
Math. Struct. in Comp. Science (2010), vol. 20, pp. 951–975. c© Cambridge University Press 2010

doi:10.1017/S0960129510000265

The computational SLR: a logic for reasoning about
computational indistinguishability

Y U Z H A N G†

State Key Laboratory for Computer Science, Institute of Software, Chinese Academy of Sciences,
P.O. Box 8718, Beijing 100190, China and State Key Laboratory for Novel Software Technology,
Nanjing University
Email: yzhang@ios.ac.cn

Received 1 December 2009; revised 1 May 2010

Computational indistinguishability is a notion in complexity-theoretic cryptography and is used to
define many security criteria. However, in traditional cryptography, proving computational
indistinguishability is usually informal and becomes error-prone when cryptographic constructions
are complex. This paper presents a formal proof system based on an extension of Hofmann’s SLR
language, which can capture probabilistic polynomial-time computations through typing and is
sufficient for expressing cryptographic constructions. In particular, we define rules that directly
justify the computational indistinguishability between programs, and then prove that these rules are
sound with respect to the set-theoretic semantics, and thus the standard definition of security. We
also show that it is applicable in cryptography by verifying, in our proof system, Goldreich and
Micali’s construction of a pseudorandom generator, and the equivalence between next-bit
unpredictability and pseudorandomness.

1. Introduction

Research on the verification of cryptographic protocols in recent years has switched its focus
from the symbolic model to the computational model – a more realistic model where criteria for
the underlying cryptography are considered. Computational indistinguishability is an important
notion in cryptography and the computational model of protocols, and, in particular, is used to
define many security criteria. However, proving computational indistinguishability in traditional
cryptography is usually done using a paper-and-pencil, semi-formal method, which is often error-
prone, and becomes unreliable when the cryptographic constructions are complex. The aim of
this paper is to design a formal system that can help us verify cryptographic proofs; our ultimate
goal is a full or partial automatation of the verification process.

Noting that computational indistinguishability can be viewed as a special notion of equivalence
between programs, we make use of techniques from the theory of programming languages.
However, this first requires an appropriate language for expressing cryptographic constructions
and adversaries. In particular, we shall only consider ‘feasible’ adversaries; more precisely,
probabilistic programs that terminate within polynomial time. While such a complexity restric-
tion can be easily formulated using the model of Turing machines, it is by no mean a good
model for formal verification. At this point, our attention was drawn to Hofmann’s SLR system

† This work was partly supported under the grant KFKT2008B16.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 952

(Hofmann 1998; Hofmann 2000), which is a functional programming language that implements
Bellantoni and Cook’s safe recursion (Bellantoni and Cook 1992). A very nice property of SLR is
its characterisation of polynomial-time computations through typing. The probabilistic extension
of SLR was studied in Mitchell et al. (1998), where functions of the proper type capture the
computations that terminate in polynomial time on a probabilistic Turing machine.

Our system is based on the probabilistic extension of SLR, and we develop an equational proof
system with rules justifying the computational indistinguishability between programs. We prove
that these rules are sound with respect to the set-theoretic semantics of the language, and thus
coincide with the traditional definition of computational indistinguishability. Reasoning about
cryptographic constructions in the proof system is purely syntactic, without explicit analysis of
the probability of program output and the complexity bound of adversaries.

The rest of the paper is organised as follows. Section 2 introduces the computational SLR,
which is a probabilistic extension of Hofmann’s SLR, together with an adapted definition of
computational indistinguishability based on the language. In Section 3 we develop the equational
proof system and prove the soundness of its rules. We give some cryptographic examples using
the proof system in Section 4 to illustrate its usability in cryptography. In Section 5 we give a
summary of related work, and, finally, present our conclusions in Section 6.

2. The computational SLR

We begin by defining a language for expressing cryptographic constructions and adversaries,
as well as the computational indistinguishability between programs. Because of the complexity
consideration, the language should offer a mechanism for capturing the class of probabilistic
polynomial-time computations. Bellantoni and Cook have proposed an alternative recursion
model to the Turing-machine model, which is called safe recursion and defines exactly the func-
tions that are computable in polynomial time on a Turing-machine (Bellantoni and Cook 1992).
This is an intrinsic, purely syntactic mechanism: variables are divided into safe variables and
normal variables, and safe variables must be instantiated by values that are computed using safe
variables only; recursion must take place on normal variables and intermediate recursion results
are never sent to safe variables. When higher-order functions are included, step functions are also
required to be linear, that is, intermediate recursive results can only be used once in each step.

Hofmann later developed a functional language called SLR to implement safe recursion
(Hofmann 1998; Hofmann 2000). In particular, he introduces a type system with modality to
distinguish between normal variables and safe variables, and linearity to distinguish between
normal functions and linear functions. He proves that well-typed functions of a proper type
are exactly polynomial-time computable functions. Hofmann’s original SLR system has a poly-
morphic type system, but this is not required in cryptography, so in this section we first introduce
a non-polymorphic version of Hofmann’s SLR system, then extend it to express cryptographic
constructions. We shall adapt the traditional definition of computational indistinguishability in
our language.

2.1. The non-polymorphic SLR for bitstrings

Types are defined by:

τ, τ′, . . . ::= Bits | τ× τ′ | τ⊗ τ′ | �τ→ τ′ | τ→ τ′ | τ � τ′.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 953

τ <: τ

τ <: τ′ τ′ <: τ”

τ <: τ”

τ <: τ′ σ <: σ′

τ× σ <: τ′ × σ′

τ <: τ′ σ <: σ′

τ⊗ σ <: τ′ ⊗ σ′

τ′ <: τ σ <: σ′ a′ � a

τ
a−→ σ <: τ′

a′−→ σ′

τ′ <: τ σ <: σ′

τ→ σ <: �τ′ → σ′

τ <: τ′

Bits→ τ <: Bits � τ′

Fig. 1. Sub-typing rules for SLR.

Bits is the base type for bitstrings, and all other types are from Hofmann’s language: τ × τ′ are
cartesian product types, and τ⊗τ′ are tensor product types as in linear λ-calculus. There are three
sorts of functions:

(1) �τ→ τ′ are modal functions with no restriction on the use of arguments;
(2) τ→ τ′ are non-modal functions where arguments must be safe values;
(3) τ � τ′ are linear functions where arguments can be used only once.

SLR uses aspects to represent these function spaces: τ
a−→ τ′ is a function type with aspect a,

which is one of:

(1) m = (modal, non-linear) for �τ→ τ′;
(2) n = (non-modal, non-linear) for τ→ τ′; or
(3) l = (non-modal, linear) for τ � τ′.

The aspects are ordered: m � n � l. They are also used to tag variables in typing contexts.
The type system also inherits its sub-typing from SLR and we write τ <: τ′ if τ is a sub-

type of τ′. The sub-typing rules are listed in Figure 1. Note that the last rule, which allows
Bits→ τ <: Bits � τ, states that bitstrings can be duplicated without violating linearity.

