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Abstract. This article builds on a recent paper coauthored by the present author, H. Hosni and F.
Montagna. It is meant to contribute to the logical foundations of probability theory on many-valued
events and, specifically, to a deeper understanding of the notion of strict coherence. In particular, we
will make use of geometrical, measure-theoretical and logical methods to provide three characteri-
zations of strict coherence on formulas of infinite-valued Łukasiewicz logic.

§1. Introduction and motivation. In a collection of seminal contributions starting
with [5] and culminating in [6], de Finetti grounded subjective probability theory on an
ideal betting game between two players, a bookmaker and a gambler, who wager money
on the occurrence of certain events e1, . . . , ek. For each event ei, gambler’s payoffs are 1
in case ei occurs, and 0 otherwise. The probability of an event ei is defined, by de Finetti,
as the fair selling price fixed by the bookmaker for it.

Conforming to a standard notation, bookmaker’s prices for the events e1, . . . , ek will be
referred to as betting odds and an assignment β : {e1, . . . , ek} → [0, 1] of betting odds
β(ei) = βi will be called a book.

De Finetti had no particular inclination towards identifying events in a precise logical
ground [9]. However, in order for his main result to be stated in precise mathematical terms,
they will be understood, for the moment, as elements of a finitely generated free boolean
algebra and hence coded by boolean formulas. Now, de Finetti’s result reads as follows:
let us fix finitely many events e1, . . . , ek and a book β on them. A gambler must choose
stakes σ1, . . . , σk ∈ R, one for each event, and pay to the bookmaker the amount σi · βi for
each ei. When a (classical propositional) valuation w determines ei, the gambler gains σi if
w(ei) = 1 and 0 otherwise. The book β is said to be coherent if there is no choice of stakes
σ1, . . . , σk ∈ R such that for every valuation w

k∑
i=1

σi · βi −
k∑

i=1

σi · w(ei) =
k∑

i=1

σi(βi − w(ei)) < 0. (1)

The left-hand side of (1) captures the bookmaker’s payoff, or balance, relative to the book
β under the valuation w.

Note that a stake σi may be negative. Following tradition, money transfers are so oriented
that “positive” means “gambler-to-bookmaker.” Therefore, if σi < 0, the bookmaker is
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forced to swap his role with the gambler: he has to pay −σi · β(ei) to the gambler in hopes
of winning −σi in case ei occurs.

De Finetti’s Dutch-Book theorem characterizes coherent books as follows: a book β on
events e1, . . . , ek pertaining to a boolean algebra A is coherent iff it extends to a finitely
additive probability P of A, [5].

Along with the assumptions which regulate de Finetti’s coherence criterion, condition
(1) above effectively forces the bookmaker to set fair prices for gambling on events
e1, . . . , ek. In other words, upon regarding each event ei as a {0, 1}-valued random variable,
de Finetti’s Dutch-Book theorem amounts to saying that coherent assessments are those
with null expectation. For, if the bookmaker publishes a book with positive expectation
(for him) a logically infallible gambler will choose negative stakes and inflict a sure loss
on him, that is to say, a sure financial loss whatever the outcome of events.

Although coherence guards the bookmaker against the possibility of sure loss, at the
same time it may bar him from making a profit. To illustrate the idea, consider an event e
which is neither noncontradictory nor sure and the coherent book β(e) = 0. If the gambler
bets 1 on e, then her balance is as follows: she pays 1 · 0 = 0 and gets back 0 if w(e) = 0
and 1 if w(e) = 1. Hence, the bookmaker never wins and possibly loses.

This rather odd feature of coherence was questioned in the mid 1950’s first by Shimony
[32] and then by Kemeny [16]. These authors studied a refinement of de Finetti’s coherence
that nowadays goes under the name of strict coherence (see [11]). Intuitively, a choice of
prices is strictly coherent if every possibility of loss, for the bookmaker, is paired by a
possibility of gain. Precisely, a book β is strictly coherent if, for each choice of stakes
σ1, . . . , σk ∈ R, the existence of a valuation w such that

∑k
i=1 σi(βi − w(ei)) < 0 implies

the existence of another one w′ for which
∑k

i=1 σi(βi − w′(ei)) > 0.
Interest in the condition of strict coherence was prompted by Carnap’s analysis of what

he called “regular” probability functions in [1] (see also [31, Chap. 10]) and which we will
term as Carnap probabilities. Those functions arise from the axiomatization of finitely
additive probabilities by strengthening the usual normalization axiom in the right-to-left
direction: 1 (respectively, 0) is assigned only to tautologies (respectively, contradictions).
In other words, a probability function P is Carnap, if it is normalized, finitely additive
and it satisfies P(e) �= 0 for every noncontradictory event e. In [11] the authors charac-
terized strictly coherent books on boolean events in terms of their extendability to Carnap
probabilities.1

Several authors proposed generalizations of de Finetti’s coherence criterion and his
Dutch-Book theorem to events not pertaining to boolean logic. Paris in [30] extended
the classical Dutch-Book theorem to several nonclassical propositional logics including
the modal logics K, T, S4, S5 and certain paraconsistent logics as well. In [34], Weath-
erson considered the case of events pertaining to intuitionistic logic and in [26], Mundici
extended de Finetti’s criterion to the case of infinite-valued Łukasiewicz logic and MV-
algebras [3, 27].

In the MV-algebraic realm valuations are [0, 1]-valued and hence they correspond to
homomorphisms into the standard MV-algebra defined on the unit interval [0, 1]. De
Finetti’s coherence criterion immediately translates to the MV-setting with no extra

1 Carnap probabilities are the same as Carnap-regular probabilities of [11]. In the present article
we adopt this simplified notation in order to avoid any misleading interpretation of the adjective
“regular” which has indeed different meanings if referred to probability functions or to Borel
measures which will be discussed in §4.

https://doi.org/10.1017/S1755020319000546 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000546


THREE CHARACTERIZATIONS OF STRICT COHERENCE 595

conditions and the main result of [26] (see also [19]) is a de Finetti-like theorem which
characterizes coherent books on Łukasiewicz events as those which are extendible to states,
i.e., [0, 1]-valued normalized and finitely additive maps of an MV-algebra.

