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We report experimental investigations of the dynamics of the large-scale circulation
(LSC) in turbulent Rayleigh–Bénard convection at high Prandtl number Pr = 19.4
(and also Pr = 7.8) and Rayleigh number Ra varying from 8.3 × 108 to 2.9 × 1011

in a cylindrical convection cell with aspect ratio unity. The dynamics of the LSC is
measured using the multithermal probe technique. Both the sinusoidal-fitting (SF) and
the temperature-extrema-extraction (TEE) methods are used to analyse the properties
of the LSC. It is found that the LSC in high-Pr regime remains a single-roll structure.
The azimuthal motion of the LSC is a diffusive process, which is the same as those
for Pr around 1. However, the azimuthal diffusion of the LSC, characterized by the
angular speed Ω is almost two orders of magnitude smaller when compared with
that in water. The non-dimensional time-averaged amplitude of the angular speed
〈|Ω|〉Td (Td = L2/κ is the thermal diffusion time) of the LSC at the mid-height of
the convection cell increases with Ra as a power law, which is 〈|Ω|〉Td ∝ Ra0.36±0.01.
The Re number based on the oscillation frequency of the LSC is found to scale
with Ra as Re = 0.13Ra0.43±0.01. It is also found that the normalized flow strength
〈δ〉/1T × Ra/Pr ∝ Re1.5±0.1, with the exponent in good agreement with that predicted
by Brown & Ahlers (Phys. Fluids, vol. 20, 2008, p. 075101). A wealth of dynamical
features of the LSC, such as the cessations, flow reversals, flow mode transitions,
torsional and sloshing oscillations are observed in the high-Pr regime as well.

Key words: Bénard convection, plumes/thermals, turbulent convection

1. Introduction
Thermal convection is a phenomenon occurring widely in both nature and industrial

processes. Turbulent Rayleigh–Bénard (RB) convection, which is a fluid layer confined
between two horizontally parallel plates with heated bottom plate and cooled top
plate, has become an idealized model to study the thermal convection problem
experimentally, numerically and theoretically. The system is controlled by three
parameters, namely the Rayleigh number Ra = αg1TH3/(νκ), the Prandtl number
Pr = ν/κ and the aspect ratio Γ = D/H, where α is the thermal expansion coefficient,
g the gravitational acceleration, 1T the temperature difference between the top and
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bottom plates, H the height of the fluid layer between the plates, D the diameter of the
convection cell and ν and κ are the kinematic viscosity and the thermal diffusivity of
the convecting fluid, respectively. The emergence of a coherent large-scale circulation
(LSC), also called the mean wind, which is a quasi-two-dimensional (quasi-2D) fly
wheel structure, when the system is in the hard-turbulence regime over a turbulent
background has attracted a lot of interest.

Using water and gas, respectively, as the working fluids with moderate and low
Pr numbers, the dynamics of the LSC has been studied extensively (see, e.g. Brown,
Nikolaenko & Ahlers 2005; Sun, Xi & Xia 2005a; Xi, Zhou & Xia 2006; Xi &
Xia 2007, 2008a,b; Ahlers et al. 2009a; Ahlers, Grossmann & Lohse 2009b). Qiu
& Tong (2001) studied the large-scale velocity structures using the laser Doppler
velocimetry (LDV) technique in a water-filled convection cell, and found that the
velocity field inside the convection cell could be classified into three regions. One
is the thin viscous boundary layer region, the second is the central core region with
constant mean velocity gradient and the third is the intermediate plume-dominated
area, which has very strong fluctuations. Xi, Lam & Xia (2004) studied the onset of
the LSC using the shadow graph and the particle image velocimetry (PIV) techniques.
They found that the emergence of a large coherent flow structure indeed is a result
of the self-organization of the thermal plumes which erupt from the top and bottom
thermal boundary layers and that it is the thermal plumes that sustain the LSC. Further
experimental measurements of the velocity field by Sun, Xia & Tong (2005b) using
the PIV technique showed how the convecting fluid in different regions of the cell
interact to generate a synchronized and coherent motion in this closed system.

By the virtue that the LSC carries the up-rising hot and down-going cold plumes,
the azimuthal orientation and flow strength of the LSC could be determined by
measuring the temperature distribution along a perimeter at fixed height of a
cylindrical cell. Cioni, Ciliberto & Sommeria (1997) first used this method to measure
the dynamics of the LSC. Later on, a similar method, which is called the multithermal
probe technique, was used to study the dynamics of the LSC (Brown & Ahlers 2006b;
Sun & Xia 2007; Xi & Xia 2007, 2008a,b). These include the azimuthal meandering
of the nearly vertical circulation plane (reorientations), the momentary vanishing of
the flow strength (cessations), the change of the flow direction by π either as a
result of cessation events or by the azimuthal orientations (flow reversals). It has also
been found that the flow configuration strongly depends on the aspect ratio Γ of
the convection cell (Xi & Xia 2008b; Weiss & Ahlers 2011). This change of flow
configuration is called a flow mode transition. One of the typical flow mode transitions
is the single-roll mode to double-roll mode to single-roll mode (SRM–DRM–SRM),
which is more likely to occur in cells with aspect ratio smaller than one. Recently, it is
found that the global heat transport efficiency, namely the Nusselt number Nu, depends
on the internal flow modes of the LSC (Xi & Xia 2008b; Weiss & Ahlers 2011; Xia
2011).

Another very intriguing feature in turbulent RB convection is the periodic oscillation
of the LSC near the top and bottom plates with a phase delay of π in a cylindrical
cell (Funfschilling & Ahlers 2004), which is called the torsional oscillation. Moreover,
it has been found recently that LSC exhibits a horizontal periodic displacement at
the mid-height of the cell, perpendicular to its circulation plane, which is referred
to as the sloshing oscillation of the LSC (Xi et al. 2009; Zhou et al. 2009). In
addition it has been long observed that there exists a low-frequency oscillation of
both the temperature and velocity field of the turbulent RB convection (Castaing et al.
1989; Sano, Wu & Libchaber 1989; Takeshita et al. 1996; Ashkenazi & Steinberg
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1999; Niemela et al. 2001; Shang & Xia 2001). It is now known that the origin
of these oscillations is the sloshing oscillation of the bulk fluid plus the torsional
oscillation of the top and bottom parts of the LSC (Xi et al. 2009; Zhou et al.
2009). Based on this characteristic oscillation frequency, a Reynolds number Re can be
defined as Re = LHf /ν, where L is a characteristic length scale of the LSC and f the
oscillation frequency of either the velocity field or the temperature field (Grossmann
& Lohse 2002; Brown, Funfschilling & Ahlers 2007). The key issue is how Re scales
with the system control parameters, i.e. what is the functional form of Re(Ra,Pr).
Varieties of experimental data of this scaling were given by Sun & Xia (2005) and
Brown et al. (2007). There are also theoretical studies of the scaling behaviour of
turbulent RB convection. The predictions of the model proposed by Grossmann &
Lohse (2000, 2001, 2002) have found good agreements with most of the experimental
data on the scaling of both Nu(Ra,Pr) and Re(Ra,Pr).

