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In network modelling of complex systems one is often required to sample random realizations
of networks that obey a given set of constraints, usually in the form of graph measures. A much
studied class of problems targets uniform sampling of simple graphs with given degree sequence or
also with given degree correlations expressed in the form of a Joint Degree Matrix. One approach is
to use Markov chains based on edge switches (swaps) that preserve the constraints, are irreducible
(ergodic) and fast mixing. In 1999, Kannan, Tetali and Vempala (KTV) proposed a simple swap
Markov chain for sampling graphs with given degree sequence, and conjectured that it mixes
rapidly (in polynomial time) for arbitrary degree sequences. Although the conjecture is still open,
it has been proved for special degree sequences, in particular for those of undirected and directed
regular simple graphs, half-regular bipartite graphs, and graphs with certain bounded maximum
degrees. Here we prove the fast mixing KTV conjecture for novel, exponentially large classes of ir-
regular degree sequences. Our method is based on a canonical decomposition of degree sequences
into split graph degree sequences, a structural theorem for the space of graph realizations and on a
factorization theorem for Markov chains. After introducing bipartite ‘splitted’ degree sequences,
we also generalize the canonical split graph decomposition for bipartite and directed graphs.
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1. Introduction

Network science has been experiencing an explosive growth with applications in social sciences,
economics, transportation infrastructures (energy and materials), communications, biology (from

† Supported in part by National Research, Development and Innovation Office (NKFIH) under grants K 116769 and
SNN 116095.

‡ Supported in part by the Defense Threat Reduction Agency, #HDTRA 1-09-1-0039, and jointly by the US Air Force
Office of Scientific Research (AFOSR) and the Defense Advanced Research Projects Agency (DARPA) under contract
FA9550-12-1-0405.

https://doi.org/10.1017/S0963548317000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000499


New Classes of Degree Sequences with Fast Mixing Swap Markov Chain Sampling 187

the molecular scale to that of species interactions), climate, and even in cosmology. An important
problem in network science is to algorithmically construct typical instances of the networks
under study with predefined properties, often expressed as graph measures. In particular, special
attention has been devoted to sampling simple graphs with a given degree sequence, by both the
statistics (binary contingency tables [5, 11, 15, 19, 29, 47]) and computer science communities.
For relationships with algebraic statistics, see the survey paper by Petrović [42]. Graph sampling
methods can be classified roughly into two types, one using direct construction methods [8, 18,
23, 33, 34] combined with importance sampling [8, 18, 33] and the other using simple edge-swap
Markov chains and corresponding Markov chain Monte Carlo (MCMC) algorithms [6, 7, 16, 25,
43]. Our focus here is on the latter, MCMC method.

In 1999 Kannan, Tetali and Vempala [32] (KTV) conjectured that a simple edge-swap-based
Markov chain for sampling graphs at random with given degree sequence mixes rapidly, that is,
pseudo-random realizations can be obtained after polynomially many steps (polynomial in the
length of the degree sequence, or order of the graph). For this Markov chain we start from an
arbitrary graph realizing the degree sequence, then repeatedly draw pairs of independent edges
uniformly at random, and swap their ends to create new realizations, as long as the swaps do
not create multiple edges (if they do, we do not accept the new state: we simply draw again).
This edge swap (also called 2-switch) operation, which clearly preserves the degree sequence,
has been studied by several authors, including Ryser [45], Taylor [48] and others [44]. The
corresponding Markov chain is irreducible, aperiodic, reversible (obeys detailed balance), it has
a symmetric transition matrix, and thus a uniform stationary distribution.

The first result with a correct proof in connection with the KTV conjecture is due to Cooper,
Dyer and Greenhill (in 2007, [13]) for the special case when the degree sequence is regular. In
2011 Greenhill [27] proved the analogous result for (in- and out-) regular directed graphs. In
2013 Miklós, Erdős and Soukup [40] proved the conjecture for half-regular bipartite graphs.
Here the degree sequence on one side of the partition is regular, while the degrees can be
arbitrary on the other side. Most recently, Greenhill proved the conjecture for simple graphs
with relatively small maximal degrees, and also recently, Erdős, Kiss, Miklós and Soukup [22]
proved the conjecture for almost half-regular bipartite graphs with certain forbidden edge-sets.
(Comprehensive surveys of the topic can be found in [27] and [40].)

These proofs are all based on Sinclair’s [46] original multicommodity flow method and they
are rather technical. In the paper [24] we introduced an alternative approach to help prove the fast
mixing nature of a restricted, edge-swap-based MCMC over the balanced graphical realizations
of a given Joint Degree Matrix (JDM for short). The word ‘restricted’ here refers to the fact
that not all traditional swap operations are allowed in the Markov chain in order to preserve the
given JDM; for details see [17]. Due to the special structure of balanced realizations of a JDM,
being formed by a series of almost half-regular bipartite degree sequences and almost regular
degree sequences, one could exploit the previously obtained fast mixing results with the help of
a general decomposition theorem for Markov chains [24, Theorem 4.3].

In this paper we follow a similar approach to extend the degree sequence classes with provable
fast mixing Markov chains. However, instead of using the above-mentioned general, but some-
what involved chain decomposition result (or other, similar MCMC decomposition methods such
as [20, 38, 39]), here we will employ a decomposition theorem of a lesser generality, but one
which is much easier to apply. Essentially, it is the statement that if the space of the Markov
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chain can be expressed as a Cartesian product of spaces such that the chain restricted over each
one of the factor spaces is rapidly mixing, then it mixes rapidly over the whole space. This result
[24, Theorem 5.1] will be discussed in Section 2.

We will apply our methodology to two problem classes, namely, first to the original KTV
conjecture itself and then second, to a similar problem related to sampling graphical realizations
with given degree spectra [17]. In the first application we exploit the canonical decomposition of
degree sequences (and of their realizations) into split degree sequences (and into split graphs,
respectively), introduced by Tyshkevich [49, 50], and then the fact that the graph of all the
graphical realizations of a degree sequence d (the so-called realization graph G(d)) can be
expressed as the Cartesian product of the realization graphs of the factor degree sequences from
the canonical decomposition. The latter statement was proved recently by Barrus and West [3]
and Barrus [1]. We will report these results in Section 3. By exploiting a natural correspondence
between split graphs and bipartite graphs, in Section 4 we introduce the notion of ‘splitted’
bipartite sequences (and their graphical realizations) and generalize these decomposition results
for bipartite and directed graphical sequences as well. In Section 5 we then apply our Markov
chain decomposition theorem to show fast mixing for large classes of new degree sequences,
bipartite, directed and undirected (also non-bipartite), constructed by composing splitted bipartite
degree sequences with known fast mixing MCMC samplers. We then present estimates and
comparisons for the sizes of these new degree sequence classes.

