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Abstract

We consider a continuous Gaussian random field living on a compact set T ⊂R
d . We

are interested in designing an asymptotically efficient estimator of the probability that
the integral of the exponential of the Gaussian process over T exceeds a large threshold
u. We propose an Asmussen–Kroese conditional Monte Carlo type estimator and discuss
its asymptotic properties according to the assumptions on the first and second moments
of the Gaussian random field. We also provide a simulation study to illustrate its effec-
tiveness and compare its performance with the importance sampling type estimator of
Liu and Xu (2014a).
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1. Introduction

Let T be a compact set in R
d, and consider a continuous Gaussian random field f =

{f (t) : t ∈ T} with zero mean and unit variance. For each s, t ∈ T , we denote its covariance
function by C (s, t) = Cov (f (s), f (t)). Let μ (·) and σ (·) be two deterministic functions, where
σ (·) is assumed to be strictly positive. Define

I (T) =
∫

T
eg(t) dt, (1)

where g(t) = μ(t) + σ (t)f (t). We are interested in designing an efficient Monte Carlo estimator
for computing the tail probabilities w(u) = P (I (T) > u) as u → ∞.

1.1. Motivation and literature

The exponential integral of a Gaussian random field appears in several applied probabil-
ity models. Liu [4] presented some examples where I (T) plays a key role in spatial point
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Efficient CMC simulation for Gaussian random field exponential integrals 367

processes, portfolio risk analysis, and asset pricing. The tail event of I (T) is an important
topic for risk management.

Tail approximations of I (T) have received little attention. Liu [4] provided for the first
time analytic approximations of w(u) when f is a homogeneous Gaussian random field, μ = 0,
σ = 1, and under smoothness conditions; in particular, f was assumed to be almost surely at
least three times continuously differentiable with respect to t. Liu [4] proved that the extremal
behavior of I (T) connects very closely to that of supt∈T f (t). Liu and Xu [6] further extended
this result to the case where the mean function μ is a smooth function.

The tail asymptotics of I (T) are actually difficult to develop when f is non-differentiable.
Therefore, rare-event simulation appears as an appealing alternative since the design and anal-
ysis of specific estimators do not in general require very sharp approximations of w(u). Liu
and Xu [5] introduced and studied an importance sampling algorithm whose efficiency only
requires that f is uniformly Hölder continuous over the compact set T . Therefore, their results
are applicable to a large number of families of Gaussian processes. To the best of our knowl-
edge, this article is the first to develop a provably efficient rare-event simulation algorithm to
compute w(u) for a general class of non-differentiable and differentiable fields.

The integral in (1) can be viewed as the limit of a weighted sum of correlated lognormal
random variables. There exists a small rare-event simulation literature for the sum of a finite
number of dependent lognormal random variables. Asmussen et al. [1] proposed several effi-
cient importance sampling estimators for the sum of a finite number of correlated lognormal
random variables. The authors first used cross-entropy methods for finding the best tuning for
the importance distribution, but they also observed that the largest of the increments dominates
the large-deviations behavior of the sums of the correlated lognormals. Therefore, they decom-
posed the tail event of interest into two contributions, a dominant component corresponding
to the tail of the maximum, and the remaining contribution. Motivated by [1], Kortschak and
Hashorva [3] introduced an Asmussen–Kroese conditional Monte Carlo type estimator for
sums of log-elliptical risks. The conditional Monte Carlo type approach replaces a naive esti-
mate Z of a number z by its conditional expectation given a suitable piece of information to
drastically reduce its variance.

Using the fact that the rare event, {I (T) > u}, is generally caused by the abnormal behav-
ior of the random field at one location, we decide to propose a modified Asmussen–Kroese
conditional Monte Carlo type estimator for estimating w(u).

1.2. Assumptions

In this paper we will mainly consider two sets of assumptions for the Gaussian random field
g. These two sets were introduced in [5] and [4] respectively.

