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We study unconfined homogeneous turbulence with a destabilizing background density
gradient in the Boussinesq approximation. Starting from initial isotropic turbulence,
the buoyancy force induces a transient phase toward a self-similar regime accompanied
by a rapid growth of kinetic energy and Reynolds number, along with the development
of anisotropic structures in the flow in the direction of gravity. We model this with
a two-point statistical approach using an axisymmetric eddy-damped quasi-normal
Markovian (EDQNM) closure that includes buoyancy production. The model is able
to match direct numerical simulations (DNS) in a parametric study showing the effect
of initial Froude number and mixing intensity on the development of the flow. We
further improve the model by including the stratification timescale in the characteristic
relaxation time for triple correlations in the closure. It permits the computation of the
long-term evolution of unstably stratified turbulence at high Reynolds number. This
agrees with recent theoretical predictions concerning the self-similar dynamics and
brings new insight into the spectral energy distribution and anisotropy of the flow.
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1. Introduction

The Rayleigh–Taylor instability occurs for variable-density fluids in which a net
acceleration applies from the lighter to the heavier fluid, or when heavy fluid is placed
above light fluid in a gravitational field (Rayleigh 1882; Taylor 1950; Chandrasekhar
1961; Sharp 1984). The corresponding destabilization of the interface between the
two fluids thus produces a mixing zone. These configurations are found in many
applications, for instance in inertial confinement fusion (Lindl 1995), in astrophysics
for supernovae (Cook & Cabot 2006), in geophysical flows with upwelling sites in the
ocean (Cui & Street 2004) or with turbulence in the ionosphere (Molchanov 2004).
After the linear regime of initiation of the instability, nonlinearities gain importance,
and the mixing zone becomes fully turbulent so that its width L eventually reaches
an asymptotic self-similar state (Youngs 1984)

L= 2αA gt2 (1.1)
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where A is the Atwood number, g> 0 the gravitational acceleration, t the time and
α the parameter characterizing the mixing zone growth rate. Many experimental and
numerical studies of Rayleigh–Taylor mixing zones have been performed, but no
definite value of the parameter α was found (Dimonte et al. 2004; Youngs 2013).
This shows that initial conditions have a strong influence on the late dynamics of the
flow and make the prediction of the mixing zone evolution difficult.

Recent theoretical works propose linking the growth rate parameter to different
turbulent statistics of the mixing layer: in Poujade & Peybernes (2010), α is expressed
in terms of the large-scale distribution of the turbulent structures, through the infrared
slope of the turbulent kinetic energy spectrum. This approach to Rayleigh–Taylor
turbulence can be interpreted as an extension of classical theories introduced to
evaluate the decay of homogeneous isotropic turbulence (HIT) (Batchelor 1949;
Lesieur & Ossia 2000). Alternatively, since the infrared slope of the spectrum is not
always easily measured, Gréa (2013) proposes expressing the growth rate parameter
as a function of the mixing intensity and its anisotropy. Unfortunately, it is difficult to
check these predictions on the growth rate α in simulations or in experiments, since
self-similar regimes are not always well established. These conclusions suggested a
new approach focusing on the characterization of turbulent quantities in the mixing
zone, with two salient features.

(a) First, in place of a mixing zone, we model unstably stratified homogeneous
turbulence (USHT) (Thoroddsen, Van Atta & Yampolsky 1998; Griffond, Gréa
& Soulard 2014; Soulard, Griffond & Gréa 2014), thus permitting a better
handling of turbulence in a simplified framework that discards inhomogeneous
effects. For that, one needs to assume that the ratio between the integral length
scale of turbulence ` and the characteristic scale L of the mixing region is small.
This hypothesis is shown by Vladimirova & Chertkov (2009) to be valid in
well-developed Rayleigh–Taylor mixing zones (`/L≈ 0.2).

(b) Second, the Rayleigh–Taylor mixing zone is therefore viewed as a stratified
turbulent flow with a buoyancy frequency N = √2A gΓ (Γ being the mean
concentration gradient of heavy fluid ∼1/L). It characterizes the strength of
the buoyancy force applied on the flow along the direction of acceleration.
The resulting anisotropy has therefore to be included in models for turbulence
statistics, so that classical models for isotropic homogeneous turbulence need
to be modified. In the following, we will assume that the flow is axisymmetric
with mirror symmetry about the plane orthogonal to the vertical axis, meaning
that its statistics do not depend on either horizontal direction in physical space
or in spectral space. The axis of symmetry is along the gravity vector.

Hence, USHT can be understood as an idealized configuration to study buoyancy-
driven turbulence, and in particular Rayleigh–Taylor mixing. Also, it can be interpreted
as an extension of previous studies on buoyancy-induced turbulence, for instance by
Batchelor, Canuto & Chasnov (1992), who first introduced this approach, and by
Livescu & Ristorcelli (2007) and Chung & Pullin (2010). In these works, the adopted
point of view is slightly different: a homogeneous flow is considered, as in USHT,
but they model statistically stationary or decaying variable-density turbulence and do
not investigate the development of the instability.

Let us now describe briefly some features of USHT. Figure 1 shows visualizations
of the fluctuating scalar field from USHT simulations corresponding to run 5
(detailed later in § 3.1). The work of unstable buoyancy forces can be identified
from anisotropic structures that are elongated along the vertical direction. From the
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Time

FIGURE 1. (Colour online) Visualizations of the fluctuating buoyancy field extracted from
DNS in USHT at different times (t∗ = 0, 2.5, 5) and for vertical and horizontal planes
corresponding to run 5 in table 1.

plots at different times, one observes that these structures quickly develop from
the initial isotropic state. The dynamics of USHT thus corresponds to an increase
of turbulent kinetic energy and Reynolds number due to the input of energy by
mean stratification, and to a growth of integral length scale ` characterizing the
large-scale eddies. However, beyond these phenomenological aspects, the question of
how to predict the dynamics of USHT is still open, and the related unsolved question
is: what is the growth rate of turbulent quantities in unstably stratified flows? We
therefore investigate whether a self-similar regime is reached, and how long after the
beginning of the development of the turbulent flow.

In the case of constant stratification frequency N, the expected self-similar regime
is characterized by an exponential kinetic energy evolution, ∼eβNt. One can estimate
β using arguments proposed by Soulard et al. (2014) for time-dependent N, namely
that the dynamics of large scales is self-similar, determined by the buoyancy force,
and that nonlinear effects can be discarded. In that case, β for USHT – equivalent to
α in Rayleigh–Taylor – can be related to the slope s of infrared spectra (see figure 2)
as (see derivation in appendix A)

β = 4
s+ 3

. (1.2)

In order to describe further the self-similar characteristics of buoyancy-induced
turbulence, let us sketch what the energy spectrum should be like. At smaller scales
and at high Reynolds number, several authors, for instance Chertkov (2003) and
Soulard (2012), argue that a k−5/3 inertial range appears in the energy spectrum
E(k, t), consistent with Kolmogorov theory. On the contrary, rather than a scaling
invariant based on dissipation and leading to the k−5/3 scaling, other invariants are
proposed by Zhou (2001) and Abarzhi (2010) yielding different spectral scalings.
Moreover, the vertical component of the anisotropic spectra should scale as k−3

according to the perturbative approach based on linear response theory (Soulard
& Griffond 2012). This suggests that the energy spectrum should straighten when
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Linear NL Inertial Viscous

FIGURE 2. (Colour online) Schematic representation of a self-similar kinetic energy
spectrum E(k, t), in USHT with N = const. The different regimes are shown that would
correspond to separate spectral ranges if enough scale separation is achieved. The infrared
range corresponds to the largest structures with a scaling ks.

approaching the integral scale. However, it is difficult to predict the precise extent of
this zone, bounded by the integral and the Ozmidov scales. For large scales, it can
be shown from quasi-normal approximations that, at least for s> 4, backscatter plays
a decisive role in the possible variation of the infrared slope s in time. Therefore, the
controversial question of permanence of big eddies in HIT (Batchelor 1953) has its
counterpart in buoyancy-induced turbulence. Taken together, these elements yield a
self-similar spectrum as in figure 2, with typical wavenumbers k`, kO and kη associated
with respectively the integral, the Ozmidov and the Kolmogorov scales. Such spectra
for USHT have never been clearly observed as they require high Reynolds number
values. In addition, most of the above arguments are based on dimensional analysis
that does not account for the significant flow anisotropy.

In this paper, our goal is to investigate USHT phenomenology and predict the
ultimate value asymptotically reached by the growth parameter, and never really
measured, as already mentioned, due to experimental and numerical limitations. For
instance, in the experiment on USHT by Thoroddsen et al. (1998), overturning due to
Rayleigh–Bénard-like instability prevented the observation of the long-term evolution
of the unstably stratified flow. We shall still use direct numerical simulations (DNS)
as a reference for the model developed below, but the resolved spectral range in DNS
is limited by computational resources, and so is the Reynolds number. This is due
to the trade-off between a sufficient extent of the infrared spectrum, and sufficiently
well-resolved small scales. Since the available spectral range evolves linearly with
the number of points in each direction in pseudo-spectral DNS, no clear regime with
scale separation is reached even in the largest existing DNS (for instance by Cook &
Cabot 2006).

