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Modeling the evolution of preferences:
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Abstract: We applaud the effort of Schubert and Cordes (2013, this journal) to
contribute a model describing the social mediation of preferences and to apply
their results to the more general context of economic welfare. Although we
consider this topic to be of utmost importance and interest, we have found a
problem in Schubert and Cordes’ argument that renders their statements in
Section 3 invalid. After providing some basic intuition on the problem at hand, we
present a short proof showing that the assumptions of the model always lead to a
stable society. We also report on an interesting non-linear segregation effect that
can occur within the Schubert-Cordes model.

1. Introduction

It is certainly of great interest to understand how individual preferences are
(at least partly) influenced by interpersonal comparison and what implications
this has on economic welfare. Although specific results always depend on how
exactly social mediation is specified, the assumption by itself has a tremendous
impact on the consequences of traditional approaches to economic welfare.
This argument holds for different conceptions of economic welfare such as
utilitarianism, Rawlsian ethics, Sen’s capability approach, or the focus on
subjective happiness and well being. Schubert and Cordes (2013) try to explore
these consequences by focusing on escalating consumption commitments. They
argue that the social mediation of preferences may lead to ever-increasing levels
of (aspired) consumption, which eventually decrease economic welfare. While
we think that their argument is plausible on a general level, in this comment
we develop a mathematical proof running counter to the results presented in
Schubert and Cordes (2013, Section 3). Specifically, we claim to have found
that the dynamical system specified by Schubert and Cordes (2013) will always
stabilize at an equilibrium point.

After first drafting this comment, we directly approached Professors Schubert
and Cordes. Professor Cordes sent us a series of replies, in which he explained
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their approach, which allowed us to identify more clearly where our approaches
differ. While our exchange was quite fruitful and instructive for both authors
of this comment, the participants as a whole failed to reach a conclusion on the
issue, which is why it is now posed to the readers of this journal.

This comment proceeds as follows: first, we describe the model’s assumption
and illustrate the main point of contention in our controversy with Schubert
and Cordes. In doing so, we present a simple argument, which already captures
the reasons why the model cannot create self-reinforcing growth. Second, we
analyze the long-term behavior of the model and show that it always reaches an
equilibrium state. Finally, we describe some interesting properties of the model
as implied by Schubert and Cordes’ assumptions: for some special initial data we
find that an initially relatively homogeneous society may split into two classes
(the ‘rich’ and the ‘poor’). There is only minimal interaction between these two
classes over extremely long periods of time until they finally merge into a totally
homogeneous society.

1.1 The model’s assumptions

The model assumes a society comprised of a finite number of n individuals, which
we label with i = 1, . . . , n. Each individual starts with an initial consumption
level xi,0 (a real number) and a preferred level of consumption pi,0 (another real
number). Schubert and Cordes assume in addition that pi,0 > xi,0 (something
that will be of no importance to our approach but can be assumed if the reader
chooses to). Moreover, each individual carries a weight1 αi > 0 corresponding
to its status in society, which can be taken to be normalized as

n∑
i=1

αi = 1.

With regard to cultural transmission, Schubert and Cordes assume a direct bias
affecting current consumption as well as an indirect bias affecting preferred
consumption levels. To model the former they take a weight function β(·, ·) of
the form

β(x, p) = exp
{−a(x − p)2} ,

where a ≥ 0 is a given parameter. Cultural transmission in form of the direct
bias proceeds according to the following equation (equation (1) in Schubert and
Cordes, 2013):

xj ,k+1 =
∑n

i=1,i �=j xi,kαiβ(xi,k, pj ,k)∑n
i=1,i �=j αiβ(xi,k, pj ,k)

.

1 The model and all our subsequent results extend in an obvious way if we want to allow for
individuals who have no influence on society αi = 0. These individuals do not actively contribute in the
way ‘influential’ individuals do – instead they passively follow the behavior of other people.
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Heuristically speaking, in the next generation an individual’s spending is given
by an average of the consumption level of those individuals, which are close
to the level of consumption considered desirable by the individual. The same
mechanism applies to the levels of desired consumption (that is, the indirect
bias); a second weight function θ(·, ·) is given by

θ(x, p) = exp
{−b(x − p)2} ,

where b ≥ 0 is a second given parameter. The iteration rule for the desired level
of consumption (as specified by equation (2) in Schubert and Cordes, 2013) is

pj ,k+1 =
∑n

i=1,i �=j pi,kαiθ(xi,k, pj ,k)∑n
i=1,i �=j αiθ(xi,k, pj ,k)

.

