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Abstract

Motivated by recent studies of big samples, this work aims to construct a parametric
model which is characterized by the following features: (i) a ‘local’ reinforcement, i.e.
a reinforcement mechanism mainly based on the last observations, (ii) a random per-
sistent fluctuation of the predictive mean, and (iii) a long-term almost sure convergence
of the empirical mean to a deterministic limit, together with a chi-squared goodness-of-
fit result for the limit probabilities. This triple purpose is achieved by the introduction
of a new variant of the Eggenberger–Pólya urn, which we call the rescaled Pólya urn.
We provide a complete asymptotic characterization of this model, pointing out that, for a
certain choice of the parameters, it has properties different from the ones typically exhib-
ited by the other urn models in the literature. Therefore, beyond the possible statistical
application, this work could be interesting for those who are concerned with stochastic
processes with reinforcement.
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1. Introduction: framework and motivation

The well-known Pearson chi-squared test of goodness of fit is a statistical test applied to
categorical data to establish whether an observed frequency distribution differs from a theoret-
ical probability distribution. In this test the observations are always assumed to be independent
and identically distributed (i.i.d.). Under this hypothesis, in a multinomial sample of size N,
the chi-squared statistics

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
= N

k∑
i=1

(̂pi − pi)2

pi
(1)

(where k is the number of possible values, and Oi, Ei, p̂i = Oi/N, and pi = Ei/N are the
observed and expected absolute and relative frequencies, respectively) is proportional to N,
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which is multiplied by the chi-squared distance between the observed and expected probabili-
ties. Therefore, the goodness-of-fit test based on this statistics is highly sensitive to the sample
size N (see, for instance, [8, 36]): the larger N, the more significant a small value of the chi-
squared distance. More precisely, the value of the chi-squared distance has to be compared
with the ‘critical’ value χ2

1−θ (k − 1)/N, where χ2
1−θ (k − 1) denotes the quantile of order 1 − θ

of the chi-squared distribution χ2(k − 1) with k − 1 degrees of freedom. Hence, it is clear that
the larger N, the easier the rejection of H0. As a consequence, in the context of ‘big data’ (e.g.
[8, 11]), where one often works with correlated noised data, suitable generative models and
related chi-squared goodness-of-fit tests are needed.

Different types of correlation have been taken into account and different techniques have
been developed to control the performance of the goodness-of-fit test based on (1) (see, among
others, [8, 14, 26, 29, 43, 44, 46, 52], where some form of correlation is introduced in the
sample, and variants of the chi-squared statistics are proposed and analyzed mainly by means
of simulations). Our approach differs from the one adopted in the previously quoted papers.
Indeed, our starting point is that a natural way to get a positive correlation between events of
the same type is to deal with the Dirichlet-multinomial (D-M) distribution: briefly, the param-
eters of the multinomial (M) distribution are randomized a priori with a Dirichlet distribution,
yielding an exchangeable (not independent) sequence. The variance–covariance matrix of the
D-M distribution is equal to that of the multinomial distribution, multiplied by a fixed constant
greater than 1: precisely, given the k parameters b0 = (b0 1, . . . , b0 k) of the D-M distribution
and setting |b0| =∑k

i=1 b0 i, we have

VarD-M(Oi) = N
b0 i

|b0|
(

1 − b0 i

|b0|
)

N + |b0|
1 + |b0| = VarM(Oi)

N + |b0|
1 + |b0| ,

CovD-M(Oi,Oj) = −N
b0 ib0 j

|b0|2
N + |b0|
1 + |b0| = CovM(Oi,Oj)

N + |b0|
1 + |b0| , for i �= j.

Therefore, if we set |b0| = 1−ρ2

ρ2 , we have, for any i, j ∈ {1, . . . , k},

CovD-M(Oi,Oj) = (
1 + (N − 1)ρ2)CovM(Oi,Oj), (2)

where ρ represents a correlation parameter. Roughly speaking, the D-M model adds variance
to the multinomial model by taking a mixture or by adding a positive correlation. The prop-
erty (2) is fundamental for our purpose. In fact, as highlighted in [47], the two conditions
(i) p̂i = Oi/N → pi almost surely for N → ∞ and (ii) Cov(Oi,Oj) = λCovM(Oi,Oj) with λ> 1
imply that the statistics χ2, defined in (1), is asymptotically distributed as χ2(k − 1)λ (see [47,
Corollary 2]), so that the critical value for the chi-squared distance becomes χ2

1−θ (k − 1)λ/N,
where λ mitigates the effect of N. As already observed, the D-M model satisfies (ii), but it is
well known that it does not meet the condition (i). In this paper we present a variant of the D-M
model such that the condition (i) holds true and the chi-squared statistics (1) is asymptotically
distributed as χ2(k − 1)λ with λ> 1.

The D-M distribution may be generated by means of the standard Eggenberger–Pólya urn
(see [25, 38]), a model that has been widely studied and generalized (some recent variants can
be found in [5, 6, 7, 10, 12, 13, 15, 17, 18, 27, 28, 37]). This urn model with k colors works as
follows. An urn contains N0 i balls of color i, for i = 1, . . . , k. At each discrete time, a ball is
drawn from the urn, and then it is again placed in the urn together with α > 0 additional balls
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of the same color. Therefore, if we denote by Nn i the number of balls of color i in the urn at
time n, we have for n ≥ 1

Nn i = Nn−1 i + αξn i,

where ξn i = 1 if the extracted ball at time n is of color i, and ξn i = 0 otherwise. The parameter
α regulates the reinforcement mechanism: the greater α, the greater the dependence of Nn i

on
∑n

m=1 ξm i. In addition, it is well known that the conditional expectation of the sequential
extractions, i.e. E[ξn+1 i| ‘past’], also known as the predictive mean, converges almost surely to
a beta-distributed random variable, forcing the empirical mean ξ̄N i =∑N

n=1 ξn i/N to converge
almost surely to the same limit.

In this work we exhibit an urn model that preserves the relevant aspects of the models above:
a reinforcement mechanism, together with a global almost sure convergence of the empirical
mean of the sequential extraction toward a fixed limit. However, differently from the previous
models, for a certain choice of the parameters, the predictive mean E[ξn+1 i| ‘past’] randomly
fluctuates without converging almost surely, asymptotically forming a stationary ergodic pro-
cess. As a consequence, since the classical martingale approach and the standard stochastic
approximation require or imply the convergence of E[ξn+1 i| ‘past’] (e.g. [1, 9, 37]), in order
to prove asymptotic results for the new urn model introduced, we need mathematical methods
that are not usual in the urn modeling literature.

Rescaled Pólya urn. We introduce a new variant of the Eggenberger–Pólya urn with k colors,
which we call the rescaled Pólya (RP) urn model. In this model, the almost sure limit of the
empirical mean of the draws will play the rôle of an intrinsic long-run characteristic of the
process, while a local mechanism generates persistent fluctuations. More precisely, the RP
urn model is characterized by the introduction of the parameter β, together with the initial
parameters (b0 i)i=1,..., k and (B0 i)i=1,..., k, next to the parameter α of the original model, so that

Nn i = b0 i + Bn i with

Bn i = βBn−1 i + αξn i, n ≥ 1.
(3)

Therefore, the urn initially contains b0 i + B0 i balls of color i, and the parameter β ≥ 0, together
with α > 0, regulates the reinforcement mechanism. More precisely, Nn i is the sum of three
terms:

• the term b0 i, which remains constant along time;

• the term βBn−1 i, which links Nn i to the ‘configuration’ at time n − 1, through the
‘scaling’ parameter β that tunes the dependence on this factor;

• the term αξn i, which links Nn i to the outcome of the extraction at time n, through the
parameter α that tunes the dependence on this factor.

Note that the case β = 1 corresponds to the standard Eggenberger–Pólya urn with an initial
number N0 i = b0 i + B0 i of balls of color i, while, when β �= 1, the RP urn does not fall among
the variants of the Eggenberger–Pólya urn discussed in [45, Section 3.2], and, as explained in
detail in Section 2, it does not belong to the class of reinforced stochastic processes studied in
[1, 3, 2, 20, 21, 23, 50].

The quantities p0 1, . . . , p0 k defined as

p0 i = b0 i∑k
j=1 b0 j

(4)
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can be seen as an intrinsic probability distribution on the possible values (colors) {1, . . . , k},
that remains constant over time, and that will be related to the long-term characteristic of the
process, while the random variables (Bn 1, . . . , Bn k) model random fluctuations over time, so
that the probability distribution on the set of the k possible values at time n is given by

ψn i = Nn i∑k
j=1 Nn j

= b0 i + Bn i∑k
j=1 b0 j +∑k

j=1 Bn j
.

Assuming for Bn i the dynamics (3) with β > 0, the probability ψn i increases with the number
of times we have observed the value i (see Equation (13) below), and so the random variables
ξn i are generated according to a reinforcement mechanism. But, in particular, when β < 1, the
reinforcement at time n associated to observation ξm i, with m = 1, . . . , n, increases exponen-
tially with m (we refer again to (13) below), leaving the fluctuations to be driven by the most
recent draws. We refer to this feature as ‘local’ reinforcement. The case β = 0 is an extreme
case where ψn i depends only on the last draw ξn i (and not on ξm i with m = 1, . . . , n − 1).
Hence, we are mainly interested in the case β ∈ [0, 1), because in this case the RP urn exhibits
the following distinctive characteristics:

(a) for each i, the process (ψn i)n randomly fluctuates, driven by the most recent observations
(‘local’ reinforcement), and does not converge almost surely;

(b) for each i, the empirical mean ξ̄N i =∑N
n=1 ξn i/N, that is, the empirical frequency Oi/N,

converges almost surely to the deterministic limit pi = p0 i;

(c) the chi-squared statistics (1) is asymptotically distributed as χ2(k − 1)λ with λ> 1.

As stated before, owing to (a), the usual methods adopted in the urn literature do not work for
β < 1, and so different techniques are needed for the study of the RP urn model.

