), that noticeable differences for low
Reynolds numbers would eventually diminish and that for Reθ ≈ 2175 and above, the
data for their three different tested tripping devices agree closely. Similar observations
in the range 700 < Reθ < 5300 have also been made by Castillo & Johansson (2002)
who found, that ‘no effect on the mean velocity profiles or the longitudinal Reynolds
normal stress could be seen’. Note in this respect, that no attempt is being made
to investigate Reynolds-number effects in mean or streamwise velocity r.m.s. profiles,
since the primary goal of the present study is to establish whether or not profiles
of statistical quantities agree at a high enough and fixed Reynolds number onto a
common, i.e. universal, profile, or whether upstream and initial conditions will prevent
universality.

The results shown so far indicate that even low-order statistics, such as integral
quantities, mean and fluctuation profiles, exhibit a considerable dependence on
the upstream history, at least up to Reθ < 2000. This finding, although perhaps
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FIGURE 11. (Colour online) (a) Streamwise mean velocity profile in inner scaling for
Reθ = 1100 and 2000 with insets showing enlarged wake region from y+ = 100 to 2000. (b)
Streamwise velocity root-mean-square values for Reθ = 1100 and 2000 with inset depicting
the Reθ = 2000 case against a logarithmic abscissa. Data by Simens et al. (2009) at around
the same Reθ are also depicted; note that only some of the data points are shown in order to
ease readability.

expected to some extent, has important consequences, in particular in the light of
comparing various DNS data sets among each other and also DNS and experiment
with each other. Clearly, such comparisons at lower Reynolds numbers need to
be considered with reservations in order to exclude effects simply stemming from
different upstream conditions. Also, the present results give some guidelines for what
really can be expected in terms of level of agreement for a comparison at lower
Reθ , based on physical reasoning. This in turn is important when compiling databases
with individual data to be ‘carefully selected’ (Buschmann & Gad-el-Hak 2010), or
if DNS is to be in ‘excellent agreement’ (Araya, Jansen & Castillo 2009) with other
data.
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3.4. Reynolds stresses and total shear stress

Within the range of parameters of our diverse types of tripping, the view put forward
by Castillo & Johansson (2002) can be assessed with rigour, i.e. that ‘neither the
profiles of the wall-normal Reynolds stress nor those of the Reynolds shear stress
collapsed, thus showing the effects of the upstream conditions’ ... ‘when the upstream
conditions were changed and the local Reynolds number was held constant’. While the
above statement resulted from experiments performed in the range 761 < Reθ < 5321,
experiments at higher Reynolds numbers let the same principle authors conclude (Seo
et al. 2004) ‘that the upstream conditions affect the profiles at low Reynolds number
(i.e. Reθ < 5000) and its influence attenuates with increasing Reynolds number’. Their
conclusion for the wall-normal stress remained intact, in fact it ‘showed the strongest
dependence on the upstream conditions even for the high Reynolds number data’ (Seo
et al. 2004). It is important to note that in our study turbulence is always induced at
the wall, and that cases with severe under- or overstimulation have not been simulated.
In particular the latter situation might appear in wind tunnels operating at high speeds.
However, these are extreme situations which should be avoided, both experimentally
and numerically.

To assess the validity of the aforementioned conjecture based on the present
simulation data, profiles of the Reynolds shear stress, −uv+, and the total shear
stress, dU+/dy+ − uv+, are presented in figure 12. It becomes apparent that the −uv+

distributions for the various simulations quickly converge onto a common profile,
already attained at Reθ = 1100. This is in agreement with the previously observed
early inner-layer convergence, established e.g. through figures 7 and 10(a). To check
whether the Reynolds shear stress converges in the outer layer as well, −uv+ is plotted
on a linear abscissa in figure 13(a) for the same data compilation as in figure 11. In
accordance with the picture for the r.m.s. profile, differences at Reθ = 1100 between
the various cases, with the TS case being again closest to the profile by Simens
et al. (2009), have diminished before reaching Reθ = 2000. In fact, the Reynolds shear
stress profiles depict excellent agreement (excluding again for obvious reasons the HR
case), which goes beyond that observed in the streamwise r.m.s. profile depicted in
figure 11(b). This observation seems not to be in agreement with the conclusions by
Castillo & Johansson (2002) and Seo et al. (2004). Their statement that the wall-
normal component of the Reynolds normal stress ‘showed the strongest dependence
on the upstream conditions’ (Seo et al. 2004) can also not be supported through
the present data (see figure 13b). Although the agreement is not as good as for the
Reynolds shear stress, it is certainly comparable to that observed in the streamwise
r.m.s. profiles.