The imposed truncation of the infrared part of the kinetic energy spectrum, or,
in other words, the numerical confinement of the largest turbulent scales, prevents
a reliable study of the dependence of β on the large-scale properties of the flow,
as well as a proper identification of scaling laws in the self-similar spectra. We
propose in this work to address these two limitations by introducing a new model
for USHT that is able to reach larger Reynolds number values than in DNS, and
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to represent a wider spectral range. Since we focus on the statistics of USHT, we
develop a new statistical two-point model for the dynamical equations, based on
the eddy damped quasi-normal Markovian closure (EDQNM). This model was first
derived by Orszag (1969) for isotropic homogeneous turbulence (see also Pouquet
et al. 1975; André & Lesieur 1977). New derivations extended the model to decaying
axisymmetric turbulence (Herring 1974) and to anisotropic turbulence subjected to
the Coriolis force (Cambon, Mansour & Godeferd 1997), to the Lorentz force (Favier
et al. 2011), to stably stratified flows with uniform mean density gradient (Godeferd
& Cambon 1994), and even to variable-viscosity flows (Gréa, Griffond & Burlot
2014). In the latter cases, the EDQNM model was compared to experimental and
numerical results with excellent agreement.

The plan of the article is as follows. The dynamical equations and some elements
of the closure are presented in § 2, as well as its numerical implementation, a short
presentation of our DNS algorithm, and how solutions of linearized equations are
computed. We compare in § 3 the EDQNM predictions to DNS results with the same
parameters and initial conditions. From this first set of simulations, we conclude that
the model can better represent the nonlinear dynamics by a simple modification of
its core parameter, the eddy damping, to account for the intensity of stratification.
Thus, the amended version of the model is proposed in § 4. Finally, predictions of
the EDQNM model for a turbulent regime at high Reynolds number are presented
in § 5.

2. Governing equations for USHT
In this section, we introduce the dynamical equations for USHT, we present

the main features of the two-point EDQNM closure for axisymmetric turbulence, and
describe our different predictive approaches: the EDQNM closure, DNS and linearized
solutions.

2.1. Basic equations in physical space
The system considered is the Navier–Stokes equations for an incompressible flow in
the Boussinesq approximation. The flow is assumed to be statistically homogeneous,
and the background concentration gradient for the heavy fluid, of amplitude
Γ = ∂〈C〉/∂x3, is applied along the x3 (vertical) direction. Here, 〈 〉 denotes ensemble
averaging. The gravity acceleration and the mean stratification gradient are aligned
but opposite for an unstable configuration. Statistical axisymmetry is assumed about
this x3 axis, and the flow distribution is isotropic in the (x1, x2) plane. In addition,
the x3 dependence of the mean flow (appearing through Γ ) can be neglected since
we assume that the largest scales of turbulence are small with respect to the size of
the mixing zone. Due to the Boussinesq approximation and symmetries, the mean
velocity is uniform and can be taken as zero, 〈ui〉 = 0. The velocity field u(x, t)
and the fluctuating buoyancy rescaled as a velocity ϑ(x, t) (with 〈ϑ〉 = 0) evolve
dynamically following

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=− 1

ρref

∂p
∂xi
+ ν ∂

2ui

∂xj∂xj
+Nϑδi3, (2.2)

∂ϑ

∂t
+ uj

∂ϑ

∂xj
=D

∂2ϑ

∂xj∂xj
+Nu3, (2.3)
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where summation over repeated latin indices is assumed. The reference density
is defined from the densities ρlight of light and ρheavy of heavy fluid as ρref =
(ρlight + ρheavy)/2. The fluctuating pressure is denoted p (with 〈p〉 = 0), the kinematic
viscosity ν, the molecular diffusivity D . In addition, N = √2A gΓ , characterizing
the instability, is an inverse timescale analogous to the Brunt–Väisälä frequency for
stably stratified turbulence, with A = (ρheavy − ρlight)/(ρheavy + ρlight) the Atwood
number that represents the relative density contrast between the two mixed fluids.
The relation between the buoyancy velocity and fluctuations of concentration c is
therefore ϑ = 2A gc/N.

2.2. Equations in Fourier space and axisymmetric representation
Anticipating that we are going to propose a model for spectra of two-point
correlations, and from the homogeneity assumption, we start by transforming the
dynamical equations to Fourier space before defining the spectra. This method proved
to be simpler than Fourier-transforming equations for two-point correlation functions
(Craya 1958).

We denote ûi(k, t) and ϑ̂(k, t) the Fourier coefficients respectively of ui(x, t) and
ϑ(x, t), associated to the wavevector k. Fourier-transforming (2.1)–(2.3) provides the
following equations for the spectral coefficients:

kiûi(k)= 0, (2.4)(
∂t + νk2

)
ûi(k)=−ikjPil (k)

∫
R3

ûj (p) ûl (k− p)d p+NPi3 (k) ϑ̂(k), (2.5)(
∂t +Dk2

)
ϑ̂(k)=−ikj

∫
R3

ûj(p)ϑ̂(k− p)d p+Nû3(k), (2.6)

where the explicit time dependence has been dropped for simplicity, and i2=−1. The
projector Pij(k) = δij − kikj/k2 with k2 = kiki appears after taking the divergence of
(2.2). It leads to a Poisson equation for pressure which can be simplified thanks to the
incompressibility hypothesis stated in (2.1) with a differential operator that becomes
a geometrical one in the spectral equation (2.4). In the following, we shall also use
twice the Kraichnan projector Pilm(k)= klPim(k)+ kmPil(k).

The last terms in (2.5) and (2.6) represent a linear operator that couples velocity
and scalar fields. The eigenvalues of this linear operator are: one neutral eigenvalue
σ = 0 associated with a toroidal eigenmode; two non-zero eigenvalues σ =
±Nk3/(k2

1 + k2
2)

1/2=±N sin θ that represent the time-evolving modes. When projected
onto the frame of reference defined by these eigenmodes, the linearized inviscid
equations (2.5) and (2.6) for the Fourier components become diagonal, and so do the
linearized equations for higher-order moments of the Fourier components. We shall
use this in § 2.2.3.

The nth-order statistics of the velocity (or scalar) field can be computed in a
general way through correlations such as 〈ui1(x1)ui2(x2) · · · uin(xn)〉. Velocity/scalar
cross-correlations can also be defined in the same way. The spectra of these statistics
may be computed from the Fourier components themselves, such as, for the two-point
second-order moments

〈ûi(k)ûj(k′)〉 =Rij(k)δ(k+ k′), (2.7)

〈ϑ̂(k)ûi(k′)〉 =Fi(k)δ(k+ k′), (2.8)
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High Reynolds number unstably stratified homogeneous turbulence 23

〈ϑ̂(k)ϑ̂(k′)〉 =B(k)δ(k+ k′), (2.9)

where the two-point velocity correlation spectrum Rij is the Fourier transform of
Rij(r)= 〈ui(x)uj(x+ r)〉 with respect to the separation vector r (homogeneity implies
that Rij does not depend on x), and δ is the three-dimensional Dirac function.
Likewise, one obtains the two-point buoyancy correlation spectrum B as the Fourier
transform of 〈ϑ(x)ϑ(x + r)〉 and the two-point velocity/scalar cross-correlation
spectrum Fi corresponding to 〈ui(x)ϑ(x + r)〉. Note that the dependence of these
spectra on k reflects the two-point nature of the correlation. Similarly, third-order
three-point correlation spectra can be defined as

〈ûi(k)ûj(k′)ûn(k′′)〉 = Sijn(k, k′)δ(k+ k′ + k′′), (2.10)

〈ϑ̂(k)ûi(k′)ûj(k′′)〉 = Sij(k, k′)δ(k+ k′ + k′′), (2.11)

〈ϑ̂(k)ϑ̂(k′)ûi(k′′)〉 = Si(k, k′)δ(k+ k′ + k′′). (2.12)

The spectra Sijn, Sij and Si depend on both k and k′ as an indication that the
corresponding correlations are taken at three physical points. In spectral space, this
is reflected by the triad (triangle) of wavevectors k+ k′ + k′′ = 0.

2.2.1. Equations for second-order moments
Here we shall consider flows with unit Schmidt number Sc= ν/D so that D = ν.

This assumption simplifies the diagonalization of the viscous–diffusive operator in
the following equations, although it is not necessary, e.g. if one wishes to retain
differential diffusive effects.