We have also considered the asymptotic results for β > 1, to complete the study of the RP
urn model. In this situation, the process (ψn i)n converges exponentially fast to a random limit,
and so even faster than in the classical Eggenberger–Pólya urn. Therefore, in this case, we
may apply the usual martingale technique (e.g. [1, 9, 37]). Note that at β = 1 we have a phase
transition: for the empirical means, we pass from a deterministic limit (the case β < 1) to a
random limit (the case β ≥ 1), and for the predictive means, we pass from fluctuations (the
case β < 1) to almost sure convergence (the case β ≥ 1).

In Figure 1 we show the properties (a) and (b) for β = 0 and β ∈ (0, 1) (Figure 1(A) and
Figure 1(B), respectively) compared with the classical behavior of the processes for β = 1 and
β > 1 (Figure 1(C) and Figure 1(D), respectively).

Goodness-of-fit result and its statistical application. Given a sample (ξ1, . . . , ξN) (where ξn
denotes the random vector with components ξn i, i = 1, . . . , k) generated by an RP urn, the
statistics

Oi = #{n : ξn i = 1} =
N∑

n=1

ξn i, i = 1, . . . , k,

counts the number of times we have observed the value i. When β ∈ [0, 1), the theorem
below states the almost sure convergence of the empirical mean ξN i = Oi/N toward the prob-
ability p0 i, together with a chi-squared goodness-of-fit result for the long-term probabilities
p0 1, . . . , p0 k. More precisely, we prove the following result.
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FIGURE 1. Simulations of the two processes (ψn 1)n (grey) and (ξ̄n 1)n (black), with n = 1, . . . , 20000,
p0 1 = 1

2 , and for different values of α and β: (A) α= 199, β = 0; (B) α = 1, β = 0.975; (C) α = 1,
β = 1; (D) α= 0.5, β = 1.0001. As shown, when β < 1, (ψn 1)n exhibits a persistent fluctuation, locally
reinforced, and (ξ̄n 1)n converges to the deterministic limit p0 1. When β ≥ 1, the y-axis is zoomed to show
the random fluctuations of both the processes towards the same random limit.

Theorem 1. Assume p0 i > 0 for all i = 1, . . . , k and β ∈ [0, 1). Define the constants
γ and λ as

γ = β + (1 − β)
α

(1 − β)
∑k

i=1 b0 i + α
∈ (β, 1) and (5)

λ= (1 − β)2

(γ − β)2 + (1 − γ 2)

(
1 + 2

γ

1 − γ

)
> 1. (6)

Then Oi/N
a.s.−→ p0 i and

k∑
i=1

(Oi − Np0 i)2

Np0 i

d−→
N→∞ W∗ = λW0,

where W0 has distribution χ2(k − 1) = �
(

(k−1)
2 , 1

2

)
, and consequently W∗ has distribution

�
(

k−1
2 , 1

2λ

)
.
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From a mathematical point of view, the proof of the above result easily follows from
Theorem 2, whose proof occupies the main part of the present work.

A possible application we have in mind was inspired by [11, 41] and is the following. We
suppose we have a sample {ξn : n = 1, . . . , N}, where the observations cannot be assumed
i.i.d., but they exhibit a structure in clusters, with independence between clusters and with cor-
relation inside each cluster. This is a usual circumstance in many applications (e.g. [16, 34,
53, 55]). More precisely, we consider the situation when inside each cluster the probability
that a certain unit chooses the value i is affected by the number of units in the same cluster
that have already chosen the value i, according to a reinforcement rule. For example, we can
imagine that our dataset collects messages from the online social network Twitter: ‘tweets’
referring to different topics can be placed in different clusters. If the topics are distant from
each other, we can assume independence between clusters. Inside each cluster, the tweets are
temporally ordered and the associated ‘sentiment’ is observed to be driven by a local reinforce-
ment mechanism: the probability of having a tweet with positive sentiment is increasing in the
number of past tweets with positive sentiment, but the reinforcement is mostly driven by the
most recent tweets, leading to a fluctuations of the predictive means [4]. A different clustering
of the tweets can be obtained with different slots of time, sufficiently far from each other.

Another example is the following. Each cluster corresponds to an agent. The agents act
independently of each other (independence between clusters). At each time-step, each agent
has to choose between k brands that are related to a loyalty program: the more often the agent
selects the same brand, the more loyalty points he/she gains. This fact induces the reinforce-
ment mechanism, and it could make sense that the reinforcement is mostly driven by the most
recent actions. Finally, we can have the case where clusters are associated to some products,
and at each time-step a customer has to give a vote to each product on an online platform. Each
cluster collects the votes for the corresponding product. If the products belong to very differ-
ent categories, we can assume independence between clusters; while, if the customers can see
the votes given by the previous customers, we may have a reinforcement mechanism, mainly
based on the last observations.

Formally, we suppose that the N units are ordered so that we have the following L clusters
of units:

C� =
{
�−1∑
l=1

Nl + 1, . . . ,
�∑

l=1

Nl

}
, �= 1, . . . , L.

Therefore, the cardinality of each cluster C� is N�. We assume that the units in different clusters
are independent; that is,[

ξ1, . . . , ξN1

]
, . . . ,

[
ξ∑�−1

l=1 Nl+1, . . . , ξ
∑�

l=1 Nl

]
, . . . ,

[
ξ∑L−1

l=1 Nl+1, . . . , ξN

]
are L independent multidimensional random variables. Moreover, we assume that the obser-
vations inside each cluster can be modeled as an RP urn with β ∈ [0, 1). We denote by
p0 1(�), . . . , p0 k(�) the intrinsic long-run probabilities for the cluster C�, which we assume
strictly positive, and we assume the same parameter λ> 1 for each cluster (but not necessarily
the same parameters α and β), so that all of the L random variables

Q� =
k∑

i=1

(
Oi(�) − N�p0 i(�)

)2

N�p0 i(�)
, with Oi(�) = #

{
n ∈ C� : ξn i = 1

}
,
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are asymptotically distributed as �
( k−1

2 , 1
2λ

)
. Since Q1, . . . , QL are independent because they

refer to different clusters, when all the cluster sizes N� are large, we can estimate the parameter
λ by means of the (asymptotic) maximum likelihood and obtain

λ̂=
∑L
�=1 Q�

L(k − 1)
d∼ �

(
L(k − 1)

2
,

L(k − 1)

2λ

)
.

Note that E[̂λ] = λ; that is, the estimator is unbiased. Moreover, λ̂/λ has asymptotic distri-

bution �
(

L(k−1)
2 ,

L(k−1)
2

)
(that does not depend on λ), and so it can be used to construct

asymptotic confidence intervals for λ. Moreover, given certain (strictly positive) intrinsic prob-
abilities p∗

0 1(�), . . . , p∗
0 k(�) for each cluster C�, we can use the above procedure with p0 i(�) =

p∗
0 i(�) for i = 1, . . . , k and �= 1, . . . , L to obtain an estimate λ̂∗ of λ, and then use the statis-

tics Q� with p0 i(�) = p∗
0 i(�) and the corresponding asymptotic distribution �

(
k−1

2 , 1
2̂λ∗

)
to

perform a χ2-test with null hypothesis

H0: p0 i(�) = p∗
0 i(�) ∀i = 1, . . . , k.

Regarding the probabilities p∗
0 i(�), some possibilities are as follows:

• we can take p∗
0 i(�) = 1/k for all i = 1, . . . , k if we want to test possible differences in

the probabilities for the k different values;

• we can suppose that we have two different periods of time, and so two samples, say{
ξ

(1)
n : n = 1, . . . , N

}
and

{
ξ

(2)
n : n = 1, . . . , N

}
; take p∗

0 i(�) =∑
n∈C� ξ

(1)
n i /N� for all

i = 1, . . . , k; and perform the test on the second sample in order to check for possible
changes in the intrinsic long-run probabilities;

• we can take one of the clusters as a benchmark, say �∗; set p∗
0 i(�) =∑

n∈C�∗ ξn i/N�∗ for
all i = 1, . . . , k and � �= �∗; and perform the test for the other L − 1 clusters in order to
check differences with the benchmark cluster �∗.

Structure of the paper. Summing up, the sequel of the paper is structured as follows. In
Section 2 we set up our notation and formally define the RP urn model with parameters α > 0
and β ≥ 0. In Section 3 we provide a complete characterization of the RP urn for the three cases
β = 0, β ∈ (0, 1), and β > 1. (We do not deal with the case β = 1 because, as stated before, it
coincides with the standard Eggenberger–Pólya urn, whose properties are well known.) In par-
ticular we show that for each i, the empirical mean of the ξn i almost surely converges to the
intrinsic probabilities p0 i when β ∈ [0, 1), while it almost surely converges to a random limit
when β > 1. We obtain also the corresponding central limit theorems (CLTs), which, in partic-
ular for β ∈ [0, 1), are the basis for the proof of Theorem 1. For completeness, we also describe
the case α = 0, which generates a sequence of independent draws. Section 4 contains the proof
of Theorem 1, which gives the possibility of constructing a chi-squared test for the intrinsic
long-run probabilities when the observed sample is assumed to be generated by an RP urn with
β ∈ [0, 1). Finally, the paper contains an appendix: in Section A.1 we state and prove a general
CLT for Markov chains with a compact state space S ⊂R

k, under a certain condition which we
call the ‘linearity’ condition, and in Section A.2 we explain a fundamental coupling technique
used in the proof of the CLT for β ∈ (0, 1).
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2. The rescaled Pólya urn model

In all the sequel (unless otherwise specified) we suppose given two parameters α > 0
and β ≥ 0. Given a vector x = (x1, . . . , xk)� ∈R

k, we set |x| =∑k
i=1 |xi| and ‖x‖2 = x�x =∑k

i=1 |xi|2. Moreover we denote by 1 and 0 the vectors with all the components equal to 1 and
equal to 0, respectively, and by {e1, . . . , ek} the canonical base of Rk.