The second application, of a smaller scope, is closely related to the JDM problem and it is
a straightforward consequence of our method. In the paper [17] the notion of degree spectrum
was introduced as part of the solution for the connectivity problem of the space of all graphical
realizations of a given JDM (so that the corresponding MCMC is irreducible). Note that the JDM,
which specifies the number of connections between given degrees, also uniquely determines the
degree sequence, and thus it is more constraining than just the degree sequence. In other words,
there can be several JDMs with the same degree sequence. The degree spectrum of a vertex v is
a vector of Δ(G) elements (the maximum degree in the realization G) where the ith element is
the number of degree i neighbours of v. The degree spectra matrix M of a graph G contains the
degree spectra of all its vertices as columns [4]. The degree spectra matrix (DSM) is even more
constraining than the JDM, as there can be several DSMs sharing the same JDM. Recently, Barrus
and Donovan studied the same notion under a different name, called neighbourhood degree lists
[2], but for different reasons. In Section 6 we will discuss the degree spectra matrices in some
detail, and we present a class of DSMs with fast mixing MCMC samplers. This also implies that
the corresponding JDMs and therefore the corresponding degree sequences all admit fast MCMC
samplers over the set of realizations restricted to these degree spectra matrices.

2. Preliminaries

In this section we list the common definitions, notations and some of the earlier results on MCMC
sampling needed to present our findings.

2.1. Graphs
Let us fix a labelled underlying vertex-set V of n elements. All the graphs (undirected, directed
and bipartite) discussed here will be simple labelled graphs, that is, without multiple edges or
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self-loops. The degree sequence d(G) of a graph G = (V,E) is the sequence of its vertex degrees:
d(G)i = d(vi). A non-negative integer sequence d = (d1, . . . ,dn) is graphical if and only if
d(G) = d for some simple graph G, in which case G is said to be a graphical realization of
d. Kn will denote the complete graph on n vertices and Kn,m the complete bipartite graph between
sets with n and m vertices, respectively.

Let G be a simple graph and assume that a,b,c and d are distinct vertices. Furthermore, assume
that (a,c),(b,d) ∈ E(G) while (b,c),(a,d) �∈ E(G). Then

E(G′) = E(G)\{(a,c),(b,d)}∪{(b,c),(a,d)} (2.1)

is another realization of the same degree sequence. We call such an operation a swap (it is also
called a ‘switch’ or a ‘2-switch’ in the literature) and denote it by ac,bd ⇒ bc,ad (the notation
implies that (b,c) and (a,d) were non-edges before the swap). Note that ac,bd ⇒ ab,cd is
another swap.

The swap operation allows to treat the space of all graphical realizations of a given degree
sequence as a graph G(d) itself: the ‘vertices’ of G(d) are the graphical realizations G ∈ V (G)
and two graphical realizations G,H ∈ V (G) are connected by an edge in G if a swap takes one
realization into the other.

Similar notions can be defined for bipartite graphs. If B is a simple bipartite graph then
its vertex classes/partitions will be denoted by U(B) = {u1, . . . ,uk} and W (B) = {w1, . . . ,w�},
respectively, with V (B) =U(B)∪W (B). The bipartite degree sequence of B, bd(B) is defined via

bd(B) = ((d(u1), . . . ,d(uk)),(d(w1), . . . ,d(w�))) = (d(U),d(W )).

We can define the swap operation for bipartite realizations similarly to (2.1) but we must take
some care: it is not enough to assume that (b,c),(a,d) �∈ E(G), but we also have to make sure
that a and b are in one vertex class and c and d are in the other.

To make it clear whether or not a vertex pair can form an edge in a realization (because the
edge would be forbidden for some reason), we will call a vertex pair a chord if it could hold an
actual edge in a realization. Those pairs which cannot accommodate an edge are the non-chords.
For example, pairs from the same vertex class of a bipartite graph are non-chords.

For directed graphs we consider the following definitions. Let �G denote a simple directed
graph (no parallel edges, no self-loops, but oppositely directed edges between two vertices are
allowed) with vertex-set X(�G) = {x1,x2, . . . ,xn} and edge-set E(�G). We use the bi-sequence

dd(�G) = (d+,d−)

to denote the sequence of degrees, where d+ stands for the out-degree sequence (i.e. d+(x1),
. . . ,d+(xn)) and d− for in-degrees. A bi-sequence of non-negative integers is called a graphical
directed degree sequence if there exists a simple directed graph �G such that (d+,d−) = dd(�G).
In this case we say that �G realizes (d+,d−).

We will apply the following representation of the directed graph �G (Gale 1957): let B(�G) =
(U,W ;E) be a bipartite graph where each class consists of one copy of every vertex from V (�G).
The edges adjacent to a vertex ux in class U represent the out-edges from x, while the edges
adjacent to a vertex wx in class W represent the in-edges to x (so a directed edge xy is identified
with the edge uxwy). Since there is no self-loop in our directed graph, there is no (ux,wx) type
edge in its bipartite realization; these vertex pairs are non-chords, i.e. forbidden edges.
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190 P. L. Erdős, I. Miklós and Z. Toroczkai

The restricted bipartite degree sequence problem bdF consists of a bipartite degree sequence
bd on (U,W ), and a set F ⊂ [U,W ] of forbidden edges (i.e. non-chords). The problem is to
decide whether there is a bipartite graph G on (U,W ) completely avoiding the elements of F
such that it realizes the given bipartite degree sequence. Clearly, the bipartite representation of
directed graphs is a particular bipartite restricted degree sequence problem with F a forbidden 1-
factor (a not necessarily perfect matching), i.e. forbidden (ux,vx) type edges. This problem class
was introduced in paper [22], along with a Havel–Hakimi-type graphicality test for restricted
bipartite degree sequences.

Similarly to undirected degree sequences, one can also define the corresponding realization
graphs for bipartite degree sequences (G(bd)), directed degree sequences (G(dd)) and restricted
bipartite degree sequences (G(bdF )).