From the perspective of reasoning about uncertainty, the interest in Łukasiewicz events
is twofold: on the one hand these events capture properties of the world which are better
described as gradual rather than yes-or-no; on the other hand, they also mimic bounded
random variables. Indeed, any Łukasiewicz event e may be regarded as a [0, 1]-valued
continuous function fe on a compact Hausdorff space (see [3, Theorem 9.1.5] and §2) and
any state of e coincides with the expected value of fe ( [17, 29], [10, Remark 2.8] and §4).
Therefore, up to renormalization, Mundici’s generalization of de Finetti’s theorem [26,
Theorem 2.1] implies the Dutch-Book theorem for books on bounded continuous random
variables.

For events pertaining to the restricted class of finite-dimensional MV-algebras, in [11,
Theorem 6.4] the authors proved a de Finetti-like theorem for strictly coherent books in
terms of their extendability to faithful states, i.e., states which satisfy s(a) �= 0 for all
a �= 0. Nevertheless, extending [11, Theorem 6.4] to more general classes of MV-algebras
is delicate because, as a consequence of seminal results by Mundici [25, Prop. 3.2], Kelley
[15], and Gaifman [13], an MV-algebra may not have a faithful state.

In this article we will investigate strictly coherent books on Łukasiewicz events, i.e.,
elements of a finitely generated free MV-algebra. Our results sensibly extend the results of
[11]. In particular, we will provide three characterizations of strict coherence by adopting
geometrical, measure-theoretical and logical methods. In more details:

Geometrical approach: the functional representation of n-generated free MV-algebras in
terms of n-variable, piecewise-linear continuous functions (see [3, Theorem 9.1.5] and
[23]) implies that the set of all coherent books on a finite set � of Łukasiewicz events
forms a convex polyhedron D� of Rk. The main result of §3 shows that strictly coherent
books on � form a subset of Rk which coincides with the relative interior of D�.

Measure-theoretical approach: faithful states are the MV-algebraic analog of Carnap prob-
abilities on a boolean algebra. In §4 we will first give an integral representation theorem for
faithful states on finitely generated free MV-algebras and then we will characterize strictly
coherent books on Łukasiewicz events as those which extend to a faithful state.

Logical approach: the relation among free MV-algebras, rational polyhedra and deducibil-
ity in propositional Łukasiewicz logic, will enable us to characterize the notions of coher-
ence and strict coherence within propositional Łukasiewicz logic (see §5). In our opinion
this result is interesting because it shows that propositional Łukasiewicz logic is capable
to capture foundational aspects of probability theory on infinite-valued events.

In the next section we will introduce necessary preliminaries about MV-algebras and
rational polyhedra.

§2. Preliminaries. The algebraic framework of this article is that of MV-algebras
(see [3, 27]), i.e., the Lindenbaum algebras of Łukasiewicz infinite-valued logic [3, Def-
inition 4.3.1]. A typical example of an MV-algebra is the standard algebra [0, 1]MV =
([0, 1],⊕,¬, 0) where x ⊕ y = min{1, x + y} and ¬x = 1 − x. Further operations, together
with their standard interpretation, are defined in [0, 1]MV as follows: x�y = ¬(¬x⊕¬y) =
max{0, x + y−1}, x → y = ¬x ⊕ y = min{1, 1− x + y}, x ∧ y = x � (x → y) = min{x, y},
x ∨ y = ¬(¬x ∧ ¬y) = max{x, y}, 1 = ¬0. This structure generates the class of MV-
algebras both as a variety and as quasi-variety [2].
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Another relevant example of an MV-algebra is given by the free n-generated MV-algebra
Fn. By a standard universal algebraic argument, Fn is the MV-algebra of functions f :
[0, 1]n → [0, 1] generated by the projection maps [3, Prop. 3.1.4] and whose operations
�,⊕,→,∧,∨ and ¬ are defined via the pointwise application of those in [0, 1]MV . By
McNaughton theorem, up to isomorphism, Fn coincides with the MV-algebra of n-variable
McNaughton functions: maps from [0, 1]n to [0, 1] which are continuous, piecewise linear,
with finitely many pieces, and such that each piece has integer coefficients (cf. [3, Theorem
9.1.5] and [23]). For each f ∈ Fn, the oneset of f is {x ∈ [0, 1]n | f (x) = 1} and the zeroset
of f is {x ∈ [0, 1]n | f (x) = 0}.

The free n-generated MV-algebra is, up to isomorphism, the Lindenbaum algebra of
Łukasiewicz logic Ł in a language with n propositional variables and [0, 1]-valuations
of Ł are exactly the homomorphisms of Fn to [0, 1]MV . Furthermore, every x ∈ [0, 1]n

determines the homomorphism hx : f ∈ Fn �→ f (x) ∈ [0, 1]MV .

PROPOSITION 2.1 ([26, Lemma 3.1]). For each finite n, homomorphisms of Fn to
[0, 1]MV, [0, 1]-valued valuations of Łukasiewicz logic on n variables and points of the
n-cube [0, 1]n are in one-one correspondence.

For every closed subset C of [0, 1]n, let IC be the subset of Fn of those functions whose
zeroset contains C. Then, IC is an ideal of Fn and the quotient Fn/IC is the MV-algebra
whose universe coincides with the set given by the restrictions to C of the functions of Fn

(see [3, Prop. 3.4.5]). In particular, when C has k elements, the quotient MV-algebra Fn/IC

is isomorphic to the product algebra [0, 1]k
MV , [4]. The finite powers of [0, 1]MV — called

locally weakly finite MV-algebras in [4]— are called, in this article, finite-dimensional.

2.1. Rational polyhedra, regular complexes and McNaughton functions. In this sec-
tion we will prepare the necessary results concerning rational and regular complexes (see
[8]) and their relation with finitely generated free MV-algebras. We invite the reader to
consult [18, 27, 28] for background.

Let k = 1, 2, . . .. By a (rational) convex polyhedron (or (rational) polytope) of Rk

we mean the convex hull of finitely many points of Rk (Qk respectively); a (rational)
polyhedron is a finite union of (rational) convex polyhedra. Given any polytope P , we
respectively denote by ext P , ri P , rb P the set of its extremal points, its relative
interior and its relative boundary. Since each polytope P is closed, P = ri P ∪ rb P .
Furthermore, for all vectors x, y ∈ Rk, we denote x · y their scalar product and by |x| the
norm of x.