To formally work with the RP urn model presented in the introduction, we add here some
notation. Throughout the sequel, the expression number of balls is not to be understood lit-
erally; all the quantities are real numbers, not necessarily integers. The urn initially contains
b0 i + B0 i > 0 distinct balls of color i, with i = 1, . . . , k. We set b0 = (b0 1, . . . , b0 k)� and
B0 = (B0 1, . . . , B0 k)�. In all the sequel (unless otherwise specified) we assume |b0|> 0.
Consistently with (4), we set p0 = b0|b0| . At each discrete time (n + 1) ≥ 1, a ball is drawn at

random from the urn, producing the random vector ξn+1 = (ξn+1 1, . . . , ξn+1 k)� defined as

ξn+1 i =
{

1 when the ball extracted at time n + 1 is of color i,

0 otherwise,

and the number of balls in the urn is updated as follows:

Nn+1 = b0 + Bn+1 with Bn+1 = βBn + αξn+1 , (7)

which gives (since |ξn+1| = 1)
|Bn+1| = β|Bn| + α. (8)

Therefore, setting r∗
n = |Nn| = |b0| + |Bn|, we get

r∗
n+1 = r∗

n + (β − 1)|Bn| + α. (9)

Moreover, setting F0 equal to the trivial σ -field and Fn = σ (ξ1, . . . , ξn) for n ≥ 1, the con-
ditional probabilities ψn = (ψn 1, . . . , ψn k)� of the extraction process, also called predictive
means, are

ψn = E[ξn+1|Fn] = Nn

|Nn| = b0 + Bn

r∗
n

for n ≥ 0. (10)

It is obvious that we have |ψn| = 1. Finally, for the sequel, we set ξN =∑N
n=1 ξn/N.

We note that, by means of (10), together with (7) and (9), we have

ψn −ψn−1 = − (1 − β)|b0|
r∗

n

(
ψn−1 − p0

)+ α

r∗
n

(
ξn −ψn−1

)
. (11)

As previously stated, the RP urn for β = 1 coincides with the well-known standard
Eggenberger–Pólya urn, and so we will exclude it from the following analyses. When β �= 1,
because of the first term in the right-hand side of the above relation, the RP urn does not belong
to the class of reinforced stochastic processes (RSPs) studied in [1, 3, 2, 20, 21, 23]. Generally
speaking, by reinforcement in a stochastic dynamics we mean any mechanism for which the
probability that a given event occurs, i.e. the predictive mean, has an increasing dependence
on the number of times that the same event occurred in the past. This ‘reinforcement mecha-
nism’, also known as a ‘preferential attachment rule’, ‘rich get richer rule’, or ‘Matthew effect’,
is a key feature governing the dynamics of many biological, economic, and social systems
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(see e.g. [45]). The RSPs are characterized by a ‘strict’ reinforcement mechanism such that,
at each time-step, we have a strictly positive increment of the predictive mean associated to
the extracted color. As an immediate consequence, the ‘general’ reinforcement mechanism
is satisfied; that is, the predictive mean for a given color has an increasing dependence on
the number of past extractions of that color. When β �= 1, the RP urn model does not sat-
isfy the ‘strict’ reinforcement mechanism, because the first term in the right-hand side of (11)
is positive or negative according to the sign of (1 − β) and of

(
ψn−1 − p0

)
. However, when

α, β > 0, it satisfies the general reinforcement mechanism. Indeed, by (7), (8), (9), and (10),
using

∑n−1
m=0 xm = (1 − xn)/(1 − x), we have

r∗
n = |b0| + α

1 − β
+ βn

(
|B0| − α

1 − β

)
(12)

and

ψn = b0 + βnB0 + α
∑n

m=1 β
n−mξm

|b0| + α
1−β + βn

(
|B0| − α

1−β
) = β−nb0 + B0 + α

∑n
m=1 β

−mξm

β−n
(
|b0| + α

1−β
)

+ |B0| − α
1−β

. (13)

In particular, for β > 1, the dependence of ψn on ξm exponentially decreases with m, because
of the factor β−m. For β < 1 we have the opposite behavior; that is, the dependence of ψn on
ξm exponentially increases with m, because of the factor βn−m, and so the main contribution
is given by the most recent extractions. We refer to this phenomenon as ‘local’ reinforcement.
The case β = 0 is an extreme case, for which ψn depends only on the last extraction ξn: at
each time-step n + 1 ≥ 2 we extract a ball from an urn with b0 i + α balls of color i, if i is the
color extracted at time n, and b0 j balls for each color j �= i. This particular case corresponds to
a version of the so-called ‘memory-1 senile reinforced random walk’ on a star-shaped graph
introduced in [33], but the study done in that paper differs from ours. Finally, we observe
that Equation (11) recalls the dynamics of an RSP with a ‘forcing input’ (see [1, 20, 50]),
but the main difference relies on the fact that, for the RP urn, the sequence

(
r∗

n

)
is such that

r∗
n → r∗ > 0, and so

∑
n 1/r∗

n = +∞ and
∑

n 1/
(
r∗

n

)2 = +∞, when β ∈ [0, 1), and such that∑
n 1/r∗

n <+∞ (and
∑

n 1/
(
r∗

n

)2
<+∞) when β > 1. These facts lead to different asymptotic

behavior for (ψn). Specifically, for the RP urn with β ∈ [0, 1), the predictive meanψn randomly
fluctuates and does not converge almost surely, while, for the RP urn with β > 1, the sequence
(ψn) almost surely converges to a random variable ψ∞ and |ψn −ψ∞| = O(β−n). By contrast,
for the RSP with a ‘forcing input’, the almost sure convergence of ψn toward the forcing input
(which is a constant) holds true, and the corresponding rate of convergence depends on a model
parameter γ ∈ (1/2, 1] and equals n−γ /2.

3. Properties of the rescaled Pólya urn model

We study separately the three cases β = 0, β ∈ (0, 1), and β > 1. In particular, the case
β = 0 is placed at the end of this section, because it is elementary.

3.1. The case β ∈ (0, 1)

In this case, we have limn β
n = 0 and

∑
n≥1 β

n = β/(1 − β). Therefore, setting r = α
1−β

and r∗ = |b0| + r, we have by (8) and (9)

r∗
n = |b0| + |Bn| = |b0| + r + βn(|B0| − r) −→ r∗ > 0, (14)
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and so we have that the denominator r∗
n in ψn (see Equation (10)) goes exponentially fast to

the limit r∗. Moreover, recalling the definition of the constant γ in (5), we have β < γ < 1
(remember that |b0|> 0 by assumption),

γ − β = α

r∗ , and 1 − γ = (1 − β)|b0|
r∗ . (15)

Therefore, by (14), the terms (1−β)|b0|
r∗
n

and α
r∗
n

in the dynamics (11) converge exponentially
fast to (1 − γ ) and (γ − β), respectively. Furthermore, as we will see, the fact that the con-
stant γ is strictly smaller than 1 will play a central rôle, because it will imply the existence
of a contraction of the process ψ = (ψn)n in a proper metric space with (sharp) constant γ .
Consequently, it is not a surprise that this constant enters naturally in the parameters of the
asymptotic distribution, given in the following result.

Theorem 2. We have ξN
a.s.−→ p0 and

√
N
(
ξN − p0

)=
∑N

n=1

(
ξn − p0

)
√

N

d−→N (
0, �2),

where
�2 = λ

(
diag(p0) − p0pT

0

)
,

with λ defined in (6) as a function of β and γ .

Remark 1. Note that in Theorem 2 we do not assume b0 i > 0 for all i, but only |b0|> 0 (as
stated in Section 2). The asymptotic result given above fails when b0 = 0, and a different
behavior is observed. Indeed, from (11), we have

ψn −ψn−1 = α

r∗
n

(
ξn −ψn−1

)
, (16)

and hence (ψn) is a martingale. Therefore the bounded process (ψn) converges almost surely
(and in mean) to a bounded random variable ψ∞. In addition, since r∗

n → r = α/(1 − β), from
(16), we obtain that the unique possible limits ψ∞ are those for which ξn =ψ∞ eventually.
Hence ψ∞ takes values in {e1, . . . , ek}, and since we have E[ψ∞] = E[ψ0] = B0/|B0|, we get
P(ψ∞ = ei) = B0 i|B0| for all i = 1, . . . , k.

We will split the proof of Theorem 2 into two main steps: first, we will prove that the
convergence behavior of ξN does not depend on the initial constant |B0|, and then, without
loss of generality, we will assume |B0| = r and we will give the proof of the theorem under this
assumption.

3.1.1. Independence of the asymptotic properties of the empirical mean from |B0|. We use a
coupling method to prove that the convergence results stated in Theorem 2 are not affected by
the value of the initial constant |B0|.

Set ξ (1)
n = ξn and ψ (1)

n =ψn, which follows the dynamics (11), together with (10), starting
from a certain initial point ψ (1)

0 =ψ0. By (7) and the relations (15), we can write

ψ
(1)
n+1 = b0 + βBn + αξ

(1)
n+1

r∗
n+1

=
b0 + β

(
r∗

nψ
(1)
n − b0

)
+ αξ

(1)
n+1

r∗
n+1

= βψ (1)
n

r∗
n

r∗
n+1

+ (1 − β)b0

r∗
n+1

+ α

r∗
n+1

ξ
(1)
n+1

= βψ (1)
n + (γ − β)ξ (1)

n+1 + l(1)
n+1

(
ψ (1)

n , ξ
(1)
n+1

)
+ (1 − γ )p0,
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where

l(1)
n+1(x, y) =

(
r∗

r∗
n+1

− 1

)[
(1 − γ )p0 + (γ − β)y

]+
(

r∗
n

r∗
n+1

− 1

)
βx.

Since, by (14), we have r∗/r∗
n+1 − 1 = O

(
βn+1

)
and r∗

n/r
∗
n+1 − 1 = O

(
βn+1

)
, we get |l(1)

n+1| =
O
(
βn+1

)
. Now, take ξ (2) = (

ξ
(2)
n
)

n and ψ (2) = (
ψ

(2)
n
)

n following the same dynamics given in

(10) and (11), but starting from an initial point with |B(2)
0 | = r. Therefore, we have

ψ
(2)
n+1 = βψ (2)

n + (γ − β)ξ (2)
n+1 + (1 − γ )p0.

Both dynamics are of the form (A.9) with a0 = β, a1 = (γ − β), c = (1 − γ )p0, c(1)
n = βn, and

c(2)
n = 0, and, by (10), the condition (A.10) holds true. Hence we can apply Theorem 10 so that

there exist two stochastic processes ψ̃
(1)

and ψ̃
(2)

, following the dynamics (A.11) (with the
same specifications as above), together with (A.12), starting from the same initial points and
such that (A.14) holds true; that is,

E
[∣∣∣ψ̃ (1)

n+1 − ψ̃
(2)
n+1

∣∣∣∣∣∣ψ̃ (2)
0 , ψ̃

(1)
0

]
≤ γ n+1

∣∣ψ̃ (1)
0 − ψ̃

(2)
0

∣∣+ O

(
n+1∑
j=1

γ n+1−jβ j

)
= O

(
(n + 2) max(γ, β)n+1)= O

(
(n + 2)γ n+1).