2.2. Markov chain Monte Carlo sampling
For an in-depth review on general MCMC sampling and mixing times, see [37]. The standard
Markov chain for graph sampling is a weighted random walk on the realization graph G and it
is an irreducible, aperiodic and reversible chain. Typically it is chosen to be a lazy chain [37],
so that bounding the mixing time reduces to the analysis of the second largest eigenvalue λ2

of its transition matrix, or equivalently of its spectral gap 1− λ2. Here we will only consider
lazy chains. Accordingly, the chain is fast mixing if and only if the relaxation time (1−λ2)

−1 =
O(poly(n)), where n is the length of the degree sequence (the number of vertices of the graphs
realizing the sequence). (See Sinclair, [46, Theorem 5].) Since we consider realization graphs G

for MCMC sampling only, they will be referred to here as Markov graphs.
It is well known that the space (i.e. the set) of all simple realizations of a graphical degree

sequence is connected via swap operations, which implies that the corresponding swap-based
Markov chain is irreducible, and the same applies for bipartite graphs as well. For directed
graphs an analogous result holds. For the bipartite representation of directed graphs (i.e. with the
forbidden 1-factor) the usual swap definition applies between pairs of vertices that form chords.
In this case we call the operation a C4-swap. However, the following operation is also valid:
assume that in a realization B(�G) (u1,v4),(u2,v5) and (u3,v6) are edges, (u1,v5),(u2,v6) and
(u3,v4) are non-edges but chords (with ui ∈U and v j ∈W ) and finally, the other three vertex pairs
are forbidden (they belong to F). Then we allow the so-called C6-swap [21]: we exchange the first
three with the second three, i.e. u1v4,u2v5,u3v6 ⇒ u1v5,u2v6,u3v4. This was first introduced by
Kleitman and Wang (1973, [35]) and then also by Erdős, Miklós and Toroczkai (2009, [23]). As
Greenhill [27] pointed out, for regular directed degree sequences the C6-swaps are not necessary.

In 1999 Kannan, Tetali and Vempala [32] conjectured (referred to here as the KTV conjecture)
that the swap-based MCMC is rapidly mixing, that is, a pseudo-random realization is achieved
after polynomially many steps in the number of vertices (length of the degree sequence). While
this conjecture is still open, there have been a series of partial results obtained over the years
for specific degree sequence classes. In the next theorem we summarize those earlier results that
play a role in the present work.

Theorem 2.1. The swap Markov chain mixes rapidly for the following degree sequences:

(A) d is regular degree sequence of simple graphs,
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(B) d is a regular directed degree sequence,
(C) d is half-regular bipartite degree sequence,
(D) d a graphical sequence with the property that the maximum degree satisfies 3 � dmax � 1

4

√
M,

where M is the sum of the degrees,
(E) d belongs to an almost regular graph, or an almost half-regular bipartite graph,
(F) d = dF is a restricted half-regular bipartite degree sequence where F is a (partial)

matching.

(A) is due to Cooper, Dyer and Greenhill [13, 14]. In (B) only C4-swaps are needed (Greenhill
[27]). (C) is due to Miklós, Erdős and Soukup [40]. Half-regularity means that in one class the
degrees are the same (i.e. regular), while in the other, the only restrictions are those imposed by
graphicality. (D) was proved by Greenhill [28]. (E) is due to Erdős, Miklós and Toroczkai [24].
Here almost regular means that for any degree pair |d(v1)−d(v2)| � 1. The meaning of almost
half-regular is analogous. (F) was proved by Erdős, Kiss, Miklós and Soukup [22]. The process
uses C4- and C6-swaps, so while it contains the directed degree sequence problem as a special
case, it is not comparable with the result in Theorem 2.1(B).

There are other degree sequence classes for which the swap Markov chain is clearly fast
mixing. For example, the so-called threshold degree sequences [12] have exactly one realization
and thus their Markov chain is trivial. In the analogous case of threshold graphs for bipartite
sequences their realization is called a difference graph, and was introduced in [30]. In general, if
there are only a small number of possible realizations of a degree sequence, then the correspond-
ing swap Markov chain is fast mixing.

Lemma 2.2. When the number of possible realizations is polynomial in the size of the bipartite
degree sequence, then the corresponding Markov chain is fast mixing.

Later on, we are going to compose a larger degree sequence on n vertices from much smal-
ler degree sequences, each on O(

√
logn) vertices. The following result will be useful in this

direction.

Lemma 2.3. Let bd be a graphical bipartite degree sequence on
√

logn +
√

logn vertices
(
√

logn vertices on each side). Then the second largest eigenvalue λ2 of the lazy swap Markov
chain satisfies

1
1−λ2

= O(n2 log4(n)). (2.2)

Proof. The number of possible labelled bipartite graphs on k + k vertices is 2k2
. (Each labelled

vertex pair may form an edge independently of others.) Therefore, the number of realizations of
a given bipartite degree sequence is (much) less than 2k2

. When k =
√

log(n), then 2(k2) = n.
If a swap Markov chain contains n vertices (here a vertex is a graphical realization), then the
probability of any subset of states in the equilibrium distribution cannot be smaller than 1/n.
The transition probabilities are [O(log2(n))]−1, and thus the conductance is [O(n log2(n))]−1.

Equation (2.2) then follows from the Cheeger inequality [10, 37].
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As mentioned above, all the proofs in Theorem 2.1 use Sinclair’s multicommodity flow method
and require complex and technical reasoning. Another approach was used in [24], where the fast
mixing nature of the Markov chain under investigation was inferred from the fast mixing nature
of several well-known ‘smaller’ chains. In other words that Markov chain was decomposed into
smaller Markov chains with known ‘good’ properties. This result will be crucial for our purposes
and thus we quote it here.

Theorem 2.4 (Erdős, Miklós, Toroczkai 2015 [24]). Let M be a class of lazy Markov chains
whose state space is a K-dimensional direct product of spaces, and the problem size of a partic-
ular chain is denoted by n. Here n is not bounded but we assume that K = O(poly1(n)). We also
assume the following.

(1) Any transition of the Markov chain M ∈M changes only one coordinate (each coordinate
with equal probability). The transition probabilities do not depend on the other coordinates.

(2) The transitions on each coordinate form irreducible, aperiodic Markov chains (denoted by
M1,M2, . . . ,MK), which are reversible with respect to their stationary distribution πi.

(3) Furthermore, each of M1, . . . ,MK are rapidly mixing, i.e. with the relaxation time 1/(1−λ2,i)
being bounded by a O(poly2(n)) for all i. (As usual, λ2 denotes the second largest eigenvalue
of the corresponding chain.)

Then the Markov chain M converges rapidly to the direct product of the πi distributions, and the
second largest eigenvalue of M is

λ2,M =
K −1+maxi{λ2,i}

K
and thus the relaxation time of M is also polynomially bounded:

1
1−λ2,M

= K O(poly2(n)) = O(poly1(n)poly2(n)).

The important property to be checked is condition (1): whenever we make a move on M, the
movement must be entirely within one of the factor spaces.

3. Canonical (de)compositions of degree sequences

In this section we first recall the notion of canonical degree sequence decompositions introduced
by Tyshkevich in [49, 50]. We also review some of the recent results on canonical decompositions
introduced by Barrus [1] that are essential for this study.