LEMMA 2.2. For each polytope P of Rk, the following conditions hold:

(1) For every e ∈ rb P , there exists σ ∈ Rk such that, for all γ ∈ P , σ · e ≤ σ · γ ;
(2) Let β ∈ ri P . Then, there exists σ ∈ Rk such that the sets P+

σ = {γ ∈ P | γ ·σ <
β · σ } and P−

σ = {γ ∈ P | γ · σ > β · σ } are nonempty;
(3) Let β ∈ ri P . Then there exist σ ∈ Rk, e1, e2 ∈ ext P such that e1 ∈ P+

σ and
e2 ∈ P−

σ ;
(4) γ ∈ ri P iff there exists a map λ : ext P → [0, 1] such that

∑
e∈ext P λ(e) = 1,

λ(e) > 0 for all e ∈ ext P and γ = ∑
e∈ext P λ(e) · e.

Before proving the lemma, recall that any hyperplane H of Rk separates the space in two
half spaces denoted H+ and H−. The above Claims (2) and (3) state that, if β is a point
in the relative interior of a polytope P , then there exists a hyperplane H passing through
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β such that, respectively: both H+ ∩ P and H− ∩ P are nonempty; each H+ ∩ P and
H− ∩ P contains an extremal point of P .

Proof. (1) is the well-known supporting hyperplane theorem, see [22, Theorem 14].

(2) Let β ∈ ri P . Let � be a sphere of radius r and centered at β and contained in ri P .
The existence of � is ensured by definition of relative interior [8, Chap. I, Definition 1.8].
Let σ be a vector of origin β. Suppose σ is not orthogonal to the affine hull of P and also
0 < |σ | < r. Trivially, (σ−β)·σ < β ·σ < (σ+β)·σ . Upon noting that σ−β, σ+β ∈ �,
our claim is settled.

(3) By way of contradiction, assume that for no e ∈ ext P , e · σ < β · σ . Equivalently, for
all e ∈ ext P ,

e · σ ≥ β · σ. (2)

Since P+ is nonempty, in view of (2), let τ ∈ P ∩ P+, i.e.,

τ · σ < β · σ. (3)

If τ ∈ ext P the claim is settled. Assume that τ �∈ ext P = {e1, . . . , el}. Then there
are λ1, . . . , λl ∈ [0, 1] such that

∑
i λi = 1 and τ = ∑

i λi · ei. From (2) it follows that
ei · σ ≥ β · σ , and hence

∑
λiei · σ ≥ β · σ , that is, τ · σ ≥ β ≥ σ , which contradicts (3).

(4) See [11, Lemma 6.1(1)]. �
Let k = 1, 2, . . . and let x = 〈n1/d1, . . . , nk/dk〉 be a rational vector in Rk with ni and

di relatively prime for all i = 1, . . . , k. Denote by den(x) the least common multiple of
d1, . . . , dk. The homogeneous correspondent of x is the vector〈

n1

d1
· den(x), . . . ,

nk

dk
· den(x), den(x)

〉
∈ Zk+1.

Let k = 1, 2, . . . and m = 0, 1, . . . , k. A rational m-simplex co(x1, . . . , xm) ⊆ Rk is
said to be regular if the set of the homogeneous correspondents of x1, . . . , xm is part of
a basis of the abelian group Zm+1 [8, Chap. V, Definition 1.10]. A regular complex 	 is
a simplicial complex all of whose simplexes are regular2. Unless otherwise specified, all
regular simplexes in this article are over the n-cube [0, 1]n (i.e., their faces constitute a
unimodular triangulations of [0, 1]n, in the terminology of [26]). Thus, we will say that
	 is a regular complex of [0, 1]n without danger of confusion. From the regularity of 	 it
follows that 	 is rational. We will denote by V(	) the finite set of rational vertices of 	,
i.e., the union of the set of the vertices of the simplexes in 	.

Let � be a finite subset of the free n-generated MV-algebra Fn. Up to isomorphism,
we can (and we will, throughout this article) think of � as a finite set of n-variable Mc-
Naughton functions. Furthermore, if not otherwise specified, we will assume that � has
k elements, denoted as f1, . . . , fk. Following [26, Sec. 3], for any �, there exists a regular
complex	 of [0, 1]n which linearizes� in the sense that each fi is linear over each simplex
of 	.

EXAMPLE 2.3. Let us fix n = 2 and consider � = {x, y, x ⊕ y}. Consider the regular
complexes 	1 and 	2 of Figure 1 and whose vertices are v1

1 = 〈0, 0〉, v1
2 = 〈0, 1〉, v1

3 =

2 Recall that a simplicial complex 	 is a nonempty finite set of simplexes such that: the face of
each simplex in 	 belongs to 	 and for each pair of simplexes T1,T2 ∈ 	 their intersection is
either empty, or it coincides with a common face of T1 and T2.
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v1
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v1
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1 v2
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v2
6

v2
7
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Fig. 1. The two regular complexes 	1 (on the left) and 	2 (on the right) of the square [0, 1]2.
Every function x, y and x ⊕ y is linear over each simplex of 	1 and 	2.

〈1, 0〉, v1
4 = 〈1, 1〉, v1

5 = 〈1/2, 1/2〉 for 	1 and v2
1 = 〈0, 0〉, v2

2 = 〈0, 1〉, v2
3 = 〈1, 0〉,

v2
4 = 〈1, 1〉, v2

5 = 〈1/2, 1/2〉, v2
6 = 〈1/3, 1/3〉, v2

7 = 〈1/2, 0〉, v2
8 = 〈0, 1/2〉 for 	2. Then

	1 is union of four maximal simplexes, while 	2 is union of eight simplexes, see Figure 1
Both	1 and	2 linearize�. Indeed, for each regular simplex T of	1 and each simplex

T ′ of 	2, the restriction of each function f ∈ � to T and T ′ is linear.