The equations for the two-point velocity correlation spectra are obtained by adding
the dynamical equations for ûi(k) and for ûj(k′) respectively weighted by ûj(k′) and
ûi(k), and taking the ensemble average (similarly for scalar and cross-correlation
spectra). This yields:(

∂

∂t
+ 2νk2

)
Rij(k, t)=NPi3 (k)Fj(k)+NPj3 (k)Fi(−k)+ TR

ij (k, t) (2.13)

with

TR
ij (k, t)=− i

2
Pinm(k)

∫
R3

Sjnm(−k, p)d p+ i
2

Pjmn(k)
∫
R3

Sinm(k, p)d p; (2.14)(
∂

∂t
+ 2νk2

)
Fi(k)=NR3i(k)+NPj3 (k)B(k)+ TF

i (k, t) (2.15)

with

TF
i (k, t)= i

2
Pinm(k)

∫
R3

Snm(k, p)d p− ikn

∫
R3

Sin(p,−k)d p; (2.16)(
∂

∂t
+ 2νk2

)
B(k, t)=N (F3(k)+F3(−k))+ TB(k, t) (2.17)

with
TB(k, t)=−ikn

∫
R3

Sn(−k, p)d p+ ikn

∫
R3

Sn(k, p)d p. (2.18)
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Nonlinear transfer terms TR
ij , TF

i and TB in (2.13)–(2.17) represent triadic exchanges
computed from third-order correlations. The additional right-hand-side terms are linear
couplings between velocity-, scalar- and cross-spectra. Equations (2.13)–(2.17) are thus
not closed and do not provide a means of computing two-point correlation spectra
unless one is able to estimate third-order correlations from second-order ones. We
shall do this in § 2.2.3, after introducing a convenient reference frame accounting for
the statistical axisymmetry of the flow in § 2.2.2.

2.2.2. Polar-spherical decomposition for axisymmetric spectra
We shall now transpose the spectral description to a polar-spherical frame of

reference, thus taking advantage of the solenoidality of the velocity field and
axisymmetric property of the spectra about the axis of gravity which is along
the unit vector x3, and hence providing a self-consistent description with respect
to the symmetries of the flow. A second advantage is a reduction of the number
of spectral functions in the polar-spherical description with respect to the Cartesian
frame of reference: û has a priori three components in the latter frame, but, from
(2.4), only two components are required to describe it in a reference frame of the
polar-spherical coordinates in which one of the unit vectors is along k. This frame of
reference has proved to be physically meaningful, in addition to being mathematically
useful, for various axisymmetric contexts such as stably stratified flows (Godeferd
& Cambon 1994), rotating and stratified flows (Liechtenstein, Godeferd & Cambon
2005), and flows of conducting fluids with an imposed external magnetic field (Favier
et al. 2011). It is also called the Craya–Herring frame (Craya 1958; Herring 1974)
(see also Sagaut & Cambon 2008 for its close relationship to the poloidal/toroidal
decomposition in physical space). This frame is defined by the following unit vectors:

e(1)(k)= k× x3

‖k× x3‖ , e(2)(k)= k× e(1)(k)
‖k× e(1)(k)‖ , e(3)(k)= k

‖k‖ , (2.19a−c)

onto which the velocity field is projected, and hence has two components

ûtor(k)= ûi(k)e(1)i (k), ûpol(k)= ûi(k)e(2)i (k), (2.20a,b)

the third-one, along e(3), being zero from incompressibility. Therefore, the algebra
involves a single global velocity–buoyancy vector (ûtor, ûpol, ϑ̂) (see Godeferd &
Cambon 1994).

We can then rewrite the second-order moments of velocity, buoyancy and the
velocity–buoyancy covariance projected onto the polar-spherical unit vectors as

Rij(k)=Φ1(k)e(1)i (k) e(1)j (k)+Φ2(k)e(2)i (k) e(2)j (k), (2.21)

Fi(k)=Ψr(k)e(2)i (k), (2.22)
B(k)=Φ3(k), (2.23)

introducing toroidal energy spectrum Φ1(k)δ(k+ k′)=〈ûtor(k)ûtor(k′)〉, poloidal energy
spectrum Φ2(k)δ(k + k′) = 〈ûpol(k)ûpol(k′)〉, and the velocity/buoyancy co-spectrum
Ψ (k)δ(k + k′) = 〈ûpol(k)ϑ̂(k′)〉 with real part Ψr(k). The modal spectra Φ1 and Φ2
add up to twice the kinetic energy spectrum E. Also, as we assume mirror symmetry
in the flow, helicity is zero and no additional scalar functions are needed to represent
Rij, Fi, B.
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One can then recast the three statistical equations (2.13), (2.14) and (2.15) into
dynamical equations for the Φ and Ψ spectra, and express the axisymmetric
dependence of the spectra in terms of k = |k| and the polar angle θ between k
and x3. This yields (

∂

∂t
+ 2νk2

)
Φ1(k, θ)= TΦ1(k, θ), (2.24)(

∂

∂t
+ 2νk2

)
Φ2(k, θ)= TΦ2(k, θ)+ 2N sin(θ)Ψr(k, θ), (2.25)(

∂

∂t
+ 2νk2

)
Φ3(k, θ)= TΦ3(k, θ)+ 2N sin(θ)Ψr(k, θ), (2.26)(

∂

∂t
+ 2νk2

)
Ψr(k, θ)= TΨr(k, θ)+N sin(θ) (Φ2(k, θ)+Φ3(k, θ)) , (2.27)

where sin θ arises from inner products between unit vectors of the Craya–Herring
frame. Equations (2.24)–(2.27) are the exact evolution equations for second-order
moments, in which the transfer terms on the right-hand sides contain all the triadic
interactions (triple correlations of velocity and buoyancy components). The linear
terms on the right-hand sides of (2.25) and (2.26) correspond to the direct coupling
between velocity and buoyancy mediated by a buoyancy flux which determines the
dynamics of Φ2 +Φ3 in the absence of nonlinearity.

From the energy-density modal spectra whose dynamics is described by (2.24)–
(2.27), other statistics can be obtained. For instance, spectra integrated over spherical
shells are computed by integration over the angle θ , with the azimuthal dependence
analytically integrated into a 2πk2 weight from axial symmetry: the turbulent kinetic
energy spectrum is therefore E(k) = πk2

∫ π

0 (Φ1(k, θ) + Φ2(k, θ)) sin θdθ ; likewise
the vertical flux spectrum F(k) = 2πk2

∫ π

0 Ψr(k, θ) sin2 θdθ , and buoyancy spectrum
B(k)= 2πk2

∫ π

0 Φ3(k, θ) sin θdθ . And one-point statistics are obtained by implementing
integrals over k. For instance, the vertical mass flux is 〈u3ϑ〉 =

∫∞
0 F(k)dk.

2.2.3. Two-point statistics equations closure
We briefly present here the technique used to model the statistical equations

(2.24)–(2.27), using a closure at the level of third-order correlation spectra. The
method, described by Orszag (1973) for isotropic turbulence, provides a closed
dynamical equation for a spherically averaged kinetic energy spectrum E(k). It is
more complicated in axisymmetric turbulence, which requires the inclusion of a
spectral dependence on the polar angle θ in addition to the dependence on the
wavenumber k. The derivation is only described here in the diagonalizing frame of
the linear operator for brevity, but the closed equations in the axisymmetric frame
are obtained by projecting their expressions on the Craya–Herring frame. (The reader
is referred to e.g. Sagaut & Cambon 2008 for details.)

One needs to estimate third-order moments S defined in (2.10)–(2.12), upon which
the transfer terms in (2.24)–(2.27) are based. In the reference frame of the eigenmodes
of the linear stratification operator, mentioned previously, the dynamical equations for
these third-order moments are(

∂

∂t
+ ν(k2 + k′2 + k′′2

)−N
(
s sin θ + s′ sin θ ′ + s′′ sin θ ′′

))
Sss′s′′(k, k′, t)

=Q〈uuuu〉
ss′s′′ (k, k′, t). (2.28)
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The different signs s, s′, s′′ ∈ {−1, 0, 1} characterize the eigenvalues σ = 0,±N sin θ ,
and k′′ = −(k + k′) for a triadic interaction. The right-hand-side term involves
fourth-order correlations. In the quasi-normal approximation, one expresses the latter
in terms of second- and third-order correlations, through cumulants that represent
the departure from an exactly Gaussian distribution (hence the ‘quasi-normal’ QN),
written symbolically as

Q(IV) = 〈uuuu〉︸ ︷︷ ︸
Q〈uuuu〉

− 〈uu〉〈uu〉︸ ︷︷ ︸
Q(QN)

(2.29)

(the exact tensorial development is detailed in Orszag 1973). Therefore (2.28) can be
rewritten as(

∂

∂t
+ ν (k2 + k′2 + k′′2

)−N
(
s sin θ + s′ sin θ ′ + s′′ sin θ ′′

))
Sss′s′′(k, k′, t)

=Q(QN)
ss′s′′ (k, k′, t)+Q(IV)

ss′s′′(k, k′, t) (2.30)

separating on the right-hand side the closed QN contribution from the contribution
from fourth-order cumulants. The latter are expressed in terms of third-order moments,
as did Orszag (1969) in isotropic turbulence, by introducing an eddy-damping (ED) in
the model to represent the scrambling effect of nonlinearities, to which we attribute a
‘functional’ damping role. This yields

Q(IV)
ss′s′′(k, k′, t)=− (η(k, t)+ η(k′, t)+ η(k′′, t)

)︸ ︷︷ ︸
µkk′k′′ (t)

Sss′s′′(k, k′, t), (2.31)

introducing the ED rate µkk′k′′ based on the definition of a characteristic turbulence
damping timescale η(k, t)= a0(

∫ k
0 p2E(p)dp)1/2 (Pouquet et al. 1975) computed from

the kinetic energy spectrum E(k). Classically, the constant introduced is fixed at a0=
0.36 to recover the value of the Kolmogorov constant (André & Lesieur 1977).