A G = (V,E) graph is a split graph if its vertices can be partitioned into a clique and an
independent set. Split graphs were introduced by Földes and Hammer [26]. We will use the
notation V = 〈U,W 〉 implying that G[U ] is a clique while G[W ] is the edge-less graph. Since it is
important to specify which partition is on which side (especially for later purposes), this notation
is ‘non-commutative’, that is, the elements are not interchangeable. Note that a split graph may
have more than one partition into a clique and an independent set (for example, if a node in the
clique has no edges to any of the nodes in the independent set, it can be moved to the latter). We
will call U the primary class and W the secondary class. Either class can be empty but not both
simultaneously.
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Split graphs are recognizable from their degree sequences. The next result easily follows from
the well-known Erdős–Gallai theorem on degree sequences.

Theorem 3.1 (Hammer and Simeone [31], Tyshkevich, Melnikov and Kotov [51]). Assume
d(v1) � · · · � d(vn) and let m be the largest value of i, such that d(vi) � i−1. Then G is a split
graph if and only if

m

∑
i=1

d(vi) = m(m−1)+
n

∑
i=m+1

d(vi).

Remark 1. Based on this theorem it is clear that if a degree sequence d can be realized as a
split graph, then all realizations of d are split graphs as well.

Therefore such a degree sequence is called a split degree sequence.
Recall that any two realizations of a degree sequence are connected by a series of swap

operations. Now, in a split graph the only edge pairs that can be used for such swaps are those
between U and W. (Involving other edges would lead to multiple edges between some node pairs
after the swap.) Thus, the resulting edge pair will also be running between U and W. This gives
a second proof for Remark 1.

As a consequence, one can write the degree sequence in the form of (u,w), where both vectors
are in non-increasing order. In the following we will use the same notational expression 〈U,W 〉
for our split graphs as well.

Let (〈U,W 〉;E) be a split graph and G an arbitrary graph. Following Tyshkevich, we define
the composition graph H = (〈U,W 〉;E)◦G as follows: H consists of a copy of (〈U,W 〉;E) and a
copy of G and of all the possible new edges (u,x) where u∈U,x∈V (G). (The first operand in this
notation is always a split graph.) Note that the composition operation above is non-commutative.
The degree sequence of the composition graph is therefore

d(U)⊕|V (G)|,d(W ),d(V (G))⊕|U |, (3.1)

where (d ⊕ c) denotes an operation in which every component of a vector d is increased by
the amount c. Therefore we have also defined the composition operation between a split degree
sequence and a general degree sequence.

It is easy to see that if G is a split graph (〈X ,Y 〉;F), then the result of the composition with a
split graph is also a split graph (〈U ∪X ,W ∪Y 〉;E ∪F ∪E(KU,X∪Y )). Here we used the notation
KU,X∪Y which is the complete bipartite graph with vertex classes U and X ∪Y.

The graph G is decomposable if there exist a split graph (〈U,W 〉;E) and a graph H such that
the composition of these components (〈U,W 〉;E)◦H is = G. As the following result shows, the
decomposability is a property of the degree sequence rather than that of the graph itself.

Theorem 3.2 (Tyshkevich [50], Theorem 2, pp. 208–211).

(I) The graph G with non-increasing degree n-sequence is decomposable if and only if there
exist p,q non-negative integers such that

0 < p+q < n,
p

∑
i=1

di = p(n−q−1)+
n

∑
i=n−q+1

di. (3.2)
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194 P. L. Erdős, I. Miklós and Z. Toroczkai

(II) Call a pair (p,q) satisfying condition (3.2) good. With every good pair (p;q) we can
associate the decomposition (〈U,W 〉;E) ◦H = G, where (d1, . . . ,dp), (dp+1, . . . ,dn−q) and
(dn−q+1, . . . ,dn) are the degree sequences in U, V (H) and W respectively. Moreover, every
such decomposition is associated with some good pair.

(III) Let p0 be the minimum first component of the good pairs. Let q0 = |{i : di < p}| if p0 �= 0
and q0 = 1 otherwise. Then (〈U,W 〉;E) is indecomposable if and only if the associated good
pair is (p0,q0).

Corollary 3.3 (Graph Decomposition Theorem: Tyshkevich [50]). Every graph G can be
uniquely decomposed (up to isomorphism) into the form

G = (〈U1,W1〉;E1)◦ · · · ◦ (〈U�,W�〉;E�)◦G0, (3.3)

where each split graph and the non-split simple graph G0 (if it exists) are indecomposable. The
composition operation is associative but not commutative.

Since the composition of graphs corresponds to the composition of degree sequences, the above
can be reworded to statements involving degree sequences only. Some examples of (de)compo-
sitions can be found in [1], [2], [3] and [50].

The next two statements play crucial roles later on. In the first one we use slightly different
wording to the original result.

Lemma 3.4 (Barrus and West [3]).

(i) In the composition graph (〈U,W 〉;E)◦G, any swap operation belongs completely to exactly
one component. In other words, all four participating vertices are within U ∪W or in V (G).

(ii) Any possible swap operation in an arbitrary simple graph G is within exactly one component
of its canonical decomposition.

For (i), if at least one vertex is from G and at least one from U∪W , then there will not be a valid
swap due to KU,V (G), KU and the fact that there are no edges between G and W . Statement (ii)
follows by simple induction. This implies that if we perform a swap operation, then we can
identify the component where the swap actually happened.

Theorem 3.5 (Barrus 2015 [1, Theorem 6]). Let S = (〈U,W 〉;E) be a split graph and G an
arbitrary graph with degree sequences d(S) and d(G). Then the Markov graph of the composition
degree sequence (3.1) is the Cartesian (also called the box- or direct-) product of the two original
Markov graphs:

G(d(S)◦d(G)) = G(d(S)) � G(d(G)).

Recall that the Cartesian product of two graphs is a graph on V (G)×V (H) where (u,u′) and
(v,v′) is adjacent if and only if u = v and u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G). The central theme
of our paper is the following.

Theorem 3.6. If the components of the canonical decomposition of a degree sequence d have
fast mixing MCMC sampling processes, then the same applies for d.
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Proof. This is the direct consequence of Theorem 2.4, and to complete the proof we need to
show that the setup and the conditions of Theorem 2.4 hold. First, we observe that according
to Theorem 3.5, the state space of the realizations of d is a direct product of the state spaces
of the components of d. Second, according to Lemma 3.4, the swap Markov chain over the
realizations of d is such that every swap operates exactly within one of the components of the
direct product (i.e. no swaps are possible involving two edges from different components) and
thus condition (1) of Theorem 2.4 is also satisfied. Therefore, assuming fast mixing within every
component (conditions (2) and (3)), Theorem 2.4 applies and thus our Markov chain is rapidly
mixing.