Since γ < 1, if we subtract (A.11) with �= 2 from (A.11) with �= 1, we obtain that

+∞∑
n=1

E
[∣∣∣̃ξ (1)

n − ξ̃
(2)
n

∣∣∣]<+∞,

which implies
∑+∞

n=0

∣∣∣̃ξ (1)
n − ξ̃

(2)
n

∣∣∣<+∞ almost surely. Recall that ξ̃
(1)
n ∈ {0, 1} and ξ̃

(2)
n ∈

{0, 1}, and hence

ξ̃
(1)
n = ξ̃

(2)
n eventually (i.e. for sufficiently large n). (17)

Therefore, if we prove some asymptotic results for ξ (2), then they hold true also for ξ̃
(2)

(since

they have the same joint distribution); then they hold true also for ξ̃
(1)

(since (17)), and finally
they hold true also for ξ (1) (since they have the same joint distribution). Summing up, without
loss of generality, we may prove Theorem 2 under the additional assumption |B0| = r.

3.1.2. The case |B0| = r. Thanks to what we have observed in the previous subsection, we here
assume that |B0| = r = α/(1 − β), which implies |Bn| = r and

r∗
n = r∗ = |b0| + r (18)

for any n. Hence, we can simplify (10) as

ψn i = P(ξn+1 i = 1|Fn) = b0 i + Bn i

|b0| + r
= b0 i + Bn i

r∗ .
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The process ψ = (ψn)n≥0 is then a Markov chain with state space

S =
{

x : xi ∈
[b0 i

r∗ ,
b0 i + r

r∗
]
, |x| = 1

}
,

which, endowed with the distance induced by the norm | · |, is a compact metric space.
In the sequel, according to the context, since we work with a Markov chain with state space

S ⊂R
k, the notation P will be used for the following:

• a kernel P : S ×B(S) → [0, 1], where B(S) is the Borel σ -field on S and we will use the
notation P(x, dy) in the integrals;

• an operator P : C(S) → M(S), where C(S) and M(S) denote the spaces of the continuous
and measurable functions on S, respectively, defined as

(Pf )(x) =
∫

S
f (y)P(x, dy).

In addition, when f is the identity map, that is, f (y) = y, we will write (Pid)(x) or (Py)(x).

Moreover, we set P0f = f and Pnf = P
(
Pn−1f

)
.

By (11), together with (15) and (18), the process ψ = (ψn)n follows the dynamics

ψn+1 = βψn + b0
(1 − β)

r∗ + ξn+1
α

r∗ = βψn + (1 − γ )p0 + (γ − β)ξn+1. (19)

Therefore, given z = (z1, . . . , zk)T and setting

z(i) =
(

z1, . . . , zi + α

r∗ , . . . , zk

)T = (
z1, . . . , zi + (γ − β), . . . , zk

)T
,

for any i = 1, . . . , k, we get

(Pf )(x) = E
[
f
(
ψn+1

)|ψn = x
]=

k∑
i=1

xif
((
βx + p0(1 − γ )

)
(i)

)
. (20)

In particular, from the above equality, we get

(Pid)(x) − p0 = E
[
ψn+1 − p0|ψn = x

]= γ (x − p0). (21)

We now show that ψ is an irreducible, aperiodic, compact Markov chain (see Definitions
3 and 4).

Checking that ψ is a compact Markov chain: By Lemma 1, it is sufficient to show that P
defined in (20) is weak Feller (Definition 1) and that it is a semi-contractive operator on Lip(S)
(Definition 2). From (20), we have immediately that the function Pf is continuous whenever
f is continuous and hence P is weak Feller. In order to prove the contractive property, we
start by observing that the dynamics (19) of ψ is of the form (A.9) with a0 = β, a1 = (γ − β),
c = p0(1 − γ ), and ln ≡ 0 for each n. Moreover, by (10), the condition (A.10) holds true. Then
we let ψ (1) and ψ (2) be two stochastic processes following the dynamics (A.9) with the same
specifications as above, together with (A.10), and starting, respectively, from the points x and y.
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Applying Theorem 10, we get two stochastic processes ψ̃
(1)

and ψ̃
(2)

, evolving according to
(A.11), together with (A.12), starting from the same initial points x and y and such that

E
[∣∣∣ψ̃ (2)

1 − ψ̃
(1)
1

∣∣∣]= E
[∣∣∣ψ̃ (2)

1 − ψ̃
(1)
1

∣∣∣∣∣∣ψ̃ (1)
0 = x, ψ̃

(2)
0 = y

]
≤ γ ∣∣x − y

∣∣.
Therefore, if we take f ∈ Lip(S) with

|f |Lip = sup
x,y∈S, x �=y

|f (y) − f (x)|
|y − x| ,

we obtain

|(Pf )(y) − (Pf )(x)| =
∣∣∣E[f

(
ψ̃

(2)
1

)∣∣∣ψ̃ (2)
0 = y

]
− E

[
f
(
ψ̃

(1)
1

)∣∣∣ψ̃ (1)
0 = x

]∣∣∣
= E

[ ∣∣∣f(ψ̃ (2)
1

)
− f

(
ψ̃

(1)
1

)∣∣∣ ]
≤ |f |LipE

[∣∣∣ψ̃ (2)
1 − ψ̃

(1)
1

∣∣∣]≤ |f |Lip γ |x − y|

and so

|(Pf )|Lip = sup
x,y∈S, x �=y

|(Pf )(y) − (Pf )(x)|
|y − x| ≤ γ |f |Lip,

with γ < 1, as desired. �

Checking that ψ is irreducible and aperiodic: We prove the irreducibility and aperiodicity
condition stated in Definition 4, using Theorem 7. Therefore, let us denote by π an invariant
probability measure for P. Moreover, let ψ (1) and ψ (2) be two processes that follow the same
dynamics (19) of ψ , but for the first process, we set the initial distribution equal to π , while
for the second process, we take any other initial distribution ν on S. Again, as above, since
(19) is of the form (A.9) with a0 = β, a1 = (γ − β), c = p0(1 − γ ), and ln ≡ 0 for each n, and,
by (10), the condition (A.10) holds true, we can apply Theorem 5.2 and obtain two stochastic

processes ψ̃ (1) and ψ̃
(2)

, evolving according to (A.11) (with the same specifications as above),
together with (A.12), starting from the same initial random variables ψ (1)

0 (with distribution π )

and ψ (2)
0 (with distribution ν) and such that

E
[∣∣∣ψ̃ (1)

n+1 − ψ̃
(2)
n+1

∣∣∣∣∣∣ψ̃ (2)
0 , ψ̃

(1)
0

]
≤ γ n+1

∣∣∣ψ̃ (1)
0 − ψ̃

(2)
0

∣∣∣.
Hence, since γ < 1, we have E

[∣∣∣ψ̃ (1)
n − ψ̃

(2)
n

∣∣∣]−→ 0, and, since the distribution of ψ̃
(1)
n is

always π (by the definition of an invariant probability measure), we can conclude that ψ̃ (2)
n ,

and so ψ (2)
n (because they have the same distribution), converge in distribution to π . �

Proof of the almost sure convergence: We have already proven that the Markov chain ψ has
one invariant probability measure π . Furthermore, from (19) we get

ξn+1 − p0 = 1

γ − β

[
ψn+1 − βψn − p0(1 − γ )

]− p0

= 1

γ − β

[(
ψn+1 − p0

)− β
(
ψn − p0

)]
. (22)
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Therefore, applying [31, Corollary 5.3 and Corollary 5.12], we obtain

ξN − p0 = 1

N

N∑
m=1

(ξm − p0) = 1 − β

γ − β

1

N

N∑
m=1

E
[
ψm − p0

]+ O(1)

N

a.s.−→ 1 − β

γ − β
E
[
ψ (π )

n − p0
]
,

where
(
ψ (π )

n
)

n≥0 is a Markov chain with transition kernel P and initial distribution π , and so
stationary. From (21), we have

E
[
ψ (π )

n − p0
]= E

[
ψ

(π)
n+1 − p0

]= E
[
E
[
ψ

(π )
n+1 − p0 |ψ (π )

n
]]= γE

[
ψ (π )

n − p0
]

and so, since γ < 1, we get E
[
ψ (π )

n − p0
]= 0. This means that

∫
S x π (dx) = p0 and

ξN
a.s.−→ p0. �

Proof of the CLT: We apply Theorem 9, taking into account that we have already proven that
ψ is an irreducible and aperiodic compact Markov chain. By (22) and what we have already
proven before, we have

ξn+1 − p0 = f
(
ψn,ψn+1

)
with f (x, y) = 1

γ − β

[
(y − p0) − β(x − p0)

]
and p0 = ∫

S x π (dx). Hence f and P form a linear model as defined in Definition 5 (see also

Remark 5). Indeed, we have A1 = − β
γ−β Id and A2 = 1

γ−β Id. Moreover, by (21), we have
P(id)(x) − p0 = γ (x − p0), which means AP = γ Id. Therefore Theorem 9 holds true with

D0 = (1 − γ )−1Id, D1 = − γ (1 − β)

(γ − β)(1 − γ )
Id, D2 = (1 − β)

(γ − β)(1 − γ )
Id,

and so, after some computations, with

�2 = (1 − β)2(1 + γ )

(γ − β)2(1 − γ )
�2
π = (1 − β)2

(γ − β)2

(
1 + 2

γ

1 − γ

)
�2
π . (23)

In order to conclude, we take a Markov chain
(
ψ (π )

n
)

n≥0 with transition kernel P and initial
distribution π and we set

ξ
(π )
n+1 − p0 = f

(
ψ (π )

n ,ψ
(π )
n+1

)
= A2

(
ψ

(π )
n+1 − p0

)
+ A1

(
ψ (π )

n − p0

)
.