Another topic of recent interest is related to the observed overshoot of the total
shear stress dU+/dy+ − uv+ over the wall shear stress dU+/dy+|y=0. This behaviour is
clearly visible for the TS and LF cases at Reθ = 670 depicted in figure 12. Both of
these cases were also found to exhibit a relatively slower convergence onto the general
trend in all of the shown integral and global quantities, highlighting that this feature
is mainly related to an extended transitional zone. However, such an overshoot of the
averaged total shear stress over the averaged wall value was also noted in the DNS
of a ZPG TBL by Wu & Moin (2009a) covering the range 80 6 Reθ 6 940 for which
transition is assumed to be completed at Reθ = 750. Based on the observed gradual
decrease of the overshoot with higher Reθ , the authors conclude that the ‘observed
total shear stress overshoot in the turbulent region is a diminishing effect of transition,
and is unlikely to persist in fully developed turbulent boundary layers’ (Wu & Moin
2009a). However, in a follow-up study by Wu (2010) the total stress overshoot present
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FIGURE 12. (Colour online) Reynolds shear stress, uv+, and total shear stress, dU+/dy+ −
uv+, denoted as thin and thick lines, respectively. The profiles are grouped according to their
Reynolds number: (a) Reθ = 670; (b) Reθ = 1100; (c) Reθ = 1550; (d) Reθ = 2000.

in the data by Wu & Moin (2010), which extends the previous DNS up to Reθ = 1950,
was associated with a localized streamwise acceleration of the streamwise velocity
component in the transitional region and deemed ‘valid, and presumably general to
a class of similar types of boundary layers’ (Wu 2010). In fact, the strength of the
overshoot in the total shear stress present in the data by Wu & Moin (2010) was
found to gradually decrease from around 10 % down to around 2 % until Reθ = 900.
From there on it remained constant at a level of 2 % up to their highest Reθ as
apparent from the profile shown in figure 14 at Reθ = 1840 or the profile in the inset
of figure 15. To further study this phenomenon, a close-up of figure 12 is presented
in figure 14, comparing our data with those by Simens et al. (2009) and Wu & Moin
(2010). Interestingly, Wu (2010) denotes the upper end of the Reynolds number region
as turbulent when it comes to the ‘preponderance of hairpin vortices in the turbulent
boundary-layer region up to Reθ = 1850’ (Wu 2010). This so-called ‘forest of hairpins’
(Wu & Moin 2009b) has received considerable attention and is controversially debated
(see e.g. discussions in Marusic 2009; Gad-el-Hak 2009; Jiménez et al. 2010; Schlatter
et al. 2010a), although Schlatter et al. (2010a) have shown that at ‘higher Re
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FIGURE 13. (Colour online) (a) Reynolds shear stress and (b) wall-normal velocity root
mean square, v+rms, value as a function of Reynolds number for Reθ = 1100 and 2000 together
with data by Simens et al. (2009) (Reθ = 1100, 1968) (symbols). Note that only a fraction of
the available data points is shown in order to ease readability.

(say Reθ > 2000) these structures are no longer seen as being dominant; the coherence
is clearly lost, both in the near-wall region as well as in the outer layer of the
boundary layer’.