There are essentially two ways to use this approach. On one hand it is possible to seek out
the canonical decomposition of the degree sequence under investigation and apply Theorem 3.6
whenever possible. However, on the other hand, it seems to be much more powerful to build up
good degree sequences from already studied good degree sequence classes. A ‘good’ sequence
here means that the swap MCMC mixes rapidly over its realizations. The simplest is to take
several (at most polynomially many) regular split graphs and one ‘good’ simple graph (such as
an almost regular one, or one with low maximal degrees, i.e. condition (D) of Theorem 2.1)
and take their composition. This construction alone significantly multiplies the number of degree
sequences with fast mixing MCMC sampling processes.

In the next section we expand the split graph (de)composition approach to bipartite and direc-
ted graphs.

4. Canonical decomposition of bipartite and directed degree sequences

There is a natural correspondence between split graphs and bipartite graphs, which will be
heavily exploited here. A split graph (〈U,W 〉;E) naturally generates a bipartite graph as the
edge-induced subgraph by the edges between the sets U and W . We will refer to bipartite graphs
generated this way as ‘splitted’ bipartite graphs, although they are not split graphs in general (at
least not with the same primary and secondary sets of vertices). For convenience we will use
Fraktur letters for splitted bipartite graphs and splitted bipartite degree sequences.

Definition 1. A splitted bipartite graph B = (〈U,W〉;E) is a bipartite graph with the same
vertex partitions as the primary U and secondary W vertex classes of the corresponding split
graph. The edge-set E consists of all edges from E which are between the vertex classes. In the
primary class of B there may be vertices of zero degree. The splitted bipartite degree sequence
bd〈u,w〉 is defined analogously. Consequently u may contain zeros.

Lemma 4.1. There exists a natural one-to-one correspondence Ψ among split graphs and
splitted bipartite graphs. Similarly, there is a natural bijection between split degree sequences
and splitted bipartite degree sequences.

Proof. Consider the split graph (〈U,W 〉;E) and delete all edges within U . We obtain a splitted
bipartite graph

Ψ((〈U,W 〉;E)) := (〈U,W〉;E),
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where E = E \ KU and where U may contain vertices of degree zero. The other direction is
self-evident. For degree sequences, from the split degree sequence bd(d(U),d(W )) we derive
bd〈u,w〉 by u = d(U)� (|U |− 1) and w = d(W ). Here (d � c) denotes an operation in which
every component of a vector d is lowered by the amount c.

Definition 2. Let G1 := (〈U,W〉;E) and G2 := (〈X,Y〉;F) be two splitted bipartite graphs. We
then define their bipartite composition through Lemma 4.1:

G1 ◦G2 := Ψ(Ψ−1(G1)◦Ψ−1(G2)). (4.1)

This notion helps to provide a decomposition of a splitted bipartite graph in a similar form to
equation (3.3).

Lemma 4.1 and Definition 2 are very useful, since they provide a full battery of tools to handle
the compositions of splitted bipartite graphs. But it is clear that G1 ◦G2 can be constructed
directly. Namely

G1 ◦G2 = (〈U∪X,W∪Y〉;E∪F∪K
U,Y), (4.2)

that is, the new primary class is the union of the two original primary classes, the new secondary
class is the union of the original secondary classes, and finally the edge-set is the union of the
original edge-sets, supplemented by the edge-set of the complete bipartite graphs with classes U

and Y.

To illustrate these notions we give two examples, using degree sequences. We adopt the
following convention: the primary classes are in the bottom rows and the secondary classes are in
the top rows. For simplicity, in the examples below, we do not reorder the vertices in the vectors
along the operations, so on the right-hand side the vertices in the top rows are listed in different
orders (but they represent the same bipartite degree sequence):

[
1 1
1 1

]
◦
[

2 2 1
3 1 1

]
=

[
1 1 4 4 3
4 4 3 1 1

]
, (4.3)

[
3 1 1
2 2 1

]
◦
[

1 1
1 1

]
=

[
3 1 1 4 4
4 4 3 1 1

]
. (4.4)

Note that the degree sequences on the right-hand side are the same, and the reasons for why this
is the case will be made clear after Theorem 4.3.

It is important to emphasize that the analogy between the composition of split graphs on
one hand and composition of splitted bipartite graphs on the other hand is not complete. Any
split graph can be composed with any simple graph G, and if graph G is, by chance, another
split graph, then the composition is also a split graph. We have nothing similar for splitted
bipartite graphs. Note that we did not introduce the composition of a splitted bipartite graph
with a (simple) bipartite graph, as the operation cannot be carried out without fixing the primary
and secondary classes.

Also note that any bipartite graph can be considered as a splitted bipartite graph once we
choose which vertex class is the primary one, so any analogue of Theorem 3.1 is meaningless in
this setup.
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The next result is a direct analogue of Theorem 3.2. (Recall that we do not allow edge-less
graphs here.)

Lemma 4.2. The splitted bipartite graph (〈U,W〉;E) with non-increasing bipartite degree se-
quence bd(u,w) is decomposable if and only if there exist p,q integers such that

0 < p < |U|,0 < q < |W|,
p

∑
i=1

ui = pq+
|W|

∑
i=q+1

wi. (4.5)

We do not formalize the analogues of parts (II) and (III) of Theorem 3.2. Those results
are simple consequences of the correspondence Ψ, similarly to the following decomposition
theorem.

Theorem 4.3. Any bipartite graph with fixed designations of its primary and secondary classes
has a unique canonical decomposition into splitted bipartite graphs (and the corresponding
bipartite degree sequence into splitted bipartite degree sequences).

Proof. The simplest treatment is to embed the graph into a split graph, using Lemma 4.1, then
generate its canonical decomposition. Finally, the components can be stripped down into splitted
bipartite graphs.

The reason that the right-hand sides of equations (4.3) and (4.4) are the same is that on the
left-hand sides not all components are undecomposable. In fact, the canonical decomposition of
the right-hand side of (4.3) is as follows:[

1 1
1 1

]
◦
[

1
1

]
◦
[

1 1
1 1

]
. (4.6)

It is easy to recognize that in the left-hand side of (4.3) the second component is the composition
of the second and third components in (4.6). In the left-hand side of (4.4) the first component is
the composition of the first and second components in (4.6). Therefore the right-hand sides of
(4.3) and (4.4) must be the same.

Remark 2. While the previous observation may provide some decomposition method for graphs
using splitted bipartite graphs, we are not interested in such a process. Instead, we will use the
composition process to provide large classes of general degree sequences with fast mixing swap
MCMC.