The expressions of SLR are defined by the following grammar:

e1, e2, . . . ::= x atomic variables
| nil empty bitstring
| B0 | B1 bits
| caseτ case distinction
| recτ safe recursor
| λx.e abstraction
| e1e2 application
| 〈e1, e2〉 product
| proj1e | proj2e product projection
| e1 ⊗ e2 tensor product
| let x⊗ y = e1 in e2 tensor projection

Where:

— B0 and B1 are two constants for constructing bitstrings: if u is a bitstring, B0u (or B1u) is
the new bitstring with a bit 0 (or 1) added to the left-hand end of u. We will often use B to
denote the bit constructor when its value is irrelevant. Note that in this language, we work on
real bitstrings, not the number that they represent. For instance, 0 and 00 are two different
objects in our language, so the two constants B0 and B1 are semantically different from the
two successors S0 and S1 in Hofmann’s system.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 954

T-VAR
Γ, x :a τ � x : τ

Γ � e : τ τ <: τ′

T-SUB
Γ � e : τ′

Γ, x :a τ � e : τ′

T-ABS
Γ � λx . e : τ

a−→ τ′

Γ,Δ1 � e1 : τ
a−→ τ′ Γ,Δ2 � e2 : τ Γ non-linear x :a

′
σ ∈ Γ,Δ2 implies a′ � a

T-APP
Γ,Δ1,Δ2 � e1e2 : τ′

Γ � e1 : τ1 Γ � e2 : τ2
T-PAIR

Γ � 〈e1, e2〉 : τ1 × τ2

Γ � e : τ1 × τ2 i ∈ {1, 2}
T-PROJ

Γ � proji(e) : τi

Γ,Δ1 � e1 : τ1 Γ,Δ2 � e2 : τ2 Γ non-linear
T-TENSOR

Γ,Δ1,Δ2 � e1 ⊗ e2 : τ1 ⊗ τ2

Γ,Δ1, x :l τ1, y :l τ2 � e : τ Γ,Δ2 � e′ : τ1 ⊗ τ2 Γ non-linear
T-LET

Γ,Δ1,Δ2 � let x⊗ y = e′ in e : τ

T-NIL
Γ � nil : Bits

i ∈ {1, 2}
T-BIT

Γ � Bi : Bits � Bits

T-REC
Γ � recτ : τ � �(�Bits→ τ � τ)→ �Bits→ τ

T-CASE
Γ � caseτ : Bits � (τ× (Bits � τ)× (Bits � τ)) � τ

Fig. 2. Typing rules for SLR.

— caseτ is the constant for case distinction – caseτ(n, 〈e, f0, f1〉) tests the bitstring n and
returns:

– e if n is an empty bitstring;
– f0(n

′) if the first bit of n is 0 and the rest is n′; and
– f1(n

′) if the first bit of n is 1.

— recτ is the constant for recursion on bitstrings – recτ(e, f, n) returns:

– e if n is empty; and
– f(n, recτ(e, f, n′)) otherwise, where n′ is the part of the bitstring n with its first bit cut off.

Typing assertions for expressions are of the form Γ � t : τ, where Γ is a typing context that
assigns types as well as aspects to variables. A context is typically written as a list of bindings
x1 :a1 τ1, . . . , xn :an τn, where a1, . . . , an are aspects of {m, n, l}. The typing rules are given in
Figure 2.

2.2. The computational SLR

The probabilistic extension of SLR was studied by Mitchell et al. by adding a random bit oracle
to simulate the oracle tape in probabilistic Turing machines (Mitchell et al. 1998). However,
OSLR is a functional language with side-effects, which means that the value of a program
depends on the evaluation strategy (call-by-name or call-by-value), which makes it difficult to
deal with substitution when we build a logic onto the language. Hence we adopt a different
syntax, which is taken from Moggi’s computational λ-calculus (Moggi 1991), which is a pure

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 955

Γ � e : τ
T-SLR

Γ � e : τ

T-RAND
Γ � rand : TBits

Γ � e : τ
T-VAL

Γ � val(e) : Tτ

Γ,Δ1 � e1 : Tτ1 Γ,Δ2, x :a τ1 � e2 : Tτ2 Γ non-linear x :a
′
σ ∈ Γ,Δ1 implies a′ � a

T-BIND
Γ,Δ1,Δ2 � bind x = e1 in e2 : Tτ2

Fig. 3. Additional typing rules for computational SLR.

functional language where probabilistic computations are captured by monadic types. We call
the language computational SLR and will often abbreviate it to CSLR.

Types in CSLR are extended with a unary type constructor

τ ::= . . . | Tτ ,

which is taken from Moggi’s language: a type Tτ is called a monadic type (or a computation
type) for computations that return (if they terminate correctly) values of type τ. In our case,
a computation always terminates and can be probabilistic, hence it will return one of a set of
values, each with a certain probability. The sub-typing system is then extended with the rule:

τ <: τ′

Tτ <: Tτ′
.

Expressions of the computational SLR are extended with three constructions for probabilistic
computations:

e1, e2, . . . ::= . . . SLR terms
| rand oracle bit
| val(e) deterministic computation
| bind x = e1 in e2 sequential computation

where:

— rand is a constant returning a random bit 0 or 1, each with probability 1/2.
— val(e) is the trivial (deterministic) computation, which returns e with probability 1.
— bind x = e1 in e2 is the sequential computation, which first computes e1, binds the value to

x, then computes e2.

We will sometimes abbreviate programs of the form bind x1 = e1 in . . . bind xn = en in e by
bind (x1 = e1, . . . , xn = en) in e. The order of some bindings must be carefully maintained in
the abbreviated form.

Typing rules for these extra constants and constructions are given in Figure 3. Note that when
defining a purely deterministic program in CSLR, it is not sufficient to state that its type does not
have monadic components. For instance, the function λxBits . (λyTBits . x)rand has type Bits �
Bits, but it still contains probabilistic computations. Instead, we must show that the program can
be defined and typed in (non-probabilistic) SLR, and in that case, we say it is SLR-definable and
SLR-typable.

As in many standard typed λ-calculi, we can define a reduction system for the computational
SLR, and prove that every closed term has a canonical form. In particular, the canonical form of

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 956

type Bits is:

b ::= nil | B0b | B1b.

If u is a closed term of type Bits, we write |u| for its length. We define the length of a bitstring
with canonical form b as follows:

|nil| = 0, |Bib| = |b|+ 1 (i = 0, 1).

2.3. A set-theoretic semantics

We write � for the set of bitstrings, with a special element ε denoting the empty bitstring. When
u, v are bitstrings, we write u · v for their concatenation. If A,B are sets, we write A × B and
A→ B for their cartesian product and function space, respectively. To interpret the probabilistic
computations, we adopt the probabilistic monad defined in Ramsey and Pfeffer (2002): if A is
set, we write DA : A → [0, 1] for the set of probability mass functions over A. The original
monad in Ramsey and Pfeffer (2002) is defined using measures instead of mass functions, and is
of type (2A → [0,∞]) → [0,∞], where 2A denotes the set of all subsets of A, so that it can also
represent computing probabilities over infinite data structure, not just discrete probabilities. But
for simplicity, in this paper we will work with mass functions instead of measures. Note that the
monad is not the same as the one defined in Mitchell et al. (1998), which is used to keep track of
the bits read from the oracle tape rather than for reasoning about probabilities.

When d is a mass function ofDA and a ∈ A, we also write Pr[a← d] for the probability d(a).
If there are finitely many elements in d ∈ DA, we can write d as {(a1, p1), . . . , (an, pn)}, where
ai ∈ A and pi = d(ai).

The detailed definition of the set-theoretic semantics is given in Figure 4. The set-theoretic
model does not distinguish between normal products and tensor products, or between the three
sorts of function spaces.

A very nice property of SLR is a characterisation of polynomial-time computations (the class
PTIME) through typing.

Theorem 1 (Hofmann (2000)). The set-theoretic interpretations of closed terms of type

�Bits→ Bits

in SLR define exactly the polynomial-time computable functions.

It is worth mentioning that the inclusion of tensor products and linear functions in SLR, which
lead to a relatively complex type-checking that will probably not be an easy task for crypto-
graphers, are not required for capturing PTIME computations unless we consider higher-order
recursions, which can often make the programming in SLR easier. In practice, a simpler language
without higher-order recursion (and consequently with no need for tensor products and linear
functions) is probably enough for cryptographic use, but we will keep the language as it is to
make it a comprehensive system.