Let 	 be a regular complex of [0, 1]n, and let vi be one of its vertices. The normalized
Schauder hat at vi (over 	) is the uniquely determined continuous function ĥi : [0, 1]n →
[0, 1] which is linear over each simplex of 	 and which attains the value 1 at vi and 0
at all other vertices of 	. The regularity of 	 ensures that each linear piece of each ĥi

has integer coefficients and hence ĥi ∈ Fn. By definition of normalized Schauder hat, 	
linearizes each ĥi. Furthermore, the following result holds:

LEMMA 2.4. Let � be a finite subset of Fn, let 	 be a regular complex linearizing �
and let v1, . . . , vt be the vertices of 	. Then:

(1) For each i �= j, ĥi � ĥj = 0;
(2)

⊕t
i=1 ĥi = 1;

(3) For each f ∈ �, f = ⊕t
i=1 f (vt) · ĥt;

(4) Let vi1 , . . . , vil ∈ V(	), and let P = co(vi1 , . . . , vil). Then the function p =⊕
vj∈	∩P ĥj is a McNaughton function whose oneset is P .

Proof. (1), (2), and (3) have been proved in [26, Lemma 3.4(ii), (iii), (iv), and (v)].
Let next prove (4). First of all, p = ⊕

v∈	∩P ĥv is a McNaughton function by definition.
Further, for every vertex v ∈ 	 ∩ P , p(v) = 1 by definition of normalized Schauder hat.
If x ∈ P \ V(	), let � be a simplex of 	 which contains x. The claim follows, since each
ĥj is linear on �. �

§3. A geometric characterization of strict coherence. By Proposition 2.1, if � =
{f1, . . . , fk} is a finite subset of Fn and β a book on �, we can rephrase the definitions of
coherence and strict coherence for β as follows:

(1) β is coherent if for every σ ∈ Rk, there exists x ∈ [0, 1]n such that
σ · 〈f1(x), . . . , fk(x)〉 ≥ 0.

(2) β is strictly coherent if for every σ ∈ Rk, the existence of x ∈ [0, 1]n such that
σ · 〈f1(x), . . . , fk(x)〉 < 0, implies the existence of another x′ ∈ [0, 1]n such that
σ · 〈f1(x′), . . . , fk(x′)〉 > 0.
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Notice that a book β is coherent and not strictly coherent iff for any vector σ ∈ Rk, one
has that for all x ∈ [0, 1]n, σ · 〈f1(x), . . . , fk(x)〉 ≤ 0 and for some x′ ∈ [0, 1]n, σ ·
〈f1(x′), . . . , fk(x′)〉 = 0.

Throughout we will adopt the following notation:

D� = {β : � → [0, 1] | β is coherent}.
For any X ⊆ [0, 1]n, C�(X) will denote the topological closure of the convex hull of all

points of Rk of the form 〈f1(x), . . . , fk(x)〉 for ϕi ∈ � and x ∈ X. In symbols,

C�(X) = cl co{〈f1(x), . . . , fk(x)〉 | ϕi ∈ �, x ∈ X}.
Whenever X is finite, C�(X) = co{〈f1(x), . . . , fk(x)〉 | ϕi ∈ �, x ∈ X}, which is a convex
polytope. For the sake of readability, we will write C� instead of C�([0, 1]n).

For every finite �, Mundici’s extension of de Finetti’s theorem to Łukasiewicz logic
(see [26, Theorem 2.1]) shows that D� = C�.

LEMMA 3.1 ([26, Corollary 5.4]). For any book β : � → [0, 1] the following conditions
are equivalent:

(1) β is coherent;
(2) There exists a finite X ⊂ [0, 1]n such that, for each fi ∈ �, β(fi) ∈ C�(X);
(3) There exists a finite X ⊂ [0, 1]n with |X| ≤ n + 1 such that, for each fi ∈ �,

β(fi) ∈ C�(X);

(4) For each regular complex 	 of [0, 1]n linearizing �, β(fi) ∈ C�(V(	)).

The next corollary is an immediate consequence of Lemma 3.1.

COROLLARY 3.2. Let� be a finite set of Łukasiewicz formulas. Then, for every regular
complex 	 which linearizes �,

D� = C�(V(	)).

Thus, the coherence of a book β on � does not depend on the particular regular complex
	 chosen to linearize �. Moreover, since for each 	, V(	) is finite, C�(V(	)) is a
polytope coinciding with D�. Therefore, by the Krein–Milman theorem [8, Theorem 1.2],
C�(V(	)) is the convex hull of the set of extremal points of D�, i.e., for every 	,

C�(V(	)) = co ext D�.

The following example clarifies the claim made in Corollary 3.2.

EXAMPLE 3.3. Let� = {x, y, x ⊕ y} together with the regular complexes 	1 and	2 of
Example 2.3.

Each of the five vertices v1
i of 	1 determines a point

pi = 〈f1(v1
i ), f2(v

1
i ), f3(v

1
i )〉 ∈ R3

(where f1(x, y) = x, f2(x, y) = y and f3(x, y) = x ⊕ y) and

D� = C�({v1
1, . . . , v1

5}) = co({p1, . . . , p5}).
In particular: p1 = 〈0, 0, 0〉, p2 = 〈0, 1, 1〉, p3 = 〈1, 0, 1〉, p4 = 〈1, 1, 1〉 and p5 =
〈1/2, 1/2, 1〉.

Similarly, for 	2,

D� = C�({v2
1, . . . , v2

8}) = co({q1, . . . , q8}),
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where q1 = p1 = 〈0, 0, 0〉, q2 = p2 = 〈0, 1, 1〉, q3 = p3 = 〈1, 0, 1〉, q4 = p4 = 〈1, 1, 1〉,
q5 = p5 = 〈1/2, 1/2, 1〉, q6 = 〈1/3, 1/3, 2/3〉, q7 = 〈1/2, 0, 1/2〉 and q8 = 〈0, 1/2, 1/2〉.

Since both 	1 and 	2 linearize �,

D� = C�(V(	1)) = C�(V(	2))

(see Figure 2) and

ext C�(V(	1)) = ext C�(V(	2)) = ext D� = {p1, p2, p3, p4}.
Let us write

K� = {β : � → [0, 1] | β is strictly coherent}.
The following theorem, which is the main result of this section, provides us with a

geometric characterization of strict coherence for books on formulas of Łukasiewicz logic.

THEOREM 3.4. Let � be a finite subset of Fn. Then

K� = ri D�.

Proof. Since D� = C�, we will prove the equivalent claim: K� = ri C�.
Trivially, K� ⊆ C�. Let us show that K� ⊆ ri C�. Since C� is closed,

C� = ri C� ∪ rb C� and ri C� ∩ rb C� = ∅.