It is easy to see that the analogous statement of Lemma 3.4 remains valid for splitted bipartite
graphs as well.

Lemma 4.4. In the composition graph (〈U,W〉;E)◦G, any swap operation belongs completely
to exactly one component. In other words all four participating vertices are within U∪W or in
V (G).

The following statement is a direct analogue of Theorem 3.5.
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Theorem 4.5. Let S = (〈U,W〉;E) be a splitted bipartite graph with splitted bipartite degree
sequence bd(S) and let G be an arbitrary graph with degree sequence d(G). Then the Markov
graph of the composition degree sequence is the Cartesian product of the two original Markov
graphs:

G(bd(S)◦d(G)) = G(bd(S)) � G(d(G)).

We now turn to directed graphs and directed degree sequences by first recalling our bipartite
representation B(�G) = (U,W ;E) of a directed graph, as described in Section 2.1. It is easy to
see that all the definitions and results we have obtained in Section 4 remain almost unchanged if
we repeat them for splitted bipartite degree sequences with a forbidden 1-factor. To that end we
have to recognize that in the composition process, the forbidden 1-factors merge into another
1-factor. Furthermore, the forbidden edges somewhat tighten the available swap operations but
does not affect the locality of those swaps. Most importantly, the following statement is valid.

Theorem 4.6. Let S1 = (〈U1,W1〉;E1) be a splitted bipartite graph with forbidden 1-factor
F1 and S2 = (〈U2,W2〉;E2) be a splitted bipartite graph with forbidden 1-factor F2 (and with
splitted bipartite degree sequences bd(Si), i = 1,2). Then the Markov graph of the composition
degree sequence is the Cartesian product of the two original Markov graphs:

G(bd(S1)◦bd(S2)) = G(bd(S1)) � G(bd(S2)),

where the forbidden 1-factor for bd(S1)◦bd(S2) is F1 ∪F2.

It is important to mention that the canonical degree sequence ‘decomposition’ we use here for
directed graphs has nothing to do with other decomposition methods introduced in the literature,
for example by LaMar [36]. We use this approach only to extend the class of known directed
degree sequences with fast mixing Markov chains.

5. Extending the classes of degree sequences with fast mixing swap Markov chains

Now we are ready to present our new degree sequence classes beyond the known ones with fast
mixing MCMC sampling. First we describe the classes, then we generate some simple estimates
to compare the sizes of the old and new classes. We start with a few, almost trivial, observations.

Lemma 5.1. Let (〈U,W 〉;E) be a split graph and Ψ((〈U,W 〉;E)) := (〈U,W〉;E) be the cor-
responding splitted bipartite graph. Then the Markov graphs

G(bd(d(U),d(W ))) ∼= G(bd〈u,w〉) (5.1)

are isomorphic under Ψ and the corresponding edges have equal weights (i.e. transition proba-
bilities). Consequently, if the MCMC process is fast mixing on the second Markov graph then it
is also fast mixing on the first one.

Proof. Each split graph has many more edges than its equivalent splitted bipartite graph, that
is, by the number of edges in the complete graph in U . However, none of these edges ever
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participate in any swap operation (in moving along the Markov chain). All the other edges of
the split graph are in one-to-one correspondence with the edges of the splitted bipartite graph.
Finally the transition probabilities for these swaps are equal by definition.

Note that when we delete the edges of the KU from a split graph to obtain the corresponding
splitted bipartite graph, we may end up with nodes in U that have zero degrees. And vice versa,
by adding the edges of KU to the primary vertex-set of the splitted bipartite graph, we may end
up with way more edges than before. However, this does not affect the MCMC process. Nodes
with zero degrees do not participate in any swap, and the added extra edges cannot participate
either. Thus, while formally we have new Markov graphs (and new Markov chains), there is a
clear-cut natural isomorphism between the original and the ‘extended’ Markov graphs, and under
this isomorphism the transition probabilities are completely unchanged. However, the large size
of the new classes of sequences with fast mixing swap MCMC is not due to this trivial addition
of nodes with zero degrees; it is already a property of the constructed class of sequences that
contain no zero-degree nodes, and that is how we will formulate our results below.

Next we will carry out the program expressed in Theorem 3.6. First we will consider almost
half-regular splitted bipartite graphs and their splitted graph equivalents (or more precisely the
corresponding degree sequences) as the main building blocks of our degree sequences.

Consider k almost half-regular bipartite graphs, that is, with one side of the partition the
degrees of any two vertices differ by at most unity and there are no restrictions on the other side.
For every bipartite graph assign the primary U and secondary W designations to its vertex classes,
thus defining a sequence S1, . . . ,Sk of splitted bipartite graphs. Note that it does not matter if
the half-regular partition is primary or secondary: both assignments are valid and thus the k-
bipartite graphs generate 2k sequences of splitted bipartite graphs. Furthermore, let S1, . . . ,Sk

denote their split graph counterparts (here all classes Ui form complete graphs), and finally, let
d0 be a degree sequence with fast mixing MCMC sampling process on its Markov graph (e.g.
any degree sequence listed in Theorem 2.1).

Theorem 5.2. The degree sequences

bd(S1)◦bd(S2)◦ · · · ◦bd(Sk)◦d(G0), (5.2)

bd(S1)◦bd(S2)◦ · · · ◦bd(Sk)◦d(G0) (5.3)

have fast mixing MCMC sampling processes on their Markov graphs.

Proof. By Theorems 2.4 and 4.6, Theorem 3.6 applies for these setups.

In words, the statement says that we can compose several almost half-regular splitted bipartite
graphs, and while the composition itself formally is not almost half-regular by any means, all
compositions admit a fast sampling MCMC, with its speed determined by the slowest mixing
coordinate of the chain. As discussed above, there are at most 2k such compositions possible.

It is important to emphasize that the composition of almost half-regular splitted bipartite
degree sequences is, in general, very far from being almost half-regular and the same applies
if we omit the word ‘half’. Furthermore, the two derived degree sequences (the compositions
of split degree sequences and of splitted bipartite degree sequences) and their realizations are
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very different; consider, for example, the sizes of edge-sets. However, the Markov graphs of
all realizations of the two cases are isomorphic. When graph G0 is a bipartite graph, then the
resulting graph in the second case is also bipartite.

For directed degree sequences we have the following analogous result.

Theorem 5.3. Assume that S1, . . . ,Sk are almost half-regular splitted bipartite graphs with
Fi, i = 1, . . . ,k forbidden 1-factors. Then the degree sequence

bd(S1)◦bd(S2)◦ · · · ◦bd(Sk) (5.4)

admits a fast mixing MCMC sampler on its Markov graph.

Proof. By Theorems 2.4 and 4.5, Theorem 3.6 applies for these setups.