Written as text, the desired level of consumption in the next step is given by an
average over the desired level of consumption of certain other people – those
people, whose actual spending level is close to my desired spending level.

1.2 Competing statements

Through our exchange with Schubert and Cordes we identified the central tenets
fostering our mutual disagreement. They study the difference in means between
time period k and k + 1: for the level of spending they consider the change in the
average spending level x̄, which can be written as

�x = 1
n

n∑
i=1

(xi,k+1 − xi,k).

They then rewrite this expression and use a first-order Taylor series
approximation to handle the arising terms (see their Appendix B). Based on
this information, they use a stability analysis of the arising quantities. Based on
this stability analysis, they conclude that

[ . . . ] a situation with p̄ > x̄ [·̄ denotes the average of ·, JK & SS] (inducing a
rise in x̄) combined with the role model bias function, β(·), that continuously
updates the preference levels upward, makes social learners adopt ever more
accentuated preferences relative to an ‘appropriate’ level of consumption. This
results in a self-augmenting ‘treadmill’ of consumption choices. (Schubert and
Cordes, 2013: 147)

The main mathematical problem lies in the validity of the Taylor series
approximation, which they never justify and whose error terms remain
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unstudied. Indeed, the growth is not self-reinforcing2 and does not continue
for all time: there is no self-augmenting ‘treadmill’.3

2. A basic observation

The purpose of this section is to give a short and simple argument why the
claimed ‘self-augmenting “treadmill”’ can never occur in this setup. We start by
looking at those individual(s) with the highest amount of desired consumption
within the whole population. The largest amount of spending desired by any
individual at time k is

max
1≤i≤n

pi,k.

In this section, we show that the (desired) consumption of these individuals can
never grow and that no one else can grow beyond this value. This, however,
implies that any individual j at any point in time k satisfies

pj ,k ≤ max
1≤i≤n

pi,0,

which says that the desired consumption levels are bounded from above – they
have an unsurpassable upper limit.

The formal argument is relatively simple. We define the largest desired
spending level in form of a function f : N → R via

f (k) := max
1≤i≤n

pi,k.

In the model, aspiration levels in the next round are given by a weighted average
of the aspiration levels of the current round. Let us assign a name h to the
individual with the highest level of aspiration at time k: assume that f (k) = ph,k

for some 1 ≤ h ≤ n. Now we study the development of individual consumption
aspirations. First, we replace all values pi,k by the maximum ph,k for all 1 ≤ j ≤ n,
which certainly increases the quantity

pj ,k+1 =
∑n

i=1,i �=j pi,kαiθ(xi,k, pj ,k)∑n
i=1,i �=j αiθ(xi,k, pj ,k)

≤
∑n

i=1,i �=j ph,kαiθ
(
xi,k, pj ,k

)
∑n

i=1,i �=j αiθ
(
xi,k, pj ,k

) .

2 This is not to say that it is impossible for x̄ to grow for some time: pick a large number of individuals,
say n = 1, 000, and assume one of them spends money x1,0 = 1, while everybody else spends nothing at all
xi,0 = 0 for 2 ≤ i ≤ 1, 000. For simplicity, assume a = b = 1 and pi,0 = 0 for all 1 ≤ i ≤ 1, 000. Assume
furthermore that individual 1 has large societal influence, say α1 = 0.9: then the average spending level x̄

grows by a factor of more than 100 in the first round. However, x̄ cannot exhibit unlimited growth and
will stabilize for sufficiently large time.

3 A rigorous version of the sort of stability analysis they perform could actually be useful in studying
certain ‘traveling-wave’ type of solutions exhibiting growth of x̄ for short periods of time. Establishing
existence and basic properties of such solutions could be an interesting problem. However, on a global
time scale, such solutions need to break down: the growth of x̄ is limited – there can be no ‘runaway’
dynamics.
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Now we observe that there is a common factor ph,k in all the summands: we
isolate this common factor and notice that the remaining fraction cancels∑n

i=1,i �=j ph,kαiθ
(
xi,k, pj ,k

)
∑n

i=1,i �=j αiθ
(
xi,k, pj ,k

) = ph,k

(∑n
i=1,i �=j αiθ

(
xi,k, pj ,k

)
∑n

i=1,i �=j αiθ
(
xi,k, pj ,k

)
)

= ph,k.