Assume (absurdum hypothesis) that β ∈ K� ∩ rb C�. By Lemma 2.2 (1) there exists
σ ∈ Rk such that for all γ ∈ C�,

σ · β ≤ σ · γ.
Thus, for all x ∈ [0, 1]n,

σ · β ≤ σ · 〈f1(x), . . . , fk(x)〉 ≤ 0.

Therefore, β is coherent but not strictly coherent. This contradicts our hypothesis. Thus,
K� ⊆ ri C�.

In order to prove the converse inclusion, assume that β ∈ ri C� and let σ ∈ Rk satisfy
Lemma 2.2(2). Then

(C�)
+
σ = {γ ∈ C� | γ · σ < β · σ }

p1

p3

p4p2
p5p5

q6

q7

q8

p1

p3

p4p2
p5

q6

q7

q8

Fig. 2. The convex polytope D� (in two perspectives) for � = {x, y, x ⊕ y}, and its extremal points
p1, p2, p3 and p4.
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and

(C�)
−
σ = {γ ∈ C� | γ · σ > β · σ },

are nonempty.
Moreover, by Lemma 2.2(3), both (C�)+σ and (C�)−σ contain an extremal point of

C�. Therefore, there are x, x′ ∈ [0, 1]n such that 〈f1(x), . . . , fk(x)〉 · σ < β · σ and
〈f1(x′), . . . , fk(x′)〉 · σ > β · σ , that is, β is strictly coherent. �

COROLLARY 3.5. Let � and β be as above. Then the following conditions are
equivalent:

(1) β is strictly coherent;
(2) For each regular complex 	 which linearizes �, there is λ : V(	) → [0, 1] such

that
∑

vi∈V(	) λ(vi) = 1, for all vi ∈ V(	), λ(vi) > 0 and β(fj) = ∑
vi∈V(	) λ(vi) ·

fj(vi);
(3) There exists a map λ : ext D� → [0, 1] such that

∑
e∈ext D�

λ(e) = 1, for all
e ∈ ext D�, λ(e) > 0 and β(ϕi) = ∑

e∈ext D�
λ(e) · fi(e).

Furthermore, the set K
Q
� of rational-valued strictly coherent books on � is decidable.

Proof. The equivalence between (1), (2), and (3) follows from Theorem 3.4, Corollary
3.2 and Lemma 2.2(4). To conclude the proof we will prove the decidability of the set K

Q
� .

To this purpose, given�, the problem of determining a regular complex	which linearizes
all McNaughton functions fi ∈ �, is computable by a Turing machine (see [26, Theorem
7.1, Claim 3]). Therefore, by (2), K Q

� is decidable iff the following bounded mixed integer
programming problem (see [14]) with unknowns λ(vi) for all vi ∈ V(	), has a solution in
[0, 1] ∩ Q:

(SK�
) =

⎧⎨
⎩
λ(vi) > 0,∑

vi
λ(vi) = 1,∑

vi
λ(vi) · fϕ(vi) = β(ϕ).

Thus the decidability of K
Q
� follows from [14, Prop. 2]. �

§4. Strict coherence, infinite-valued events and faithful states. Generalizing de
Finetti’s theorem, a book on Łukasiewicz events is coherent iff it can be extended to a
state in the sense of the following definition.

DEFINITION 4.1 ([25]). A state of an MV-algebra A is a map s : A → [0, 1] satisfying the
following conditions:

(s1) Normalization: s(1) = 1,
(s2) Additivity: s(a ⊕ b) = s(a)+ s(b), for all a, b ∈ A such that a � b = 0.

A state s is said to be faithful if s(a) �= 0 for all a �= 0.

Kroupa and Panti independently proved that for every state s of an MV-algebra A there
exists a unique regular Borel, and hence σ -additive, probability measure μs on the space
of maximal ideals with the hull-kernel topology of A such that s is the integral with respect
to μs (see [17], [29], and [27, Sec. 10]). In particular, for n-generated free MV-algebras,
the Kroupa–Panti theorem shows that for every state s of Fn there exists a unique regular
Borel probability measure μs on [0, 1]n such that for each f ∈ Fn,
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s(f ) =
∫

[0,1]n
f dμs. (4)

The correspondence between states of Fn and regular Borel probability measures on [0, 1]n

is one-one.
The next result, which to the best of our knowledge is new, represents faithful states of

Fn in a similar manner. Following [33], we say that a regular Borel measure μ of [0, 1]n is
strictly positive if for every nonempty open O ⊆ [0, 1]n, μ(O) > 0.

PROPOSITION 4.2. For any state s of Fn the following conditions are equivalent:

(1) s is a faithful state;
(2) There exists a unique strictly positive, regular probability Borel measure μs such

that for every f ∈ Fn,

s(f ) =
∫

[0,1]n
f dμs.

The correspondence between faithful states of Fn and strictly positive, regular probability
Borel measures of [0, 1]n is one-one.

Proof. For every state s of Fn, let μs be the unique regular probability Borel measure of
[0, 1]n such that for every f ∈ Fn, s(f ) = ∫

[0,1]n f dμs as in the Kroupa–Panti theorem.

(1) ⇒ (2). Assume that O is a nonempty open set in the product topology of [0, 1]n,
and μs(O) = 0. Let KO be any nonempty compact subset of O and assume, without loss
of generality, that KO is a rational polyhedron. By [27, Corollary 2.10], there exists f ∈ Fn

such that KO is the oneset of f . Since KO is contained in O, by [18, Lemma 2.2(i)] there
exists n ∈ N such that, for all x ∈ [0, 1]n, the n-fold �-product f n = f � . . .� f , satisfies
f n(x) = 1 if x ∈ KO and f n(x) = 0 for all x �∈ O. Therefore, f n �= 0 and s(f n) =∫

[0,1]n f n dμs = 0 whence s is not faithful.