Although we have retained the linear stratification effects in the third-order moments
equation (2.30), we further assume in the following model that these are negligible,
with two supporting arguments: (a) linear stratification terms are already retained in
second-order moments equations; (b) we want to keep the model mathematically as
simple as possible. In other spectral models such as that by Canuto, Dubovikov &
Dienstfrey (1997) for convective turbulence, the characteristic timescale used to model
triple correlation damping did not include the explicit effect of stratification either, nor
did they include the angular dependence of the two-point velocity spectra, which we
shall retain in the present closure. The analytical solution for the triple correlations
equation (2.30) is thus obtained assuming the model is Markovian (M), as

Sss′s′′(k, k′, t)=Θkk′k′′(t)Q
(QN)
ss′s′′ (k, k′, t), (2.32)

with

Θkk′k′′(t)= 1− exp
[−(ν (k2 + k′2 + k′′2

)+µkk′k′′(t))t
]

ν(k2 + k′2 + k′′2)+µkk′k′′(t)
. (2.33)

The closure (2.32) expresses third-order moments in terms of second-order ones. It
can be written in any frame of reference, and provides the transfer terms required to
solve (2.13)–(2.17), which become closed integro-differential equations for two-point
correlation spectra. In practice, one uses the polar-spherical Craya–Herring frame of
reference.
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2.3. Numerical implementation of the EDQNM model equations
The closed equations (2.24)–(2.27) are numerically solved by discretizing the k-space
using a polar-spherical mesh of discretized k and θ values. An important advantage
of the model is that the discretization of k between kmin and kmax uses a logarithmic
distribution with Nk modes, thus allowing a better representation of large scales than in
the linear distribution in pseudo-spectral DNS. The angle θ in the model is uniformly
discretized between [0, π/2] (assuming vertical mirror symmetry in the absence of
net vertical helicity) with Nθ angles. One then needs to solve a system of Nk × Nθ

coupled equations for the discretized Φi(km, θn), i= 1, 2, 3, and Ψr(km, θn), m= 1. . .Nk,
n= 1. . .Nθ .

As in Cambon & Jacquin (1989) and Godeferd & Cambon (1994), time-marching
is done with a first-order Euler scheme over the time interval [t, t +1t]. The linear
terms, viscous and stratification, are treated implicitly. For instance, for the toroidal
energy mode Φ1, the implicit treatment of viscosity yields

Φ1(t+1t)=Φ1(t)e−2νk21t + 1− e−2νk21t

2νk21t
TΦ1(t), (2.34)

where 1t is the timestep. The implicit treatment of other terms is similar although
more complex due to the non-diagonal structure of the linear system, the corresponding
eigenvectors being expressed by (Φ1, (Φ2 + Φ3)/2 ± Ψr, (Φ2 − Φ3)/2). Note that
the different transfer terms are evaluated at t. At this point, an integration of
third-order correlations over wavevectors is required to evaluate the transfers, from
their expressions in (2.13)–(2.17). In practice, the integral is recast using a change of
variables, replacing the three-dimensional integration over p by a three-dimensional
integration over the wavenumbers p, q and the angle λ, as∫

R3
S(k, p)d3 p=

∫∫
∆

pq
k

(∫ 2π

0
S(k, λ, p, q)dλ

)
dpdq, (2.35)

in which λ denotes the angle rotating the plane of the triad (k, p, q=−k− p) about k.
In so doing, the integration domain ∆ for p, q as well as the Jacobian pq/k are the
same as in the isotropic case. The integral can then be evaluated by the numerical
method proposed by Leith (1971).

As in DNS, the stability of the EDQNM model numerical implementation imposes
a threshold 1t, as well as a sufficient resolution in k (at least four wavenumbers per
decade). The discretization in θ seems to impose a less stringent stability criterion,
provided enough angles are considered for a reasonable representation of the angular
dependence of the spectra. For the present computations, Nk= 128 and Nθ = 21. Using
these figures, the computations are well resolved, checked by a grid convergence
study.

2.4. Direct numerical simulations algorithm
In addition to computing solutions of USHT with the above EDQNM model, we
perform DNS by solving the Navier–Stokes–Boussinesq equations (2.1)–(2.3) on a
cubic box of size 2π, with triply periodic boundary conditions. We use a classical
pseudo-spectral Fourier collocation method (see Orszag & Patterson 1972; Rogallo
1981; Soulard et al. 2014) with phase-shift dealiasing. This allows us to keep all
Fourier modes with wavenumber k satisfying k<

√
2Np/3 where Np is the number of
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points in one direction to discretize the geometry. The code is parallelized using slab-
shaped domain decomposition, and, for instance, the current simulations with 10243

points are run on 512 cores. The timestepping uses a third-order low-storage strong-
stability-preserving Runge–Kutta scheme, with implicit viscous terms.

2.5. Solutions of the linearized equations
In the following, we shall compare systematically the predictions of EDQNM
and DNS in the nonlinear regime to the solutions of the linearized equations
(2.1)–(2.3). This permits us to assess the level of nonlinearity in the flow. It also
provides a reference for comparing the departure between EDQNM and DNS to the
nonlinear/linear departure. The linearized approach for computing two-point velocity
spectral evolution is also sometimes called rapid distortion theory (RDT).

RDT solutions can be obtained in three ways: (a) by a semi-analytical solution
of the spectral equations (2.24)–(2.27) in which the transfer terms are zeroed out;
(b) by using the numerical implementation of the EDQNM model over the spherical
discretization mesh, again discarding the integral transfer terms; (c) by using the DNS
pseudo-spectral code in which nonlinear terms are removed, so that one obtains an
RDT solution over a Cartesian discretization mesh. In the latter two ways, numerical
inaccuracies can still be present due to discretization, unlike the solution (a). We
have nonetheless chosen solution (b), after checking for a test set of parameters that
sampling effects are negligible.

3. EDQNM results and comparison to DNS
We compare DNS and EDQNM simulations in order to evaluate the closure

predictions in a range of parameters accessible to DNS. EDQNM can be used with a
wider range of parameters not accessible to DNS, in terms of Reynolds number and
of spectral range. We thus start with a parametric comparison of DNS and EDQNM
(in § 3.2) that also permits us to assess the influence of the initial Froude number
and mixing intensity on the evolution of USHT. The differences between DNS and
EDQNM results suggest that nonlinear turbulent damping should depend on the
intensity of stratification in the model, so that we improve the EDQNM closure with
a simple yet efficient modification (following § 4).

3.1. Methodology and parametric cases
We build initial conditions for comparing EDQNM and DNS results as follows. Initial
velocity and buoyancy fields u and ϑ used to initialize USHT simulations at t = t0
come from a DNS of HIT with passive scalar c. Fully developed isotropic turbulence
is obtained by running a simulation starting at t= 0 from energy and scalar random
fields without dominant modal structure which could influence the development of
the flow (e.g. the effect of initial spatial or frequency distribution on the evolution
of Rayleigh–Taylor instability is discussed in Zhou, Robey & Buckingham 2003).
We choose here Gaussian distributed fields with a von Karman spectral distribution
∼k4 exp[−(k/kpeak)

2]. The peak wavenumber kpeak is chosen as large as possible in
order to delay confinement effects due to the growth of the integral length scale. In
the simulations, kpeak = 40 and the kinetic energy is K (t = 0) = 0.75 computed as
K = ∫ +∞0 E(k)dk. At t= t0, USHT is obtained by applying gravity (A g 6= 0) and the
mean concentration gradient (Γ 6= 0) parameterized by N. At this time, the scalar c
becomes active, and triggers buoyancy ϑ , with 〈uiϑ〉(t = t0) = 0 from isotropy. The
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FIGURE 3. (Colour online) Spherically averaged kinetic energy spectrum E(k) and
buoyancy energy spectrum B(k) at t0 for 10243 DNS. See table 1 for the corresponding
parameters.

time t0 is chosen such that turbulence is in a self-similar regime driven by large scales,
for our k4 infrared spectrum at initial conditions. In terms of the initial eddy turnover
frequency fed = (K (0))1/2kpeak, we have t0 × fed ≈ 20. The initialization of EDQNM
is done at t = t0 using spectra extracted from DNS fields at this time. Unlike DNS,
the model builds instantly fully developed triple correlations. The same kinematic
viscosity ν and diffusivity D is used both in DNS and EDQNM simulations, here
set at 2.5× 10−3.