All of the properties of the LSC mentioned above are investigated with a very
wide range of Ra. While the effects of Prandtl number Pr are studied much less.
Using four kinds of fluids of different Pr , Lam et al. (2002) made experimental
measurements of the viscous boundary layer and Re. Their results yielded scaling
relationships of the viscous boundary layer thickness δν and of Re with respect to Ra
(from 1 × 108 to 3 × 1010) and Pr (from 3 to 1205) are δν/H = 0.65Pr0.24Ra−0.16 and
Re= 1.1Ra0.43Pr−0.76, respectively. However, to the best of the authors’ knowledge, the
dynamics of the LSC in turbulent RB convection is studied only in a limited range of
Pr from 0.7 to 5.3. Using gas as the working fluid in a convection cell with an aspect
ratio of one half, Ahlers et al. (2009a) measured both the heat transport efficiency
and the dynamics of the LSC at Pr = 0.67. They achieved Ra up to 1013 and found
that the LSC could survive to the highest Ra in their experiment. They also reported
the relatively long vanishings of the flow strength, which are different from cessations
such as those found in turbulent RB convection using water as the working fluid.
However, the dynamics of the LSC in high-Pr regime has not yet been investigated,
which is the subject of the present study.

The reminder of this paper is organized as follows. First the experimental setup
and data analysis methods are introduced in § 2. Section 3 presents the main results
of our experiments. In § 3.1 we present the general features of the LSC; in § 3.2
we present the azimuthal rotations of the LSC; in § 3.3 we present the measured
Reynolds number Re and a comparison of our results with earlier experiments and also
model predications; in § 3.4 we present the dynamical behaviours of the LSC, such as
cessations, flow reversals, flow mode transitions as well as the twisting and sloshing
oscillations. Our findings are summarized and concluded in § 4. Examples of flow
reversals and flow mode transitions are given in appendix A. The power spectra of the
temperature and also the azimuthal orientation of the LSC, from which we identify the
twisting and sloshing oscillations, are given in appendix B.

2. Experimental setup and data analysis methods
2.1. The convection cell and working fluids

A cylindrical convection cell with an aspect ratio close to unity, height H = 19.3 cm
and diameter D = 19.0 cm was used in the experiments. Two copper plates 1.0 cm
thick with a nickel-coated surface were used as the heating and cooling plates. An
electrical heater was sandwiched in the bottom plate as a heating source and the top
plate was connected to a recirculating cooler as cooling source. The temperature of
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FIGURE 1. (Colour online) Schematic drawing of the experimental setup. (a) The sidewall
of the convection cell with thermistor holders used in experiments. The numbers 1–8 indicate
the azimuthal position of the thermistors, which is shown in (c) with indications of the north
(N) and east (E) directions in the lab frame when viewed from the top of the cell. (b) The
dimension of the thermistor holder. The distance between the fluid sidewall interface and the
end of the hole in the holder is 0.7 mm.

the top and bottom plates were monitored by eight thermistors with four embedded in
each plate. The largest temperature difference measured by the thermistors in the same
plate was within 1.5 % of the temperature difference 1T between the top and bottom
plates. The convection cell was wrapped by three layers of Styrofoam to prevent heat
loss.

In order to measure the horizontal temperature profile induced by the LSC, tiny
hollow cylinders with length L = 20.0 mm, outer diameter Douter = 10.0 mm and inner
diameter Dinner = 2.5 mm were adhered to the sidewall as holders of the thermistors
to obtain a snug fit of the thermistors to the sidewall (see figure 1 for detail).
Three heights of thermistor holders located at distances H/4,H/2 and 3H/4 from
the bottom plate, which we denoted as the bottom, middle and top heights of the
LSC, respectively, were used. The three levels of thermistor holders were distributed
uniformly in eight columns around the sidewall and numbered 1–8 (figure 1a,c). A
total of 24 thermistors (Omega Inc., Model 44031) with an accuracy of 0.01 ◦C
and head diameter 2.4 mm were placed inside the holders to measure the horizontal
temperature profiles. The sampling rate of the temperature profiles was 0.37 Hz. The
convection cell was levelled to within 0.001 rad in the experiments.

Water and fluorinert FC-77 electronic liquid (3M Company, hereafter referred as
FC77) were used as the working fluids. Since water is a very commonly used
fluid, we will only mention the physical properties of FC77. The density of FC77
is 1780 kg m−3 and its kinematic viscosity is 7.2 × 10−7 m2 s−1 at 40 ◦C. For other
physical properties, we refer to the MSDS data sheet published by 3M Company. As
the physical properties of fluids are a function of temperature, in the experiments these
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properties are calculated based on the bulk temperature of the fluids. For experiments
using water as the working fluid, the Prandtl number is Pr = 7.8 and Ra is from
8.3 × 108 to 1.1 × 109. For experiments using FC77 as the working fluid, the Prandtl
number is Pr = 19.4. By varying the temperature difference 1T between the top and
bottom plates, we are able to vary the Rayleigh number Ra from 1.3×1010 to 2.9×1011

for FC77, which corresponds to 1T from 2.44 to 53.69 ◦C. The measurement periods
for different runs varied from 50–700 h.

2.2. Multithermal probe technique
The multithermal probe technique is first introduced by Cioni et al. (1997). The
principle is that the LSC carries the hot (cold) plumes erupted from the bottom (top)
thermal boundary layer (Xi et al. 2004), and thus causes a higher (lower) temperature
along its path than the surrounding fluid at a horizontal height. By measuring the
temperature profile at a horizontal height of the convection cell, the signature, e.g. the
azimuthal position of the hot (cold) plumes and thus the azimuthal position of the
LSC, can be detected. The contrast between the hottest and coldest temperature is a
measure of the flow strength inside the convection cell. If the flow is very strong, it
will cause a larger temperature difference of the hot and cold sides of the LSC. Thus,
the measured temperature contrast will be larger. By choosing a reference position
along the azimuthal direction at a certain horizontal height of the cell, the azimuthal
position of the LSC can be determined.

2.3. Data analysis method
The sinusoidal-fitting (SF) and the temperature-extrema-extraction (TEE) methods are
applied in the data analysis. For the SF method, the measured temperature profile of a
certain horizontal height is fitted to a cosine function

Ti = T0 + δ cos
(
π

4
i− θ

)
, (i= 0 . . . 7) (2.1)

where Ti is the temperature reading of the ith thermistor, T0 is the mean temperature
of all of the eight thermistors, δ is the magnitude of the cosine function which is a
measure of the flow strength of the LSC and θ is the azimuthal position where the hot
ascending plumes of the LSC rise, which we denote as the azimuthal orientation of the
LSC.