In the next section we will consider compositions from splitted bipartite degree sequences on
m + m vertices, as these bipartite sequences have the largest number of graphical realizations.
It is then important to observe that the splitted bipartite sequences and their compositions will
generate split graph sequences (which are non-bipartite) that do not fall under the category (D)
of Theorem 2.1, and in this sense these form a novel class of irregular degree sequences with
proven fast mixing MCMC, beyond Theorem 2.1 (D).

Theorem 5.4. The split graph degree sequence generated from a graphical, splitted bipartite
sequence on m + m vertices with m � 2 does not obey the Greenhill condition dmax � 1

4

√
M,

where dmax and M are the maximum degree and the sum of degrees in the generated split graph,
respectively.

Proof. The split graph degree sequence is obtained by adding all the possible edges to the
primary partition of the splitted bipartite degree sequence. Accordingly, after the augmentation,
we clearly must have m− 1 � dmax and M � (m− 1)m + 2m2 = 3m2 −m (the upper bound is
realized when the splitted bipartite graph is Km,m). The Greenhill condition would then imply
that m− 1 � 1

4

√
3m2 −m, or equivalently that 13m2 − 31m + 16 � 0. This, however, is clearly

violated for all m � 2.

5.1. Size estimates of degree classes with fast mixing MCMC
How large is this simply generated class of sequences compared to the number of the almost
half-regular bipartite sequences with the same total vertex numbers? For comparison, here we
will only consider bipartite sequences on m + m vertices, as this is the most numerous class.
An almost half-regular bipartite graph on m + m vertices with e total edges has one possible
degree sequence on the regular-degree vertex class. The only conditions we have on the other
vertex class is that no degree can exceed the number m, and the sequences are arranged non-
increasingly. Therefore we have the following result.
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Lemma 5.5. The number of non-increasing, graphical, almost half-regular bipartite degree
sequences on m+m vertices is

2

(
2m
m

)
−m2 −1 = O

(
4m

√
m

)
.

(For simplicity of calculation here we allow vertices with zero degrees.)

Proof. The number of non-negative, non-increasing integer sequences on m vertices with largest
element at most m is

(2m
m

)
. For every such integer sequence there exists exactly one almost half-

regular degree sequence with the same sum of their degrees. This degree sequence pair will
always be graphical due to the Gale–Ryser theorem (see for example [45]).

Since we can assign the primary (secondary) roles to vertices on either side of the partition,
we have a total of 2

(2m
m

)
splitted bipartite graphs. We have to subtract the degree sequences

counted twice. They are exactly those degree sequences that are almost regular on both sides of
the partition. For every sum of degrees, there is exactly one such non-increasing degree sequence.
As the sum of degrees might vary between 0 and m2, therefore, we have to subtract m2 +1 from
2
(2m

m

)
. The asymptotic follows directly from the Stirling formula, m! ∼

√
2πm(m/e)n.

If we take the composition of n/m almost half-regular bipartite degree sequences on m + m
vertices, then we have a slightly smaller number than we have almost half-regular bipartite degree
sequences on n+n vertices (divisibility conditions implied). But we can do this for all possible m.
However, here the problem that might arise is that some (probably a small number) of sequences
will be enumerated more than once. One way to overstep this issue is to use only indecomposable
splitted bipartite degree sequences of arbitrary size, but not too large. However, the number of
these objects is not known.

While the constructed class above is clearly much larger than the original class of almost
half-regular bipartite degree sequences with proven fast mixing MCMC, its size is not easily
estimated. Instead, we will examine in detail another class, which, as we will show, is much
larger than the set of almost half-regular degree sequences: we will compose graphs from general
splitted bipartite degree sequences of a relatively small number of vertices, as a direct application
of Lemma 2.3.

Composing a large number of short splitted bipartite degree sequences into longer ones and
enumerating the different composition results requires good control over the possible multipli-
cities to estimate the size of the resulting class – as is clearly shown by examples (4.3), (4.4) and
(4.6).

Thus, instead, we will compose splitted bipartite degree sequences of fixed length, which have
the following useful property.

Lemma 5.6. Let d and f be two splitted bipartite degree sequences. Both are derived as com-
positions of splitted bipartite degree sequences,

d = d1 ◦d2 ◦ · · · ◦dn,

f = f1 ◦ f2 ◦ · · · ◦ fn,
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where all di and fi are (not necessarily indecomposable) splitted bipartite degree sequences on
the same number of vertices (e.g. on k + k). If there exists an i such that di �= fi, then d �= f.

Proof. Assume that, on the contrary, d = f in spite of the fact that di �= fi. Consider now the
canonical decomposition of di and fi for the smallest i such that di �= fi. Due to the associative
rule of the ◦ operation, they can be written in the form

d = d1 ◦d2 ◦ · · · ◦ (di,1 · · · ◦di, j)◦di+1 ◦ · · · ,
f = f1 ◦ f2 ◦ · · · ◦ (fi,1 ◦ · · · ◦ fi,�)◦ fi+1 ◦ · · · ,

where di and fi are written in their canonical decomposition form. Since di �= fi, there must be a
first k such that di,k �= fi,k, though they are both in the same position of the decomposition for d

and f. Thus the canonical decompositions of d and f differ, implying that d �= f, a contradiction.

Lemma 5.7. The number of graphical splitted bipartite degree sequences that contain at most
6+6 long splitted bipartite degree sequences in their canonical decompositions is Ω(4.99n).

Proof. Consider the splitted bipartite degree sequences we can construct by composing graph-
ical splitted bipartite degree sequences having exactly 6 + 6 vertices. We know that there are
15584 graphical degree sequences on 6 + 6 vertices (see [9] and/or [41]). Therefore we can
construct 15586n/6 > 4.99n different graphical degree sequences in this way due to Lemma 5.6.
This is obviously less than all the possible cases, which proves the lemma.

Theorem 5.8. Let g(n) be the number of graphical splitted bipartite degree sequences on n+n
vertices for which we can prove rapid mixing using Theorem 3.6, and let h(n) denote all almost
half-regular graphical splitted bipartite degree sequences on n + n vertices. Then there exists a
c > 1 such that

g(n)/h(n) = Ω(cn).

Proof. This is a direct consequence of Lemma 2.3, applied to splitted bipartite degree se-
quences, and the decomposition result Theorem 4.6.

Numerical calculations shows if we consider splitted bipartite degree sequences on 25 + 25
vertices then we can write 10 instead of 4.99. In general, we can state the following theorem.

Theorem 5.9. Let C be a constant such that the number of graphical bipartite degree sequences
on n+n vertices is Ω(Cn). Then for any ε > 0 there exist Ω((C−ε)n)-bipartite degree sequences
with fast mixing MCMC processes.