Assumptions 1. The functions μ (·), σ (·), and C (·, ·) satisfy the following conditions. There
exist δ, κ > 0, and β ∈ (0, 1] such that, for all ‖s − t‖ < δ, the mean and variance functions sat-
isfy |μ (s) − μ (t)| + |σ (s) − σ (t)| ≤ κ ‖s − t‖β , where ‖t‖ is the Euclidean norm of t ∈R

d.
For all

∥∥s − s′∥∥< δ and
∥∥t − t′

∥∥< δ, the covariance function satisfies
∣∣C (t, s) − C

(
t′, s′)∣∣≤

κ
( ∥∥s − s′∥∥2β + ∥∥t − t′

∥∥2β )
.

Assumptions 2. The random field f is a homogeneous Gaussian random field that is almost
surely at least three times continuously differentiable with respect to t. We denote its covariance
function by C(t − s) = Cov(f (s), f (t)). The Hessian matrix of C(t) at the origin is −I, where I
is a d × d identity matrix. It is also assumed that μ (t) = 0 and σ (t) = σ > 0 for all t ∈ T.
Finally, T is a d-dimensional Jordan-measurable compact subset of Rd.
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1.3. Tail approximations and importance sampling estimators

For Assumptions 1, no asymptotic equivalent form of w(u) is known. Only bounds were
provided in [5]: there exist constants c0, c1, c2, such that, for large u,

exp

(
− (log u)2 + c1 log u log (log u) + c0

2σ∗

)
≤ w(u) ≤ exp

(
− (log u)2

2σ∗
+ c2 log u

)
,

where σ∗ = supt∈T σ (t). In [5], the authors introduced an importance sampling estimator and
proved that it is logarithmically efficient. Central to their method analysis is a change of
measure that mimics the conditional distribution of g given the occurrence of the rare event
{I (T) > u}. An appealing feature of their change of measure is that it does not rely much on
the specific mean, variance, and covariance structure of the random field g. Their approach
consists first in approximating the integral by a discrete sum and controlling the bias caused
by the discretization, and second in bounding the second moment of the (discrete) importance
sampling estimator.

For Assumptions 2, [4] provided an exact asymptotic approximation of w(u). For u large
enough, let v be the unique solution to (2π/σ )d/2v−d/2eσv = u. For some positive constant H,
[4] showed that w(u) ∼ Hmes (T) vd−1 exp

(−v2/2
)

as u → ∞, where mes (T) is the Lebesgue
measure of T . Liu and Xu [6] studied another importance sampling estimator of w(u) that
runs in polynomial time with respect to log u, and proved that it is asymptotically strongly
efficient (i.e. it has an asymptotically vanishing error). The authors used the same strategy as
in [5], which consists of approximating the integral by a discrete sum. However, the change of
measure that approximates the conditional distribution of f given {I (T) > u} now exploits the
knowledge of the joint distribution of the two first derivatives of the random field f .

Our main contributions can be summarized as follows. First, we introduce a modified
Kortschak–Hashorva conditional Monte Carlo type estimator by splitting the probability that
we want to estimate into two parts, of which one part can be computed without simulation.
This increases the accuracy of our estimator. Second, we provide theoretical arguments that
show that our estimator is logarithmically efficient or polynomially efficient according to the
sets of assumptions. Third, we present a numerical study which shows that, with the same
computational time budget, our estimator is more efficient than the estimator in [5] (at least for
the examples considered in this paper).

The paper is organized as follows. Section 2 provides the construction of our condi-
tional Monte Carlo algorithm and presents the main results. Section 3 includes simulation
experiments. Proofs of our main theorems are given in Section 4.