We show in figure 2 an example of the measured horizontal temperature profiles and
the fitting results. The symbols are the experimental data and lines are the sinusoidal
fitting results. It is seen that the cosine functions could represent the data very well.

The TEE method, which is first introduced by Xi et al. (2009) and described in
detail by Zhou et al. (2009), is used to study the sloshing oscillation of the LSC.
The off-centre distance of the LSC’s central line d, which is a characterization of the
sloshing motion, is defined as the distance between the mid-point of the central line
and the centre of a horizontal plane of the cylindrical sidewall. The normalized d is
given by

d/D= 1
2 cos

(
1
2(θmax − θmin)

)
(2.2)

where θmax and θmin are the azimuthal positions of the highest and lowest temperatures,
respectively.

It has been shown that the SF method and the TEE method basically provide the
same information about δ and θ (Zhou et al. 2009). Thus, in the following sections,
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FIGURE 2. (Colour online) An example of instantaneous temperature profiles measured by
the three heights of thermistors (Ra = 2.0 × 1011 and Pr = 19.4). The curves are sinusoidal
fittings to the data. The circles, diamonds and triangles represent the horizontal temperature
profiles of the top, middle and bottom heights of the LSC, respectively.

except for discussing the sloshing oscillations, we use data obtained by the SF method
during all of the analysis of the dynamics of the LSC.

3. Results and discussion
As results obtained in water at Pr = 7.8 exhibit similar features to those obtained

from FC77 at Pr = 19.4, in this section we will mostly present results obtained from
FC77, unless stated otherwise. The water results are presented mainly in § 3.4 when
we discuss the cessation statistics.

3.1. General features of the LSC
The general features of the LSC are revealed by studying the respective cross-
correlation functions of the flow strength δ (the azimuthal orientation θ ) between
different heights and the probability distribution function (p.d.f.) of δ (also θ ) at
different heights.

Figure 3 shows a short time segment of the measured δ and θ at three different
heights. It is seen that the flow strength of the three heights remains well above zero
during this period. At the same time, the azimuthal orientation at different heights
are close to each other. Also we note that both the flow strength and orientation of
different heights have similar fluctuations. In order to characterize this similarity, we
calculate the long-time cross-correlation functions of both the flow strength δ and
orientation θ between different heights of the LSC. The cross-correlation function of
two time series A(t) and B(t) is defined as

CA,B(τ )= 〈[A(t + τ)− 〈A〉][B(t)− 〈B〉]〉
σAσB

(3.1)

where 〈· · ·〉 represents the corresponding time-averaged value and σA, σB are the
standard deviation of the time series A and B, respectively. When A = B, CAB is
the auto-correlation function and we denote this as CAA.
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FIGURE 3. (Colour online) A time segment of the measured (a) flow strength δ and (b)
azimuthal orientation θ of the LSC (Ra = 2.0 × 1011 and Pr = 19.4). In both figures, the
dash-dotted, dashed and solid lines represent δ or θ measured from the top, middle and
bottom heights of the LSC, respectively.
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FIGURE 4. (Colour online) Cross-correlation functions of: (a) the flow strength δ and (b)
orientation θ of the LSC at different heights (Ra= 2.0× 1011 and Pr = 19.4). In both figures,
the solid, dash-dotted and dashed lines are the cross-correlation function of the corresponding
quantities between the top and middle, middle and bottom, and top and bottom heights of the
LSC, respectively.

Figure 4 shows the cross-correlation functions of the flow strength (a) and the
orientation (b) between different heights (here ij= tm, tb and mb which corresponds to
the quantities from top and middle, top and bottom, middle and bottom heights of the
LSC, respectively). From figure 4(a), we see that the Cδt,δm,Cδt,δb and Cδm,δb essentially
collapse together with a correlation coefficient close to one at time lag τ = 0, which
implies that the flow strength measured at different heights of the LSC are strongly
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FIGURE 5. (Colour online) Probability distribution functions of (a) the normalized flow
strength and (b) the normalized orientation of the LSC (Ra= 2.0× 1011 and Pr = 19.4). The
standard deviation of the flow strength σδ (in units of ◦C) and that of the orientation σθ (in
units of degrees) measured from the mid-height are shown as insets of (a,b), respectively. The
solid curve in (a) marks the exponential distribution. The dashed curve in (a,b) represents a
Gaussian distribution function with the same variance as the corresponding data for reference.
In both figures, the circles, diamonds and triangles represent the p.d.f.s of the corresponding
quantities measured from the top, middle and bottom heights of the LSC, respectively.

correlated with each other without time delay. Figure 4(b) shows that Cθt,θm,Cθt,θb and
Cθm,θb have a strong positive correlation coefficient above 0.65 at time lag τ = 0, which
also indicates that the azimuthal orientations of different heights of the LSC correlate
with each other with no time delay. For the other Ra investigated in the experiments,
these strong positive correlations of δ (also θ ) between different heights of the LSC
are also found.

Figure 5 shows the p.d.f.s of (δ − 〈δ〉)/σδ (a) and those of (θ − 〈θ〉)/σθ (b) of
the LSC at different heights, where 〈· · ·〉 denotes the mean value. σδ and σθ are the
respective standard deviation of δ and θ . These figures show that the p.d.f.s of δ
and θ at different heights collapse on top of each other except for the tails, which
have a lower probability. From the p.d.f.s of δ at different heights, we see that the
p.d.f.s deviate far away from a Gaussian distribution (dashed line in the figure) at the
left tail while the right tail is in good agreement with a Gaussian distribution. The
exponential-like tails (the solid line in figure 5(a) is a mark of exponential distribution
as reference) tell that it is more probable for the flow strength to be below the mean
flow strength and these tails are corresponding to the time period when there are
cessations, reversals or flow mode transitions, during which δ is relatively low. The
asymmetric p.d.f.s of δ are quite different from those of the θ , which are shown in
figure 5(b). It shows that there is a preferred orientation for the LSC, which we denote
as 〈θ〉. For different Ra in the experiments, we found that the preferred orientation of
the LSC varies from 4.23 to 6.24 rad with no apparent trend. Thus, we suspect it is
not the asymmetry of the convection cell other than through some physical effect that
causes the symmetry breaking of the system. We also found no apparent dependence
of 〈θ〉 on any particular features of the cell, for example the location of the inlets
and outlets of cooling water. One of the possible reasons is the effect of the Earth’s
Coriolis force as discussed by Brown & Ahlers (2006a). Similar results have been
observed at moderate Pr using water as the working fluid (Brown & Ahlers 2006a; Xi
& Xia 2008a).
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It is also seen from the figure that the p.d.f.s of θ are approximately Gaussian
distributed for small fluctuations. While for fluctuations larger than ∼3σθ , the
probabilities are larger than those given by the Gaussian distribution and have
exponential-like tails. Also shown as insets of the figures are the standard deviations
of δ and θ obtained at the middle height of the LSC. For σδ, we can see that with
the increase of Ra, σδ increases dramatically. The standard deviation σθ shows no Ra
dependence except for the two lowest Ra, in which case, due to the low 1T , the
thermal probes cannot detect the azimuthal position of the LSC very well. Similar
results were reported by Xi et al. (2006) using water as the working fluid at Pr = 5.3.