Then we observe that, by (A.4) and (A.5), we have

diag(p0) − p0pT
0 = E

[(
ξ

(π )
1 − p0

)(
ξ

(π )
1 − p0

)�]
= A1�

2
πA�

1 + A2�
2
πA�

2 + A1�
2
πA�

P A�
2 + A2AP�

2
πA1

= (γ − β)2 + (
1 − γ 2

)
(γ − β)2

�2
π . (24)

Finally, it is enough to combine (23) and (24). �
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3.2. The case β > 1

In this case, limn β
n = +∞ and

∑
n≥1 β

−n = 1/(β − 1). Moreover, by (12), r∗
n increases

exponentially to +∞. Hence, the following results hold true.

Theorem 3. We have

ψN
a.s.−→ψ∞ = B0 + α

∑+∞
n=1 β

−nξn

|B0| + α
β−1

and
|ψN −ψ∞| a.s.= O

(
β−N).

Moreover, ψ∞ takes values in
{
x ∈ [0, 1]k : |x| = 1

}
, and if B0 i > 0 for all i = 1, . . . , k, then

P{ψ∞ i ∈ (0, 1)} = 1 for each i.

Note that ψ∞ is a function of ξ = (ξn)n≥1 which takes values in
({

x ∈ {0, 1}k : |x| = 1
})∞.

Proof. By (13), we have

ψN = b0 + BN

r∗
N

= b0β
−N + B0 + α

∑N
n=1 β

−nξn

|b0|β−N + |B0| + α
β−1

(
1 − β−N

) .

Hence, the almost sure convergence immediately follows because
∣∣∑

n≥1 β
−nξn

∣∣≤∑
n≥1 β

−n <+∞. Moreover, after some computations, we have

ψN −ψ∞ =
−α

(
|B0| + α

β−1

)∑
n≥N+1 β

−nξn + β−NR(
|B0| + α

β−1

)(
|B0| + α

β−1 + β−N
(
|b0| − α

β−1

)) ,
where

R =
(

|B0| + α

β − 1

)
b0 −

(
|b0| − α

β − 1

)(
B0 + α

+∞∑
n=1

β−nξn

)
.

Therefore, since |∑n≥N+1 β
−nξn| ≤∑

n≥N+1 β
−n = β−N/(β − 1) and |R| is bounded by a

constant, we obtain that
|ψN −ψ∞| a.s.= O

(
β−N).

In order to conclude, it is enough to recall that, by definition, we have ψN ∈ [0, 1]k with
|ψN| = 1 and observe that, if B0, i > 0 for all i, then we have

0<
B0 i

|B0| + α
β−1

≤ψ∞ i = B0 i + α
∑∞

n=1 β
−nξn i

|B0| + α
β−1

≤ B0 i + α
β−1

|B0| + α
β−1

< 1.

�
Theorem 4. We have ξN

a.s.−→ψ∞, and

√
N
(
ξN −ψN

) s−→N (
0, �2) and

√
N
(
ξN −ψ∞

) s−→N (
0, �2),

where �2 = diag(ψ∞) −ψ∞ψ�∞ and
s−→ means stable convergence.

Note that if B0 i > 0 for all i = 1, . . . , k, then �2
i,j ∈ (0, 1) for each pair (i, j).
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Stable convergence was introduced in [48]; for its definition and properties, we refer to
[19, 22, 32].

Proof. The almost sure convergence of ξN to ψ∞ follows by the usual martingale argu-
ments (see, for instance, [9, Lemma 2]) because E

[
ξn+1|Fn

]=ψn →ψ∞ almost surely and∑
n≥1 E

[‖ξn‖2
]
n−2 ≤∑

n≥1 n−2 <+∞.

Regarding the CLTs, we observe that, by means of (11), we can write

ψn+1 −ψn = H(ψn)

r∗
n+1

+ �Mn+1

r∗
n+1

, (25)

where H(x) = (β − 1)|b0|(x − p0) and �Mn+1 = α
(
ξn+1 −ψn

)
. Therefore, we get

√
N
(
ξN −ψN

)= 1√
N

(
NξN − NψN

)= 1√
N

N∑
n=1

[
ξn −ψn−1 + n

(
ψn−1 −ψn

)]
=

N∑
n=1

YN,n + QN,

where

YN,n = ξn −ψn−1√
N

= �Mn

α
√

N
and

QN = 1√
N

N∑
n=1

n
(
ψn−1 −ψn

)= − 1√
N

N∑
n=1

n

r∗
n

(
H
(
ψn−1

)+�Mn
)
.

Since
∑

n≥1 n/r∗
n <+∞ and |H(ψn−1

)| + |�Mn| is uniformly bounded by a constant, we have

that QN converges to zero almost surely. Therefore it is enough to prove that
∑N

n=1 YN,n con-
verges stably to the desired Gaussian kernel. For this purpose we observe that E

[
YN,n|Fn−1

]=
0, and so, to prove the stable convergence, we have to check the following conditions (see [22,
Corollary 7] or [19, Corollary 5.5.2]):

(c1) E
[

max1≤n≤N |YN,n| ]→ 0, and

(c2)
∑N

n=1 YN,nY�
N,n

P−→�2.

Regarding (c1), we observe that

max
1≤n≤N

|YN,n| ≤ 1√
N

max
1≤n≤N

|ξn −ψn−1| ≤
1√
N

→ 0.

In order to conclude, we have to prove the condition (c2), that is,

N∑
n=1

YN,nY�
N,n = 1

N

N∑
n=1

(
ξn −ψn−1

)(
ξn −ψn−1

)� P−→�2.

The above convergence holds true even almost surely by standard martingale arguments (see,

for instance, [9, Lemma 2]). Indeed, we have
∑

n≥1 E
[∥∥ξn −ψn−1

∥∥2
]
/n2 ≤∑

n≥1 n−2 <+∞
and

E
[(
ξn −ψn−1

)(
ξn −ψn−1

)�|Fn−1

]
= diag

(
ψn−1

)−ψn−1ψn−1
� a.s−→�2.
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The last stable convergence follows from the equality

√
N
(
ξN −ψ∞

)= √
N
(
ξN −ψN

)+ √
N
(
ψN −ψ∞

)
,

where the last term converges almost surely to zero by Theorem 3. �
Remark 2. Equation (25) implies that the bounded stochastic process ψ = (ψn)n is a positive
(i.e. nonnegative) almost supermartingale [49] and also a quasi-martingale [39], because H(ψn)
is uniformly bounded by a constant and

∑
n≥1 1/r∗

n+1 <+∞.

3.3. Trivial cases

We here consider the two elementary cases β = 0 and α = 0.

3.3.1. The case β = 0. In this case, by (7), (8), and (9), we have for all i = 1, . . . , k

ψ0 i = b0 i + B0 i

|b0| + |B0| and ψn i = b0 i + αξn i

|b0| + α
for n ≥ 1. (26)

We now focus on ψn for n ≥ 1. The process (ψn)n≥1 is a k-dimensional Markov chain with a
finite state space S = {s1, . . . , sk}, where

si = 1

|b0| + α

(
b0 1, . . . , b0 i + α, . . . , b0 k

)�
, for i = 1, . . . , k ,

and transition probability matrix

P = 1

|b0| + α

(
1k b0

� + αIdk
)= |b0|

|b0| + α

(
1k p0

� + α
|b0| Idk

)
,

which is irreducible and aperiodic. Now, since 1k p0
� is idempotent and commutes with the

identity, we have

Pn =
( |b0|

|b0| + α

)n(( n−1∑
j=0

(
n

j

)(
α

|b0|
)j
)

1k p0
� +

(
α

|b0|
)n

Idk

)

=
( |b0|

|b0| + α

)n(((
1 + α

|b0|
)n −

(
α

|b0|
)n
)

1k p0
� +

(
α

|b0|
)n

Idk

)
= 1k p0

� +
(

α

|b0| + α

)n(
Idk − 1k p0

�)
= 1k p0

� + γ n
(

Idk − 1k p0
�) ,

(27)

where γ is the constant given in (5), which becomes equal to α
|b0|+α for β = 0. We note that

γ < 1 (since |b0|> 0 by assumption) and so Pn → 1k p0
�, and the unique invariant probability

measure on S is hence π = p0.

Theorem 5. We have ξN
a.s.−→ p0 and

√
N
(
ξN − p0

)=
∑N

n=1

(
ξn − p0

)
√

N

d−→
N→∞ N (

0, �2),
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where
�2 = λ

(
diag(p0) − p0p0

�), (28)

with λ defined in (6) (taking β = 0).

Proof. We observe that, by (26), we have for each n ≥ 0

{ξn+1 i = 1} = {ψn+1 = si}.
Therefore, the strong law of large numbers for Markov chains immediately yields

ξN = 1

N

N∑
n=1

(
1{ψn=s1}, . . . , 1{ψn=sk}

)� a.s.−→ p0.

Take a vector c = (c1, . . . , ck)T and define g(x) = cT (x − p0). Recall that g(ξn) =
g
(
1{ψn=s1}, . . . , 1{ψn=sk}

)
and apply the CLT for uniformly ergodic Markov chains (see, for

instance, [40, Theorem 17.0.1]): the sequence(∑N
n=1 g(ξn)√

N

)

converges in distribution to the Gaussian distribution N (
0, σ 2

c
)
, with

σ 2
c = Var

[
g
(
ξ

(π )
0

)]+ 2
∑
n≥1

Cov
(
g
(
ξ

(π )
0

)
, g
(
ξ (π )

n
))

= cT
(

Var
[
ξ

(π )
0

]+ 2
∑
n≥1

Cov
(
ξ

(π )
0 , ξ (π )

n

))
c ,

where

ξ (π )
n =

(
1{

ψ
(π )
n =s1

}, . . . , 1{
ψ

(π )
n =sk

})
and

(
ψ (π )

n
)

n≥0 is a Markov chain with transition matrix P and initial distribution π , that is, p0.

Now, by definition, ξ (π )
0 ξ

(π )
0

T = diag
(
ξ

(π )
0

)
, and hence Var

[
ξ

(π )
0

]= diag(p0) − p0pT
0 . Moreover,

by means of (27),

E
[
ξ

(π )
0 ξ (π )

n
�]= diag(p0)Pn = p0p0

� + γ n
(

diag(p0) − p0p0
�).