Mitchell et al. have extended Hofmann’s result to the probabilistic version of SLR with a
random bit oracle, showing that terms of the same type in their language define exactly the
functions that can be computed by a probabilistic Turing machine in polynomial time (the class

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 957

Interpretation of types:

�Bits� = �

�τ× τ′� = �τ�× �τ′�
�τ⊗ τ′� = �τ�× �τ′��
τ

a−→ τ′
�

= �τ�→ �τ′�
�Tτ� = D�τ�

Interpretation of terms:

�x�ρ = ρ(x)

�nil�ρ = ε

�Bi�ρ = λv . (i · v), i = 0, 1

�recτ�ρ = function f such that for all v ∈ �τ�, u ∈ �Bits�,
h ∈ �Bits�→ �τ�→ �τ�,
f(v, h, ε) = v and
f(v, h, i · u) = h(u, f(v, h, u))

�caseτ�ρ = function f such that for all v ∈ �τ�, u ∈ �Bits�
hi ∈ �Bits�→ �τ� (i = 0, 1),
f(v, h0, h1, ε) = u and
f(v, h0, h1, i · u) = hi(u)

�λx . e�ρ = λv . �e�ρ[x �→ v]

�e1e2�ρ = �e1�(�e2�ρ)

�〈e1, e2〉�ρ = �e1 ⊗ e2�ρ = (�e1�ρ, �e2�ρ)

�projie�ρ = vi, where �e�ρ = (v1, v2)

�let x⊗ y = e1 in e2�ρ = �e2�ρ[x �→ v1, y �→ v2] where �e1�ρ = (v1, v2)

�rand�ρ = {(0, 1
2
), (1, 1

2
)}

�val(e)�ρ = {(�e�ρ, 1)}
�bind x = e1 in e2�ρ = λv .

∑
v′∈�τ� �e2�ρ[x �→ v′](v)× �e1�ρ(v′)

where τ is the type of the variable x (or Tτ is the type of e1).

Fig. 4. The set-theoretic semantics for the computational SLR.

PPT). Although our language is slightly different from their language OSLR (which does not
have computation types), the categorical model that they use to prove the complexity result can
also be used to interpret CSLR. In particular, if we follow the traditional encoding of call-by-
value λ-calculus into Moggi’s computational language, function types τ

a−→ τ′ in OSLR will be
encoded as τ

a−→ Tτ′ in CSLR, hence OSLR functions that correspond to PPT computations are
actually CSLR functions of type �Bits→ TBits. This enables us to reuse the result of Mitchell
et al. (1998), when suitably adapted for CSLR.

Theorem 2 (Mitchell et al. 1998). The set-theoretic interpretations of closed terms of type
�Bits → TBits in CSLR define exactly the functions that can be computed by a probabilistic
Turing machine in polynomial time.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 958

2.4. Computational indistinguishability

We say that a closed SLR-term p (of type �Bits → Bits) is length sensitive if for every two
bitstrings u1, u2 of the same length, that is, |u1| = |u2|, we have |p(u1)| = |p(u2)|. When a term p

is length sensitive, we write |p| for the underlying length measure function, that is, |p|(n) = |p(u)|,
where |u| = n. If p and q are two length-sensitive SLR-functions, we write |p| < |q| to denote the
fact that for any bitstring u, we have |p(u)| < |q(u)|, and similarly for |p| > |q|, |p| = |q|, and so
on. A length-sensitive function is said to be positive if for every bitstring u, we have |p(u)| > |u|.

We say that a closed CSLR-term p (of type �Bits → τ) is numerical if its value depends
only on the length of its argument, that is, �p(u1)� = �p(u2)� if |u1| = |u2|. Note that we do not
include the standard numerical functions in the language, so the numerical and length-sensitive
SLR-functions will be used to represent the usual polynomials of numerals, and we will often
just refer to them as polynomials. A numerical polynomial is canonical if it returns the empty
bitstring or bitstrings containing bit 1 only.

Intuitively, two probabilistic functions are computationally indistinguishable if the probability
that any feasible adversary can distinguish between them becomes negligible when they take
sufficiently large arguments. The following definition is adapted from the definition of computa-
tional indistinguishability in Goldreich (2001, Definition 3.2.2) for the setting of CSLR.

Definition 1 (Computational indistinguishability). Two CSLR terms f1 and f2, both of type
�Bits → τ, are computationally indistinguishable (written f1 � f2) if for every term A such
that � A : �Bits → τ → TBits and every positive polynomial p (SLR-typable with type
�Bits→ Bits), there exists n ∈ � such that for every bitstring w with |w| � n,

|Pr[ε← �A(w, f1(w))�]− Pr[ε← �A(w, f2(w))�]| < 1

|p(w)| ,

where ε denotes the empty bitstring.

In a cryptographic context, w is usually considered to be the security parameter.
Note that the above definition is more general than that of Goldreich (2001). Here we consider

programs that can return values of an arbitrary type, while in the definition of Goldreich (2001),
computational indistinguishability is only defined for distributions of bitstrings. One may argue
that higher-order types are not necessary for reasoning about crypto-systems, but the general
definition turned out to be very helpful when formalising game-based proofs in our recent invest-
igation.

2.5. Examples of PPT functions

Before moving on to develop the logic for reasoning about programs in CSLR, we define some
useful PPT functions that will be frequently used in cryptographic constructions.

— The random bitstring generation function rsrsrs:

rsrsrs
def
= λx : Bits . rec(val(nil), hrsrsrs , x),

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 959

where hrsrsrs is defined by

hrsrsrs
def
= λm . λr . bind (b = rand, u = r) in

case(b, 〈val(nil), λx.val(B0u), λx.val(B1u)〉).

rsrsrs receives a bitstring and returns a uniformly random bitstring of the same length. It is easy
to check that � hrsrsrs : �Bits→ TBits � TBits, and thus � rsrsrs : �Bits→ TBits.
If e is a closed program of type TBits and all possible results of e are of the same length, we
write |e| for the length of its result bitstrings. Clearly, for any bitstring u, the result bitstrings
of rsrsrs(u) are of the same length and it can be easily checked that |rsrsrs(u)| = |u|.

— The string concatenation function concconcconc:

concconcconc
def
= λx . λy . rec(y, hconcconcconc , x),

where hconcconcconc is defined by

hconcconcconc
def
= λm . λr . case(m, 〈r, λx.B0r, λx.B1r〉).

hconcconcconc is a purely deterministic, well-typed SLR-function of type �Bits → TBits � TBits,
hence � concconcconc : �Bits → Bits � Bits. Note that concconcconc can also be defined as an SLR-term
of type Bits � �Bits → Bits, that is, it recurs on only one of its argument but it does not
matter which one, so we do not distinguish the two forms but only require that one of the two
arguments of concconcconc must be normal (modal). We often abbreviate concconcconc(u, v) to u•v.

— The head function hdhdhd :

hdhdhd
def
= λx . case(x, 〈nil, λy.0, λy.1〉).

The tail function tltltl :

tltltl
def
= λx . case(x, 〈nil, λy.y, λy.y〉).

Both hdhdhd and tltltl are SLR-definable and SLR-typable with type Bits � Bits.
— The split function splitsplitsplit :

splitsplitsplit
def
= λx . λn . rec(nil⊗ x, hsplitsplitsplit , n),

where

hsplitsplitsplit
def
= λm . λr . let v1 ⊗ v2 = r in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉).
splitsplitsplit(x, n) splits the bitstring x into two bitstrings, the first of which is of length |n| if |n| � |x|
or x otherwise. It is easy to check that splitsplitsplit is SLR-definable and SLR-typable with type
Bits � �Bits→ Bits⊗ Bits. We can use splitsplitsplit to define the prefix and suffix functions:

prefprefpref
def
= λx . λn . let u1 ⊗ u2 = splitsplitsplit(x, n) in u1

suffsuffsuff
def
= λx . λn . let u1 ⊗ u2 = splitsplitsplit(x, n) in u2.

Both of these functions are SLR-definable of type Bits � �Bits→ Bits.
— The cut function cutcutcut :

cutcutcut
def
= λx . λn .prefprefpref (x, suffsuffsuff (x, n)).

cutcutcut(x, n) cuts the right part of length |n| of the bitstring x. We shall often abbreviate it to
x− n. cutcutcut is SLR-definable with type Bits � �Bits→ Bits.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 960

3. The proof system

In this section we present an equational proof system on top of CSLR, which we will use to
justify computational indistinguishability between CSLR programs at the syntactic level.