(2) ⇒ (1). Assume that s is not faithful and in particular, let f ∈ Fn be such that f �= 0 and
s(f ) = 0. Since f is continuous and not constantly 0, its support supp(f ) = {x ∈ [0, 1]n |
f (x) > 0} is nonempty and open. Thus,

0 = s(f ) =
∫

[0,1]n
f dμs =

∫
supp(f )

f dμs,

whence μs(supp(f )) = 0. �

REMARK 4.3. From Proposition 4.2 it follows that if A = Fn/IC is a finite-dimensional
MV-algebra, there is a one-one correspondence between faithful states of A, strictly pos-
itive distributions on the points c1, . . . , ct of C, and points in the relative interior of the
simplex �	 = {〈λ1, . . . , λt〉 ∈ Rt | ∑t

i=1 λi = 1
}

(see [11, Remark 6.3]). Every finitely
generated free boolean algebra A is, in particular, a finite-dimensional MV-algebra and
every faithful state s of A is a Carnap probability (recall §1). Therefore, Proposition 4.2
specializes on boolean events as follows: for every n = 1, 2, . . ., a finitely additive proba-
bility P of the n-generated free boolean algebra A is Carnap iff there exists a unique strictly
positive distribution μP on {0, 1}n such that for every f ∈ A, P(f ) = ∑

x∈{0,1}n μP(x) · f (x).

In [11], the authors characterized strictly coherent books on finite subsets of a finite-
dimensional MV-algebra A (recall §2) as those books that can be extended to a faithful
state of A. In this section, we will provide two measure-theoretical characterizations of

https://doi.org/10.1017/S1755020319000546 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000546


THREE CHARACTERIZATIONS OF STRICT COHERENCE 603

strict coherence for books on Fn. The first one (Theorem 4.6) involves states satisfying a
local version of faithfulness which depends both on � and on the fixed regular complex
linearizing its functions; the second one (Theorem 4.8) is given in terms of faithful states
of Fn.

DEFINITION 4.4. Let � be a finite subset of Fn and let 	 be a regular complex which
linearizes �. Then s is said to be 	-faithful provided that s(ĥv) > 0 for all v ∈ V(	).

The next lemma collects some useful properties of states and 	-faithful states.

LEMMA 4.5. For each regular complex 	 of [0, 1]n with vertices V(	) = {v1, . . . , vt},
the following conditions hold:

(1) For each map λ : V(	) → [0, 1] such that
∑

v∈V(	) λ(v) = 1, the map sλ : Fn →
[0, 1] defined as

sλ(f ) =
∑

v∈V(	)

f (v) · λ(v). (5)

is a state of Fn.

(2) The set of	-faithful states of Fn is in one-one correspondence with the set of faithful
states of Fn/IV(	) and hence is in one-one correspondence with the relative interior
of the simplex

�	 =
{

〈λ1, . . . , λt〉 ∈ Rt |
t∑

i=1

λi = 1

}
.

Proof. (1). Every state of Fn belongs to the closure of the convex hull of the homomor-
phisms of Fn to [0, 1]MV (see [25, Theorem 2.5] and [12, Theorem 4.1.1]). Thus the claim
follows immediately from Proposition 2.1

(2). The claim easily follows from Proposition 4.2, Remark 4.3 and the definition of 	-
faithfulness. �

The next theorem yields a characterization of strictly coherent books in terms of 	-
faithful states.

THEOREM 4.6. Let� be a finite subset of Fn and let β be a book on�. Then the following
conditions are equivalent:

(1) β is strictly coherent;
(2) There exists a regular complex 	 which linearizes � and a 	-faithful state s which

extends β;
(3) For every regular complex 	 which linearizes �, there exists a 	-faithful state s of

Fn which extends β.

Proof. (1) ⇒ (3). Let β be strictly coherent. From Corollary 3.5(3), for every regular
complex 	 linearizing �, there exists a map λ : V(	) → [0, 1] such that

∑
v∈V(	) λ(v) =

1, λ(v) > 0 for all v ∈ V(	) and for every fj ∈ �,

β(fj) =
∑

v∈V(	)

fj(v) · λ(v). (6)

Let sλ be the state of Fn defined in (5).
First of all notice that, directly from (5) and (6), sλ extends β. Furthermore, for every

vertex v ∈ V(	), the normalized Schauder hat ĥv takes value 1 on v and 0 on any v′ �= v.
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Thus, sλ(ĥv) = ∑
v′∈V(	) ĥv(v′) · λ(v′) = λ(v) and hence sλ(ĥv) > 0. Therefore sλ is a

	-faithful state of Fn which extends β.

(3) ⇒ (1). Now assume that (3) holds and define λ : V(	) → [0, 1] by

λ(v) = s(ĥv).

From Lemma 2.4,

∑
v∈V(	)

λ(v) =
∑

v∈V(	)

s(ĥv) = s

⎛
⎝ ⊕

v∈V(	)

ĥv

⎞
⎠ = s(1) = 1.

Since s is 	-faithful, λ(v) > 0 for each v ∈ V(	). Further, for all fi ∈ �, β(fi) = s(fi) =∑
v∈V(	) λv · fi(v). Thus, β is strictly coherent by Corollary 3.5 ((2) ⇒ (1)).

Finally, (3) ⇒ (2) is trivial and (2) ⇒ (3) follows from (1) ⇔ (3) above, Corollary 3.2
and Theorem 3.4 �

Lemma 4.5(2) shows that for each regular complex 	 which linearizes �, 	-faithful
states of Fn are in one-one correspondence with faithful states of Fn/IV(	). In particular,
for every 	-faithful state s of Fn, let s	 be the unique faithful state of Fn/IV(	) such that:
for every f ∈ Fn, let f	 to be the restriction of f to V(	) and

s	(f	) =
∑

v∈V(	)

s(ĥv) · f	(v).

Thus, if f ∈ �, s	(f	) = s(f ). We then have:

COROLLARY 4.7. Let � be a finite subset of Fn and let β be a book on �. Then the
following conditions are equivalent:

(1) β is strictly coherent;
(2) There exists a regular complex 	 which linearizes � and a faithful state s	 of

Fn/IV(	) such that, for all f ∈ �, β(f ) = s	(f	);
(3) For every regular complex 	 which linearizes �, there exists a faithful state s	 of

Fn/IV(	) such that, for all f ∈ �, β(f ) = s	(f	).

The following construction is used in the next result which characterizes strictly coherent
books in terms of faithful states: let β be a strictly coherent book on a finite subset � of
Fn, fix an enumeration g1, g2, . . . of Fn \ {�, 0, 1} and consider the following inductive
construction:

(S1) Put �1 = � ∪ {g1}. Each regular complex 	1 linearizing �1 also linearizes
�. Since β is strictly coherent, Theorem 4.6 yields a 	1-faithful state s1 which
extends β. It follows that the extended book β1 = β ∪ {g1 �→ s1(g1)} is strictly
coherent because s1 extends it. Further, 0 < s1(g1) < 1.