For the Pr and Ra covered in the present experiments, we observe similar results
of the statistics. These results imply that the flow strength δ and the orientation θ

at different heights of the LSC strongly correlate with each other and they share
essentially the same p.d.f., which indicates that the LSC in a cell with aspect ratio
unity and cylindrical geometry, is a single-roll structure in the high-Pr regime.

3.2. The azimuthal rotations of the LSC
The dynamics of the azimuthal motion of the LSC is a diffusive process (Sun et al.
2005a). According to the observed statistical behaviour, there are several models
attempting to explain this phenomenon (Benzi 2005; Brown & Ahlers 2007, 2008).
This azimuthal rotation of the LSC can be revealed by studying the angular speed
Ω , which is the time derivative of θ . Since there are sudden change of θ from 0
to 2π and vice versa, using θ to define the angular speed of LSC will introduce
some artificial errors. In order to eliminate this error, we define continuous variable
φi = θi ± n × 2π (n = . . . ,−1, 0, 1, . . .). The anticlockwise direction is defined as
positive and that of the clockwise direction is defined as negative when viewed from
the top of the cell. Then we define the angular speed as follows

Ωi = dφi

dt
= φi(t + ε)− φi(t)

ε
(3.2)

where ε is the sampling time step of the orientation and i = t,m and b, which stand
for the top, middle and bottom heights of the LSC.

A time segment of the measured angular speed Ω at different heights is shown in
figure 6(a). The LSC moves very slowly along the azimuthal direction, which is of the
order of 10−3 rad s−1. We also calculate the amplitude of the angular speed Ωm using
data from Xi & Xia (2008a) with water as the working fluid at Pr = 5.3. The results
of Xi & Xia (2008a) yield an angular speed of the order of 10−1 rad s−1. Thus, it is
clear that the angular speed at Pr = 19.4 is roughly two orders of magnitude smaller
than that at Pr = 5.3. We note that the sampling rate of the azimuthal orientation θ in
Xi & Xia (2008a) is 0.29 Hz and that of the present experiment is 0.37 Hz, which is
comparable with that of Xi & Xia (2008a). Thus, the difference of the angular speed
is not caused by the finite sampling rate of θ .

Another way to quantify the azimuthal diffusion is to determine the azimuthal
diffusion constant DΩ of the LSC. We plot the mean-square change 〈(dΩ)2〉 as a
function of the time interval dt in figure 7, where dΩ = Ω(t + dt) − Ω(t). From
figure 7 we obtain a diffusion constant DΩ = 3.2 × 10−7 rad2 s−3 of the angular speed
at Pr = 19.4 and Ra= 2.00× 1011. Brown & Ahlers (2008) reported that the azimuthal
diffusivity of the angular speed DΩ is 2.9 × 10−5 rad2 s−3 at Ra = 1.1 × 1010 and
Pr = 4.38 and that DΩ scales with Ra as DΩ ∝ Ra0.76. Thus, for Ra = 2.0 × 1011

and Pr = 4.38, we can estimate that DΩ is 2.6 × 10−4 rad2 s−3. Again we find that
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FIGURE 6. (Colour online) (a) A time segment showing the measured angular speed Ω of
the LSC (Ra = 2.0 × 1011 and Pr = 19.4). The dash-dotted, dashed and solid lines are Ω
of the top, middle and bottom heights of the LSC, respectively. (b) The antiphase motion of
the top and bottom heights of the LSC (calculated from the same data sets as in (a)) with
the Ω from the middle height as reference. The solid and dashed lines are 1Ωtm and 1Ωbm,
respectively.

10–6

100 101 102 10 3

FIGURE 7. The mean-square change of the angular speed 〈(dΩ)2〉 (circles) as a function
of the time interval dt (Ra = 2.0 × 1011 and Pr = 19.4). The dashed line is a fit of
〈(dΩ)2〉 = DΩ dt for 2.7 6 dt 6 10.7 s, which yields DΩ = 3.2× 10−7 rad2 s−3.

the diffusivity of the present results at Pr = 19.4 is almost three orders of magnitude
smaller than that at Pr = 4.38.

In the present experiment, the convection cell is levelled to within 0.001 rad. It has
been shown that this levelling will not lock the direction of LSC (Xi & Xia 2008b).
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FIGURE 8. (Colour online) Probability distribution functions of the normalized angular speed
of the LSC at three different heights (Ra = 2.0 × 1011 and Pr = 19.4). The inset shows the
standard deviation σΩ (in units of rad s−1) at the middle height. The circles, diamonds and
triangles represent the p.d.f. of Ω measured from the top, middle and bottom heights of
the LSC, respectively. The dashed curve represents a Gaussian distribution function with the
same variance as the corresponding data.

Thus, we speculate that the relatively slow azimuthal motion of the LSC at high Pr is
not due to the imperfect levelling of the convection cell. According to the LSC model
proposed by Brown & Ahlers (2007), the damping of the azimuthal motion of the LSC
comes from either viscosity or the rotational inertia of the LSC in its circulation plane.
The kinematic viscosity of water and FC77 at temperature 40 ◦C is 6.58× 10−7 m2 s−1

and 5.69 × 10−7 m2 s−1, respectively. It is seen that they are comparable with each
other. So the difference for these two Pr is not caused by the viscosity. For the
rotational inertia, since the density of FC77 is almost twice that of water, the rotational
inertia of the LSC in FC77 will be larger than in water in the same convection cell if
we consider the LSC as a rigid rotator. Thus, it is more difficult for the LSC to move
azimuthally in FC77 than in water.

Another intriguing phenomenon is the top and bottom heights of the LSC move out
of phase with each other, which is revealed by looking into the angular speed at the
top and bottom heights. In figure 6(b), we plot the angular speed of the LSC at top
and bottom heights by subtracting the mean trend of Ω , which is Ωm. We see that
1Ωtm =Ωt −Ωm and 1Ωbm =Ωb −Ωm oscillate around zero with π phase delay.

Figure 8 shows the p.d.f.s of (Ω − 〈Ω〉)/σΩ at different heights with a Gaussian
distribution function as reference (the dashed line). An interesting finding is that
the p.d.f.s of different heights are well-defined Gaussian distribution functions, which
is consistent with stochastic properties of the azimuthal dynamics of the LSC. The
standard deviation of the angular speed measured at the mid-height of the LSC σΩm

versus Ra is shown as inset of figure 8, from which we see that with the increase of
Ra, σΩm increases. However, for the larger Ra, σΩm seems to be saturated.