The proof system contains two sets of rules:

(1) Rules for justifying semantic equivalence between CSLR programs (we write e1 ≡ e2 if e1

and e2 are semantically equivalent) – see Figure 5.
(2) Rules for justifying computational indistinguishability – see Figure 6.

The first set are standard rules for typed λ-calculi, with axioms (monad laws) for probabilistic
computations. The rules in the second set are similar to those used in the logic of Impagliazzo and
Kapron (2006), which we shall refer to as the IK-logic in the rest of the paper – they also define
an equational proof system for computational indistinguishability based on their own arithmetic
model. However, we do not have the EDIT rule for managing bitstrings that appears internally
in their logic since CSLR has no primitive operations for editing bitstrings apart from the two
bit constructors B0, B1. Many bitstring operations are defined as CSLR functions, and we will
introduce a series of lemmas (see Section 3.2) that can be used in proofs in the same way as
system rules. In this way we avoid the complexity analysis for bitstring operations that appears
in the IK-logic, since all bitstring operations in CSLR are guaranteed to be polynomial-time
computable by the typing system.

The H-IND rule comes from the frequently used hybrid technique in cryptography: if two
complex programs can be transformed into a ‘small’ (polynomial) number of hybrids (relatively
simpler programs), where the extreme hybrids are exactly the original programs, then proving
the computational indistinguishability of the two original programs can be reduced to proving the
computational indistinguishability between neighbouring hybrids. The H-IND in our system is
slightly different from that in the IK-logic since we do not have the general primitive that returns
uniformly a number that is smaller than a polynomial, but the underlying support from the hybrid
technique remains there.

Note that the rule TRANS-INDIST is safe and will not break the complexity constraint,
because the number of times we apply a rule in a proof is irrelevant to the security parameter
of the programs being tested.

3.1. Soundness of the proof system

To show that the CSLR proof system is sound with respect to the set-theoretic semantics, we
prove the soundness of the two sets of rules.

Theorem 3 (Soundness of program equivalence rules). If Γ � e1 : τ, Γ � e2 : τ, and e1 ≡ e2

is provable in the CSLR proof system, then �e1�ρ = �e2�ρ, where ρ ∈ �Γ�.

Proof. Most of the rules for semantic equivalence are standard in typed λ-calculus. The prob-
abilistic monad certifies the axioms for computations.

Theorem 4 (Soundness of computational indistinguishablity rules). If Γ � e1 : �Bits →
TBits, Γ � e2 : �Bits→ TBits, and e1 � e2 is provable in the CSLR proof system, then e1 and
e2 are computationally indistinguishable.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 961

Axioms:

AX-REFL
e ≡ e

AX-REC-NIL
rec(e1, e2, nil) ≡ e1

AX-REC
rec(e1, e2, Be) ≡ e2(e, rec(e1, e2, e))

x �∈ FV (e′)
AX-CASE

case(e, e′, λx.e′, λx.e′) ≡ e′

AX-CASE-NIL
case(nil, 〈e′, e0, e1〉) ≡ e′

i = 0, 1
AX-CASE-i

case(Bie, 〈e′, e0, e1〉) ≡ ei e

y �∈ FV (e)
AX-α

λx.e ≡ λy.e[y/x]

AX-β
(λx.e)e′ ≡ e[e′/x]

x �∈ FV (e)
AX-η

λx.ex ≡ e

i = 1, 2
AX-PROJ-i

proji〈e1, e2〉 ≡ ei

AX-PAIR
〈proj1e, proj2e〉 ≡ e

AX-LET
let x1 ⊗ x2 = e1 ⊗ e2 in e ≡ e[e1/x1, e2/x2]

AX-TENSOR
(let x1 ⊗ x2 = e in x1)⊗ (let x1 ⊗ x2 = e in x2) ≡ e

AX-RAND
bind b = rand in e ≡ bind b = rand in case(b, 〈e′, λx.e[0/b], λx.e[1/b]〉)

y �∈ FV (e′)
AX-BIND-α

bind x = e in e′ ≡ bind y = e in e′

x �∈ FV (e′)
AX-BIND-η

bind x = e in e′ ≡ e′

AX-BIND-1
bind x = val(e1) in e2 ≡ e2[e1/x]

AX-BIND-2
bind x = e in val(x) ≡ e

AX-BIND-3
bind x = (bind y = e1 in e2) in e3 ≡ bind y = e1 in bind x = e2 in e3

Inference rules:

e ≡ e′

SYM
e′ ≡ e

e ≡ e′ e′ ≡ e′′

TRANS
e ≡ e′′

ei ≡ e′i (i = 1, 2, 3)
REC

rec(e1, e2, e3) ≡ rec(e′1, e
′
2, e
′
3)

ei ≡ e′i (i = 1, 2, 3, 4)
CASE

case(e1, 〈e2, e3, e4〉) ≡ case(e′1, 〈e′2, e′3, e′4〉)

e ≡ e′

ABS
λx.e ≡ λxe′

e1 ≡ e′1 e2 ≡ e′2
APP

e1e2 ≡ e′1e
′
2

e ≡ e′ i = 1, 2
PROJ-i

projie ≡ projie
′

e1 ≡ e′1 e2 ≡ e′2
PAIR

〈e1, e2〉 ≡ 〈e′1, e′2〉
e1 ≡ e′1 e2 ≡ e′2

TENSOR
e1 ⊗ e2 ≡ e′1 ⊗ e′2

e1 ≡ e′1 e2 ≡ e′2
LET

let x⊗ y = e1 in e2 ≡ let x⊗ y = e′1 in e′2

e ≡ e′

VAL
val(e) ≡ val(e′)

e1 ≡ e′1 e2 ≡ e′2
BIND

bind x = e1 in e2 ≡ bind x = e′1 in e′2

Fig. 5. Rules for semantic equivalence.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 962

� ei : �Bits→ τ (i = 1, 2) e1 ≡ e2
EQUIV

e1 � e2

� ei : �Bits→ τ (i = 1, 2, 3) e1 � e2 e2 � e3
TRANS-INDIST

e1 � e3

x :n Bits, y :n τ � e : τ′ � ei : �Bits→ τ (i = 1, 2) e1 � e2
SUB

λx . e[e1(x)/y] � λx . e[e2(x)/y]

x :n Bits, n :n Bits � e : τ λn.e[u/x] is numerical for all bitstring u

λx . e[i(x)/n] � λx . e[B1i(x)/n] for all canonical polynomial i such that |i| < |p|
H-IND

λx . e[nil/n] � λx . e[p(x)/n]

Fig. 6. Rules for computational indistinguishability.

Proof. We will prove that the rules in Figure 6 are sound. The soundness of the rule EQUIV
is obvious.

For the rule TRANS-INDIST, let A be an arbitrary (well-typed and thus computable in
polynomial time) adversary and q be an arbitrary positive polynomial. We can then easily define
another polynomial q′ such that for any bitstring u, we have |q′(u)| = 2|q(u)| (for example,

q′
def
= λx . q(x)•q(x), and clearly it is well typed). Because e1 � e2 from Definition 1, there exists

some n ∈ � and for any bitstring w such that |w| � n,

|Pr[ε← �A(w, e1(w))�]− Pr[ε← �A(w, e2(w))�]| < 1

|q′(w)| .

Also, because e2 � e3, there exists another n′ ∈ � and for any bitstring w such that |w| � n′,

|Pr[ε← �A(w, e2(w))�]− Pr[ε← �A(w, e3(w))�]| < 1

|q′(w)| .

