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This contribution deals with guided radar distance measurements in the field of industrial tank level control. The aim is to
achieve a submillimeter gauging accuracy even when conducting the measurement within a highly dispersive environment of
large and thus overmoded circular waveguides. Normally, multimode propagation causes a decrease in measurement pre-
cision. Therefore, the effects of intermodal dispersion are fundamentally reviewed and, based on these results, a correlation-
based signal processing method is presented. This method is able to exploit the otherwise parasitic dispersion effects to enhance
the measurement precision even in constellation with a simple waveguide transition or antenna, respectively. Furthermore,
considerations on the mode variety and its influence on the signal complexity as well as investigations on the technique’s
reliability and accuracy are presented. Measurement results in a frequency range of 8.5–10.5 GHz are provided for three
different kinds of waveguide transitions proving the capability of the method.
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I . I N T R O D U C T I O N

In the process instrumentation industry, radar techniques are
commonly applied for high-precision distance measurements
in free-space applications, e.g. for tank level probing of liquids
[1]. In this contribution, however, the measurement is con-
ducted in large tank-mounted metal tubes, often called still
pipes or stilling wells, acting as overmoded circular wave-
guides, as illustrated in Fig. 1. In this case, the waveguide’s
feeding section, represented by the utilized antenna or by
the respective transition between the mono-moded feeding
waveguide and the overmoded metal tube, often leads to the
excitation and consequently, the propagation of higher-order
modes within the system. To explain the consequences of this
matter, Fig. 1 highlights two cases of different waveguide tran-
sitions applied in a tank system.

On the left-hand side, a long conical horn is used, provid-
ing a smooth transition between the different waveguide
diameters, which thus leads to a mainly mode-preserving
transmission of the used fundamental mode H11 to the over-
moded waveguide. The electric field distribution of the sole
fundamental mode, obtained from a commercial 3D FIT
field simulator (CST MICROWAVE STUDIO, Vers. 2009),
is depicted within the left tube as a snap-shot for one point
of time, propagating as a gaussian pulse in the time domain
(20% fractional bandwidth). Due to the large tube diameter,
the mode-inherent (chromatic) dispersion of the H11 mode

may be neglected [2], so the measurement device is able to
receive an almost undistorted pulse returning from the
surface of the medium.

The metal tube on the right-hand side is equipped with a
much shorter conical horn, representative for less cost-
intensive transitions that are intentionally simple and more
compact. These transitions are often requested by industry.
As a result, a multitude of modes is excited due to the
horn’s precipitous flare angles, which thus propagates within
the metal tube. Hence, because of the different propagation
velocities of each mode’s signal portion, the planar phase
fronts of the pulse are distorted in comparison to the left-hand
side. Furthermore, the signal energy is more and more spread
within the metal tube with increasing propagation distance.
This leads to nonlinear phase distortions in frequency
domain and to a deteriorated pulse shape in time domain,
respectively.

Due to this effect the gauging accuracy is significantly
decreased, when using conventional free-space optimized
signal processing, like pulse-based barycenter computation
in time domain [3]. To sum up, retaining conventional
signal processing demands for significant effort for the wave-
guide transition to avoid spurious mode excitation, especially
when complying with compact geometrical constraints [4].

Therefore, this contribution deals with a different approach
to achieve the desired submillimeter measurement precision
(see also [5]). To understand how the method works, initially
the influences of multimode propagation, i.e. the two domi-
nating effects of intermodal dispersion and their resultant
pulse shape distortion are described in detail in Section II.
Subsequently, the core of the proposed measurement
method is introduced in Section III as an alternative
correlation-based signal processing algorithm, exploiting the
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multimode signal distortion. Section III.A presents, consider-
ations on the mode variety and its influence on the signal
complexity, followed in Section III.B by investigations on
the technique’s reliability and accuracy. Finally, the measure-
ment results in Section IV indicate the capability of the
proposed method.

I I . E F F E C T S O F I N T E R M O D A L
D I S P E R S I O N

In this section, the basic effects of multimode propagation on
pulse shape deformation are investigated. Based on the theor-
etical fundamentals of analytical waveguide equations
accounting for the mode-dependent propagation behavior
inside the metal tube, a MATLAB-based waveguide simulator
is utilized in conjunction with an analytical model of a wave-
guide transition to synthesize multimode propagation scen-
arios [2].