For USHT simulations with unit Schmidt number, the non-dimensional parameters
are the Reynolds and Froude numbers Re = K 2/εν and Fr = ε/K N, based on
mean turbulent kinetic energy and its dissipation ε. Initial conditions at t0 are also
characterized by the mixing intensity Λ, defined as the relative amount of kinetic
energy K and variance of buoyancy velocity 〈ϑϑ〉 = ∫ +∞0 B(k)dk: Λ = 〈ϑϑ〉/K .
We explore different values of Fr and Λ by varying N and rescaling passive scalar
c at t0. This could lead to an issue with the resolution of the small scales of the
scalar field if the amplitude of c becomes large. This is not the case here, since
we use moderate Λ, and we choose over-resolved initial conditions, anticipating the
exponential energy growth.

The different simulations serving as the basis for direct comparison with EDQNM
have a 10243 resolution. The different parameters are presented in table 1. The
Reynolds numbers at t0 are small (Re ≈ 3) due to the energy decay during the
HIT phase. This is not an issue as it rapidly increases during USHT phase. The
Froude numbers range between 0.4 and 1.6, allowing the study of different regimes
in which linear buoyancy forces either dominate the short-time dynamics or are
comparable to nonlinear effects. Exploring different mixing intensities Λ permits the
triggering of different transient phases, thus pushing further the comparison between
DNS and EDQNM. In figure 3, we show the initial kinetic energy spectrum E, and
the buoyancy energy spectra B at t0, both for DNS and EDQNM. Note that, from
kpeak = 40 at t = 0, the maximum of the spectrum evolves towards kpeak ' 12 at the
end of the HIT phase at t0, with a t−2/7 decay. Moreover, the spectra are very well
resolved for simulations with 10243 points, only to be able to follow the USHT phase
as long as possible with a fast increasing Reynolds number. At the small scales, the
product between the Kolmogorov scale and the maximum wavenumber is kmaxη= 9.9
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Run Re (t= t0) Fr (t= t0) Λ (t= t0) N ν,D

1 3.34 1.6 0.06 2 2.5× 10−3

2 3.34 1.6 2 2 2.5× 10−3

3 3.34 1.6 6 2 2.5× 10−3

4 3.34 0.808 0.06 4 2.5× 10−3

5 3.34 0.808 2 4 2.5× 10−3

6 3.34 0.808 6 4 2.5× 10−3

7 3.34 0.404 0.06 8 2.5× 10−3

8 3.34 0.404 2 8 2.5× 10−3

9 3.34 0.404 6 8 2.5× 10−3

TABLE 1. Parameters of the USHT simulations. The Reynolds number is Re=K 2/εν and
the Froude number is Fr = ε/NK , where K is the kinetic energy and ε its dissipation.
The initial mixing intensity is Λ= 〈ϑϑ〉/K .
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RUN 3
RUN 2
RUN 1

RUN 4
RUN 5

RUN 6
RUN 7
RUN 8
RUN 9

(a) (b) (c)

FIGURE 4. (Colour online) Time evolution of: (a) Reynolds number Re, (b) Froude
number Fr, (c) mixing intensity Λ= 〈ϑϑ〉/K ; DNS runs 1 to 9.

at t0 for runs 1 to 9, and, for instance, kmaxη = 2.6 at t∗ = N(t − t0) = 7 in run 5.
This shows that small scales are well resolved throughout the simulations, based on
common DNS standards (kmaxη ∼ 1 or 2 in Kaneda et al. 2003, kmaxη > 1.5 in Pope
2000).

3.2. Results
In this section, we discuss the results obtained from USHT simulations and we
present DNS/EDQNM comparisons. It is important to recall that one DNS run
provides a single realization of the flow field, whereas EDQNM results represent
ensemble-averaged statistics. Statistics are obtained by space averages in DNS, but
this means that statistical convergence may be poor, particularly at large scales.
Unfortunately, this issue exists in the vast majority of DNS approaches.

Figure 4 shows the time evolution of non-dimensional numbers in runs 1 to 9
from DNS. The Reynolds number shown in figure 4(a) strongly increases in all
the simulations, as the turbulence intensity increases due to the instability (as also
observed on scalar field visualizations in figure 1). We clearly observe that initial
conditions influence the time evolution of the Reynolds number: large Froude number
cases with small 〈ϑϑ〉 limit buoyancy production, leading to a short-time decrease
of Re, as in HIT. At larger times, in all cases, Re strongly increases until t∗ ≈ 4;
subsequently, the growth rate is reduced, indicating a change of regime, which we
attribute to the appearance of the self-similar state.
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FIGURE 5. (Colour online) Time evolution of: (a) kinetic energy K ∗, (b) buoyancy
variance 〈ϑϑ〉∗, (c) buoyancy vertical flux 〈ϑu3〉∗ for run 5 from DNS, EDQNM and the
linear RDT approximation.

In figure 4(b,c) for the time evolution of Froude number and mixing intensity, we
observe a short-time transient in which the different curves evolve from well-separated
initial values. After t∗> 4, the Froude number curves (figure 4b) join at Fr≈ 0.6, after
reaching a minimum at t∗ ' 3. This means that during the initial transient, buoyancy
effects are very active in driving the flow, before nonlinear turbulent interactions enter
more strongly into play. At t∗ ' 6, the evolution seems to steady to 0.6. A similar
behaviour is observed for the mixing intensity Λ in figure 4(c), where a universal
partition value Λ≈ 1.8 is reached from t∗ ' 3 after the initial transient, with a very
slow evolution afterwards. As shown by mixing intensity curves, the energy from
mean stratification injected into the system is equally distributed between fluctuations
of velocity and buoyancy. It can be easily shown that Λ=2 corresponds exactly to the
ratio obtained from linearized equations if we neglect nonlinear and diffusive terms.
Therefore, the fact that Λ is not exactly 2 is the imprint of nonlinear effects.

In the following, we shall use the normalized kinetic energy K ∗(t)=K (t)/(K +
〈ϑϑ〉)(t0); likewise for 〈ϑϑ〉∗(t) and 〈ϑu3〉∗(t). Figure 5 shows the time evolution
of kinetic energy K ∗(t), variance of buoyancy 〈ϑϑ〉∗(t) and vertical buoyancy flux
〈ϑu3〉∗(t) for run 5, from DNS and EDQNM. The results from the linear model (RDT)
starting from the same initial conditions are also represented in order to show the
importance of nonlinear effects. If viscosity and diffusion are discarded, RDT has a
simple long-time asymptotic solution – for instance the kinetic energy K (t)∼ e2Nt –
which is close to what is observed in figure 5(a) for the RDT numerical solution. The
short-time behaviour of RDT matches that of DNS and EDQNM up to t∗ ≈ 2, after
which it fails to capture the inflection of the curves due to nonlinear corrections. The
global trend in DNS and EDQNM is the same, with a strong growth of the amplitude
for all three quantities plotted in figure 5. The EDQNM model captures the damping
of energy growth and flux due to nonlinear interactions. The solutions for DNS and
EDQNM agree as long as nonlinear effects are not too strong. At large t, the model
clearly underestimates the values of kinetic and buoyancy energy as well as buoyancy
flux, compared to DNS. This tendency is observed in all cases of table 1 (not shown
here for the sake of brevity).

Figure 6 allows a comparison of the EDQNM and DNS energy spectra and an
evaluation of their scale-by-scale differences. The departure at small scales between
EDQNM and DNS spectra is expected, as was observed in previous studies (Cambon
et al. 1997; Godeferd & Staquet 2003). It may be attributed to both the EDQNM
model in which small-scale dynamics is built-in (as in all statistical two-point spectral
closures, see Chen et al. 1993), but also in part to DNS large-wavenumber truncation
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FIGURE 6. (Colour online) Kinetic energy spectra comparison between EDQNM and DNS
for run 5 at t∗ = 0, 3, 6.

that produces a small cusp in the tail of the spectrum. Here, as shown in the figure,
the departure seems to appear first in the energetic wavenumber range, leading
us to believe that EDQNM overestimates the large-scale transfer, but one could
also point out that the infrared truncation of DNS spectra may affect its dynamics
through box confinement. In order to discard this latter hypothesis, we have carried
out a numerical study on confinement effects at large scales using different grid
resolutions. It appears clearly that before t∗= 6, integrated quantities are not sensitive
to confinement. Therefore, we conclude that the dynamics modelled in EDQNM is
underestimated due to a weakness of the closure.