For all the present simulated cases, irrespective of tripping mechanism, the
overshoot of the averaged total shear stress over the averaged wall shear stress
is vanishing in the turbulent region (up to 0.01 %). The overshoot is thus clearly
associated with laminar–turbulent transition in accordance with previous transition
studies (for instance in the data by Brandt et al. 2004). This becomes clear from
figure 15 which shows the streamwise evolution of the maximum total stress. For
Reθ > 1100, where the inner-layer convergence has been established for all simulations
(excluding again case HR), none of the simulated cases exhibits values larger than
unity in the total shear stress. This observation also extends to most of the other DNS
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FIGURE 14. (Colour online) Close-up of figure 12 for: (a) Reθ = 1100; (b) Reθ = 1550;
(c) Reθ = 2000. Also shown are data by Wu & Moin (2010) (Reθ = 1000, 1410, 1840) and
Simens et al. (2009) (Reθ = 1100, 1550, 1968) with grey symbols denoting the Reynolds
shear stress; note that only some of the data points are shown in order to ease readability.

of ZPG TBL flows compiled in table 1, only the data by Simens et al. (2009) showing
a minor overshoot of τ+tot ≈ 0.4 %. It remains therefore unclear why the data by Wu
& Moin (2010) show such an overshoot well into the turbulent region. A residual
effect of a pressure gradient is certainly possible; however based on the available data
this remains a speculation. Also, an effect of ambient free-stream turbulence might
be possible too, but has not been observed in other cases involving bypass transition,
as we confirmed by postprocessing the data by Schlatter et al. (2010b). We can thus
state that, based on our data, such an overshoot is not a property of a canonical
turbulent boundary layer. Similarly, in fully developed channel flows, the total shear
stress distribution is linear, and no overshoot is possible.

4. Summary and conclusions
The recent assessment of a compilation of DNS data pertaining to canonical

zero-pressure-gradient turbulent boundary layers by Schlatter & Örlü (2010) showed
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FIGURE 15. (Colour online) Wall-normal maximum of the total shear stress,
max(dU+/dy+ − uv+), for all cases, including data by Spalart (1988b), Simens et al. (2009)
and Wu & Moin (2010) (see inset); note that not all data points by Wu & Moin (2010) are
shown in order to ease readability.

surprisingly large differences between the individual data sets, not only in the skin-
friction coefficient cf or shape factor H12, but also in their predictions of mean
and fluctuation profiles far into the sublayer. The main difference between these
simulations has been the way turbulence is introduced into the domain, a problem
which can be avoided in parallel flows (pipes and channels) by assuming periodicity.
Thus, by re-simulating the DNS setup by Schlatter et al. (2009), but with a number
of physically different inflow conditions and tripping effects, the downstream evolution
of integral and global quantities as well as mean and fluctuation profiles is analysed
in the present contribution. Based on these new results, which can be considered a
DNS counterpart of the seminal study by Erm & Joubert (1991), inflow and tripping
effects in a boundary layer can now be quantified. It is reasonable to conclude that
the memory of transitional effects over the entire boundary-layer height as well as
the slow convergence of the outer layer are the main factors explaining a large part
of the differences observed by Schlatter & Örlü (2010). Although it remains an open
question how to strictly define conditions to apply to determine whether a boundary
layer has reached a ‘fully-turbulent’ or ‘canonical’ state, it becomes clear from the
present data that neither the shape factor nor the skin-friction coefficient alone are
sufficient. The outer region of the boundary layer, not unexpectedly, requires longer
inflow length than the near-wall region. On the other hand, the data presented here
provide useful guidance on what accuracy (i.e. level of discrepancy between different
cases) might be expected for certain Reynolds numbers, and on what behaviour
might be expected for flows that are too close to transition having not yet reached
a fully turbulence near-equilibrium state. Based on the comparisons given in the
present study, it can further be concluded that the simulation setup by Schlatter et al.
(2009), employed here as baseline data, indeed constitutes a generic zero-pressure-
gradient turbulent boundary layer with minimal upstream dependence and history
effects from Reθ ≈ 500 onwards. This is best illustrated in figures 6 and 10 where
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the baseline data appear to prescribe the trend onto which all other simulations are
converging.