Without loss of generality, we can assume that n � n′, so for every bitstring w such that |w| � n,
we have

|Pr[ε← �A(w, e1(w))�]− Pr[ε← �A(w, e3(w))�]|
� |Pr[ε← �A(w, e1(w))�]− Pr[ε← �A(w, e2(w))�]|

+ |Pr[ε← �A(w, e2(w))�]− Pr[ε← �A(w, e3(w))�]|

<
1

|q′(w)| +
1

|q′(w)|

=
1

|q(w)| .

Since p is arbitrary, from Definition 1, we have e1 � e3.
To prove the soundness of the rule SUB, we assume that there exists an adversary that can

computationally distinguish the two terms in the conclusion part, and show that one can also
build another adversary that computationally distinguishes the two terms in the premise part.
More precisely, for some polynomial p and any integer n, there exists some bitstring w such that

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 963

|w| � n and

|Pr[ε← �A(w, f1(w))�]− Pr[ε← �A(w, f2(w))�]| � 1

|p(w)| ,

where fi = λx.e[ei(w)/y] (i = 1, 2) are the two programs in the conclusion part of the rule SUB.
We then construct another adversaryA′ by

A′ def
= λz . λz′ .A(z, e[z/x, z′/y]),

where z is not free inA and e. According to the set-theoretic semantics,

�A′(w, ei(w))� = �A(w, e[w/x, ei(w)/y])� = �A(w, (λx.e[ei(x)/y])w)�, (i = 1, 2),

hence

|Pr[ε← �A′(w, e1(w))�]− Pr[ε← �A′(w, e2(w))�]| � 1

|p(w)| ,

which contradicts the premise e1 � e2.
The soundness of the rule H-IND can be proved in a similar way to that of TRANS-INDIST.

Let A be an arbitrary well-typed adversary and q be an arbitrary positive polynomial. Define

another polynomial by q′
def
= λx . rec(nil, λm.λr.q′(x) • r, p(x)). Clearly, for all bitstrings u,

|q′(u)| = |q(u)| · |p(u)|. Because λx.e[i(x)/n] � λx.e[Bi(x)/n] for all canonical numeral i such
that |i| < |p|, we can find a sufficiently large number m ∈ � such that for any bitstring w whose
length is larger than m,

|Pr[ε← �A(w, e[nil/n])�]− Pr[ε← �A(w, e[1/n])�]| < 1

|q′(w)|
.

|Pr[ε← �A(w, e[p(w)− 1/n])�]− Pr[ε← �A(w, e[p(w)/n])�]| < 1

|q′(w)| .

Therefore,

|Pr[ε← �A(w, e[nil/n])�]− Pr[ε← �A(w, e[p(w)/n])�]|
� |Pr[ε← �A(w, e[nil/n])�]− Pr[ε← �A(w, e[1/n])�]|

+ · · · · · ·
+ |Pr[ε← �A(w, e[p(w)− 1/n])�]− Pr[ε← �A(w, e[p(w)/n])�]|

<
1

|q′(w)| + · · ·+
1

|q′(w)|

=
|p(w)|
|q′(w)|

=
1

|q(w)| ,

and thus according to Definition 1, we have λx.e[nil/n] � λx.e[p(x)/n].

3.2. Useful lemmas for proving cryptographic constructions

In this section we introduce some useful lemmas that will be used frequently in reasoning about
cryptographic constructions. Most of the lemmas are about indistinguishable programs using

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 964

random bitstring generation. Note that these lemmas are not internal rules of the proof system,
but we shall name and use them as if they are.

A large number of the proofs can be done in the CSLR proof system. In this paper we only
give a few proofs as examples – the others are left as exercises.

Lemma 1. For every bitstring u, the functions λx.splitsplitsplit(u, x), λx.prefprefpref (u, x), λx.suffsuffsuff (u, x) and
λx.u− x are numerical polynomials.

Proof. We will only give the proof for the function splitsplitsplit(u) – the proofs for all the others are
similar.

We need to prove that, for all bitstrings n, m such that |n| = |m|, we have �splitsplitsplit(u, n)� =

�splitsplitsplit(u, m)�, or that splitsplitsplit(u, n) ≡ splitsplitsplit(u, m) according to Theorem 3. The proof is by induction
on the length of the argument n.

The case where |n| = 0 is clear.
When |n| > 0, we suppose n ≡ Bn′ and m ≡ Bm′. Then

splitsplitsplit(u, Bn′) ≡ let v1 ⊗ v2 = splitsplitsplit(u, n′) in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉)
≡ let v1 ⊗ v2 = splitsplitsplit(u, m′) in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉)
≡ splitsplitsplit(u, Bm′)

Lemma 2 (HEAD-TAIL). For all bitstrings b and u such that |b| = 1,

hdhdhd (b•u) ≡ b

tltltl (b•u) ≡ u.

Proof. It is easy to deduce both results from their definitions.

Lemma 3 (SPLIT-1). For all bitstrings u, u′, there exist bitstrings u1, u2 such that
splitsplitsplit(u, u′) ≡ u1 ⊗ u2 and |u1|+ |u2| = |u|. If |u′| � |u|, then |u1| = |u′|.

Proof. We use induction on u′.
It is obvious that the lemma holds when u′ = nil.
Consider the induction step:

splitsplitsplit(u, Bu′) ≡ rec(nil⊗ u, hsplitsplitsplit , Bu
′)

≡ let v1 ⊗ v2 = splitsplitsplit(u, u′) in

case(v2, v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y)

≡ case(u2, u1 ⊗ u2, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y)

(by the induction hypothesis, we assume splitsplitsplit(u, u′) ≡ u1 ⊗ u2).

By the induction hypothesis, |u2| = |u| − |u1| = |u| − |u′|. If |u′| = |u|, then |u2| = 0, that is,
u2 ≡ nil and |u1| = |u|. So

splitsplitsplit(u, Bu′) ≡ case(nil, u1 ⊗ nil, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y) ≡ u1 ⊗ nil,

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 965

and |u1|+ |nil| = |u|. If |u′| < |u|, then |u2| = |u| − |u′| > 0, so there exists a bitstring u′2 such
that u2 ≡ Bu′2, so

splitsplitsplit(u, Bu′) ≡ case(Bu′2, u1 ⊗ nil, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y) ≡ (u1•B)⊗ u′2,

and |u1•B|+ |u′2| = |u1|+ 1 + |u2| − 1 = |u|. Also, |u1•B| = |u1|+ 1 = |u′|+ 1 = |Bu′|, since
|Bu′| � |u|.

Lemma 4 (SPLIT-2). For all bitstrings u and u′ such that |u′| � |u|,

splitsplitsplit(u, nil) ≡ nil⊗ u, splitsplitsplit(u, u′) ≡ u⊗ nil.

Proof. First, for every bitstring u,

splitsplitsplit(u, nil) ≡ rec(nil⊗ u, hsplitsplitsplit , nil) ≡ nil⊗ u.

Now

splitsplitsplit(u, B0u
′) ≡ rec(nil⊗ u, hsplitsplitsplit , B0u

′)

≡ let v1 ⊗ v2 = splitsplitsplit(u, u′) in

case(v2, v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v2•1)⊗ y)

≡ rec(nil⊗ u, hsplitsplitsplit , B1u
′)

≡ splitsplitsplit(u, B1u
′).

So for all bitstrings u1 and u2 such that |u1| = |u2|, we have splitsplitsplit(u, u1) ≡ splitsplitsplit(u, u2).
For all bitstrings u and u′ such that |u′| = |u|, we have splitsplitsplit(u, u′) ≡ u1 ⊗ u2 and |u1| = |u′| by

Lemma 3, so |u2| = |u| − |u1| = 0, hence u2 ≡ nil, that is, splitsplitsplit(u, u′) ≡ u1 ⊗ nil.

Corollary 1 (PREF). For all bitstrings u and u′ such that |u′| � |u|,

prefprefpref (u, nil) ≡ nil

prefprefpref (u, u′) ≡ u.