2. Main results

We assume without loss of generality that 0 belongs to the interior of T and that σ (0) =
σ∗ = supt∈T σ (t). As in [5, 6], we introduce a discretization scheme on T . For any positive Su,
let GSu be a subset of Rd defined by

GSu =
{(

i1
Su

,
i2
Su

, . . . ,
id
Su

)
: i1, . . . , id ∈Z

}
,

where Z is the set of integers, i.e. GSu is a regular lattice on R
d. For each

t = (t1, . . . , td) ∈ Gsu , define TSu (t) = {(u1, . . . , ud) ∈ T : uj ∈ (tj − 1/(2Su); tj + 1/(2Su)] for
j = 1, . . . , d}, i.e. the intersection of T and the (1/Su)-cube centered at t. Furthermore, let
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TSu = {t ∈ GSu : mes
(
TSu (t)

)
> 0
}

. Since T is compact, TSu is a finite set. We enumerate
the elements in TSu = {t0, t1, . . . , tMu

}
, where t0 = 0 and Mu = #TSu − 1. Note that Mu ∼

mes(T)Sd
u as u → ∞.

The approximation of I (T) by a discrete sum is given by

IMu (T) =
Mu∑
i=0

mi,ueμ(ti)+σ (ti)f (ti),

where mi,u = mes
(
TSu (ti)

)
and we let wMu (u) = P

(IMu (T) > u
)
.

The following proposition helps us to understand how to control the difference between
wMu (u) and w(u), and therefore how to control the bias for an estimator of w(u). It gathers two
results from [5, 6].

Proposition 1. Under Assumptions 1, for any 0 < ε < 1/2 there exists a constant κ0 such that,
for any η > 0, u > e, and lattice size Su = κ

1/β

0 |log η|1/β η−1/β (log u)2(1+ε)/β , we have

|wMu(u) − w(u)|
w(u)

< η.

Under Assumptions 2, for any ε > 0 there exists a constant κ0 such that, for any η ∈ (0, 1),
u > 2, and lattice size Su = κ0η

−(1+ε) (log u)2+ε, we have

|wMu(u) − w(u)|
w(u)

< η.

For the proof under Assumptions 1, see [5, Theorem 2.4]; under Assumptions 2, see [6,
Theorem 10].

We now explain how we construct our conditional Monte Carlo type estimator of
wMu (u). We mainly modify the Asmussen–Kroese estimator introduced in [3] in the fol-
lowing way. Let ωi,u = mi,ueμ(ti) and Xi,u = eσ (ti)f (ti) for i = 0, . . . , Mu. We have IMu (T) =∑Mu

i=0 mi,ueμ(ti)Xi,u =∑Mu
i=0 ωi,uXi,u. Let ω̄u =∑Mu

i=0 ωi,u and define v1,Mu (u) = P
(
ω̄u exp(∑Mu

i=0 ωi,u log Xi,u/ω̄u
)
> u
)
, v2,Mu (u) =∑Mu

j=0 
j (u), where


j (u) = P

( Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u,

Mu∨
i=0

ωi,uXi,u = ωj,uXj,u

)
.

Since, by Jensen’s inequality, we have

exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ 1

ω̄u

Mu∑
i=0

ωi,uXi,u,

we deduce that

P(IMu(T) > u) = v1,Mu (u) + P

( Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u

)
,

and we finally get the following decomposition of wMu (u):

wMu (u) = P
(IMu (T) > u

)= v1,Mu (u) + v2,Mu (u).
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Such a decomposition is interesting for several reasons. First, note that v1,Mu (u) may be
numerically computed since the random variable

∑Mu
i=0 ωi,u log Xi,u has a Gaussian dis-

tribution. Second, we have noted in experiments that the variance of the estimator from
[3] may be large when the Gaussian random variables are highly correlated and when
ω̄u exp

(∑Mu
i=0 ωi,u log Xi,u/ω̄u

)
> u. Consequently, it is more efficient to replace the proba-

bility of such an event by its value.
For j = 0, 1, . . . , Mu, let Nj,u be a vector of Mu + 1 independent standard Gaussian random

variables, and Aj,u be a lower non-singular triangular matrix of size Mu + 1 such that(
f (tj)

f (t(−j))

)
= Aj,uNj,u,

with f (t(−j)) = (f (ti))i �=j. We introduce the following unbiased estimator of 
j (u):

Zj (u) = P

( Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u,

Mu∨
i=0

ωi,uXi,u = ωj,uXj,u

∣∣∣N(−1)
j,u

)
,

where N(−1)
j,u = (Nj,u,2, . . . , Nj,u,Mu+1

)′. We have{ Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u,

Mu∨
i=0

ωi,uXi,u = ωj,uXj,u

}

=
{ Mu∑

i=0

ωi,uXi,u > u

}⋂{
ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u

}

⋂
i �=j

{
ωi,uXi,u ≤ ωj,uXj,u

}
.