Exemplarily, a scenario with only one parasitic mode
E11 with a transmission level of 23 dB for the scattering
parameter |S2(E11), 1(H11)| is assumed. For this case, various
impulse response envelopes, each with a normalized time
axis and the main pulse package at 0 ns, are depicted in
Fig. 2(a) for an increasing reflector distance in the interval
of lrefl ¼ [0.2. . .0.7 m]. The curves are obtained from the
inverse Fourier transform of the system’s reflection coefficient
in the frequency domain with a bandwidth from 8.5 to
10.5 GHz for an inner tube diameter of dsp ¼ 80 mm. As a
basic principle, waveguide transitions, when supposed to be
loss-free multiport devices featuring independent ports for
each excited mode, cannot be matched for every single port,
if multimode excitation is present [2]. As a result, mode-
dependent multiple reflection cycles arise inside the tube,
that generate pulse replicas, which may exceed the peak ampli-
tudes of the first main reflection pulse. This evolves from a
phenomenon comparable to the “mode beating” effect

known from the theory of optical transmission lines [6].
Consequently, a conventional barycentric processing algor-
ithm could unlatch due to wrong detection on pulse
maxima of replicas.

An oscillating amplitude can be observed here for each
pulse package due to constructive or destructive interferences
between the different modes’ signal portions. This is caused by
phase differences due to unequal round trip times for the
metal tube, after converting back to the fundamental mode
in the mono-moded feeding section of the transition.
Possible constellations for erroneous detection on the first
pulse replica are marked. The period length of the oscillation
or the distance between two reflector positions lrefl with
maximal amplitudes, respectively, is approximated by the
beat length (compare [7]):

lbeat (H11,E11) =
p

bH11
− bE11

. (1)

Herein the variable b denotes the phase constant of the
particular mode at the center frequency.

Referring to the one parasitic mode scenario again,
Fig. 2(b) depicts the impulse response envelopes for a larger
reflector interval of lrefl ¼ [0. . .5 m], whereas pulse replicas
are explicitly excluded for the purpose of clarity.

Evidently, with the present spurious E11 mode, the obtained
package consists of two pulses, with the E11 pulse being delayed,
owing to its higher cut-off frequency and consequently its lower
propagation velocity. This leads to a temporal walk-off between
the different modes’ signal portions, causing a barycenter
distortion of the pulse package. Finally, the walk-off results
in a pulse breakup with increasing reflector distance lrefl [8].
Hence, for large reflector distances the intensity of the interfer-
ences and thus the beating of the pulse package amplitude also
decreases. Additionally, the shape of the separated E11 pulse
becomes more and more deformed due to its increased chro-
matic dispersion in comparison to the fundamental mode.

I I I . A C O R R E L A T I O N - B A S E D
S I G N A L P R O C E S S I N G A L G O R I T H M

Being aware of the intermodal dispersion effects, a different
approach for a correlation-based signal processing algorithm
is derived in this section. As a paradigm shift, the observed
dispersion effects are now exploited instead of being usually
considered as parasitic. Accordingly, the idea of the proposed
algorithm is to evaluate the shape of multimode-distorted
impulse responses, whose energy is spread in the time
domain in a unique way being unambiguously associated
with every distinct reflector distance. In this case, the analyti-
cally describable environment in the metal tube is utilized
to generate synthetic reference signals for various reflector
distances representing varying medium levels. The developed
simulation model [4] rebuilds the measurement setup incor-
porating a metal tube with a movable planar sliding short
acting as a reflector with a maximal distance of lrefl,max ¼

1.229 m (Fig. 3) to compare signals from the measurement
with simulated reference signals via correlation.

