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Consider the square  constructed on the same side of  as , as
in Figure 2. Then, since they are copies of triangle  under rotations of

 (in opposite directions), the triangles  and  are congruent to
one another, with  parallel to . Hence  is a parallelogram and its
diagonals bisect one another at . As this is the midpoint of  as well as
that of , it is independent of .
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It is clear that this argument works equally for squares which are
constructed internally on the sides of the triangle .ABC
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106.12 A new proof of the -dimensional Pythagorean
theorem

n

We shall use a useful tool of functional analysis, Parseval's identity, to
give a new proof for the -dimensional Pythagorean theorem in [1].   We
recall Parseval's identity in -dimensional Euclidean space  as follows.

n
n �n

Theorem 1: (Parseval's identity [2]). Let  be an orthonormal
basis of -dimensional Euclidean space . Then for every vector ,
we have

e1
→

,  e2
→

, … , en
→

n �n u� ∈ �n

| u�  |2 = (u�  · e� 1)
2 + (u�  · e� 2)

2 +  … + (u�  · e� n)
2 . (1)

Throughout this Note, in -dimensional Euclidean space , we denote
by  the Euclidean distance between two points  and , and  the
Euclidean vector connecting an initial point  with a terminal point . We
recall the -dimensional Pythagorean theorem in [1].

n �n

XY X Y XY
→

X Y
n

Theorem 2: ( -dimensional Pythagorean theorem). In -dimensional
Euclidean space , if the edges  of a simplex
are all perpendicular, and if the bounding simplexes opposite to the vertices

 have -dimensional contents
respectively, then

n n
�n OP1, OP2, … , OPn OP1P2… Pn

O, P1, P2, … , Pn (n − 1) A, A1, A2, … , An

A2 = A2
1 + A2

2 +  …  + A2
n. (2)

Proof: Let  be the orthogonal projection of  on hyperplane ,
and let V be volume of the simplex . Since the edges

H O (P1P2… Pn)
OP1P2… Pn
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 are mutually orthogonal, using formula of volume of
simplex, (2) is equivalent to
OP1, OP2, … , OPn

(nV)2

OH2
=

(nV)2

OP2
1

+
(nV)2

OP2
2

+  … + 
(nV)2

OP2
n

(3)

which is equivalent to
1

OH2
=

1
OP2

1
+

1
OP2

2
+  … + 

1
OP2

n
. (4)

Note that in [1], Donchian and Coxeter also showed that (4) is an equivalent
form of -dimensional Pythagorean theorem by using Cartesian coordinates.
We now prove (4) by using Parseval's identity (Theorem 1).

n

Since the edges  are mutually orthogonal, we have
the vectors

OP1, OP2, … , OPn

e� 1 =
OP1
⎯⎯→

|OP1
⎯⎯→|

, e� 2 =
OP2
⎯⎯→

|OP2
⎯⎯→|

, … , e� n =
OPn
⎯⎯→

|OPn
⎯⎯→|

are an orthonormal basis of . Since  is orthogonal projection of  on
hyperplane , the triangle  is right-angled at

 so we have the identity of dot product

�n H O
(P1P2… Pn) OHPi H

(i = 1, … , n)
OH
⎯⎯→

 · OPi
⎯⎯→

= OH2,   1 ≤ i ≤ n.
From this and using Parseval's identity (Theorem 1), we have

OH2 = | OH
⎯⎯→

 |
2

= ∑
n

i =1

(OH
⎯⎯→

 · e� i)
2

= ∑
n

i =1
(OH

⎯⎯→
 · 

OPi
⎯⎯→

| OPi
⎯⎯→

 |)
2

= ∑
n

i =1

(OH
⎯⎯→

 · OPi
⎯⎯→)2

| OPi
⎯⎯→

 |2
= ∑

n

i =1

(OH2)2

OP2
i

. (5)

By dividing both sides of (5) by , we obtain (4). This completes the
proof.

OH4
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