The auto-correlation functions of Ωt, Ωm and Ωb and cross-correlation function
between 1Ωtm and 1Ωbm are shown in figure 9 with the time lag τ normalized
by the LSC turnover time τ0 obtained from the power spectrum of the temperature
signal measured in the top plate. From figure 9 we see that the oscillation period of
CΩt,Ωt ,CΩm,Ωm and CΩb,Ωb are the same with the LSC turnover time. The correlations
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FIGURE 9. (Colour online) The auto-correlation functions of the angular speed of top
(dashed line), middle (dash dot line) and bottom (solid line) heights of the LSC and the cross-
correlation function of the angular speed of top and bottom heights (dot line) (Ra= 2.0× 1011

and Pr = 19.4). Here τ0 is the LSC turnover time obtained from the temperature power
spectrum measured in the top plate.

of Ω at different heights last at least for 4τ0. The strong correlations and oscillations
of the auto-correlation functions indicate that the angular speed at different heights
of the LSC oscillates in a periodic way together. From the cross-correlation function
C1Ωtm,1Ωbm , we see that there is a negative peak at τ = 0, which implies there is a
π phase delay between them and this is indeed the case as we show in figure 6(b).
Since the angular speed is a time derivative of the azimuthal orientation θ , we expect
the angular speed to have the same oscillation frequency as that of θ , just like a
pendulum. Owing to the relatively low signal-to-noise ratio of the present experiment,
the torsional oscillation can hardly be observed from the cross-correlation function
between θt and θb. However, from the above results and also the power spectra of θt,
θm and θb (see appendix B), we confirm that the torsional oscillations of the LSC exist.

The time-averaged non-dimensional amplitudes of angular speed 〈|Ωm|〉Td measured
at the middle height as a function of Ra for different Pr are shown in figure 10,
where Td is the thermal diffusion time scale defined as L2/κ . Data from the present
experiment at Pr = 19.4 are shown as circles and are multiplied by a factor of 270.
The triangles are data obtained using the multithermal probe technique in a convection
cell with aspect ratio unity using water as the working fluid at Pr = 5.3 (Xi &
Xia 2008b). A power law fitting is attempted to the data, which yields the relation
〈|Ωm|〉Td ∝ Ra0.36±0.01. We note that data at two different values of Pr have the same
scaling exponent with respect to Ra.

3.3. Reynolds number Re
One important issue in the study of thermal turbulence is the scaling behaviour of
the response parameters with the control parameters such as Re = f (Ra,Pr, Γ ) and
Nu = f (Ra,Pr, Γ ). The experimental study of Nu dependence on Pr over a wide
range of Ra was carried out by Xia, Lam & Zhou (2002) in a cylindrical cell
with aspect ratio unity. Lam et al. (2002) also studied Re as a function of Ra
and Pr using the same sets of fluids as Xia et al. (2002) used and their results
of Re, which was defined using the typical oscillation frequency of the velocity
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FIGURE 10. (Colour online) The measured non-dimensional time-averaged amplitude of the
angular speed at the mid-height as a function of Ra at Pr = 19.4 (circles, present results) and
Pr = 5.3 (triangles, data from Xi & Xia (2008b)). Here Td = L2/κ is the thermal diffusion
time. The solid line is a power law fit to the data yielding 〈|Ωm|〉Td ∝ Ra0.36±0.01. In the figure,
data for Pr = 19.4 are multiplied by a factor of 260.

field, show Re= 1.1Ra0.43±0.01Pr−0.76±0.01. Ashkenazi & Steinberg (1999) measured the
velocity in turbulent RB convection using the LDV with gas as the working fluid.
They found the relation of Re based on the characteristic oscillation frequency of
the velocity power spectra with Ra and Pr is Re = 2.6Ra0.43±0.02Pr−0.75±0.02 with a
shorter range of Pr compared with Lam et al. (2002). As we can see, these two
experimental results agree with each other except that the prefactor of results from
Ashkenazi & Steinberg (1999) is two times larger than that from Lam et al. (2002).
The low-frequency oscillations of both the temperature and velocity field of the RB
convection have been observed for a long time (Castaing et al. 1989; Sano et al. 1989;
Takeshita et al. 1996; Ashkenazi & Steinberg 1999; Niemela et al. 2001; Shang & Xia
2001). It is now known that these oscillations are related to the periodic motion of the
largest eddy in the system which is the LSC. Thus, based on this oscillation, we define
a time scale Tf = 1/f , where f is the characteristic oscillation frequency obtained from
the power spectra of either the temperature field or the velocity field. Choosing the
characteristic length scale L of the LSC, the mean velocity of the LSC is defined as

U = L/Tf . (3.3)

Based on different physical pictures, different L such as πH, 4H, 2H are used in the
literature. However, the results will only affect the prefactors of the power law relation
of Re = f (Ra,Pr). In the discussion below, since the LSC expands itself to the whole
size of the cylindrical cell with aspect ratio unity, we choose 4H as the length scale.
Then the Reynolds number Re is defined as

Re= UL

ν
= 4H2

Tfν
. (3.4)

Figure 11 is a plot of the measured Re as a function of Ra at Pr = 19.4. The circles
are experimental data and solid line is a power law fitting to the data, which yields

Re= 0.13Ra0.43±0.01. (3.5)
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FIGURE 11. (Colour online) The measured Re based on the oscillation frequency of the LSC
as a function of Ra. The solid line is a power law fit to the data yielding Re= 0.13Ra0.43±0.01.

For the first sight, we see that the Ra scaling exponent of present experimental
results is in good agreement with the experiments done by Lam et al. (2002) and
Ashkenazi & Steinberg (1999). As the present case, the Pr is fixed, thus we substitute
our Pr into the results by Lam et al. (2002) and obtain a relation Re = 0.12Ra0.43±0.01.
The prefactor is ∼8 % smaller than that of present results. Because Lam et al.
(2002) used the typical velocity oscillation frequency while the oscillation frequency is
obtained from the temperature field in our measurements, we see the two experiments
agree with each other within experimental error, which confirms that the oscillations of
the temperature field and the velocity field actually have the same origin as suggested
by Xi et al. (2009). For the results of Ashkenazi & Steinberg (1999), the experiment
was carried out in a cubic cell with square cross-section (76 × 76 mm2) and height
107 mm. The different geometries of the convection cell will have different degree
of confinements of the LSC (Zhou, Sun & Xia 2007; Kaczorowski et al. 2011). In
the case of the cubic cell, the LSC is locked and always along the body diagonal
of the cell. While in a cylindrical geometry, the LSC is free to move azimuthally.
The confinements of the geometry of the convection cell may have some effects on
the dynamics of the LSC. Another reason for the difference of prefactor of these
two experimental results may be the aspect ratio effect. In the case of Ashkenazi
& Steinberg (1999), the aspect ratio Γ = D/H = 0.69, while the aspect ratio in our
experiment is close to unity. As suggested by Xi & Xia (2008b), the dynamics
of the LSC has very strong dependence on the aspect ratio of the convection cell.
Nevertheless, all of these experimental results of the Re scaling with respect to Ra
agree very well with each other, which implies that there must be something in
common of the dynamical properties of the LSC with different geometry and the range
of control parameters.