Conventionally, correlation-based algorithms are often
used for echo detection in radar applications, where a
measured signal is correlated with the transmitted signal,

Fig. 1. Guided radar distance measurement in an industrial tank environment
conducted with two different waveguide transitions.
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being equivalent to matched filtering [9]. In the presence of
intermodal dispersion, correlation with the transmitted
signal is meaningless due to the distance-dependent shape
of the received signal. Consequently, in this case the measured
signal or the complex envelope of the impulse response
gce,meas(t), respectively, is rather correlated with a table of
simulated reference complex envelopes gce (t, lrefl,tab) for
every feasible reflector distance lrefl,tab in a desired step
width Dlrefl,tab, specified here without loss of generality in a
continuous time notation. This is equivalent to the application
of various appropriate matched filters for each value of lrefl,tab.
Moreover, reference signals could also be taken from reference
measurements with variable distances, incorporating e.g. the
sliding short (Fig. 3(c)).

The cross-correlation function R(s, lrefl,tab), as a quantity for
the similarity between two functions or rather two energy
signals here, is defined in accordance to [10], as follows:

R(s, lrefl,tab) =
∫+1

−1

�gce(t + s, lrefl,tab) · �g∗ce,meas(t)dt (2)

with

�gce(t) =
����������������

1�+1

−1
|gce(t)|2dt

√
· gce(t)

⇔
∫+1

−1

|�gce(t)|2dt = 1.

Because magnitudes have to be comparable between every
computed correlation, each complex envelope is normalized
to a signal energy of unity. At the global maximum of the mag-
nitude of R(s, lrefl,tab) over all lrefl,tab the particular reference
distance lrefl,tab is chosen as the measured distance lrefl,meas. In
case of an excitation port of the simulation coinciding with
the calibration plane in the measurement, maximal similarity
is expected for the quasi-autocorrelation, i.e. when the distance
lrefl,tab from the reference table matches with the actual reflector
distance lrefl in the setup. For this reason, the global maximum
of |R(s, lrefl,tab)|∀lrefl,tab is anticipated to be at s ¼ 0, exhibiting
a value of unity in case of perfect conformance between the
reference and the measurement signal, corresponding to the
signal energy. For all non-matching lrefl,tab the correlation mag-
nitude at s ¼ 0 is smaller. This fact renders possible to avoid
the calculation of the entire correlation function over all s.

Accordingly, the measured distance lrefl,meas is defined as

lrefl,meas = lrefl,tab [ 0,Dlrefl,tab, . . . , lrefl,max
{ }

| . . .
{
. . . |R(s = 0, lrefl,tab)| maximal

}
. (3)

The procedure is summarized in Fig. 4 as a block diagram.

Fig. 2. The dominating effects of intermodal dispersion: (a) mode beating and multiple replicas and (b) pulse breakup within the main pulse package.

Fig. 3. Measurement setup: (a) side view (b) top view and, (c) sliding short inside the tube.
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A. Considerations on mode variety
and signal complexity
As the proposed method presented in this article depends on
the intermodal dispersion effects due to the propagation be-
havior of waveguide modes in a metal tube, in this section
the influence of the mode variety on the signal shape complex-
ity and its impact on the algorithm are evaluated fundamen-
tally. The investigations are based on the analytical model of
a waveguide transition in the frequency range of 8.5–
10.5 GHz (compare Section II and [2]), connected to a wave-
guide with the inner diameter of dsp ¼ 84.9 mm as found in
the measurement setup (Fig. 3(c)).

Theoretically, such an overmoded cross-section possesses a
high amount of propagable eigenmodes in the used frequency
range. But if the feeding transition of the metal tube is excited
by the fundamental mode H11 and its taper is axially straight
with circular symmetry, the only excited modes in the large
cross-section are of the E/H1p-type [11]. Consequently,
under the proposed constraints the dominant modes in the
metal tube are H11, E11, H12, E11, and H13, exhibiting cut-off
frequencies fc as listed in Table 1. The fifth dominant mode
H13 is not propagable within the whole frequency range, so
for the investigations four simulated gauging scenarios with
a number of solely one to four modes are defined to generate
signals with different signal complexity as described in the fol-
lowing. In contrast to [4], no mode is considered as parasitic,
so all modes are covered equally by splitting the feeding power
to identical parts, leading to excitation levels of 100, 50
(compare Section II), 33.3, and 25% for each mode within
the particular scenario in relation to the feeding power (sum-
marized in Table 1). These scenarios represent different types
of waveguide transitions featuring distinctive levels of higher-
order mode excitation (compare manufactured transitions in
Section IV).