Within the range of tripping types studied in this paper, the present data have also
been used to test two hypotheses put forward by Castillo and co-workers (Castillo
& Johansson 2002; Seo et al. 2004): contrary to their measurements, the wall-normal
fluctuations as well as the Reynolds shear stress do collapse for higher Reynolds
numbers, more or less in a similar way to the streamwise velocity fluctuations. It
can therefore be concluded that – irrespective of the quantity considered, be it of
integral nature, mean velocity profiles or higher-order moments of the streamwise
velocity component – the Reynolds shear stress and the wall-normal component
of the Reynolds normal stress all agree well for both the inner and outer layer
for Reθ > 2000, if transition is initiated inside the boundary layer at a low enough
Reθ < 300, avoiding over- or understimulation of the flow.

This directly implies that for a meaningful comparison between numerical and/or
wind tunnel experiments, a Reynolds number Reθ > 2000 constitutes a lower limit for
reaching a fully turbulent state irrespective of transition trigger, provided that transition
is initiated early enough, and within reasonable bounds for the tripping characteristics
such as amplitude etc. Below that Reθ transitional, and in particular upstream (since
these disappear much more gradually), effects can be detected which are difficult to
isolate and quantify. Of course, when employing numerical methods such as recycling
or artificial turbulent inflow conditions in DNS, the inflow Reynolds number can be
chosen higher, but even then sufficient inflow length must to be provided. Triggering
transition at a higher Reynolds number leads to significantly increased inflow length.

Additionally, we have also studied the overshoot of the total shear stress over
the wall-limiting value, as a function of tripping parameters and Reynolds number.
Interestingly, for our data this overshoot could solely be linked to the transitional
region alone, and vanishes quickly. Conversely, the data by Wu & Moin (2010) feature
a Reynolds-number-independent overshoot of 2 % from Reθ ≈ 900 up to their highest
Reθ = 1850.

Building upon the present results, a detailed comparison between our recent DNS
and experiments on a ZPG TBL flow at Reθ = 2500 and 4000 by Örlü & Schlatter
(2012) yields excellent agreement for integral, statistical as well as structural/spectral
quantities. This result clearly demonstrates that in both simulation and experiment the
same flow is studied, and that upstream effects could indeed be eliminated sufficiently.
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JIMÉNEZ, J., HOYAS, S., SIMENS, M. P. & MIZUNO, Y. 2010 Turbulent boundary layers and

channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360.
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SIMENS, M. P., JIMÉNEZ, J., HOYAS, S. & MIZUNO, Y. 2009 A high-resolution code for turbulent
boundary layers. J. Comput. Phys. 228, 4218–4231.

SKOTE, M., HARITONIDIS, J. H. & HENNINGSON, D. S. 2002 Varicose instabilities in turbulent
boundary layers. Phys. Fluids 14, 2309–2323.

SMITS, A. J., MATHESON, N. & JOUBERT, P. N. 1983 Low-Reynolds-number turbulent boundary
layers in zero and favourable pressure-gradients. J. Ship Res. 27, 147–157.

SPALART, P. R. 1988a Direct numerical study of leading edge contamination. In Fluid Dynamics of
Three-Dimensional Turbulent Shear Flows and Transition, AGARD CP-438, pp. 5.1–5.13.
AGARD.

SPALART, P. R. 1988b Direct simulation of a turbulent boundary layer up to Rθ=1410. J. Fluid
Mech. 187, 61–98.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
http://arxiv.org/abs/1010.4000
https://doi.org/10.1017/jfm.2012.324


34 P. Schlatter and R. Örlü
WU, X. 2010 Establishing the generality of three phenomena using a boundary layer with free

stream passing wakes. J. Fluid Mech. 664, 193–219.
WU, X. & MOIN, P. 2009a Direct numerical simulation of turbulence in a nominally

zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41.
WU, X. & MOIN, P. 2009b Forest of hairpins in a low-Reynolds-number zero-pressure-gradient

flat-plate boundary layer. Phys. Fluids 21, 091106.
WU, X. & MOIN, P. 2010 Transitional and turbulent boundary layer with heat transfer. Phys. Fluids

22, 085105.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.324

	Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects
	Introduction and motivation
	Existing and new direct numerical simulations
	Numerical method
	Numerical tripping
	Flow visualization

	Statistical analysis and discussion
	Integral and global quantities
	Mean velocity profiles
	Inner- and outer-layer convergence
	Reynolds stresses and total shear stress

	Summary and conclusions
	Acknowledgements
	References