The proof is left as an exercise.

Corollary 2 (SUFF). For all bitstrings u and u′ such that |u′| � |u|,

suffsuffsuff (u, nil) ≡ u, suffsuffsuff (u, u′) ≡ nil.

The proof is similar to the proof of Corollary 1 and is left as an exercise.

Lemma 5 (CUT). For all bitstrings u and u′ such that |u′| � |u|,

u− nil ≡ u, u− u′ ≡ nil.

The proof is left as an exercise.

Lemma 6 (RS-EQUIV). For all bitstrings u and v such that |u| = |v|, rsrsrs(u) ≡ rsrsrs(v).

The proof is left as an exercise.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 966

Lemma 7 (RS-CONCAT). For all bitstrings u and v,

bind (x = rsrsrs(u), y = rsrsrs(v)) in val(x•y) ≡ rsrsrs(u•v).

Proof. We use induction on the length of u. When |u| = 0, that is, u ≡ nil, we have

bind (x = rsrsrs(nil), y = rsrsrs(v)) in val(x•y) ≡ bind y = rsrsrs(v) in val(nil•y)
≡ rsrsrs(v)

≡ rsrsrs(nil•v).

For the induction step, suppose u ≡ Bu′ and by induction

bind (x = rsrsrs(u′), y = rsrsrs(v)) in val(x•y) ≡ rsrsrs(u′ •v).

Then

bind (x = rsrsrs(Bu′), y = rsrsrs(v)) in val(x•y)
≡ bind (x = bind (x′ = rsrsrs(u′), b = rand) in val(b•x′), y = rsrsrs(v)) in val(x•y)
≡ bind (x′ = rsrsrs(u′), b = rand, y = rsrsrs(v)) in val(b•x′ •y)
≡ bind b = rand in bind z = rsrsrs(u′ •v) in val(b•z)
≡ rsrsrs(B(u′ •v))
≡ rsrsrs((Bu′)•v) (because |B(u′ •v)| = |(Bu′)•v|).

Lemma 8 (RS-COMMUT). For all bitstrings u and v,

bind (x = rsrsrs(u), y = rsrsrs(v)) in val(x•y) ≡ bind (x = rsrsrs(u), y = rsrsrs(v)) in val(y•x)

The proof is left as an exercise.

Lemma 9 (RS-HEAD). bind x = rsrsrs(Bu) in val(hdhdhd (x)) ≡ rand.

The proof is left as an exercise.

Lemma 10 (RS-TAIL). bind x = rsrsrs(Bu) in val(tltltl (x)) ≡ rsrsrs(u).

The proof is left as an exercise.

Lemma 11 (RS-SPLIT). For all bitstrings u and v such that |u| � |v|,

bind x = rsrsrs(u) in val(prefprefpref (x, v)) ≡ rsrsrs(prefprefpref (u, v)),

bind x = rsrsrs(u) in val(suffsuffsuff (x, v)) ≡ rsrsrs(suffsuffsuff (u, v)).

The proof is left as an exercise.

Lemma 12 (RS-CUT). For all bitstrings u and u′ such that |u′| � |u|,

bind x = rsrsrs(u) in val(x− u′) ≡ rsrsrs(u− u′).

The proof is left as an exercise.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 967

Lemma 13 (RS-NEXT-BIT). For all bitstrings u and i such that |i| < |u|,

rsrsrs(prefprefpref (u, Bi)) ≡ rsrsrs(Bprefprefpref (u, i)).

The proof is left as an exercise.

4. Cryptographic examples

In this section we illustrate the usability of the CSLR proof system in cryptography by giving
two cryptographic examples of security proofs in the proof system.

4.1. Pseudorandom generators

The first example verifies the correctness of Goldreich and Micali’s construction of a pseudoran-
dom generator (Goldreich 2001). This example also appears in Impagliazzo and Kapron (2006),
but their proof has a subtle flaw (see Section 5 for an explanation).

We first reformulate the standard definition of a pseudorandom generator (Goldreich 2001,
Definition 3.3.1) in CSLR.

Definition 2 (Pseudorandom generator). A pseudorandom generator (PRG for short) is a
length-sensitive SLR term � g : �Bits → Bits such that |g(s)| > |s| for every bitstring s,
and

λx . bind u = rsrsrs(x) in val(g(u)) � λx . rsrsrs(g(x)).

If g is a pseudorandom generator, we say |g| is its expansion factor.
We recall the construction of Goldreich (2001) (as reformulated in CSLR). Suppose g1 is a

PRG with expansion factor |g1|(x) = x + 1, that is,

λx . bind u = rsrsrs(x) in val(g1(x)) � λx . rsrsrs(Bx).

Let B(x) be the function returning the first bit of g1(x), with R(x) returning the other bits:

B
def
= λx .hdhdhd (g1(x))

R
def
= λx . tltltl (g1(x)).

Clearly, both B and R are well-typed functions (of the same type �Bits→ Bits). We then define
an SLR-function G by

G
def
= λu . λn . rec(nil, λm . λr . r•B(R′(u, m)), n),

where the function R′ is defined by

R′
def
= λu . λn . rec(u, λm . λr . R(prefprefpref (r, u)), n).

It is also easy to check that both G and R′ are well-typed SLR-terms (of type �Bits→ �Bits→
Bits).

We first prove the following property for the function G.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 968

Lemma 14. For every bitstring n,

λx . bind u = rsrsrs(x) in val(G(u, Bn))

� λx . bind (b = rand, u = rsrsrs(x)) in val(b•G(u, n)).

Proof. Because R
def
= λx . tltltl (g1(x)), we can conclude that for every bitstring u, we have

|R(u)| = |u| since |g1(u)| = |u| + 1. So we will show that for any bitstrings u and n, we have
R′(u, n) ≡ R|n|(u). This can be done by induction on |n|:
— When |n| = 0, that is, n = nil:

R′(u, nil) ≡ rec(u, λm . λr . R(prefprefpref (r, u)), nil) ≡ u.

— When n = Bn′ for some bitstring n′, that is, |n| = |n′|+ 1:

R′(u, Bn′) ≡ rec(u, λm . λr . R(prefprefpref (r, u)), Bn′)

≡ R(prefprefpref (R′(u, n′), u))

≡ R(prefprefpref (R|n
′ |(u), u))

≡ R(R|n
′ |(u)) (because |R|n′ |(u)| = |R|n′ |−1(u)| = · · · = |u|)

≡ R|n
′ |+1(u)

= R|n|(u).

We next show that for all bitstrings u and n, we have G(u, Bn) ≡ B(u)•G(R(u), n). This is also
proved by induction on |n|:
— When |n| = 0, that is, n = nil:

G(u, Bnil) ≡ rec(nil, λm.λr.r•B(R′(u, m)), Bnil)

≡ G(u, nil)•B(R′(u, nil))

(because G(u, nil) ≡ rec(nil, λm . λr . r•B(R′(u, m)), nil) ≡ nil)

≡ B(u)

≡ B(u)•G(u, nil).

— When n ≡ Bn′,

G(u, BBn′) ≡ rec(nil, λm.λr.r•B(R′(u, m)), BBn′)

≡ G(u, Bn′)•B(R′(u, Bn′))

≡ B(u)•G(R(u), n′)•B(R|n
′ |+1(u))

≡ B(u)•G(R(u), n′)•B(R′(R(u), n′)).

Because

G(R(u), Bn′) ≡ rec(nil, λm.λr.r•B(R′(u, m)), Bn′

≡ G(R(u), n′)•B(R′(R(u), n′)),

we have

B(u)•G(R(u), n′)•B(R′(R(u), n′)) ≡ B(u)•G(R(u), Bn′).

So

G(u, Bn) ≡ B(u)•G(R(u), n).