To analyze this matter, the magnitudes of the impulse
response envelopes for all four scenarios are compared in
Fig. 5 at three reflector distances lrefl ¼ 0.2, 0.6, and 1.0 m.
In general, each signal consists of as many modal sub
signals or signal portions as it exhibits excited modes, each
propagating at its own velocity, leading to the aforementioned
effects of intermodal dispersion (Section II).

For a small reflector distance of e.g. lrefl ¼ 0.2 m (Fig. 5(a))
the individual signal portions are still merged in the case of
two or more modes, but a slight position and shape deterio-
ration of the main pulse package is already visible.
Additionally, the amplitudes of all pulse packages differ
among the four scenarios due to the particular mode

excitation levels and due to the mode beating effect involving
different modes. The first replica of the main pulse package for
example, caused by a second reflection of the signal at the
short, is observable solely in case of three and four modes at
twice the time (≈3 ns) and is thus obviously suppressed by
mode beating at this reflector position in case of two modes.

For a larger reflector distance of lrefl ¼ 0.6 m (Fig. 5(b)) the
separation of some of the individual mode pulses is already
observable and the main pulse package is broken up.
Generally, modes with higher cut-off frequency or smaller
velocity of propagation, respectively, separate first with
increasing reflector distance.

Finally, for a distance of lrefl ¼ 1.0 m (Fig. 5(c)) the specific
mode pulses are clearly dividable and marked. According to
the excitation levels of each scenario (Table 1) the amplitude
of all pulses decreases with increasing number of modes. A
decaying amplitude from modes with a low to a high cut-off
frequency due to mode-inherent chromatic dispersion is
also visible. Thus, the E12 exhibits the smallest amplitude
and the strongest deformed shape. In the one mode scenario
no intermodal dispersion and no replicas are present (see
also [2]), whereas the pulse of the H11 with its marginal chro-
matic dispersion is almost undeformed and only proportion-
ally shifted in time with the corresponding reflector distance.

Summing up, as the number of modes increases, the signal
shape becomes generally more and more complex and unam-
biguously associated with the particular reflector distance,
because more distinctive individual pulses and thus more
interferences arise, representing the intermodal dispersions
effects between multiple modes.

To investigate now the influence of the signal complexity on
the proposed method, the correlation-based algorithm is used
in the four simulation scenarios to calculate the absolute
values of the cross-correlation function |R(s ¼ 0, lrefl)| for an
exemplary reflector distance of lrefl ¼ 1.0 m (compare envelope
in Fig. 5(c)), which is assumed to be measured. As depicted in
Fig. 6, the correlation is conducted in dependence of all refer-
ence distances from the table lrefl,tab ¼ [0 . . ., lrefl,max], leading
to a horizontal curve resolution of Dlrefl,tab. Thus, for a reference
distance lrefl,tab matching with the actual distance lrefl account-
ing for the autocorrelation, the magnitude is high and exhibits
the theoretical maximum of |R(s ¼ 0, lrefl,tab) ¼ 1| (owing to
the energy normalization). In case of one mode the curve is
almost symmetrical to lrefl,tab ¼ 1.0 m due to the corresponding
time signals being only shifted in time over the distance lrefl,tab

but little deformed in shape.
Moreover, with increasing number of modes, the obtained

main peak width becomes narrower, i.e. correlation with adja-
cent reference signals in the region of the adequate one
declines faster, which is caused by more intermodal dispersion
and thus more signal shape deformation per distance; even the
side lobes become narrower.

Fig. 4. Block diagram of the correlation-based method.

Table 1. Simulated gauging scenarios; cut-off frequencies of the domi-
nant modes for dsp ¼ 84.9 mm.

H11 E11 H12 E12 H13

1 mode (100%, 0 dB) X — — — —
2 modes (50%, 23 dB) X X — — —
3 modes (33.3%, 24.8 dB) X X X — —
4 modes (25%, 26 dB) X X X X —
fc/GHz 2.07 4.31 5.99 7.89 9.59

412 eckhard denicke, gunnar armbrecht and ilona rolfes

https://doi.org/10.1017/S1759078710000413 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078710000413


Because in this case simulation data is correlated with
simulation data, the measurement error would be always
zero because at lrefl ¼ lrefl,tab the “simulated measurement
signal” and the reference signal are identical. However, if lrefl

is not resolved exactly within all available lrefl,tab, a residual dis-
tance error in the order of the step width Dlrefl,tab occurs.
Additionally, if Dlrefl,tab is chosen to large, a small correlation
peak might not be resolved, which might lead to a false detec-
tion on side lobe maxima also resulting in measurement
errors.