We now compare our experimental results with some model predictions. The
predictions of the thermal convection model proposed by Grossmann & Lohse
(2000, 2001, 2002) agree very well with many experimental results of the scaling
behaviour of Re(Ra,Pr) and Nu(Ra,Pr). This model decomposes both the thermal
and viscous dissipations into the contributions of boundary layers and those of the
bulk. According to this assumption, they have four regimes corresponding to different

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.574


336 Y.-C. Xie, P. Wei and K.-Q. Xia

108

107

109

106

Re
103 104

FIGURE 12. (Colour online) The measured (〈δ〉/1T) × (Ra/Pr) as a function of Re. The
solid line is a power law fitting to the data yielding the relation (〈δm〉/1T) × (Ra/Pr) =
250Re1.5±0.1.

scaling relationships. Our experiment lies in the regime IVu of the (Ra,Pr) phase
diagram of the GL model, which basically assume that the thermal dissipations and
viscous dissipations are both bulk dominated and the viscous boundary layer is thicker
than the thermal boundary layer (Grossmann & Lohse 2000). The predicted relation of
Re with respect to Ra and Pr is

Re= 0.16Ra4/9Pr−2/3. (3.6)

Comparing this result with our experimental results, i.e. Re = 0.13Ra0.43±0.01, we see
that the Ra number scaling of the present result is in good agreement with the model
prediction. However, we note that if we substitute Pr = 19.4 into (3.6), we have
Re= 0.02Ra4/9, which is not consistent with present result.

A recent model of the LSC proposed by Brown & Ahlers (2007, 2008) can explain
most of the observed features of the LSC. They use two ordinary differential equations,
one for the flow strength δ and the other for azimuthal orientation θ of the LSC,
which are the quantities that can be measured directly using the multithermal probe
technique, to model the dynamics of the LSC. One important prediction of the model
is the relation between the normalized flow strength of the LSC with Re, which is

〈δ〉
1T
× Ra

Pr
= 18πRe3/2. (3.7)

Figure 12 shows the measured (〈δm〉/1T) × (Ra/Pr) as a function of Re for the
high-Pr regime. The circles are experimental data and the solid line is a power law
fitting attempted to the data which yields

〈δm〉
1T
× Ra

Pr
= 250Re1.5±0.1. (3.8)

We can see that the experimental result of the Re scaling exponent is in good
agreement with the model prediction. We note that the prefactor of our result is
four times larger than the model prediction and twice as large as that reported by
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Brown & Ahlers (2008). For the discrepancy of the prefactor between the model and
experiments, we have no explanation.

3.4. Cessations, reversals, flow mode transitions, torsional and sloshing oscillations
Cessation of the LSC means that the flow strength during a period drops to zero. It has
been shown by Xi & Xia (2007) that during a cessation process, the LSC decoheres
from an organized structure to a very chaotic flow. Flow cessations have been observed
in several experimental studies. Xi & Xia (2008a) carried out measurements of the
dynamics of the LSC using water as the working fluid at Pr = 5.3 and convection
cells with aspect ratio Γ = 1 and 0.5, respectively. They observed cessation events
in both aspect ratio cells and their results show that cessation events are much more
likely to occur for a convection cell with aspect ratio Γ = 0.5. Ahlers et al. (2009a)
made measurements of the dynamics of the LSC in a convection cell with aspect
ratio Γ = 0.5 using compressed gas at Pr = 0.67 as the working fluid. They also
observed momentary vanishings of the flow strength. However, since the duration of
these events are much longer than the typical time scale of the system, say the LSC
turnover time τ0, they do not regard these as cessations. Using water as the working
fluid with Pr = 4.3 and a convection cell with aspect ratio unity, Brown & Ahlers
(2006b) found that the cessation frequency of the LSC does not depend on Ra.

As the previous studies focus on low and moderate Pr , a natural question is will the
cessation events exist in high-Pr RB convection? If so, will cessations be more or less
likely to happen? Will there be any Ra dependence of the cessation frequency? Our
experiments using water at Pr = 7.8 and FC77 at Pr = 19.4 as the working fluids can
partially answer these questions.

For ease of data analysis, in the present paper we adopt the criteria used by Xi &
Xia (2007) to define a cessation event. That is, the flow strength δi drops to 15 % of
the corresponding mean value 〈δi〉. Several threshold values from 10 to 30 % of the
mean value were tried in the analysis and they all gave the same statistical results.
Unless stated otherwise, hereafter we require that the flow amplitude at the three
heights of the LSC drop to 15 % of the corresponding mean value simultaneously for
a cessation event. Figure 13 shows an example of the cessation event found in the
long-time series (∼700 h) measured at Ra = 2.0 × 1011 and Pr = 19.4. From top to
bottom, the azimuthal orientation θi, the flow strength δi, schematic drawing of the
flow inside the convection cell and the enlargement of the cessation part are shown
respectively.

One could see from the figure that during the cessation, there are several stages. At
the very beginning (time = 0 s), the LSC is a single-roll structure whose direction is
clockwise (figure 13c(1)). Then it begins to become weaker and weaker. At ∼280 s,
the LSC loses its coherence and finally cannot be identified (figure 13c(2)). This
fading process only lasts for ∼40 s (figure 13d), which is of the same order as the
time it takes for the LSC to have one turn. Then the thermal plumes are trying to
reorganize into a coherent structure. During this stage, the LSC is unstable. From the
figure, we see that a roll which has the size larger than half of the convection cell
emerges at the top part of the convection cell at ∼400 s (figure 13c(3)). Since it is not
stable, ∼240 s later this roll is replaced by another roll which lies at the bottom part
of the cell (figure 13c(4)). Then after 240 s the LSC rebuilds itself into a single-roll
structure which occupies the whole convection cell and has the same direction as that
of the LSC before cessation event happens (figure 13c(5)). As we can see that after
a cessation event, the LSC recovers to its former state without reverse of the flow
direction.
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FIGURE 13. (Colour online) Example of a cessation event (Ra = 2.0 × 1011 and Pr = 19.4).
(a) The orientation and (b) the flow strength during the cessation process. (c) Schematic
drawing of the flow configuration. (d) An enlargement of the normalized flow strength during
cessation as shown in (b) with a small grey rectangle. In (a,b,d), the dash-dotted, dashed and
solid lines are the corresponding quantities measured from the top, middle and bottom heights
of the LSC, respectively. The short dashed line in (d) corresponds to 15 % 〈δ〉.