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 969

We now prove that the two programs in the assertion are computationally indistinguishable:

λx . bind u = rsrsrs(x) in val(G(u, Bn))

≡ λx . bind u = rsrsrs(x) in val(B(u)•G(R(u), n))

≡ λx . bind u = rsrsrs(x) in val(hdhdhd (g1(u))•G(tltltl (g1(u)), n))

� λx . bind u = rsrsrs(Bx) in val(hdhdhd (u)•G(tltltl (u), n))

(by the rule SUB and because λx.bind u = rsrsrs(x) in val(g1(u)) � λx.rsrsrs(Bx))

≡ λx . bind (b = rand, u = rsrsrs(x)) in val(hdhdhd (b•u)•G(tltltl (b•u), n))
(by the rule RS-CONCAT)

≡ λx . bind (b = rand, u = rsrsrs(x)) in val(b•G(u, n)).

We next prove that given a polynomial p, it is easy to use G to construct a PRG with expansion
factor |p|, and the proof is done in the CSLR proof system.

Proposition 1. For every well-typed (length-sensitive) polynomial � p : �Bits→ Bits,

λx . bind u = rsrsrs(x) in val(G(u, p(u))) � λx . rsrsrs(p(x)).

Proof. The proof follows the traditional hybrid technique, but is reformulated using the rules
of the CSLR proof system. We first define a hybrid function H:

H
def
= λu1 . λu2 . λn . (u2 − n)•G(u1, n).

H is well typed in SLR with the following assertion:

� H : �Bits→ Bits � �Bits→ Bits.

First,

λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(H(u1, u2, nil))

≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val((u2 − nil)•G(u1, nil))

≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(u2•G(u1, nil))

(by the rule CUT)
≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(u2)

(because G(u1, nil) ≡ nil)
≡ λx . rsrsrs(p(x)).

Next, for all bitstrings u1, u2, n such that |u2| = |n|,

H(u1, u2, n) ≡ (u2 − n)•G(u1, n) ≡ nil•G(u1, n) ≡ G(u1, n).

So

λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(H(u1, u2, p(x)))

≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(G(u1, p(x)))

≡ λx . bind u1 = rsrsrs(x) in val(G(u1, p(u1))).

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 970

Now, for every numeral i such that |i(x)| < |p(x)| for any bitstring x,

λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, Bi(x)))

≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val((u2 − Bi(x))•G(u1, Bi(x)))

� λx . bind (b = rand, u1 = rsrsrs(x), u2 = rsrsrs(p(x)))

in val((u2 − Bi(x))•b•G(u1, i(x)))

(by Lemma 14 and the rule SUB)

≡ λx . bind (b = rand, u1 = rsrsrs(x), u2 = rsrsrs(p(x)− Bi(x)))

in val(u2•b•G(u1, i(x)))

(by the rule RS-CUT, as |Bi(x)| = |i(x)|+ 1 � |p(x)| = |u2|)

≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs((p(x)− Bi(x))•1)) in val(u2•G(u1, i(x)))

(by the rule RS-CONCAT)

≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x)− i(x))) in val(u2•G(u1, i(x)))

(because |(p(x)− Bi(x))•1| = |p(x)− i(x)| − 1 + 1 = |p(x)− i(x)|)

≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val((u2 − i(x))•G(u1, i(x)))

(by the rule RS-CUT)

≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, i(x))).

So, by the rule H-IND,

λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, p(x)))

� λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, nil)).

That is, λx . bind u = rsrsrs(x) in val(G(u, p(x))) � λx . rsrsrs(p(x)).

Theorem 5. The CSLR term λx . G(x, p(x)) is a pseudorandom generator with the expansion
factor |p|.

Proof. The result is obvious from Proposition 1 and Definition 2.

4.2. Relating pseudorandomness and next-bit unpredictability

The second example shows the equivalence between pseudorandomness and next-bit unpredict-
ability (Goldreich 2001). The notion of next-bit unpredictability can be reformulated in CSLR
as follows: a positive polynomial f such that � f : �Bits→ Bits is next-bit unpredictable if for
any canonical numeral i such that |i| < |f|,

λx . bind u = rsrsrs(x) in val(prefprefpref (f(u), B1i(x)))

�
λx . bind u = rsrsrs(x) in bind b = rand in val(prefprefpref (f(u), i(x))•b).

Lemma 15. Pseudorandomness implies next-bit unpredictability: if a positive polynomial f is a
pseudorandom generator, then it is next-bit unpredictable.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 971

Proof. Because f is a pseudorandom generator,

λx.bind u = rsrsrs(x) in val(f(u)) � λx.rsrsrs(f(x)).

Hence,

λx . bind u = rsrsrs(x) in val(prefprefpref (f(u), B1i))

� λx . bind u = rsrsrs(f(x)) in val(prefprefpref (u, B1i)) (because f is a pseudo-
random generator)

≡ λx . rsrsrs(prefprefpref (f(x), B1i)) (by rule RS-SPLIT)

≡ λx . rsrsrs(B1prefprefpref (f(x), i)) (by rule RS-NEXT-BIT)

≡ λx . bind (b = rand, u = rsrsrs(prefprefpref (f(x), i))) in val(b•u) (by definition of rsrsrs)

≡ λx . bind (b = rand, u = rsrsrs(prefprefpref (f(x), i))) in val(u•b)(by rule RS-COMMUT)

≡ λx . bind (b = rand, u = rsrsrs(x)) in val(prefprefpref (f(u), i)•b) (by rule RS-SPLIT)

Lemma 16. Next-bit unpredictability implies pseudorandomness: if a positive polynomial f is
next-bit unpredictable, then it is a pseudorandom generator with expansion |f|.

Proof. The proof uses the hybrid technique. We define a hybrid function by

H
def
= λx.λy.λz.prefprefpref (f(x), z)•suffsuffsuff (y, z).

It is easy to prove that, for all bitstrings u, v such that |v| = |f(u)|, we have H(u, v, nil) ≡ v and
H(u, v, f(u)) ≡ f(u), hence

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in

val(H(u, v, nil))
≡ rsrsrs(f(x))

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in

val(H(u, v, f(x)))
≡ λx . bind u = rsrsrs(x) in val(f(u)).

We then prove the hybrid step: for any canonical polynomial i such that |i| < |f|,

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(H(u, v, B1i))

≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(prefprefpref (f(u), B1i)•suffsuffsuff (v, B1i))

� λx . bind (u = rsrsrs(x), b = rand, v = rsrsrs(f(x)))

in val(prefprefpref (f(u), i)•b•suffsuffsuff (v, B1i))

(because f is next-bit unpredictable)

≡ λx . bind (u = rsrsrs(x), b = rand, v = rsrsrs(suffsuffsuff (f(x), B1i)))

in val(prefprefpref (f(u), i)•b•v)
(by the rule RS-SPLIT)

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 972

≡ λx . bind (u = rsrsrs(x), v = rsrsrs(1•suffsuffsuff (f(x), B1i))) in val(prefprefpref (f(u), i)•v)
(by the rule RS-CONCAT)

≡ λx . bind (u = rsrsrs(x), v = rsrsrs(suffsuffsuff (f(x), i))) in val(prefprefpref (f(u), i)•v)
(by the rule RS-EQUIV since |1•suffsuffsuff (f(x), B1i)| = |suffsuffsuff (f(x), i)|)

≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(prefprefpref (f(u), i)•suffsuffsuff (v, i))

(by the rule RS-SPLIT)

≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(H(u, v, i)).

Hence, by the rule H-IND,

λx . bind u = rsrsrs(x) in val(f(u)) ≡ λx . rsrsrs(f(x)).

In other words, f is a pseudorandom generator with expansion |f|.

Theorem 6. A positive polynomial is a pseudorandom generator if and only if it is next-bit
unpredictable.

Proof. The two directions are proved separately in the previous two lemmas.

5. Related work

Many researchers in cryptography have realised that the increasing complexity of cryptographic
proofs is now an obstacle that cannot be ignored and formal techniques must be introduced to
write and check cryptographic proofs. A number of proof systems similar to ours have been
proposed in recent years.