Moreover, Fig. 7 depicts the progression of |R(s ¼ 0, lrefl)|
for all scenarios in dependence of lrefl,tab and, in contrast to

Fig. 6, additionally in dependence of the distance lrefl. The
included graphs thus represent the whole dataset, which has
to be evaluated for depicting a measurement error curve
over the whole distance interval of lrefl ¼ [0 . . . lrefl,max].
Consequently, a horizontal line corresponds to an illustration
in terms of Fig. 6. Because maximal correlation is expected at
lrefl ¼ lrefl,tab, the maximum always occurs on the bisecting line
of the quadrant, i.e. at an angle of 458 to the x-axis.

Figure 7 additionally confirms the tendency to narrow
maximum main and side lobes with increasing signal complex-
ity, i.e. with a rising number of modes. In case of two to four
modes strong side lobes appear at an angle of arctan(1/2) ≈
26.68 and arctan(2/1) ≈ 63.48 to the x-axis. In this case, the
main pulse package from the reference data coincides with
the first replica of the measurement data or vice versa.

B. Investigations on reliability and accuracy
The correlation-based algorithm in this contribution depends
on accurate modeling and simulation of the real measurement
setup to provide adequate reference simulation data for com-
parison. Thus, in this section, investigations are made on how
intensive deviations between simulation and reality are affect-
ing the functionality, reliability, and accuracy of the proposed

Fig. 7. |R(s ¼ 0, lrefl,tab)| for all lrefl,tab and lrefl in case of one to four modes: (a) one mode, (b) two modes, (c) three modes and, (d) four modes.

Fig. 5. Impulse response envelopes for the four simulated gauging scenarios at three reflector distances: (a) lrefl ¼ 0.2 m, (b) lrefl ¼ 0.6 m, and, (c) lrefl ¼ 1.0 m.

Fig. 6. |R(s ¼ 0,lrefl,tab)| at lrefl ¼ 1.0 m.
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measurement method in dependence of the applied mode
variety or the signal complexity, respectively.

In contrast to deviations like e.g. length offsets, which
might be compensated via signal shifting prior to correlation,
the worst case for the proposed method are unconformities,
which affect the distance-dependent shape of the signal.
Thus, this section analyzes the deviation of the inner tube
diameter dsp, i.e. the consequences of assuming a too large
or too small tube cross-section in the simulation in compari-
son to the measurement setup. If the diameter deviations are
relatively small, the mode excitation levels within the tube
remain almost unchanged, so the mode power distribution
is not modified for the following investigations. As the most
serious consequence, changes of the inner diameter directly
affect the modes’ cut-off frequencies and thus their propa-
gation properties and the effects of intermodal dispersion.

To illustrate the impact of this matter, Fig. 8 compares the
impulse response envelope in case of the four mode scenario
with dsp ¼ 84.9 mm and lrefl ¼ 1.0 m to the ones occurring
in presence of diameter discrepancies of Dd ¼+0.5 mm.
Especially signal portions arriving late and having thus tra-
veled long inside the tube, e.g. signal portions of modes with
high cut-off frequencies or multiple pulse replicas, exhibit
noticeable variances in magnitude, shape and position, com-
pared to the original signal.

The longer a signal travels inside the simulated tube
of a “wrong” diameter, the worse the discrepancies to
the measured signals are. Consequently, similarity between
the signals decreases with increasing reflector distance lrefl,
too. Modes with higher cut-off frequencies are more affected
because their propagation velocity or their propagation
constant b, respectively, changes more severe with Dd.
As a result, the longer the tube is, the smaller the deviations
have to be in order to still achieve suitable reference data.