Finally, can one say that a self-similar regime for USHT appears in our DNS
results? In figure 5, we have plotted an additional curve corresponding to the expected
exponential self-similar growth ∼eβNt, with β = 4/7 obtained from (1.2) with s = 4,
since the infrared scaling in our initial spectra is k4. One could consider the last
inflection observed in figure 5(a,b) for the energies to indicate the appearance of a
self-similar regime, and deduce the actual value of the growth rate from results at
t∗ = 6. Unfortunately, the duration of the late phase is very short in our simulations
and we know that confinement effects appear quickly, so this clearly jeopardizes any
conclusions. Increasing the available spectral range of the simulation would certainly
give slightly better results, although at a tremendous computational cost.

4. Correction for explicit N-dependent triple correlations
Results presented in the previous section suggest that the EDQNM model captures

the linear and nonlinear stages in USHT evolution, although with an incorrect
nonlinear estimate. In § 4.1, we propose a simple modification of the eddy-damping
term. In § 4.2, we compare the improved model and show that it leads to much better
agreement with DNS and also that it captures the important anisotropy of USHT.

4.1. Methodology of the correction
Arguments for turbulent decorrelation timescales used in two-point statistical models
are derived from phenomenological analyses of the interaction between large and
small scales, and the choice of the ED timescale has to include enough correct
physics, as discussed by Zhou, Matthaeus & Dmitruk (2004). Two timescales may be
considered (see e.g. Zhou 2010). First, related to the local straining effect of turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.726


High Reynolds number unstably stratified homogeneous turbulence 33

structures on each other, the nonlinear timescale τnl for turbulent interaction permits
the recovery of the correct Kolmogorov spectral scaling. In the above model, we
used η(k)−1. Second, one can also consider the sweeping of small structures by large
ones, but the use of such a timescale based on a mean or root-mean-square (r.m.s.)
velocity yields a non-Kolmogorov scaling of the energy spectrum even in isotropic
turbulence (k−3/2 instead of k−5/3). In USHT phenomenology, it is clear that vertical
buoyant events may trigger sweeping-like phenomena in the turbulent dynamics and
involve an external timescale τex. We therefore propose to use a hybrid timescale
1/(τ−1

ex + τ−1
nl ) in the EDQNM model, as a pragmatic correction that does not require

a complete rewriting of the closure, choosing the external timescale τex ∝N−1.
More precisely, recall that, in deriving the EDQNM model, we neglected

stratification terms appearing in (2.28) for the dynamics of triple correlations, that is
we did not retain the buoyancy timescale in the evolution of these statistical moments.
We propose to modify the closure in order to recreate buoyancy effects in the transfer
terms, without resorting to solving the full equation (2.28). The conclusions of § 3
establish that the transfer is overestimated in the basic version of EDQNM. We simply
close buoyancy terms in fourth-order cumulants by introducing a stratification-related
damping term based on the timescale N−1. Equation (2.28) then becomes(

∂t + ν
(
k2 + k′2 + k′′2

)+µN
kk′k′′(t)

)
Sss′s′′

(
k, k′, t

)=Q(QN)
ss′s′′ ,

(
k, k′, t

)
(4.1)

with a new ED rate µN
kk′k′′(t)=ηN(k, t)+ηN(k′, t)+ηN(k′′, t) accounting both for fourth-

order cumulants and stratification:

ηN(k, t)= a0

(∫ k

0
p2E( p, t)dp

)1/2

+ a1N. (4.2)

The amplitude of the additional term proportional to N is adjusted using a new
constant a1, to be determined. (We recall that the value of a0 was defined once
and for all when EDQNM was developed, and has remained unchanged ever since.)
Although a bit coarse, since it does not take into account the explicit dependence
of the linear stratification operator on θ , this closure ensures the realizability of the
model. A similar simplified model is also used for rotating turbulence (Cambon et al.
1997).

In the classical EDQNM approach, the time dependence of the ED rate is
neglected during the ‘Markovianization’ process. However, in the modified closure,
Markovianization should also consistently account for the switch from isotropic
turbulence at t < t0 to stratified turbulence at t > t0 which induces a discontinuity in
our ED rate µN

kk′k′′ . Therefore, the characteristic time Θkk′k′′(t) for t > t0 needs to be
changed after taking into account Markovianization to

Θkk′k′′(t) = exp
[−(ν (k2 + k′2 + k′′2

)+µN
kk′k′′(t))× (t− t0)

]
× 1− exp

[−(ν (k2 + k′2 + k′′2
)+µkk′k′′(t0))× t0

]
ν
(
k2 + k′2 + k′′2

)+µkk′k′′(t0)

+ 1− exp
[−(ν (k2 + k′2 + k′′2

)+µN
kk′k′′(t))× (t− t0)

]
ν
(
k2 + k′2 + k′′2

)+µN
kk′k′′(t)

. (4.3)

At t= t0, one recovers the classical expression for the characteristic time of unforced
turbulence.
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Fr= 1.6 Fr= 0.8 Fr= 0.4

Λ= 0.06 Run 1: a1 = 0.145 Run 4: a1 = 0.172 Run 7: a1 = 0.223
Λ= 2 Run 2: a1 = 0.257 Run 5: a1 = 0.277 Run 8: a1 = 0.305
Λ= 6 Run 3: a1 = 0.346 Run 6: a1 = 0.353 Run 9: a1 = 0.391

TABLE 2. Values of the constant a1 obtained from minimizing the cost function J for
each run.

In order to calibrate the new constant a1, we perform optimization using a cost
function J (a1) based on the time-integrated relative difference between DNS and the
new EDQNM model energies:

J (a1) =
∫ t1

t0

((
K DNS(s)−K EDQNM(s, a1)

K DNS(s)

)2

+
( 〈ϑϑ〉DNS(s)− 〈ϑϑ〉EDQNM(s, a1)

〈ϑϑ〉DNS(s)

)2
)

ds (4.4)

The upper time bound t1 is such that N(t1 − t0)= 5 to prevent confinement effects
from influencing the determination of a1. We minimize J (a1) for runs 1 to 9 using a
simple Newton algorithm, each iteration necessitating a new EDQNM simulation. The
different values of a1 corresponding to the optimization procedure for each case are
given in table 2. The convergence is achieved typically within five iterations for an
accuracy of ‖1J ‖/J < 10−3 and corresponding to a variation of the constant of
‖1a1‖/a1 < 10−5. The different constants a1 for each case are in the interval a1 ∈
[0.15, 0.4]. It is very reassuring to find values of a1 not too large, especially since
they are smaller than the maximum eigenvalue of the linear operator. The variations
of a1 are not important from one case to the other but we can notice a sensitivity to
the mixing intensity Λ which is not taken into account in the expression for the ED
term. We set the final value at the average, a1 = 0.28.

4.2. Updated results
Let us now call the modified model EDQNMc, and compare again to DNS data. Each
case described in table 1 is computed with the updated model. We choose to show in
figure 7 the evolution of kinetic energy for runs 1 to 9. As expected, the predictions
of EDQNMc agree very well with DNS for all cases throughout the time evolution, up
to t∗= 6. At this time the departure from DNS is at most 20 % whereas it was up to
50 % in the unmodified model. This improvement and the relatively small departure is
a very good result, considering the fact that the model is able to reproduce a complete
evolution over six stratification frequency periods. The transitional state is therefore
also well captured with the updated model. Other quantities such as potential energy
and buoyancy flux agree as well with DNS (not shown). Note that a uniformly good
result was not guaranteed from the start as the constant a1= 0.28 is not the optimized
constant for each run. This confirms that the dynamics of triple correlations in USHT
is significantly modified by the presence of stratification.

What is the result of the scale-by-scale comparison between EDQNMc and
DNS spectra? We choose to present results for run 5 in figure 8, corresponding
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FIGURE 7. (Colour online) Kinetic energy evolution for runs 1 to 9 renormalized by
initial sum of potential and kinetic energy from DNS, EDQNM and the updated model
EDQNMc.

to intermediate values of the initial Froude number Fr= 0.8 and for mixing intensity
Λ = 2. We present the kinetic and potential energy spectra in figure 8(a,b) at times
t∗ = 0, 3 and 6, and the buoyancy flux spectrum in figure 8(c), at times t∗ = 0.2,
3 and 6, since the flux at t∗ = 0 is zero. The agreement between EDQNMc and
DNS is impressive in the large scales, especially considering the long duration of the
simulation, and the remaining small departure with DNS at the latest time lies within
the error in the DNS data due to confinement, although one could also mention
the lack of reliable backscatter in the EDQNM closure, which may be present for
k4 initial spectra. In that sense, a test with initial k4 spectra (Batchelor type) is
more challenging for EDQNM than one with k2 (Saffman type) for instance. Other
comparisons with DNS using smaller slopes have been conducted and show an even
better DNS/EDQNM agreement. This confirms the important role of backscatter in
the results presented.