Since j was completely arbitrary, this inequality holds for all individuals
(including the individual with the highest desired consumption level in period
k + 1). This implies that we have also shown that

f (k + 1) ≤ f (k).

It immediately follows that the desired consumption level of any individual j

will never surpass f (0). Therefore, the highest desired level of consumption in
the entire evolution of the model can never exceed the highest desired level of
consumption found in the initial data.

The same argument holds true for the largest actual spending level
max1≤i≤nxi,k and, additionally, the inverse results hold true for the minimal
spending level as well as the minimal desired spending level (both of which
cannot decrease). In particular, this means that all variables are trapped within
the smallest and the largest values of the initial data for all time. As such, blow-up
cannot occur.

3. Controversy

We encountered this basic property of the model when studying Schubert and
Cordes’ original contribution and found it to be at odds with their results. It
follows logically that either our or their result must be incorrect and, trivially,
that at least one of the two arguments must be erroneous. Their presentation is
far from rigorous: the mistake lies in assuming that a first-order Taylor expansion
is sufficiently accurate and this mistake goes unnoticed because no analysis of
the remainder term is being performed.

We can now pin down the essence of our controversy to the following three
statements (the acronyms point to the originators of the statement, numbers refer
to the equations in Schubert-Cordes).

� CS1: Equations (5) and (6) lead to result A.
� CS2: Equations (5) and (6) are derived from equations (1) and (2) (they describe

the same dynamical system).
� KS1: Equations (1) and (2) lead to result non-A.

In this context, we choose a strategy of proof by contradiction: in this
comment, we offer our proof of KS1 for anyone to find an error in. Alternatively,
one could also construct an explicit numerical example exhibiting runaway
dynamics to show that KS1 is false. If no error is to be found in KS1, an error
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must reside in CS1, CS2, or both of these statements (as already explained we
presume CS1 is wrong).

4. Actual behavior of the model: a concise analysis

We have already discussed that all quantities produced by the model will be
bounded. In this section, we give a complete description of the behavior of the
model as time goes to infinity. We would like to point out that there is quite
a bit of time until infinity and that despite very simple limiting dynamics, the
model can exhibit quite interesting behavior until it stabilizes – we discuss one
particular phenomenon in the next section.

Note first that for n = 2, it is very easy to see that both citizens will cyclically
exchange roles: A imitates B completely while B imitates A. Every two rounds,
they assume their previous demeanor. This cyclic exchange will go on forever
and nothing will stabilize. Now suppose that the number of citizens is at least
three. Then the model will eventually stabilize.

Theorem. Suppose n ≥ 3. Assume β, θ to be continuous weight functions
satisfying

β(x, y) > 0 and θ(x, y) > 0

for all x, y ∈ R. Let (xi,0, pi,0)1≤i≤n be any set of real-valued initial data. Then
there exist two constants c1, c2 ∈ R such that the dynamical system converges in
the sense that for all 1 ≤ i ≤ n

lim
k→∞

xi,k = c1 and lim
k→∞

pi,k = c2.

In particular, if n ≥ 3, then the Schubert-Cordes model will always evolve into
a stable equilibrium state, regardless of the parameters a, b and the initial data
(xi,0, pi,0).

4.1 Proof of the theorem

In this section, we give a detailed proof of the theorem, which is based on
relatively simple ideas and extends our approach for analyzing this model as
presented in the preceding section. We prove the convergence statement only for
the desired level of consumption pi,k (the proof for xi,k is completely identical).
We assume without loss of generality that the weight functions are bounded from
above by 1 (as we will show below, their value is only important on a compact
interval: we can normalize without changing the dynamics).

Let us study the individuals with the highest level of aspiration at time k ∈ N

and define a function f : N → R via

f (k) := max
1≤i≤n

pi,k.
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As was described in the previous section, we have that

f (k + 1) ≤ f (k).

The very same argument, however, holds for the persons with the lowest level
of aspiration. If we define

g(k) := min
1≤i≤n

pi,k,

then the inequality

g(k + 1) ≥ g(k)

is proven analogously. This already implies that for all k ≥ 0 and all 1 ≤ i ≤ N ,

g(0) ≤ pi,k ≤ f (0).