The PPC (probabilistic polynomial-time process calculus) system designed by Mitchell et al.
(Mitchell et al. 2006) is based on a variant of CCS with bound replication and messages that
are computable in probabilistic polynomial-time. An equational proof system is also given in
their system to prove the observational equivalence between processes, and the soundness is
established using a form of probabilistic bisimulation. Interestingly, they mention that the terms
(or messages) in their language can be those of OSLR (the probabilistic extension of SLR), but
we are not clear how much expressitivity PPC achieves by adding the process part. It is probably
more natural for modelling protocols, but no such examples are given in their paper.

Impagliazzo and Kapron have proposed two logic systems for reasoning about cryptographic
constructions (Impagliazzo and Kapron 2006). Their first logic is based on a non-standard arith-
metic model, which they prove captures probabilistic polynomial-time computations. While it
is a complex and general system, they define a simpler logic on top of the first one, with rules
justifying computational indistinguishability. The language in their second logic is very close to
a functional language, but, unfortunately, it is not precisely defined, and in fact, this leads to a
subtle flaw in their proofs using the logic: the SUB rule in their logic requires that substitute
programs must be closed terms, but this is not respected in their proofs. In particular, the hybrid
proofs often have a program of the form let i ← p(nnn) in e, where e has a free variable x and
it is often substituted by indistinguishable programs, but, for instance, if the two programs also

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 973

have a bound variable i receiving a random number:

let i← p(nnn) in e1 � let i← p(nnn) in e2,

according to the rule SUB we can only deduce

let i← p(nnn) in e[let i← p(nnn) in e1/x] � let i← p(nnn) in e[let i← p(nnn) in e2/x],

but never

let i← p(nnn) in e[e1/x] � let i← p(nnn) in e[e2/x].

However, the latter form is used in many proofs in Impagliazzo and Kapron (2006). Furthermore,
they claim that by introducing rules directly justifying the computational indistinguishability
between programs, they avoid explicit reasoning about the probability, but the rule UNIV con-
tains a premise in their base logic (in the arithmetic model), and proving it might still involve
reasoning about the probability. On the other hand, our approach completely removes explicit
reasoning about probability and complexity by using a type system based on safe recursion.

Neither of the proof systems in PPC and IK-logic have been automated. However, Nowak has
proposed a framework for formal verification of cryptographic primitives and has implemented
it in the Coq proof-assistant (Nowak 2008). It is in fact a formalisation of game-based security
proofs. This approach, in which proofs are carried out by generating a sequence of games, and
transformations between the games must then be proved to be computationally sound, has been
advocated by several researchers in cryptography (Bellare and Rogaway 2004; Shoup 2004). In
Nowak’s formalisation, games are modelled directly as probabilistic distributions, and the cor-
rectness of the game transformations is verified in the proof-assistant. However, the complexity-
theoretic issues are not considered. A more sophisticated system is the CertiCrypt tool developed
by Barthe et al. (Barthe et al. 2009). In this, games are formalised as programs in an imperative
language and transformations are proved using the relational Hoare logic. CertiCrypt is also im-
plemented in Coq, and has been used to verify some interesting examples, such as, the semantic
security of OAEP. Another system designed by Backes et al. is based on a functional language
with references and events, and has been implemented in Isabelle/HOL, but they have not given
any cryptographic examples (Backes et al. 2008).

Blanchet’s CryptoVerif is another automated tool that supports game-based cryptographic
proofs, and is not based on any existing theorem provers (Blanchet 2006). Unlike the previously
mentioned work, CryptoVerif aims to generate the sequence of games based on a collection of
predefined transformations instead of verifying the computational soundness of transformations
defined by users.

6. Conclusion

In this paper we have presented an equational proof system that can be used to prove computa-
tional indistinguishability between programs, and have proved that rules in the system are sound
with respect to the set-theoretic semantics, and thus the standard notion of security. We have
also shown that the system is applicable in cryptography by using it to verify a cryptographic
construction of a pseudorandom generator.

Unlike the related work mentioned in the previous section, where a language is either defined
from scratch or no precise language definition is given, our language is an extention of Hofmann’s

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

Y. Zhang 974

SLR, which has very solid mathematical support based on Bellantoni and Cook’s safe recursion
together with a nice mechanism for the characterisation of polynomial-time computations. In par-
ticular, we do not need an explicit bound to impose the polynomial-time restraint, which allows
us to remove the computation of polynomials completely when reasoning about cryptographic
constructions. This is the main advantage of using an implicit complexity mechanism to build
such a logic system.

The examples given in the paper are just experimental and illustrative, but we are working
on proving more realistic cryptographic constructions. Our recent work (Nowak and Zhang
2010) has shown that game-based cryptographic proofs can be formalised and verified in the
CSLR proof system thanks to the general version of computational indistinguishability given by
Definition 1. Furthermore, as higher-order functions are already included in the language, we
expect that the system can be used to verify cryptographic protocols in the computational model.

Acknowledgement

I have very much appreciated some inspiring communications with Jean Goubault-Larrecq. I
would also like to thank Gilles Barthe, Yuxin Deng, David Nowak, Aleksy Schubert and the
TLCA reviewers for their comments and feedback, which have helped to improve the paper.

References

Backes, M., Berg, M. and Unruh, D. (2008) A formal language for cryptographic pseudocode. In: 4th
Workshop on Formal and Computational Cryptography (FCC 2008).

Barthe, G., Grégoire, B. and Zanella, S. (2009) Formal certification of code-based cryptographic proofs.
In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’2009)
90–101.

Bellantoni, S. and Cook, S. (1992) A new recursion-theoretic characterization of the polytime functions.
Computational Complexity 2 97–110.

Bellare, M. and Rogaway, P. (2004) Code-based game-playing proofs and the security of triple encryption.
Cryptology ePrint Archive, Report 2004/331.

Blanchet, B. (2006) A computationally sound mechanized prover for security protocols. In: IEEE
Symposium on Security and Privacy (S&P’06) 140–154.

Goldreich, O. (2001) The Foundations of Cryptography: Basic Tools, Cambridge University Press.
Hofmann, M. (1998) A mixed modal/linear lambda calculus with applications to Bellantoni–Cook safe

recursion. In: Proceedings of the International Workshop of Computer Science Logic (CSL’97).
Springer-Verlag Lecture Notes in Computer Science 1414 275–294.

Hofmann, M. (2000) Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic
104 (1–3) 113–166.

Impagliazzo, R. and Kapron, B. M. (2006) Logics for reasoning about cryptographic constructions. Journal
of Computer and System Sciences 72 (2) 286–320.

Mitchell, J. C., Mitchell, M. and Scedrov, A. (1998) A linguistic characterization of bounded oracle
computation and probabilistic polynomial time. In: 39th Annual Symposium on Foundations of Computer
Science (FOCS’98) 725–733.

Mitchell, J. C., Ramanathan, A., Scedrov, A. and Teague, V. (2006) A probabilistic polynomial-time process
calculus for the analysis of cryptographic protocols. Theoretical Computer Science 353 (1–3) 118–
164.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

The computational SLR 975

Moggi, E. (1991) Notions of computation and monads. Information and Computation 93 (1) 55–92.
Nowak, D. (2008) A framework for game-based security proofs. In: 9th International Conference of

Information and Communications Security (ICICS 2007). Springer-Verlag Lecture Notes in Computer
Science 4861 319–333.

Nowak, D. and Zhang, Y. (2010) A calculus for game-based security proofs. In: Proceedings of 4th
International Conference on Provable Security (ProvSec’2010). Springer-Verlag Lecture Notes in
Computer Science 6402.

Ramsey, N. and Pfeffer, A. (2002) Stochastic lambda calculus and monads of probability distributions. In:
29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’02) 154–165.

Shoup, V. (2004) Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332.

https://doi.org/10.1017/S0960129510000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000265