The inertial-range scaling is very well reproduced by the model also. At the small
scales, the match is not as good as at the large scales, especially at the end of
the simulation. As mentioned previously, EDQNM is not expected to compare very
well with DNS in the dissipative range, of less importance in USHT than the highly
anisotropic largest scales, as we shall see in figure 12.

We investigate further DNS/EDQNM comparisons by presenting measurements
of anisotropy in USHT. We begin with the deviatoric part of the Reynolds stress
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FIGURE 8. (Colour online) Evolution of spectra for run 5 at Fr= 0.8 and mixing intensity
Λ= 2. (a) Kinetic energy spectrum; (b) buoyancy energy spectrum; (c) buoyancy flux.
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FIGURE 9. (Colour online) Statistical characterization of anisotropy in run 5. Evolution
of (a) component b33 = 〈u3u3〉/〈uiui〉 − (1/3) of the deviatoric part of the Reynolds-stress
tensor; (b) sin2 γ .

tensor, bij = 〈uiuj〉/〈uiui〉 − (1/3), of which we retain only the component b33, since
bii = 0 from incompressibility, implying b11 = b22 = −b33/2 in axisymmetric flows.
The evolution of b33 is shown in figure 9(a). The linear RDT result evolves from the
initial zero value to the asymptotic 2/3 value, which can be analytically computed. At
t∗≈ 2, the linear approximation is not valid anymore, and b33 begins to decrease from
its peak value of approximately 0.47, as if return to isotropy were initiated. However,
the later trend shows another inflection in the evolution of b33, which seems to settle
to a value close to 0.35. The EDQNMc model prediction is very close to the DNS
evolution.

We also investigate the anisotropy of the scalar, which we quantify using the
dimensionality parameter

sin2 γ =

∫ π

0
sin2 θ

∫ ∞
0
Φ3(k, θ)dkdθ∫ π

0

∫ ∞
0
Φ3(k, θ)dkdθ

(4.5)

for two reasons. First, we need to construct a measure of anisotropy based on a
scalar field. A way to do this is the above definition, expressing the stretching
of scalar structures along the vertical direction (see Gréa 2013), which is clear
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in figure 1. Second, the Reynolds stress tensor anisotropy evaluated from b33
reflects the anisotropy due to the difference between Φ1(k) and Φ2(k), namely
the polarization anisotropy, integrated over wavespace, but very much less so the
directional dependence of these spectra, i.e. their dependence upon θ (see details
in e.g. Sagaut & Cambon 2008 and Delache, Cambon & Godeferd 2014). This
dependence is included in the definition of sin2 γ . The dimensionality parameter
evolves in time as shown in figure 9(b) for run 5. Again, the model reproduces
correctly the global trends of DNS. The anisotropy of the scalar structures seems to
be linked to that of the Reynolds stress tensor, since the overall behaviour of the
curve is similar to that of b33: it increases to a maximum 0.8 at t∗≈ 2, then recovers
a more moderate value sin2 γ ≈ 0.75. The agreement between DNS and EDQNM is
better for the anisotropy of the Reynolds stress tensor than for the scalar field. This is
explained as follows: the anisotropy of the Reynolds stress tensor can be decomposed
into contributions from polarization and from directional anisotropies, and, in USHT,
it appears that polarization anisotropy plays a very important role, and is linked to the
forcing of vertical velocity components by buoyancy. Thus polarization anisotropy is
dominant in the Reynolds stress tensor. On the contrary, the dimensionality parameter
expresses only directional anisotropy, as seen from its definition (4.5). Since we have
chosen not to explicitly include the detailed θ -dependence of stratification operators
in the eddy damping in the model (§ 4.1), we do not expect to represent it very
accurately in the dimensionality parameter. Still, although the DNS/EDQNMc curves
for sin2 γ do not collapse perfectly in figure 9(b), the similarity is rather good.

5. Unstably stratified homogeneous turbulence at very high Reynolds number

In this section, we present results of a long EDQNM simulation at very high
Reynolds number, impossible to reach with DNS. Our goal is to reach the USHT
self-similar state and provide a prediction of the energy growth rate, thanks to
the anisotropic EDQNM closure. The simulation corresponding to run 5 with
ν, D = 2.5× 10−3 is continued until t∗ = 14, where the turbulent Reynolds number
reaches Re≈ 105.

In figure 10(a), the time evolution of Reynolds number is displayed in a
semi-logarithmic representation (the curve for kinetic energy is similar). What draws
particularly attention is that the self-similar evolution, with an exponential growth
Re(t)∝K (t)∝ eβNt, clearly appears from t∗∼ 7. While this state is hardly established
at the end of the DNS, it can be clearly observed through EDQNM simulations. It
is important to note that, after the linear transient, there exists another intermediate
state between the short-time and the asymptotic long-time regimes, during which the
Reynolds number (or energy) growth rate is not as large as the asymptotic value.
Therefore, in DNS that are limited in time, it is not enough to observe the flow
immediately after the linear regime. The slope corresponding to the growth parameter
β agrees with the theoretical prediction β = 4/7 for k4 infrared spectra.

The attenuation of the growth of kinetic energy after the linear transient can be
analysed from a different point of view by examining the Froude number evolution
in figure 10(b). The evolution of the Froude number during the transient phase is
very rapid. After the initial short-time decay, it reaches a maximum Fr' 0.7 at t∗≈ 6,
and is then reduced to ≈0.48 when entering the self-similar regime during which it
remains almost stationary. This rapid phenomenon indicates a re-adjustment of the
dissipation rate in the transient phase after the appearance of stratification effects at t0.
The latter acting rapidly in the large scales, there is a delay between the re-adjustment
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FIGURE 10. (Colour online) Time evolution of (a) the Reynolds number Re in
semi-logarithmic representation, (b) the Froude number Fr and (c) the mixing intensity
Λ, all for run 5.

of kinetic energy and that of dissipation over a timescale proportional to the extent
of the inertial subrange, since Fr = ε/(NK ). Moreover, the precise evolution of Fr
in this ‘grey zone’, neither linear nor fully self-similar, strongly depends upon the
specific initial conditions (energy ratios, non-dimensional parameters, shape of the
spectrum, etc.).

The evolution of the mixing intensity Λ is presented in figure 10(c). The slow
decrease of the relative importance of buoyancy fluctuations compared to velocity
fluctuations may be attributed to the conversion of poloidal kinetic energy generated
by unstable stratification to toroidal kinetic energy by nonlinear transfers. In fact,
contrary to poloidal, toroidal kinetic energy cannot in return trigger buoyancy
fluctuations through linear production.

Finally, we come back to the questions we raised in the Introduction about the
presence of different equilibrium ranges in the spectra of USHT, illustrated by the
sketch of figure 2. Are we able to identify the corresponding scaling at the very high
Reynolds number reached by the self-similar evolution predicted in our last EDQNMc
simulation? We plot the kinetic energy spectrum E(k), the buoyancy spectrum B(k)
and vertical cross-spectrum F(k) in figure 11(a–c) at the latest time available in
self-similar regime, t∗ = 14, and the evolution from t∗ = 11 in figure 11(d–f ). The
inertial subrange exhibits a clear k−5/3 scaling for E(k) and B(k) and a k−7/3 one
for F(k), as predicted by Lumley (1964), that spreads out over nearly two decades.
The initial k4 infrared subrange seems to persist during the simulation, resulting from
combined effects of linear terms and backscatter. It is also interesting to introduce the
integral and the Ozmidov scales corresponding respectively to wavenumbers k` and kO.
The ratio of these two quantities is related to the Froude number as k`/kO=Fr3/2 (see
for instance Lesieur 2008). In the self-similar regime, Fr = 0.5 leads to k`/kO ≈ 1/3.
Therefore, the two scales are relatively close to each other. This should indicate also
that the return to isotropy in the inertial range should be fast, spreading around the
small bump which can be seen around the maxima of the spectra. Upon reporting
the exact values of the length scales on spectra of figure 11(a–c), k` being associated
with the maximum of E(k) (also B(k) and F(k)), it appears that kO falls at the
lower edge of the inertial subrange where stratification and anisotropic effects have
to be taken into account, as expected. In figure 11(d–f ), we also show the time
evolution of energy spectra during the self-similar phase. It can be verified that the
maxima for the different spectra follow a k−3 line as expected from the theory of
Poujade (2006) adapted to USHT. We believe that the present spectral characterization
predicted by EDQNMc has not yet been observed in the highest-resolved DNS of
buoyancy-induced turbulence as Rayleigh–Taylor flows (e.g. Cook & Cabot 2006).
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FIGURE 11. (Colour online) (a–c) Energy, scalar and cross-spectra as a function of
the wavenumber k for run 5 at t∗ = 14 with EDQNMc. The indicated wavenumbers
corresponding to the integral and Ozmidov scales, k` and kO. (d–f ) Evolution of energy,
scalar and cross-spectra at times t∗ = 11, 12, 13, 14, as a function of the wavenumber k
for the same run 5.