(S2) Consider �2 = �1 ∪ {g2} and fix 	2 that linearizes �2 and a 	2-faithful state s2
which extends β1. Again, 0 < s2(g2) < 1 and β2 = β1 ∪ {g2 �→ s2(g2)} is strictly
coherent by Theorem 4.6. Further, s2(e) = s1(e) for all e ∈ �1.

(Si+1) At step i + 1, arguing by induction, construct a regular complex 	i+1 which
linearizes �i ∪ {gi+1} = � ∪ {g1, . . . , gi+1}, a state si+1 of Fn which is 	i+1-
faithful and a strictly coherent book βi+1 = βi ∪ {gi+1 �→ si+1(gi+1)}.

https://doi.org/10.1017/S1755020319000546 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000546


THREE CHARACTERIZATIONS OF STRICT COHERENCE 605

For each n, the state sn agrees with sn−1 over �n−1. Thus, for all n0 and for all n > n0,
sn(gn0) always attains the same value. In particular, for all n,m ∈ N, sn(f ) = sm(f ) for all
f ∈ �.

THEOREM 4.8. Let� be a finite subset of Fn and let β be a book on�. Then the following
conditions are equivalent:

(1) β is strictly coherent;
(2) β extends to a faithful state of Fn.

Proof. The direction (2) ⇒ (1) is trivial. Thus, let β be strictly coherent and fix an
enumeration g1, g2, . . . of Fn \ {�, 0, 1}. The construction above determines subsets � =
�0 ⊆ �1 ⊆ �2 ⊆ . . . of Fn and a sequence {si}i≥1 of states of Fn such that:

(i) Each si is a 	i-faithful state of Fn;
(ii) For all n > m, sm(e) = sn(e) for all e ∈ �m.

By construction of the �i’s, for every f ∈ Fn there exists an m ≥ 0 such that f ∈ �m and
hence, by (ii), sm(f ) = sn(f ) for all n > m. Therefore, {si(f )}i≥0 is a Cauchy sequence.
This gives that {si}i≥0 is pointwise convergent. Define s : Fn → [0, 1] as follows: for each
f ∈ Fn,

s(f ) = lim
i→∞ si(f ).

Let us prove that s is a state. Clearly s(1) = 1. If a ⊕ b = 0 then, for all i ≥ 0, si(a ⊕ b) =
si(a) + si(b) and by the continuity of +, s(a ⊕ b) = limi→∞ si(a ⊕ b) = limi→∞ si(a) +
si(b) = limi→∞ si(a)+ limi→∞ si(b) = s(a)+ s(b). By construction, s extends β since so
does each sn. There remains to be proved that s is faithful. We will provide two proofs of
this fact.

(Proof 1). By [11, Theorem 5.2] s is faithful iff for each finite subset� of Fn the restriction
of s to� is strictly coherent. Recalling the above construction, let i0 be the minimum index
such that � ⊆ �i0 . Thus, the restriction of s to � coincides with the restriction of si0 to �
and the restriction of si0 to�i0 is strictly coherent. The claim immediately follows because
strict coherence is preserved for books contained in a strictly coherent one.

(Proof 2). Let 1 > f > 0. If f ∈ � there is nothing to prove. Conversely, assume that f = gi

for some i. Therefore, for all j ≥ i, sj(f ) = α > 0. Thus, s(f ) = limi→∞ si(f ) = α > 0 and
the claim is settled. �

§5. Coherence, strict coherence and provability in Łukasiewicz logic. Proposi-
tional Łukasiewicz logic (Ł in symbols) is the logical calculus having MV-algebras as
its equivalent algebraic semantics. Formulas of Łukasiewicz logic will be denoted by
lower case Greek letter and Ł(m) will stand for the set of formulas in a language with
m propositional variables. A complete axiomatization of Ł can be found in [3, Definition
4.3.1]. A formula ϕ is said to be a theorem, in symbols � ϕ, if ϕ can be deduced from
the axioms of Ł and by its unique rule of modus ponens. A theory 
 is a deductively
closed set of formulas. A theory 
 of Ł(m) is said to be finitely axiomatizable if for
some (necessarily satisfiable) formula θ ∈ Ł(m), 
 is the smallest theory of Ł(m) which
contains θ .

By Proposition 2.1, valuations of the Łukasiewicz language Ł(m) are in one-one corre-
spondence with homomorphisms of Fm to [0, 1]MV as well as with points of the m-cube
[0, 1]m. Thus, a formula ϕ ∈ Ł(m) is a tautology if h(ϕ) = 1 for all homomorphisms
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h : Fm → [0, 1]MV iff the oneset of fϕ coincides with [0, 1]m, where fϕ is the unique
McNaughton function determined by ϕ [24].

For every X ⊆ [0, 1]m and theory 
 we write

Th(X ) = {ψ ∈ Ł(m) | (∀x ∈ X ) fψ(x) = 1}
and

Mod(
) = {x ∈ [0, 1]m | (∀ψ ∈ 
) fψ(x) = 1}.
Given two (not necessarily finitely axiomatizable) theories
1 and
2, we write
1 |� 
2,
if Mod(
1) ⊆ Mod(
2).

Following [27, Definition 3.9], two rational polyhedra P and Q of [0, 1]m are said to be
Z-homeomorphic (in symbols, P ∼=Z Q) if there exists a homeomorphism η : P → Q
such that both η and η−1, as maps from Rm → Rm are Z-maps, i.e., η and η−1 are piecewise
linear with integer coefficients.

LEMMA 5.1 ([27, Theorem 3.20]). For every m = 1, 2, . . ., the pair (Th,Mod) estab-
lishes a Galois connection between rational polyhedra of [0, 1]m and finitely axiomatizable
theories of Ł(m). In particular:

(1) For every finitely axiomatizable theory 
 of Ł(m), there exists a unique rational
polyhedron P
 of [0, 1]m such that Mod(Th(
)) ∼=Z P
.

(2) For each rational polyhedron P of [0, 1]m there exists a unique finitely axiomatiz-
able theory 
P such that Mod(Th(
P )) ∼=Z P .