Proof. If the number of graphical degree sequences on n + n vertices is Ω(Cn), then there
exists an α > 0 such that, for any n, the number of graphical degree sequences on n+n vertices
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is greater than αCn. Let

n0 =
⌈

log(α)
log((C− ε)/C)

⌉
.

Then the number of graphical sequences on n0 +n0 vertices is greater than or equal to (C−ε)n0 .
Similarly to Lemma 5.7, we can prove that there are Ω((C − ε)n) graphical splitted bipartite
degree sequences that contain at most n0 + n0 long splitted bipartite degree sequences in their
canonical decompositions. Their swap Markov chains will all be rapidly mixing.

If one could prove the following conjecture, then we could prove an even stronger statement.

Conjecture 5.10. The number of bipartite graphical degree sequences on n + n vertices is a
logconvex function of n.

Theorem 5.11. If Conjecture 5.10 is true, then for any ε > 0 there exists a polynomial function
poly(n) such that

f (n)
g(n)

= O((1+ ε)n),

where f (n) denotes the number of bipartite graphical degree sequences on n + n vertices and
g(n) denotes the number of bipartite graphical degree sequences for which the second largest
eigenvalue λ2 of their swap Markov chain satisfies

1
1−λ2

< poly(n).

Proof. If f (n), the number of graphical degree sequences on n + n vertices is logconvex, then
the derivative of its logarithm has a limit as n tends to infinite. This is because logconvexity
means that the derivative of log( f (n)) is monotonically increasing. However, f (n) = O(16n),
thus the derivative is upper-bounded, and any upper-bounded monotonically increasing series
has a limit. (We have f (n) = O(16n) because the number of pairs of degree sequences on n + n
vertices with maximum degree n is O(16n/n) – see Lemma 5.5 – and the number of graphical
degree sequences is less.) Let

C = lim
n→∞

∂
∂n

log( f (n)).

Then for any ε ′ > 0, f (n) = O((C +ε ′)n) and f (n) = Ω((C−ε ′)n). Since f (n) = Ω((C−ε ′)n)),
there exists an n0 constant such that f (n0) > (C − 2ε ′)n. Therefore the number of graphical
splitted bipartite degree sequences on n + n vertices that contain at most n0 + n0 long splitted
bipartite degree sequences in their canonical decompositions is g(n) = Ω(C − 2ε ′)n). What
follows is that

f (n)
g(n)

= O

(
(C + ε ′)n

(C−2ε ′)n

)
.
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If we set ε ′ such that

C + ε ′

C−2ε ′ = 1+ ε

holds, the theorem follows.

Finally, it is clear that in our construction we can use almost half-regular splitted bipartite
sequences, difference graph sequences, and small-size splitted bipartite sequences mixed in any
order to generate bipartite degree sequences with fast mixing Markov chains.

6. MCMC sampling on degree spectra matrix problems

Let us recall that in the graph G the degree spectrum of vertex v is the vector sG(v), where
sG(v)i denotes the number of neighbours of v that have degree i. The degree spectra matrix
M(G) consists of the degree spectra of the vertices as columns. One can ask whether an integer
matrix can be the degree spectra matrix of a graph. If the answer is affirmative, then the matrix
is graphical.

The degree spectrum of a given vertex automatically defines its degree, therefore this notion
can be thought as a specialization of the degree sequences. Indeed, in general there are several de-
gree spectra matrices corresponding to the same degree sequence, and their individual realization
sets partition the set of all realizations of the degree sequence into classes.

To the best of our knowledge, the notion was first introduced in [17] and was further studied
in [24] to deal with different aspects of the Joint Degree Matrix problem. It is easy to decide
whether a degree spectra matrix is graphical (see [4, Theorem 3]). For all pairs 1 � i, j � Δ(G)
let Gi, j denote the induced subgraph spanned degree-i and degree- j vertices. (Here i = j can
occur, in which case we have a simple graph instead of a bipartite graph.) Then

bd(Gi, j) = ((sG(u) j : d(u) = i)(sG(w)i : d(w) = j))

is a bipartite (simple) degree sequence.

Theorem 6.1 (Bassler, Del Genio, Erdős, Miklós and Toroczkai [4]). The degree spectra
matrix M is graphical if and only if all its component (bi- and uni-) partite degree sequences are
graphical.

This clearly refers to the fact that the set of all realizations is connected under the swap opera-
tion, that is, to the irreducibility of the space of all realizations. Indeed, each swap is completely
within one of the component graphs, therefore the Markov graph of all realizations is clearly
partitioned into these smaller Markov graphs. Finally, the paper also developed a polynomial-
time algorithm to determine all possible degree spectra matrices which are compatible with the
degree sequence of the graph.

Barrus and Donovan [2] reintroduced the notion of degree spectra under the name of neigh-
bourhood degree list, and they re-proved Theorem 6.1 and also the connectedness (irreducibility)
result. However, the main results in their paper are on the uniqueness of realizations (up to
isomorphism) and their connections to threshold graphs.
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Theorem 6.2. Let d be a degree sequence and assume that for a compatible degree spectra
matrix M, all component graphs admit fast, swap-based MCMC samplers. For example, the
bipartite graphs are almost half-regular and the simple graphs are almost regular or irregular
but satisfy the Greenhill condition (D) of Theorem 2.1. Then the corresponding realizations of
the degree spectra matrix all admit fast mixing swap-based MCMC sampling processes.

An example of this kind of degree spectra matrix has already been found in [17, Corollary 5],
which we recall in the next theorem.

Theorem 6.3 (Czabarka, Dutle, Erdős and Miklós [17]). For any graphical Joint Degree
Matrix there exist degree spectra matrices for which all component graphs are almost regular or
almost semi-regular.

Recall that a bipartite graph is semi-regular if in both classes the vertices have the same degree
(but the values can be different between the partition classes). In [17] this is called a balanced
realization. It is also clear that almost half-regularity is a much less severe property than almost
semi-regularity. In fact, from any almost semi-regular bipartite graph pair Gi, j and Gi,�, one can
easily make several almost half-regular realizations with swap operations which keep the Joint
Degree Matrix requirements but destroy almost semi-regularity.

7. Conclusions

In summary, by exploiting an earlier result we obtained on composition Markov chains for direct-
product spaces combined with the split graph decompositions introduced by Tyshkevich and
a recent result of Barrus and West, we could significantly extend the class of bipartite degree
sequences for which the KTV conjecture holds. This approach not only contributes to the KTV
conjecture but also opens up exciting novel perspectives on the intimate relationships between
processes on graphs and deeper underlying graph-theoretical properties.
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