What happens to the anisotropy at different scales in the self-similar state? Angular
spectra of energy Φ1, Φ2, Φ3 and of the poloidal velocity/buoyancy cross-correlation
Ψr are shown in figure 12. They permit an estimation of the scale-by-scale anisotropy.
A first observation in all spectra is that anisotropy in USHT is mostly confined to
the large-scale range. The progressive restoration of isotropy occurs at the beginning
of the inertial subrange, after kO for increasing k. This is attested first by spectra
almost independent of θ in this range, and second by the fact that Φ1 and Φ2 reach
common levels. In their experimental realization of USHT, Thoroddsen et al. (1998)
seemed also to observe maximal anisotropy in the largest spectral scales by comparing
horizontal and vertical spectra of two-point velocity correlations, but some anisotropy
was still observable at smaller scales, although not as large.

The second important anisotropic feature is that maximal energy is observed
at θ = π/2, i.e. for horizontal wavenumbers, in Φ2, whereas the anisotropy in
the Φ1 spectrum is not only less monotonic with θ but the anisotropy is almost
reversed, with lowest energy found in the horizontal at θ = π/2. Spectra for Φ2,
Φ3 and Ψr are maximum at θ = π/2, because of the predominance of the linear
buoyancy production term (see (2.25)–(2.27)). This matches USHT phenomenology
with elongated structures along the vertical direction. However, the dynamics of Φ1
is mainly driven by nonlinear interactions, as is clear in (2.24) in which no linear
production term appears.

Other interesting features of spectral anisotropy are: the angular dependence of the
buoyancy density spectrum Φ3 is less than that of Φ2, as also observed in stably
stratified homogeneous turbulence (Godeferd & Cambon 1994); although maximal at
k< kO, some anisotropy is still observable throughout the scales in the flux, a hint that
buoyancy acts at all scales, even weakly; in the infrared subrange, spectra at θ =π/2
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FIGURE 12. (Colour online) Angular spectra: (a) Φ1, (b) Φ2, (c) Φ3 and (d) Ψr are
represented for EDQNM simulation run 5 at t∗ = 14 as a function of k for different
angles θ = 0, π/8, π/4, 3π/8, π/2. Insets: deviatoric part of angular spectra 1Φ =
100 × (Φ − 〈Φ〉θ )/〈Φ〉θ with 〈Φ〉θ = (2/π)

∫ π/2
0 Φdθ as a function of θ for different

wavenumbers k= 0.1, 1, 10.

always scale as k4 when time evolves, while at other orientations θ they are subject
to a nonlinear redistribution of energy, as noted by Soulard et al. (2014).

The insets in figure 12 permit an evaluation of the variation with θ of energy
at three different wavenumbers: k = 0.1 in the infrared range, and k = 1 at the
beginning and k = 10 at the middle of the inertial range. The departure about the
mean over θ of the energy at this scale is plotted. The curves at k = 10 confirm
our previous observation that anisotropy is comparably weak at this wavenumber.
Anisotropy amplitude is almost the same at k= 0.1 and k= 1 for Φ2, Φ3 and Ψr, and
energy is accumulated close to horizontal wave vectors θ = π/2. Only for Φ1 does
anisotropy evolve differently with accumulation at θ = 0 in the infrared subrange,
although with an amplitude less than for the other spectra, as already noted. These
insets in figure 12 suggest that simple phenomenological arguments for explaining
the anisotropy distribution can be put forward for Φ2 and Φ3, but a more complex
analysis is required in order to interpret anisotropy variations in Φ1. We note also
that obtaining angular-dependent spectra in DNS such as those presented in figure 12
raises the problem of lack of sampling in the small wavenumbers.

6. Conclusion
In this work, we explore USHT from different initial conditions, characterized

by a Froude number and mixing intensity. The study by DNS of the late-time
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dynamics of turbulent statistics and the self-similar regime has limitations because of
confinement effects induced by the finite size of the computational box. In particular,
boundary conditions constrain the growth of the integral scale. In order to overcome
this difficulty and to reach higher Reynolds number regimes, we propose a spectral
analysis based on an anisotropic EDQNM model. In a first approach, we consider
a closure in which the dynamics for triple correlations does not account at all for
buoyancy effects, assuming to first order that the corresponding production terms
should modify significantly only the second-order statistics. The resulting model
agrees with DNS at short times and gives the correct growth rate of the self-similar
regime. However, nonlinear third-order transfers are overestimated during the transient
phase from linear to asymptotic regimes, leading to an overly attenuated growth of
turbulent energy. This point illustrates the difficulty of predicting USHT as one needs
to capture correctly the linear effect of the production term and also to evaluate its
importance on the nonlinear interactions between the different scales. We therefore
adapt the model in an updated version, in which we introduce a heuristic correction by
taking into account stratification effects in the ED term which expresses decorrelation
at the level of nonlinear triple correlations. This simple method, while keeping the
model tractable, leads to much better agreement with DNS, even if the anisotropy of
the flow is not exactly reproduced for the scalar field. The model is nonetheless able
to reproduce closely the spectral energy distribution in the energetically important
spectral subrange, in the infrared and in the inertial one. During the comparisons
between EDQNM and DNS results, we have identified the quantitative effect of
confinement of the large-scale structures by the limited size of the computational
domain. This is an important issue for DNS, which ought to be undertaken at high
resolution and at very long times in order to capture USHT self-similar regimes.

The spectral EDQNM closure does not have this drawback. Spectral EDQNM
simulations with turbulent Reynolds number as large as Re ≈ 105 are presented,
well beyond the current possibilities of DNS. By comparison, our 10243 DNS
simulations with the same initial conditions have to be stopped at Re≈ 103, and the
30723 simulations of Rayleigh–Taylor instability by Cook & Cabot (2006) reached
Re ≈ 4600 at a formidable computational price (∼106 CPU hours), compared with
EDQNM cost (∼102 CPU hours). The late-time self-similar regime of USHT can
be observed with a much better accuracy thanks to the model. The results obtained
are of two kinds. First, they support the theoretical formula (1.2) for the growth rate
proposed by Soulard et al. (2014). The model also predicts a strong anisotropy at
large scales and isotropy of scales in the inertial subrange as well as in the dissipative
one. This is a rather unexpected result, since one could expect that, at least from local
interactions, scales in the lower inertial range would inherit part of the large-scale
anisotropy. The transition from large to small scales is therefore characterized by a
fast return to isotropy, moving from the integral to the Ozmidov length scales. The
separation between those two scales depends on the Froude number and is rather
short in our USHT simulations. Nonetheless, we are still able to observe a trend
towards the creation of such an intermediate subrange with non-Kolmogorov scaling.
An interesting related question is whether such a zone will be observed in different
asymptotic states of USHT obtained by changing initial conditions through the slope
of the infrared spectra. This is left for future work.
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Appendix A. Derivation of the self-similar growth rate β in USHT

Soulard et al. (2014) propose an analytic formula for the growth rate of turbulent
quantities in self-similar USHT with time-varying buoyancy frequency. In this
appendix, we show that by similar arguments it is possible to derive an analogous
formula, (1.2), for USHT with constant N.

First, if the flow is in a self-similar regime, the kinetic energy, dissipation and
integral length scale evolve as

K (t)∼ eβNt, ε(t)∼ eβNt, `(t)= K 3/2(t)
ε
∼ eβNt/2. (A 1a−c)

Also, the energy spectrum can be expressed by a function f as

E(k, t)=N2`3(t)f (k`(t)), (A 2)

such that, if we expand f in power law for large scales and use (A 1), we can write

for k`� 1, E(k, t)∼N2`(t)3(k`(t))s ∼ e(s+3)βNt/2. (A 3)

Finally, the central argument to derive the growth formula is the following. As
in Soulard et al. (2014), it can be shown that the energy spectrum for k` � 1 is
dominated by the contribution of horizontal wavevectors, such that θ =π/2. It can be
also shown that the energy corresponding to these wavevectors has a linear evolution
when 1< s< 4. Their growth rate is then given by the largest eigenvalue of the linear
operator of Lin’s equations (last terms on the right-hand side of (2.24)–(2.27)) which
is 2N. Thus,

for k`� 1, E(k, t)∼ e2Nt. (A 4)

Comparing (A 3) and (A 4), we obtain directly the value for β expressed in (1.2).
Note that for s> 4 and θ 6= π/2, the assumption of dominance of linear terms at

large scales is wrong and backscatter effects must be taken into account.
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