Hence, since γ < 1, we have
∑

n≥1 γ
n = γ /(1 − γ ) and so

Var
[
ξ

(π )
0

]
+ 2

∑
n≥1

Cov
(
ξ

(π )
0 , ξ (π )

n

)=
(

diag(p0) − p0p0
�)(1 + 2γ

1 − γ

)
.

By the Cramér–Wold device, the theorem is proved with �2 given in (28). �
Remark 3. Note that in Theorem 5 we do not assume b0 i > 0 for all i, but only |b0|> 0 (as
stated in Section 2). A different behavior is observed when b0 = 0. In this case, (26) gives
ψn = ξn for n ≥ 1. Since ψn i = P(ξn+1 i = 1|Fn), the above equality implies recursively ψn =
ξn = ξ1 for each n ≥ 1. In other words, the process of extractions ξ = (ξn)n≥1 is constant, with
P(ξ1 i = 1) =ψ0 i = B0 i/|B0|.
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3.3.2. The case α= 0. The model introduced above for α > 0 also makes sense when α = 0.
For completeness, in this section we discuss this case. Recall that we are assuming |b0|> 0
and b0 i + B0 i > 0 (see Section 2). For the case β > 1, we here assume also |B0|> 0.

When α= 0, the random vectors ξn are independent with

P(ξn+1 i = 1) =ψn i = b0 i + βnB0 i

|b0| + βn|B0| .

Therefore, we have

ψn i = b0 i + B0 i

|b0| + |B0|
for all n if β = 1 (which corresponds to the classical multinomial model) and

ψn i −→
⎧⎨⎩

b0 i|b0| if β ∈ [0, 1),

B0 i|B0| if β > 1.

Moreover, the following result holds true.

Theorem 6. We have

ξN
a.s.−→ ξ∞ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b0+B0|b0|+|B0| ifβ = 1,

b0|b0| = p0 ifβ ∈ [0, 1),

B0|B0| ifβ > 1.

Moreover, we have √
N
(
ξN − ξ∞

)
s−→N (

0, �2),
where �2 = diag(ψ∞) −ψ∞ψ�∞ and

s−→ means stable convergence.

Proof. The almost sure convergence follows from the Borel–Cantelli lemmas (see, for
instance, [54, Section 12.15]). Indeed, we have the following:

• if
∑

n≥0 ψn,i <+∞, then
∑N

n=1 ξn i
a.s.−→ ξ∞ i, with P(ξ∞ i <+∞) = 1;

• if
∑

n≥0 ψn,i = +∞, then
∑N

n=1 ξn i/
∑N

n=1 ψn−1 i
a.s.−→ 1.

Hence, the statement of the theorem follows because

(i) if β = 1, then
∑

n≥0 ψn i = +∞ and

N∑
n=1

ψn−1 i ∼ b0 i + B0 i

|b0| + |B0|N;

(ii) if β ∈ [0, 1) and b0 i > 0, then
∑

n≥0 ψn i = +∞ and

N∑
n=1

ψn−1 i ∼ b0 i

|b0|N = p0 iN;
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(iii) if β ∈ [0, 1) and b0 i = 0, then∑
n≥0

ψn i ≤ B0 i

|b0|
∑
n≥0

βn <+∞

and so
∑

n≥1 ξn i <+∞ almost surely; that is, ξn i = 0 eventually with probability one;

(iv) if β > 1 and B0 i > 0, then
∑

n≥0 ψn i = +∞ and
∑N

n=1 ψn−1 i ∼ B0 i|B0|N;

(v) if β > 1 and B0 i = 0, then ∑
n≥0

ψn i ≤ b0 i

|B0|
∑
n≥0

β−n <+∞

and so
∑

n≥1 ξn i <+∞ almost surely; that is, ξn i = 0 eventually with probability one.

For the CLT we argue as in the proof of Theorem 4. Indeed, we set YN,n = ξn−ψn−1√
N

so that we
have

√
N
(
ξN − ξ∞

)
=

N∑
n=1

YN,n + 1√
N

N∑
n=1

(
ψn−1 − ξ∞

)
,

where the second term converges to zero because

N∑
n=1

∣∣ψn−1 − ξ∞
∣∣=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if β = 1,

O
(∑N

n=1 β
n
)

if β ∈ [0, 1),

O
(∑N

n=1 β
−n
)

if β > 1.

Therefore it is enough to prove that
∑N

n=1 YN,n converges stably to the desired Gaussian ker-
nel. To this end we observe that E[YN,n|Fn−1] = 0, and so, to prove the stable convergence,
we have to check the following conditions (see [22, Corollary 7] or [19, Corollary 5.5.2]):

(c1) E
[

max1≤n≤N |YN,n| ]→ 0, and

(c2)
∑N

n=1 YN,nY�
N,n

P−→�2.

Regarding (c1), we note that

max
1≤n≤N

|YN,n| ≤ 1√
N

max
1≤n≤N

|ξn −ψn−1| ≤
1√
N

→ 0.

Regarding (c2), we observe that

N∑
n=1

YN,nY�
N,n = 1

N

N∑
n=1

(
ξn −ψn−1

)(
ξn −ψn−1

)� a.s.−→�2,

because (see, for instance, [9, Lemma 2])
∑

n≥1 E
[∥∥ξn −ψn−1

∥∥2]
/n2 ≤∑

n≥1 n−2 <+∞ and

E
[(
ξn −ψn−1

)(
ξn −ψn−1

)�|Fn−1

]
= diag

(
ψn−1

)−ψn−1ψn−1
� a.s−→�2.

�
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4. Proof of the goodness-of-fit result (Theorem 1)

The proof is based on Theorem 2 (for 0<β < 1) and Theorem 5 (for β = 0), whose proofs
are in Subsections 3.1 and 3.3.1, respectively. The almost sure convergence of Oi/N immedi-
ately follows since Oi/N = ξN i. In order to prove the stated convergence in distribution, we
mimic the classical proof for the Pearson chi-squared test based on the Sherman–Morrison
formula (see [51]); however, see also [47, Corollary 2].

Proof. We start by recalling the Sherman–Morrison formula: if A is an invertible square
matrix and 1 − v�A−1u �= 0, then(

A − uv�)−1 = A−1 + A−1uv�A−1

1 − v�A−1u
.

Given the observation ξn = (ξn 1, . . . , ξn k)�, we define the ‘truncated’ vector ξ∗
n =(

ξ∗
n 1, . . . , ξ

∗
n k−1

)�, given by the first k − 1 components of ξn. Theorem 2 (for β ∈ (0, 1)) and
Theorem 5 (for β = 0) give the CLT for (ξn)n, which immediately implies

√
N
(
ξ

∗
N − p∗)=

∑N
n=1

(
ξ∗

n − p∗)
√

N

d−→N
(

0, �2∗
)
, (29)

where p∗ is given by the first k − 1 components of p0 and

�2∗ = λ
(

diag(p∗) − p∗p∗T
)

.

By assumption p0 i > 0 for all i = 1, . . . , k and so diag(p∗) is invertible with inverse

diag(p∗)−1 = diag
(

1
p0 1
, . . . , 1

p0 k−1

)
; since

(
diag(p∗)−1

)
p∗ = 1 ∈R

k−1, we have

1 − p∗T
diag(p∗)−1p∗ = 1 −

k−1∑
i=1

p0 i =
k∑

i=1

p0 i −
k−1∑
i=1

p0 i = p0 k > 0.

Therefore we can use the Sherman–Morrison formula with A = diag(p∗) and u = v = p∗, and
we obtain(

�2∗
)−1 = 1

λ

(
diag(p∗) − p∗p∗T

)−1 = 1

λ

(
diag

(
1

p0 1
, . . . , 1

p0 k−1

)
+ 1

p0 k
11�). (30)

Now, since
∑k

i=1

(
ξN i − p0 i

)= 0, we have ξN k − p0 k = −∑k−1
i=1

(
ξN i − p0 i

)
, and so we get

k∑
i=1

(
Oi − Np0 i

)2

Np0 i
= N

k∑
i=1

(
ξN i − p0 i

)2

p0 i
= N

[
k−1∑
i=1

(
ξN i − p0 i

)2

p0 i
+
(
ξN k − p0 k

)2

p0 k

]

= N

[
k−1∑
i=1

(
ξN i − p0 i

)2

p0 i
+
(∑k−1

i=1

(
ξN i − p0 i

))2

p0 k

]

= N
k−1∑

i1,i2=1

(
ξN i1 − p0 i1

)(
ξN i2 − p0 i2

)(
δ

i2
i1

1

p0 i1
+ 1

p0 k

)
,

where δi2
i1

is equal to 1 if i1 = i2 and equal to zero otherwise. Finally, from the above equalities,
recalling (29) and (30), we obtain

k∑
i=1

(
Oi − Np0 i

)2

Np0 i
= λN

(
ξ

∗
N − p∗)�(�2∗

)−1(
ξ

∗
N − p∗) d−→ λW0 = W∗,
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where W0 is a random variable with distribution χ2(k − 1) = �((k − 1)/2, 1/2), where �(a, b)
denotes the gamma distribution with density function

f (w) = ba

�(a)
wa−1e−bw.

As a consequence, W∗ has distribution �((k − 1)/2, 1/(2λ)). �

Appendix A

A.1. A central limit theorem for a multidimensional compact Markov chain

In this section we prove the general CLT for Markov chains, used for the proof of
Theorem 2.

Let (S, d) be a compact metric space and denote by C(S) the space of continuous real
functions on S, by Lip(S) the space of Lipschitz continuous real functions on S, and by Lip(S ×
S) the space of Lipschitz continuous real functions on S × S. Moreover, we define ‖f ‖∞ =
supx∈S |f (x)| for each f in C(S) and, for each f in Lip(S),

|f |Lip = sup
x,y∈S, x �=y

|f (y) − f (x)|
d(x, y)

and ‖f ‖Lip = |f |Lip + ‖f ‖∞.

Let P(x, dy) be a Markovian kernel on S and set (Pf )(x) = ∫
S f (y)P(x, dy). We now recall

some definitions and results concerning Markov chains with values in S.

Definition 1. We say that P is weak Feller if (Pf )(x) = ∫
S f (y)P(x, dy) defines a linear operator

P : C(S) → C(S). A Markov chain with a weak Feller transition kernel is called a weak Feller
Markov chain.