Of course, the very same result can be proven for the xi,k. In particular, the pi,k

are uniformly bounded in i and k by some numbers: they are trapped in the finite
interval

g(0) ≤ pi,k ≤ f (0)

from which they can never escape. By simply replacing the variables in the above
argument, the very same argument holds for xi,k. Indeed, we claim more: we claim
that they are trapped in smaller and smaller intervals that end up shrinking to a
point. However, in order to rigorously prove this statement, we do require the
fact that they cannot escape from a bounded interval as a stepping stone.

While showing that the model stabilizes within a given interval is sufficient
to indicate the invalidity of Schubert and Cordes’ conclusion, it does not suffice
to prove our original theorem claiming that minimal and maximal values will
eventually coincide in the limit. In doing so, we start with the sequence f (k),
which is monotonically decreasing and bounded from below by g(0); therefore

lim
k→∞

f (k)

exists. At the same time, the sequence g(k) is monotonically increasing and
bounded from above by f (0) and therefore

lim
k→∞

g(k)

exists. We need to show that the limits coincide.
To this end, we need to replay the previous argument and refine it a bit. We

claim that there exists a number η > 0 such that uniformly for all k ≥ 0

min
i∈{1,2,...,n}

αiθ(xi,k, pj ,k) ≥ η > 0.

We have already seen that both pi,k and xi,k are uniformly bounded for all
1 ≤ i ≤ n as well as all k ≥ 0 and that the weight θ is positive and continuous.
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From this it follows that the term on the left-hand side cannot be arbitrarily close
to 0, which in turn implies the existence of η. The number η can be thought of
as a measure of the most unimportant person.

Suppose now g(k) < f (k). There exists j1, j2 such that pj1,k+1 = f (k + 1) and
pj2,k+1 = g(k + 1). We can assume j1 �= j2 (we could prove that this is always
doable but there is another argument: if they were equal, then minimum and
maximum would coincide and we would be done). Since n ≥ 3, there exists a j3

different from both j1 and j2. Here is the dilemma: in our computation of pj1,k+1

as well as in our computation of pj2,k+1, we take weighted averages over all other
individuals: in particular, the individual j3 appears in both computations. We
consider two cases. In the first case, pj3,k is smaller than or equal to the mean of
f (k) and g(k):

pj3,k ≤ g(k) + f (k)
2

.

We get that in the worst case (in which j3 is the most unimportant individual,
whose opinion is only given weight η)

f (k + 1) ≤ (1 − η)f (k) + η

(
g(k) + f (k)

2

)

implying that the maximum level of desired consumption will decrease as long
as it is greater than g(k). In the other case, where pj3,k is higher than or equal to
the mean of f (k) and g(k),

pj3,k ≥ g(k) + f (k)
2

;

we get by the same reasoning that

g(k + 1) ≥ (1 − η)g(k) + η

(
g(k) + f (k)

2

)
.

Both sequences (f (k))k∈N and (g(k))k∈N are monotone and bounded, in particular

f̄ := lim
k→∞

f (k) and ḡ := lim
k→∞

g(k)

exist. Furthermore, by definition, ḡ ≤ f̄ . From the inequalities, we have that

f̄ ≤ (1 − η)f̄ + η

(
f̄ + ḡ

2

)

and since η > 0, this implies f̄ = ḡ. The proof for the other inequality as well as
for xi,k is completely identical.

4.2 Remarks

First, one could extend the models to societies, where some individuals have
weight αi = 0. These individuals have no influence over other individuals and
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are only themselves influenced. It is easily seen that our theorem still holds true
as long as the number of individuals satisfying αi > 0 is at least 3.

Second, this principle proof is an adaptation of the classical maximum
principle for parabolic partial differential equations to the particular setting. We
refer to Gilbarg and Trudinger (2001) for the classical exposition and Chung
(1997) for the discrete case.

5. A non-linear segregation effect

Here we aim to report on a new interesting phenomenon within the Schubert-
Cordes model. As we have seen above, the long-time dynamics of the model
are very simple: every citizen spends the same amount of money c1 and
desires to spend the same amount of money c2 and nothing changes. As such,
no interesting dynamical behavior can go on forever. However, while doing
computer experiments, we have discovered a phenomenon that gives rise to
dynamical behavior that persists for very long time.

Let a = 5, b = 10 and let the population size be n = 20. The individual i

has societal importance αi = i/210 (individual 5 is five times as important as
individual 1). Let the initial data be given by

(x0)j = j and (p0)j = j2

10
.