Being now aware of the deviations’ qualitative properties,
a quantitative conjunction is made in Fig. 9 between the diam-
eter discrepancies and the resulting maximal error magnitude
|emax|, for correlation being done with inaccurate reference
signals emerging from Dd. Obviously for the one and the
two mode scenario the measurement error increases more
or less linear within the observed distance interval of lrefl ¼

[0 . . . lrefl,max], whereas in case of three modes the error
jumps up at |Dd| ≈ 0.3 mm to a higher level of about
|emax| ¼ 15 mm being representative for the algorithm
unlatching on a “wrong” maximum. As expected, for the
four mode scenario, which exhibits the strongest diameter
dependence as discussed before, the unlatching occurs even
earlier at |Dd| ≈ 0.15 mm. If |Dd| is increased more, the
maximal error for four modes escalates to another higher
error level, whereas the three mode scenario still remains at

about |emax| ¼ 15 mm. This clarifies the strongest sensitivity
of four modes against diameter deviations.

Figure 10 investigates the unlatching behavior in detail
by depicting |R(s ¼ 0, lrefl,tab)| at lrefl ¼ 1.0 m in case of
Dd ¼ 20.5 mm for the four mode scenario. For this reflector
distance the discrepancies between the “simulated measure-
ment” signal and the reference data in case of three and
four modes are already crucial. This results in a global
maximum of |R(s ¼ 0, lrefl,tab)| not occurring at the expected
correct position lrefl ¼ lrefl,tab anymore, leading the algorithm
to unlatch on a “wrong” peak nearby. In the scenarios of
one or two modes the algorithm is not yet unlatched, as
those scenarios are less sensitive to diameter deviations.

In Fig. 11 the effect of evolving side maxima within |R(s ¼
0, lrefl,tab)| is accentuated for Dd ¼20.5 mm. The solid curves
represent the global maximum of |R(s, lrefl,tab)| ∀ lrefl,tab,
which is detected and evaluated by the algorithm, in depen-
dence of the distance lrefl, which is to be measured. In addition,
|R(s ¼ 0, lrefl,tab ¼ lrefl)| is plotted as a dotted curve, which rep-
resents the values on the 458-lines in Fig. 7, where the global
maximum in case of perfect conformance between measure-
ment and reference signal is anticipated to be (only observable
here via simulation with the knowledge of the actual reflector

Fig. 10. |R(s ¼ 0, lrefl,tab)| for lrefl ¼ 1.0 m and Dd ¼20.5 mm.

Fig. 11. Maximum of |R(s,lrefl,tab)| ∀ lrefl,tab and |R(s ¼ 0, lrefl ¼ lrefl)| in case
of Dd ¼ 20.5 mm.

Fig. 9. Maximal error magnitude |emax| over Dd.

Fig. 8. Envelopes in case of diameter deviations for lrefl ¼ 1.0 m.
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distance). Consequently, whenever the solid and the dotted
curves depart from each other, the global maximum takes
place elsewhere than at the expected correct position lrefl,tab ¼

lrefl, thus causing measurement errors.
For a mode variety of one or two modes, the particular

solid and dotted curves coincide widely, implying no signifi-
cant measurement error to occur. For three or four modes
the respective curves are diverging, starting from the
marked particular positions of lrefl, forcing the algorithm to
detect the inadequate maximum. This moment of unlatching
occurs later in case of three modes, once again proving the fact
of better robustness with decreasing mode variety. The magni-
tudes on the marked positions of Fig. 10 can be recognized at
the dashed line for lrefl ¼ 1.0 m, making clear that the algor-
ithm is not yet unlatched in the one or two mode scenario.

Additionally, Fig. 12 depicts |R(s¼ 0, lrefl,tab)| over all
measurement and reference distances (compare Fig. 7) in case
of an even more deviant diameter with Dd ¼25.0 mm. In

this case no significant magnitude is observable on the bisecting
line at all, deteriorating the measurement accuracy seriously.

I V . M E A S U R E M E N T R E S U L T S

In this section, the proposed method is used for measurements
with different types of manufactured waveguide transition
prototypes. The transitions are chosen to exhibit mode exci-
tation levels being comparable to the investigated simulation
scenarios used in the sections before.