Remark 4. If P is weak Feller, then the sequence (Pn)n≥1 of operators from C(S) to C(S) is
uniformly bounded with respect to ‖ · ‖∞: indeed, we simply have

‖Pnf ‖∞ = sup
x∈S

|Pnf (x)| = sup
x∈S

∣∣∣ ∫
S

f (y)Pn(x, dy)
∣∣∣

≤ sup
x∈S

( ∫
S

sup
y∈S

|f (y)|Pn(x, dy)

)
= sup

y∈S
|f (y)| = ‖f ‖∞.

Moreover, the existence of at least one invariant probability measure for P is easily shown.
In fact, the set of probability measures P(S) on S, endowed with the topology of weak
convergence, is a compact convex set. In addition, the adjoint operator of P, namely

P∗ : P(S) →P(S), (P∗ν)(B) =
∫

S
ν(dx)P(x, B),

is continuous on P(S) (since P is weak Feller). Then, the existence of an invariant probability
measure π is a consequence of Brouwer’s fixed-point theorem.

Definition 2. We say that P is semi-contractive or a semi-contraction on Lip(S) if it maps
Lip(S) into itself and there exists a constant γ < 1 such that

|Pf |Lip ≤ γ |f |Lip

for each f ∈ Lip(S).
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We now give the definition of compact Markov chain (see [42, Chapter 3] for a general
exposition of the theory of these processes, and [24] for the beginning of this theory).

Definition 3. We say that P is a Doeblin–Fortet operator if it is weak Feller and a bounded
operator from (Lip(S), ‖ · ‖Lip) into itself, and there are finite constants n0 ≥ 1, γ < 1, and
R ≥ 0 such that

|Pn0 f |Lip ≤ γ |f |Lip + R‖f ‖∞
for each f ∈ Lip(S). A Markov chain with a Doeblin–Fortet operator on a compact set S is
called compact Markov chain (or process).

Note that the Doeblin–Fortet operator, the weak Feller property, and the semi-contraction may
also be defined for a non-compact state space. In general, a compact Markov process is a
Doeblin–Fortet process in a compact state space. In our framework, since S is compact, the
two concepts coincide and the result below follows immediately.

Lemma 1. If P is weak Feller and a semi-contractive operator on Lip(S), then P is a Doeblin–
Fortet operator. In other words, a weak Feller Markov chain such that its transition kernel is
semi-contractive on Lip(S) is a compact Markov chain.

Definition 4. We say that P is irreducible and aperiodic if

Pf = eiθ f , with θ ∈R, f ∈ Lip(S) ⇒ eiθ = 1, and f = constant.

A Markov chain with an irreducible and aperiodic transition kernel is called an irreducible and
aperiodic Markov chain.

Under the hypotheses of the theorem of Ionescu-Tulcea and Marinescu in [35], the spectral
radius of P is 1, the set of eigenvalues of P of modulus 1 has only a finite number of elements,
and each relative eigenspace is finite-dimensional. This theorem can always be applied to a
compact Markov chain (see [42, Theorem 3.3.1]). More specifically, every compact Markov
chain has d disjoint closed sets, called ergodic sets, contained in its compact state space S.
These sets are both the support of the base of the ergodic invariant probability measures, and
the support of a base of the eigenspaces related to the eigenvalues of modulus 1 (see [42,
Theorem 3.4.1]). In addition, each of these ergodic sets may be subdivided into pj closed
disjoint subsets. The number pj is the period of the jth irreducible component, and the ergodic
subdivision gives the support of the eigenfunctions related to the pj roots of 1 (see [42, Theorem
3.5.1]). Then, as also explained in [42, Section 3.6], there are no other eigenvalues of modulus
1 except 1 (aperiodicity) and no other eigenfunctions except the constant for the eigenvalue
equal to 1 (irreducibility) if and only if the compact Markov chain has but one ergodic kernel,
and this kernel has period 1. In other words, the following result holds true.

Theorem 7. Let ψ = (ψn)n≥0 be a compact Markov chain and let π an invariant probability
measure with respect to its transition kernel. If ψ = (ψn)n≥0 converges in distribution to π ,
regardless of its initial distribution, then π is the unique invariant probability measure and ψ
is irreducible and aperiodic.

We now note that if P is Doeblin–Fortet, irreducible, and aperiodic, then it satisfies all
the conditions given in [30, Définition 0] and [30, Définition 1]. Therefore, it has a unique
invariant probability measure π , and for any f ∈ Lip(S × S), there exists a unique (up to a
constant) function uf ∈ Lip(S) such that

uf (x) − Puf (x) =
∫

S
f (x, y)P(x, dy) −

∫
S

∫
S

f (x, y)P(x, dy)π (dx).
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By means of this function uf , it is possible to define the (unique) function f ′(x, y) = f (x, y) +
uf (y) − uf (x) so that we have

m(f ) =
∫

S

∫
S

f (x, y)P(x, dy)π (dx) =
∫

S

∫
S

f ′(x, y)P(x, dy)π (dx) = m(f ′).

In addition, we may define the quantity σ 2(f ) ≥ 0 as follows (see [30, Equation (6)]):

σ 2(f ) =
∫

S

∫
S

[
f ′(x, y) − m(f ′)

]2
P(x, dy)π (dx)

=
∫

S

∫
S

[
f (x, y) − m(f ) + uf (y) − uf (x)

]2
P(x, dy)π (dx). (A.1)

Finally, we have the following convergence result.

Theorem 8. ([30, Théorème 1 and Théorème 2]) Let ψ = (ψn)n≥0 be an irreducible and ape-
riodic compact Markov chain and denote by π its unique invariant probability measure. Let
f ∈ Lip(S × S) such that m(f ) = 0 and σ 2(f )> 0. Then, setting SN(f ) =∑N−1

n=0 f (ψn, ψn+1), we
have

SN(f )√
N

d−→
N→∞ N (

0, σ 2(f )
)
,

and
sup

t

∣∣∣P(SN(f )< t
√

N
)−N (

0, σ 2(f )
)
(−∞, t)

∣∣∣= O
(
1/

√
N
)
.

Now let us specialize our assumptions, taking as S a compact subset of Rk. Therefore, in
the sequel we will use boldface to highlight the fact that we are working with vectors.

Definition 5. (‘Linearity’ condition.) We say that P and f : S × S →R
d form a linear model if

f is linear (in x and y) with m(f ) = 0 and the function

(Py)(x) =
∫

S
yP(x, dy)

is linear (in x).

Remark 5. Denote by p0 = ∫
S xπ (dx) the mean value under the invariant probability measure

π of P. If P and f form a linear model, then there exist two matrices A1, A2 ∈R
d×k such that

f (x, y) = A1(x − p0) + A2(y − p0) (A.2)

and a square matrix AP ∈R
k×k such that

(P(y − p0))(x) =
∫

S
(y − p0)P(x, dy) = AP(x − p0). (A.3)

Indeed, if (Py)(x) = APx + b, using that π is invariant with respect to P, we obtain

p0 =
∫

S
yπ (dy) =

∫
S

∫
S

yP(x, dy)π (dx) =
∫

S
[APx + b]π (dx) = APp0 + b,

and hence (P(y − p0))(x) = AP(x − p0). Moreover, if f (x, y) = A1x + A2y + b, then

m(A1x + A2y + b) =
∫

S
P(x, dy)

∫
S

A1xπ (dx) +
∫

S
A2yπ (dy) + b

= (A1 + A2)p0 + b,

and hence, if m(f ) = 0, we obtain f = A1(x − p0) + A2(y − p0).
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Theorem 9. Let ψ = (ψn)n≥0 be an irreducible and aperiodic compact Markov chain, and
denote by P its transition kernel and by π its unique invariant measure. Assume that P and f
form a linear model and let A1, A2, and AP be defined as in (A.2) and in (A.3). Then, setting
SN(f ) =∑N−1

n=0 f (ψn,ψn+1), we have

SN(f )√
N

d−→
N→∞ N (

0, �2),
where

�2 = D1�
2
πD�

1 + D1�
2
πA�

P D�
2 + D2AP�

2
πD�

1 + D2�
2
πD�

2 ,

with

�2
π =

∫
S

(x − p0)(x − p0)�π (dx)

(the variance–covariance matrix under the invariant probability measure π ),

D1 = A1 − D0, and D2 = A2 + D0,

where D0 = (A1 + A2AP)(Id − AP)−1. Moreover, for any c ∈R
k,

sup
t

∣∣∣P(SN
(
c�f

)
< t

√
N
)−N (

0, c��2c
)
(−∞, t)

∣∣∣= O
(
1/

√
N
)
.

Proof. As a consequence of Definition 2, the spectral radius of AP must be less than one,
and hence Id − AP is invertible. Therefore, we may define

uf (x) = D0(x − p0) = (A1 + A2AP)(Id − AP)−1(x − p0),

so that we have

uf (x) − (Puf )(x) = (A1 + A2AP)(Id − AP)−1(x − p0)

− (A1 + A2AP)(Id − AP)−1AP(x − p0)

= (A1 + A2AP)(x − p0)

= A1(x − p0)
∫

S
P(x, dy) + A2

∫
S

(y − p0)P(x, dy)

=
∫

S
f (x, y)P(x, dy) − 0

=
∫

S
f (x, y)P(x, dy) −

∫
S

∫
S

f (x, y)P(x, dy)π (dx).

We immediately get that the function g(x, y) = f (x, y) + uf (y) − uf (x) is linear and it may be
written as g(x, y) = D1(x − p0) + D2(y − p0). Taking into account that∫

S

∫
S

(y − p0)P(x, dy)π (dx) =
∫

S
(y − p0)π (dy) = 0,∫

S

∫
S

(y − p0)(y − p0)�P(x, dy)π (dx) =
∫

S
(y − p0)(y − p0)�π (dy) =�2

π , (A.4)
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and ∫
S

∫
S

(y − p0)(x − p0)�P(x, dy)π (dx) = AP

∫
S

(x − p0)(x − p0)�π (dx) = AP�
2
π , (A.5)

we can compute the quantity∫
S

∫
S

g(x, y)g(x, y)�P(x, dy)π (dx)

=
∫

S

∫
S

[
D1(x − p0) + D2(y − p0)

]
[
D1(x − p0) + D2(y − p0)

]�
P(x, dy)π (dx)

= D1�
2
πD�

1 + D1�
2
πA�

P D�
2 + D2AP�

2
πD�

1 + D2�
2
πD�

2

=�2.