(3) For P1 and P2 rational polyhedra, P1 ⊆ P2 iff Mod(
P1) ⊆ Mod(
P2) iff

P1 |� 
P2 .

In the rest of this section we will adopt the notation used in Lemma 5.1 above with the
following exception: if x ∈ ([0, 1] ∩ Q)m, we denote by 
x the finitely axiomatizable
theory 
{x}.

Let � be a subset of Fn of finite cardinality k and let β be a rational-valued book on �.
As noted at the beginning of §3, {β}, C� and rb C� are rational polyhedra of [0, 1]k. By
Lemma 5.1, 
β , 
C� and 
(rb C�) are finitely axiomatizable.

The following lemma provides a first characterization of coherence and strict coherence
in terms of deducibility.

LEMMA 5.2. Let � be a finite subset of Fn and let β be a rational-valued book on �.
Thus the following conditions hold:

(1) β is coherent iff 
β |� 
C� .

(2) β is strictly coherent iff 
β |� 
C� and 
β �|� 
(rb C�).

Proof. (1) follows from [26, Theorem 2.1], Lemma 5.1 and the definition of |�. Indeed,
β is coherent iff β ∈ C� iff {β} ⊆ C�.

As for (2), Theorem 3.4 shows that β is strictly coherent iff β ∈ riC� = C� \ rb C
 iff
β ∈ C� and β �∈ rb C
 iff 
β |� 
C� (by (1) above) and {β} �⊆ rb C
. By Lemma 5.1
(3) this condition is equivalent to 
β �|� 
(rb C�). �

To characterize coherence and strict coherence in terms of provability in Łukasiewicz
logic, we prepare.

PROPOSITION 5.3. There exists an effective procedure � to compute, for each rational
polytope P of [0, 1]k, a formula �P which axiomatizes 
P .
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Proof. First, compute a regular complex 	 supporting P (see [7, Chap. 6.2.2. and
Theorem 6.5]). Notice that, ext P ⊆ V(	) and let ĥ1, . . . , ĥq be the normalized Schauder
hats at the vertices v1, . . . , vq of 	. For j = 1, . . . , q let �j be the Łukasiewicz formulas
computed from ĥj (see [24]). Let further,

�P =
q⊕

j=1

�j.

Since each ĥj is a member of Ł(k), �P belongs to Ł(k). There remains to be proved that
�P axiomatizes 
P . To this purpose, let us prove that

x ∈ P iff hx(�P ) = 1.

As a matter of fact, by Lemma 2.4(3) the oneset of the McNaughton function �P is P .
Thus the claim is settled. �

COROLLARY 5.4. There exists an effective procedure� which computes, for each � =
{f1, . . . , fk} ⊆ Fn and for each β ∈ [0, 1]k, formulas ��, �(rb �) and �β of Ł(k) which
respectively axiomatize 
C� , 
(rb C�) and 
β .

Proof. As the reader will recall from §3, C� is a polytope. Thus, C�, {β} are rational
polytopes of [0, 1]k, whence �� and �β are computed as in Proposition 5.3.

As for�(rb �), rb C� is not convex. However, it can be realized as the finite union of the
faces F1, . . . ,Fl of C�. Each face Fi is a rational polytope, whence Proposition 5.3 yields
Łukasiewicz formulas �1, . . . ,�l such that x ∈ Fi iff hx(�i) = 1. Thus, let

�(rb �) =
l∨

i=1

�i.

Finally, x ∈ rb C� iff exists i = 1, . . . , n such that x ∈ Fi iff hx(Fi) = 1 iff
hx(�(rb �)) = 1. �

In the light of the above corollary, we may write ��, �(rb �) and �β without danger of
confusion. In the following characterization, for every Łukasiewicz formula ψ , we write
ψn for ψ � · · · � ψ (n-times).

THEOREM 5.5. Let � be a finite set of Fn and let β be a book on �. Then the following
conditions hold:

(1) β is coherent iff there exists a nonzero n ∈ N such that � (�β)n → ��.

(2) β is strictly coherent iff there exists a nonzero n ∈ N such that � (�β)n → �� and
for all nonzero n ∈ N, �� (�β)n → �(rb �).

Proof. Both claims follow from Lemma 5.2, Corollary 5.4, the completeness theorem
of Łukasiewicz calculus and Łukasiewicz deduction theorem stating that ϕ � ψ iff there
exists a nonzero n ∈ N such that � ϕn → ψ (see [3, Sec. 4]). We will prove (1) since the
proof of (2) is essentially the same.

By Lemma 5.2, β is coherent iff 
β |� 
C� iff (from Lemma 5.4) �β |� ��. The
completeness theorem of Łukasiewicz calculus shows that �β |� �� iff �β � �� iff
� (�β)n → �� for some n > 0. �
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§6. Conclusion. In this article we have presented geometrical, measure-theoretical
and logical characterizations for the strict coherence of books on Łukasiewicz infinite-
valued events. Our first result shows that, for any finite subset � of a finitely generated
free MV-algebra A, the set of all strictly coherent books on � coincides with the relative
interior of the polytope of all coherent ones; the second characterization is a de Finetti-like
theorem: a book on � is strictly coherent if and only if it extends to a faithful state of A.
Finally, our last theorem gives a characterization of coherence and strict coherence in terms
of the provability relation of propositional Łukasiewicz logic.

We believe that this last result is interesting both from the logical and philosophical
perspective as it may shed a light on an intuitive reading of propositional Łukasiewicz
logic. Specifically, it is of particular interest to put forward a comparison between the role
of Łukasiewicz logic prompted by Theorem 5.5 in theories of uncertain reasoning and
the semantics proposed in [20]. There, the author, investigating the problem of artificial
precision in theories of vagueness based on real numbers as degrees of truth, presents
Łukasiewicz logic as a suitable formal system to handle vague predicates.3

In our future work we will mainly focus on extending the results of this article to more
general algebraic structures. Particularly promising seems to be the class of finitely pre-
sented MV-algebras (see [21] and [27, Theorem 6.3]). Further, we will address the problem
of determining an NP-algorithm to check strict coherence for Łukasiewicz events. The
solution of this problem would immediately yield that for each finite set � of Łukasiewicz
events, K

Q
� is NP-complete (see [11, Sec. 7]).
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