In the above analysis, we see that the flow strength of the LSC at three different
heights, namely top middle and bottom, are all below the threshold values. This
ensures that there is no coherent flow at the time period (see figure 13d). Using
a convection cell with aspect ratio one half, Xi & Xia (2007) reported that they
have identified 1813, 1855 and 1798 cessation events from the 34-day data for the top,
middle and bottom heights of thermistors, respectively, at Ra= 5.6×1010 and Pr = 5.0.
For the results reported by Xi & Xia (2007), although the authors are of the idea that
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FIGURE 14. (Colour online) Decoherence frequency as a function of Ra for different Pr .
Circles Pr = 19.4 and diamonds Pr = 7.8 (this work); triangles Pr = 5.3 (Xi et al. 2006).
The dashed line is the averaged value of all of the data.

for a cessation the flow strength at the three heights should be below the threshold
value simultaneously, the statistical results of the paper is mainly based on the data
obtained at the mid-height. Recently Weiss & Ahlers (2011) reported measurements
of the dynamics of LSC in a cell with aspect ratio one half and they found that the
cessations, which satisfy the criteria that the flow strength at three different heights
go below the threshold value at the same time, is ∼0.25 times per day with very
large errors (Weiss & Ahlers 2011). It is quite obvious that these two experiments do
not agree with each other. It was discovered later by Xi & Xia (2008b) that there
are complex flow mode transitions exist in a convection cell with aspect ratio one
half. Thus, we suggest that most of the cessations found by Xi & Xia (2007) actually
involve these complex flow mode transitions. Applying the same criteria for cessation
to present data measured at Ra = 2.0 × 1011 and Pr = 19.4, only 3 cessations are
observed in a time period of 700 h, which corresponds to 0.1 times per day. Owing
to the limited number of occurrences of cessation, we will not discuss the Ra and Pr
dependence of the cessation rate, which satisfies the above criteria.

The ‘cessation’ counted only at the a certain height of the LSC indicates that
the LSC at this time period loses its coherence and that it is not a well-defined
single-roll structure. We define these ‘cessations’ counted at one height of the LSC
as decoherences. The measured decoherence frequency (number of decoherences per
day) as a function of Ra at different Pr is shown in figure 14. The Ra is from
8.3 × 108 to 2.9 × 1011, and Pr is from 5.3 to 19.4. Each of these measurements
at different Ra and Pr lasts at least 50 h. The diamonds are experimental results at
Pr = 7.8, circles are experimental results at Pr = 19.4 and triangles are experimental
results from Xi et al. (2006) at Pr = 5.3. It is clear that there is no apparent Ra
dependence of the decoherence frequency, which is of order one. This means that the
LSC loses its coherence once a day on average. Brown & Ahlers (2006b) reported that
the cessation frequency of the LSC has no Ra dependence and has a mean rate of 1.5
times per day using water as the working fluid at Pr = 4.3. However, it is not clear
to us what criteria was used in that work. If they also count cessation frequency only
based on data at the mid-height, we see good agreements between two experiments.
From figure 14, it is also clear that the Pr dependence of the decoherence frequency
is very weak. This can be seen more clearly in figure 15, where we plot the averaged
decoherence frequency for different Ra at a fixed Pr as a function of Pr .

Taken together, decoherences counted at the mid-height in three-dimensional (3D)
turbulent RB convection appear to be independent of both Ra and Pr . The cessations
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FIGURE 15. (Colour online) Decoherence frequency as a function of Pr . Circles: data from
Brown & Ahlers (2006b); squares: data from Xi et al. (2006); and triangles: data from the
current article. The dashed line is the averaged value of all of the data.

that require flow strength at the three different heights go below the threshold value
simultaneously are quite rare. This is rather different from the 2D or quasi-2D case,
as shown by the numerical and experimental study of Sugiyama et al. (2010). In that
work, it was found that in 2D turbulent RB convection, cessations always lead to
reversals of the LSC and that the rate of cessation has strong dependence on both Ra
and Pr .

Flow reversal and also flow mode transitions are found but very rare in the present
high-Pr turbulent RB convection. The torsional and sloshing oscillations of the LSC
were also identified from the power spectra of the measured temperatures along the
sidewall and the azimuthal orientation θ of the LSC. The results related to flow mode
transitions, flow reversals as well as torsional and sloshing oscillations are the same
at the high Pr as those of moderate Pr . Thus, we placed them in the appendices to
make the paper more focused on the differences between the two Pr regimes rather
than repeating similar analysis.

4. Conclusion
We have made the first systematic experimental study of the dynamics of the LSC in

turbulent RB convection at the high-Pr regime. With water and FC77 as the working
fluids, studies of flow dynamics were made at Pr = 7.8 and 19.4, respectively. Using a
sidewall with small hollow cylinders as thermistor holders, the horizontal temperature
profiles of the top, middle and bottom heights of the LSC are measured using the
multithermal probe technique. The SF and TEE methods are applied in the data
analysis.

We found that the LSC is a single-roll structure most of the time. The cross-
correlation functions of the flow strength δ between different heights and those of
the azimuthal orientation θ reveal that δ (also θ ) at different heights of the LSC are
strongly correlated with each other. The p.d.f.s of δ show Gaussian distributions with
exponential tails to the left side, which suggests that the cessations and flow reversals,
during which δ is relatively small, are more likely to happen than a typical Gaussian
process. The p.d.f.s of the orientation show that there is a preferred direction for the
LSC which is also reported by Xi et al. (2006) using water as the working fluid at
moderate Pr .

The azimuthal diffusive motion of the LSC was also observed. It is found that the
p.d.f.s of angular speed Ω at the three different heights could be well represented
by Gaussian functions, which is consistent with the diffusive motion. However, Ω in
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FC77 is approximately two orders of magnitude smaller when compared with that in
water. The azimuthal diffusivity obtained at Pr = 19.4 and Ra = 2.0 × 1011 is three
orders of magnitude smaller than that obtained at Pr = 4.3 and Ra = 2.0 × 1011. The
auto-correlation functions of Ω at different heights of the LSC reveal that Ω oscillates
with the same time period as the turnover time of the LSC. The cross-correlation
function of 1Ωtm and 1Ωbm oscillates with a π phase delay, which indicates the
existence of the torsional oscillation. The time-averaged non-dimensional angular
speed 〈|Ωm|〉Td as a function of Ra at Pr = 19.4 and 5.3 can be represented by a
single power law relation 〈|Ωm|〉Td ∝ Ra0.36±0.1.