By the Cramér–Wold device, the theorem is proven with �2 given above if we prove that, for
any c,

c� SN(f )√
N

= SN
(
c�f

)
√

N

d−→
N→∞ N (

0, c��c
)
.

Therefore, in order to conclude, it is enough to note that the above convergence is a con-
sequence of Theorem 8 with f = c�f . Indeed, by definition f ∈ Lip(S × S) and the function
uf ∈ Lip(S) in (A.1) may be chosen as uf = c�uf , so that m(f ) = 0 and σ 2(f ) = c��c. �

A.2. Coupling technique

The result proven in this subsection plays a relevant rôle in the proof of Theorem 2. Indeed,
it shows that, under suitable assumptions, two stochastic processes can be ‘coupled’ in a
suitable way, preserving their respective joint distributions.

Set S∗ = {x : xi ≥ 0, |x| = 1} (i.e. the standard (or probability) simplex in R
k), and recall

that {e1, . . . , ek} denotes the canonical base of Rk. We have the following technical lemma.

Lemma 2. There exist two measurable functions h(1), h(2) : S∗ × S∗ × (0, 1) → {e1, . . . , ek},
such that for any x, y ∈ S∗,∫

(0,1)
1{

h(1)(x,y,u)=ei

}du = xi, ∀i = 1, . . . , k,∫
(0,1)

1{
h(2)(x,y,u)=ei

}du = yi, ∀i = 1, . . . , k,
(A.6)

and ∫
(0,1)

1{
h(1)(x,y,u)�=h(2)(x,y,u)

}du ≤ |x − y|
2

. (A.7)

As a consequence, we have∫
(0,1)

∣∣h(1)(x, y, u) − h(2)(x, y, u)
∣∣du ≤ |x − y|. (A.8)
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Proof. Given x, y ∈ S∗, define xy = x ∧ y so that xy
i
= min(xi, yi). Set u0 = |xy| =∑k

i=1 min(xi, yi), and note that 0 ≤ u0 ≤ 1. Moreover, for any i ∈ {1, . . . , k}, set

Axy i =
{

u :
i−1∑
j=1

xy
j
< u ≤

i∑
j=1

xy
j

}
,

Ax i =
{

u : u0 +
i−1∑
j=1

(
xj − xy

j

)
< u ≤ u0 +

i∑
j=1

(
xj − xy

j

)}
,

Ay i =
{

u : u0 +
i−1∑
j=1

(
yj − xy

j

)
< u ≤ u0 +

i∑
j=1

(
yj − xy

j

)}
,

and let
h(1)(x, y, u) = ei if u ∈ Axy i ∪ Ax i, and

h(2)(x, y, u) = ei if u ∈ Axy i ∪ Ay i.

Observe that since 1 = u0 +∑k
i=1

(
xi − xy

i

)= u0 +∑k
i=1

(
yi − xy

i

)
, the equalities above

uniquely define h(1), h(2) on the whole domain. Moreover, since xi = xy
i
+ (

xi − xy
i

)
and

yi = xy
i
+ (

yi − xy
i

)
, the two conditions collected in Equation (A.6) are satisfied.

To check (A.7), just note that h(1)(x, y, u) is equal to h(2)(x, y, u) on the set ∪iAxy i = (0, u0),
and we have

2(1 − u0) =
k∑

i=1

xi +
k∑

i=1

yi − 2
k∑

i=1

xy
i
=

k∑
i=1

(xi + yi − min(xi, yi)) − min(xi, yi)

=
k∑

i=1

max(xi, yi) − min(xi, yi) = |x − y|.

Finally, (A.8) follows immediately from (A.7) since |h(1) − h(2)| ≤ 2. �
Now we are ready to prove the following ‘coupling result’.

Theorem 10. Let ψ (1) = (
ψ

(1)
n
)

n and ψ (2) = (
ψ

(2)
n
)

n be two stochastic processes with values
in S∗ that evolve according to the following dynamics:

ψ
(�)
n+1 = a0ψ

(�)
n + a1ξ

(�)
n+1 + l(�)n+1

(
ψ (�)

n , ξ
(�)
n+1

)
+ c, �= 1, 2, (A.9)

where a0, a1 ≥ 0, c ∈R
k, ξ (�)

n+1 are random variables taking values in {e1, . . . , ek} and such
that

P
(
ξ

(�)
n+1 = ei

∣∣∣ψ (�)
0 , ξ

(�)
1 , . . . , ξ (�)

n

)
=

P
(
ξ

(�)
n+1 = ei

∣∣∣ψ (�)
n

)
=ψ

(�)
n i , fori = 1, . . . , k,

(A.10)

and l(�)n+1 are measurable functions such that
∣∣l(�)n+1

∣∣= O
(
c(�)

n+1

)
. Then there exist two stochastic

processes ψ̃
(�) = (

ψ̃
(�)
n

)
n≥0, �= 1, 2, evolving according to the dynamics

ψ̃
(�)
n+1 = a0ψ̃

(�)
n + a1ξ̃

(�)
n+1 + l(�)n+1

(
ψ̃

(�)
n , ξ̃

(�)
n+1

)
+ c, �= 1, 2, (A.11)
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with ψ̃
(�)
0 =ψ

(�)
0 and

P
(̃
ξ

(�)
n+1 = ei

∣∣∣ψ (1)
0 , ψ

(2)
0 , ξ̃

(1)
1 , ξ̃

(2)
1 . . . , ξ̃

(1)
n , ξ̃

(2)
n

)
=

P
(̃
ξ

(�)
n+1 = ei

∣∣∣ψ̃ (�)
n

)
= ψ̃

(�)
n i , fori = 1, . . . , k,

(A.12)

and such that, for any n ≥ 0, we have

E
[∣∣∣ψ̃ (2)

n+1 − ψ̃
(1)
n+1

∣∣∣∣∣∣ψ̃ (1)
m , ψ̃

(2)
m ,m ≤ n

]
≤ (a0 + a1)

∣∣ψ̃ (2)
n − ψ̃

(1)
n

∣∣+ O
(
c(1)

n+1

)+ O
(
c(2)

n+1

)
.

(A.13)

Remark 6. As a consequence, for each �= 1, 2, the two stochastic processes ψ̃
(�)

and ξ̃
(�)

have the same joint distribution of ψ (�) and of ξ (�), respectively. Indeed, ψ̃
(�)
0 =ψ

(�)
0 , and by

(A.9), (A.10), (A.11), and (A.12), the conditional distributions of ψ̃
�

n+1 given
[
ψ̃

(�)
0 , . . . , ψ̃

(�)
n

]
and of ξ̃

�

n+1 given
[
ψ̃

(�)
0 , ξ̃

(�)
1 . . . , ξ̃

(�)
n

]
are the same as those of ψ�n+1 given

[
ψ

(�)
0 , . . . , ψ

(�)
n

]
and of ξ�n+1 given

[
ψ

(�)
0 , ξ

(�)
1 . . . , ξ

(�)
n

]
, respectively.

Moreover, from the inequality (A.13), by recursion, we obtain

E
[∣∣∣ψ̃ (2)

n+1 − ψ̃
(1)
n+1

∣∣∣∣∣∣ψ (1)
0 ,ψ

(2)
0

]
≤ (a0 + a1)n+1

∣∣ψ (2)
0 −ψ

(1)
0

∣∣
+ O

(
n+1∑
j=1

(
a0 + a1

)n+1−j
(

c(1)
j + c(2)

j

))
.

(A.14)

Proof. We set ψ̃
(�)
0 =ψ

(�)
0 , for �= 1, 2, and we take a sequence (Un)n≥1 of i.i.d. (0, 1)-

uniform random variables, independent of σ
(
ψ

(1)
0 ,ψ

(2)
0

)
. Then we take the two functions

h(1), h(2) of Lemma 2, and for each � and any n ≥ 0 we recursively define

ξ̃
(�)
n+1 = h(�)

(
ψ̃

(1)
n , ψ̃

(2)
n ,Un+1

)
,

ψ̃
(�)
n+1 = a0ψ̃

(�)
n + a1̃ξ

(�)
n+1 + l(�)n+1

(
ψ̃

(�)
n , ξ̃

(�)
n+1

)
+ c.

Setting F̃n = σ
(
ψ

(1)
0 ,ψ

(2)
0 ,U1, . . . ,Un

)
, we have that Un+1 is independent of F̃n and, by

definition, ξ̃
(�)
n and ψ̃

(�)
n are F̃n-measurable, for any �= 1, 2 and n ≥ 0. Therefore, using the

relation (A.6), we get, for any �= 1, 2, n ≥ 0, and i = 1, . . . , k,

P
(̃
ξ

(�)
n+1 = ei

∣∣F̃n

)
=
∫

1{
h(�)(ψ̃

(1)
n , ψ̃

(2)
n , u)=ei

} du = ψ̃
(�)
n i .

This means that (A.11), together with (A.12), holds true. Finally, by the relation (A.8), we have

E
[∣∣∣ξ (2)

n+1 − ξ
(1)
n+1

∣∣∣∣∣∣F̃n

]
=
∫

(0,1)

∣∣∣h(1)
(
ψ̃

(1)
n , ψ̃

(2)
n , u

)
− h(2)

(
ψ̃

(1)
n , ψ̃

(2)
n , u

)∣∣∣du

≤ ∣∣ψ̃ (1)
n − ψ̃

(2)
n

∣∣;
hence, subtracting (A.11) with �= 2 from the same relation with �= 1, we obtain

E
[∣∣∣ψ̃ (2)

n+1 − ψ̃
(1)
n+1

∣∣∣∣∣∣F̃n

]
≤ a0

∣∣ψ̃ (2)
n − ψ̃

(1)
n

∣∣+ a1
∣∣ψ̃ (2)

n − ψ̃
(1)
n

∣∣+ O
(
c(1)

n+1

)+ O
(
c(2)

n+1

)
,

and so the inequality (A.13) holds true. �
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