On the one hand, the measurements are realized with a
mechanically complex, obstacle-based transition (Fig. 17(c)) pro-
viding a mode-preserving transmission of the fundamental
mode H11 from the feeding to the large tube cross-section,
thus exhibiting a similar mode excitation to the one mode scen-
ario, avoiding multimode propagation. On the other hand, the
same transition is used without its obstacle as a parabolic taper
(Fig. 17(b)) with increased excitation of higher-order modes
(see [4] for details and scattering parameters). Additionally, to
account for the four mode scenario, and thus for the excitation
of a variety of higher-order modes with significant amplitudes, a
simple stepped waveguide transition is applied (Fig. 17(a)).
Figure 13 depicts the waveguide transition as a 3D FIT model
with its electric field distribution. The transition with a diameter
step from the feeding waveguide with d1¼ 22 mm to the over-
moded tube diameter of dsp¼ 84.9 mm basically excites the
modes H11, E11, H12, E12, H13 with excitation levels |S2(Mode

x),1(TEM/H11
)| of about 25 to 210 dB, if propagable (Fig. 14).

For this transition in Fig. 15 a comparison is made between
a measured envelope |gce, meas(t)| and a simulated reference
one |gce(t, lrefl,tab)| for a distance of lrefl ¼ lrefl,tab ¼ 1.0 m. A
good agreement between both curves exists, which underlines
the realistic simulation of the measurement setup.

Figure 16 depicts the absolute values of the cross-
correlation function |R(s ¼ 0, lrefl,tab)| at an exemplary reflec-
tor distance in the setup of lrefl ¼ 1.0 m. Thus, for a reference
distance lrefl,tab coinciding with the actual distance lrefl in the

Fig. 13. Electric field inside the stepped transition (E-plane).

Fig. 12. |R(s ¼ 0, lrefl,tab)| for all lrefl,tab and lrefl in case of four modes with
Dd ¼25.0 mm.
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setup, correlation is high and the theoretical maximum of
|R(s ¼ 0, lrefl,tab)| is almost reached.

The maximal value for the stepped transition is slightly
lower than in case of the other transitions because deviations
between simulation and measurement setup carry more
weight in case of multimode propagation due to signal portions
cycling through the system more often (compare Section III.B).
Moreover, the obtained peak in case of the stepped transition is
narrower than the other ones. Additionally, the peak of the
mode-preserving transition is moderately wider than the one
for the parabolic transition and exhibits a lower level of side
lobes, thus confirming the results from Section III.A.

To verify the capability of the proposed correlation-based
method in terms of accuracy, the resulting measurement error
for the transitions is depicted in Fig. 18, whereas a step width
of Dlrefl,tab ¼ 0.2 mm for the reference table is used. This leads
to a vertical error curve resolution of 0.1 mm. In case of the
mode-preserving transition the curve exhibits a slightly stronger
oscillating progression than the other ones, whereas a marginally
inclining progression for all transitions is present, which is
attributed to manufacturing tolerances like the deviation of
the inner tube diameter. As desired, in all cases a continuous
submillimeter accuracy over the total measurement range can
be maintained. The measurement results therefore indicate,
that despite the multimode propagation a submillimeter

accuracy can be achieved, when waveguide transition and
signal processing algorithm harmonize.

V . C O N C L U S I O N S

Parasitic intermodal dispersion is revealed as the main distor-
tion effect of guided radar distance measurements conducted
in large overmoded metal tubes, if conventional free-space
optimized signal processing is applied. This contribution
reviews the multimode propagation effects within the wave-
guide to derive a solution for overcoming the drawbacks of
this scenario. An alternative correlation-based processing
method is proposed, offering more degrees of freedom and
even simplification in the design of waveguide transitions
applied to the metal tube. In this way it is shown that multi-
mode propagation can be exploited to achieve the desired
accuracy. Considerations on the mode variety and its influ-
ence on the signal complexity as well as investigations on
the technique’s reliability and precision in case of mechanical
tolerances like waveguide diameter deviations are presented.
Consequently, the trade-off between the complexity of the
signal processing algorithm and thus its computing intensity
on the one hand and on the other hand the expenditure for
the waveguide transition is clarified. The accomplished sub-
millimeter accuracy is validated by measurements.
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