The Reynolds number Re based on the oscillation of the LSC scales with Rayleigh
number Ra as Re = 0.13Ra0.43±0.01, which is in good agreement with previous
experiments done using water, organic fluids (Lam et al. 2002) and gas near
the liquid gas critical point (Ashkenazi & Steinberg 1999) as the working fluids.
Comparing present results with the GL model predictions (Grossmann & Lohse
2000, 2001, 2002), which give a relationship Re = 0.16Ra4/9Pr−2/3, we found that
present results and the model prediction agree very well with each other for the
scaling exponent of Ra. Good agreements in terms of scaling exponents between
present experimental results of the normalized flow strength versus Re and that of
the LSC model prediction by Brown & Ahlers (2008) were found. The experimental
result shows (〈δm〉/1T) × (Ra/Pr) = 250Re1.5±0.1 and that of the model prediction is
(〈δ〉/1T)× (Ra/Pr)= 18πRe3/2.

The rich dynamical behaviours of the LSC, such as cessations, flow reversals and
flow mode transitions are also observed in the high-Pr RB convection. The cessation
rate, which requires the flow strength at the three heights to all fall below a threshold
value simultaneously, is quite low. However, if we consider the strength at the mid-
height only, the obtained decoherence rate then appears to be independent of both Ra
and Pr within the resolution of the experiment. The torsional and sloshing oscillations
are observed from the power spectra of the orientations and those of the off-centre
distance, respectively.
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Appendix A. Flow reversals and flow mode transitions
A.1. Flow reversals

We show two kinds of flow reversals, namely the reorientation-led and cessation-led
flow reversals in figure 16. For the reorientation-led reversal (a,c), it is seen that the
LSC goes through a fast change of the azimuthal orientation by π in ∼300 s (∼10
times of τ0). Since the reversed direction is not the ‘preferred’ direction, the LSC goes
back to the previous position again. During this process, the amplitudes of the three
heights of the LSC remain well above the threshold value. A cessation-led reversal is
shown in figure 16(b,d). As these figure shows, the LSC is a single-roll structure at the
beginning, then it starts to become weak and the orientation changes from 0.5 (in units
of 2π) to almost 1.0. Then at ∼250 s, the LSC recovers from a decoherent state to a
coherent flow and the orientation changes about π, which indicates the flow direction
of the LSC reverse.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.574


342 Y.-C. Xie, P. Wei and K.-Q. Xia

0.6

0.4

0.8

1.2

0.4

0.8

0.2

(a)

(c)

0 200 400 600 800 1000 1200
Time (s, arb. orig.)

1.0

0.5

1.5

0

(b)

(d )

Time (s, arb. orig.)

0.8

0.4

0 200100 300 400 500

FIGURE 16. (Colour online) Example of reorientation-led flow reversal (a,c, Ra= 2.0× 1011

and Pr = 19.4) and cessation-led reversal (b,d, Ra = 3.0 × 1011 and Pr = 19.4). (a,b) The
orientation of the LSC during the reversal process. (c,d) The corresponding normalized
flow strength of the LSC. In both figures, the dash-dotted, dashed and solid lines are the
corresponding quantities measured from the top, middle and bottom heights of the LSC
respectively. The short dashed lines in (c,d) correspond to 15 % 〈δ〉.

A.2. Flow mode transitions

An example of the SRM–DRM–SRM transitions as discovered by Xi & Xia (2008b)
is shown in figure 17. At the origin, the LSC is a single roll with clockwise direction.
At ∼200 s, the flow strength of the LSC begins to decline. Then at 400 s, the bottom
part of the LSC disappears while the top and middle parts of the LSC are well defined
and above zero. During the time 400–500 s, the orientations of the top and middle
heights of the LSC are in phase with each other while the top height is out of phase
with the others. At the same time, the flow strength of different heights is non-zero.
This indicates that there is a convection roll, which occupies the upper two thirds of
the volume of the cell. Possibly there is a small roll (indicated by the dashed line in
figure 17c) at the bottom of the cell, since δb is non-zero at this stage. At ∼600 s, the
LSC rebuilds itself and becomes a single roll again.

Appendix B. Torsional and sloshing oscillations of the LSC

B.1. Torsional oscillation of LSC

The torsional oscillation of the LSC is revealed by the peaks of the measured
power spectrum of temperature signals as well as the azimuthal orientation θ of
the LSC which is shown in figure 18. From these power spectra, a peak located at
∼3.3 × 10−2 Hz (shown by the grey dashed lines in the figure) is observed. This low-
frequency oscillation is the same as that found by Xi et al. (2009). Their results show
that the origin of this oscillation is the torsional and sloshing motions of the LSC. We
also show the coherence power spectrum between θt and θb as inset of figure 18(d).
The sharp peak of the coherence spectrum indicates that the top and bottom parts of
the LSC oscillate with the same frequency. This characteristic oscillation exists for the
Ra and Pr covered in the present experiments.
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FIGURE 17. (Colour online) Example of the SRM–DRM–SRM transition (Ra = 2.0 × 1011

and Pr = 19.4). (a) The orientation of the LSC during the SRM–DRM–SRM transition
process. (b) The corresponding normalized flow strength of the LSC. In both figures, the dash-
dotted, dashed and solid lines are the corresponding quantities measured from the top, middle
and bottom heights of the LSC, respectively. (c) Schematic drawing of the flow configuration
of the LSC at different stages. The short dashed line in (b) represents the threshold value for
cessation events.

B.2. Sloshing oscillation of LSC

The sloshing oscillation of the LSC is characterized by the oscillation of the off-centre
distance d of the line connecting the hot ascending and cold descending plumes of the
LSC. This off-centre distance is obtained using the TEE method described in § 2.

Figure 19 shows the power spectra of the off-centre distance of top, middle and
bottom heights of the LSC. It is seen that the power of the middle height has a small
peak located at the same position as that of the temperature profiles measured along
the sidewall while the peak is almost invisible for the top and bottom heights. This is
because the torsional oscillation of the top and bottom heights of the LSC will cancel
each other at the middle height. Thus, the sloshing motion could be revealed from
the power spectrum at the middle height. For the top and bottom heights, the sloshing
oscillations of the LSC are compressed by the strong torsional oscillations, thus the
power spectra of the top and bottom heights of the LSC show a very small peak.
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FIGURE 18. (Colour online) Power spectra of the horizontal temperature profiles measured
at the (a) top, (b) middle and (c) bottom heights of the LSC; (d) power spectra of the
orientation of the LSC. The inset of (d) is the coherence power spectrum between θt and θb
(Ra = 2.0 × 1011 and Pr = 19.4). For clarity, the different curves are shifted upward from
each other by a factor of 10 .
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FIGURE 19. (Colour online) Power spectra of the off-centre distances of the top (dashed dot
line) middle (dashed line) and bottom (solid line) heights of the LSC (Ra = 2.0 × 1011 and
Pr = 19.4).
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