This initial distribution is certainly uneven but certainly approximates a
continuum: individual 7 spends much more than individual 1, but there is no
segregation into ‘rich’ and ‘poor’, because there is also individual 4 spending less
than 7, but more than 1. However, after merely three iterations, the system has
a curious shape: we have

(x3)j ∼
{

1.012 if j ≤ 9
20 if 10 ≤ j ≤ 20

and

(p3)j ∼
{

0.1 if j ≤ 9
40 if 10 ≤ j ≤ 20.

The society has split into two parts: the first nine individuals 1 ≤ j ≤ 9 have low
actual spending (x3)j ∼ 1.012 and desire to spend very little money (p3)j ∼ 0.1.
All other individuals 10 ≤ j ≤ 20 spend much money (x3)j ∼ 20 and desire to
spend even more (p3)j ∼ 40.

This particular societal configuration now seems stable: running thousands or
even millions of additional iterations does not seem to change anything at all. The
explanation is relatively simple: both parameters a, b in the weight functions β

and θ are very large. This means that weighted averages in the recursion formulae
only consider a rather small sample of individuals. In this example, those people,
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who spend small amounts of money, desire to spend even smaller amounts of
money, meaning all weighted averages reduce essentially to taking the data of the
individual with the lowest spending level. At the same time, those people, who
actually spend lots of money, desire to spend even more, meaning their averages
will be dominated by the value of the richest person. This explains why within
both parts of society there is roughly the same numerical value.

This example resembles a form of class-society, where the intensity of
economic inequality or other social cleavages leads to a kind of social
disentanglement – the ‘rich’ and the ‘poor’ are so intensely segregated that
they share no common social identity (Hogg and Terry, 2000) and, thus, do
not employ each other as reference persons (Kahnemann, 2003) when making
consumption decisions. A similar constellation was already addressed by Veblen,
when emphasizing that great social or economic cleavages may significantly
dampen the effect of emulation:

[. . .] each class envies and emulates the class next above it in the social
scale, while it rarely compares itself with those below or with those who are
considerably in advance. (Veblen, 1970[1899]: 81, Italics by the authors of this
paper)

It follows from our proof that even a configuration like this has to eventually
converge. However, it might take a long while. Let us consider a rich individual
j considering their spending level in the next round

xj ,k+1 =
∑n

i=1,i �=j xi,kαiβ(xi,k, pj ,k)∑n
i=1,i �=j αiβ(xi,k, pj ,k)

,

where

β(x, p) = exp
{−20(x − p)2} .

Then another rich individual h has a very small weight (which means little:
through normalization we are interested in its size compared to that of other
weights)

β(xh,k, pj ,k) ∼ β(20, 40) = e−8000.

However, this weight is many, many times larger than the weight a poor
individual l is given as

β(xl,k, pj ,k) ∼ β(1.012, 40) ∼ e−30420.

This means that, ignoring the weights of societal importance α (which do
not contribute much in this regime anyway), a rich individual assigns many
magnitudes more importance to another rich person than to a poor person. The
same reasoning holds true in the other direction as well, therefore a separation
of society occurs: rich people orient themselves according to what other rich
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people think and the other way around; hence interaction among these groups
is minimal and segregation occurs.

This effect is truly non-linear and highly interesting: it shows that despite fairly
simple limiting dynamics (convergence to a constant) a model like this can have
quite fascinating long-time dynamical behavior with structures that are difficult
to predict.

References

Chung, F. (1997), Spectral Graph Theory (CBMS Regional Conference Series in Mathematics,
92), Providence, RI: American Mathematical Society.

Gilbarg, D. and N. Trudinger (2001), Elliptic Partial Differential Equations of Second Order,
Springer.

Hogg, M. A. and D. J. Terry (2000), ‘Social Identity and Self-Categorization Process in
Organizational Contexts’, Academy of Management Review, 25(1): 121–140.

Kahnemann, D. (2003), ‘Maps of Bounded Rationality: Psychology for Behavioral
Economics’, American Economic Review, 93(5): 1449–1475.

Schubert, C. and C. Cordes (2013), ‘Role Models that Make You Unhappy: Light Paternalism,
Social Learning, and Welfare’, Journal of Institutional Economics, 9(2): 131–159.

Veblen, T. B. (1970[1899]), The Theory of the Leisure Class, London: Unwin.

https://doi.org/10.1017/S1744137413000362 Published online by Cambridge University Press

https://doi.org/10.1017/S1744137413000362