It is noteworthy that all the events in the previous intersection may be written as an event
that Nj,u,1 is smaller or greater than a threshold that only depends on N(−1)

j,u , Aj,u,
(
ωi,u
)

i, and

(σ (ti))i. The threshold for the event
{∑Mu

i=0 ωi,uXi,u > u
}

has to be computed numerically,
while the others have analytical expressions. The computational cost for Zj (u) is mainly due
to the cost of computing the matrix Aj,u through a Cholesky decomposition: the serial version
of the Cholesky algorithm is of cubic complexity, i.e. the cost of decomposition of the (Mu +
1) × (Mu + 1) matrix is of order O

(
M3

u

)
.

Let Ju be a random variable independent of
(
Nj,u
)

j=0,...,Mu
, such that

P (Ju = j) = P
(
Xj,u > u

)
∑Mu

i=0 P
(
Xi,u > u

) . (2)

Our unbiased estimator of wMu (u) is finally given by

ZMu (u) = v1,Mu (u) +
( Mu∑

i=0

P
(
Xi,u > u

)) Mu∑
j=0

1{Ju=j}
Zj (u)

P
(
Xj,u > u

) .
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Efficient CMC simulation for Gaussian random field exponential integrals 371

Compared to [3], we split wMu(u) into two parts, of which one part (v1,Mu(u)) can be
computed without simulation, which will increase the accuracy of our estimator.

2.1. Assumptions 1

Given that the tail probability w(u) converges to zero, it is usually meaningful to consider the
relative error of a Monte Carlo estimator Z(u) with respect to w(u). A well-accepted efficiency
concept is so-called weak efficiency, also known as logarithmic efficiency [2, Chapter VI].

An unbiased estimator Z(u) of w(u) is said to be logarithmically efficient if

lim
u→∞

log E
{
(Z(u) − w(u))2

}
log w2(u)

= 1.

The following proposition establishes that the unbiased estimator ZMu (u) of wMu (u) is an
asymptotically logarithmic efficient estimator, and that the relative bias to estimate w(u) is
well controlled with an appropriate choice of Su.

Proposition 2. Assume that Assumptions 1 are satisfied. Let (ηu) be a sequence of positive
constants such that limu→∞ ηu = 0 and limu→∞ log ηu/ log (w(u)) = 0. If Su is chosen such
that Su = O

( |log ηu|1/β η
−1/β
u (log u)2(1+ε)/β ) for some 0 < ε < 1/2, then

lim
u→∞

log E
{
(ZMu(u) − w(u))2

}
log w2(u)

= 1. (3)

It is shown in [5] that the importance sampling estimator introduced in this paper also
satisfies (3).

2.2. Assumptions 2

A slightly stronger efficiency concept is polynomial efficiency. An unbiased estimator Z(u)
of w(u) is said to be polynomially efficient of order q if

lim
u→∞

E
{
(Z(u) − w(u))2

}
| log (w(u)) |qw2(u)

< ∞.

When q = 0, Z(u) is also said to be strongly efficient.

Proposition 3. Assume that Assumptions 2 are satisfied. Let (ηu) be a sequence of positive
constants such that limu→∞ ηu = 0 and lim infu→∞ ηu (log u)ν > 0 for some positive constant
ν. If Su is chosen such that Su = O

(
η

−(1+ε)
u (log u)2+ε

)
for some ε > 0, then

lim
u→∞

E
{
(ZMu (u) − w(u))2

}
| log (w(u)) |[(2+ε)+(1+ε)ν]dw2(u)

< ∞.

It is shown in [6] that the importance sampling estimator introduced in this paper is strongly
efficient, which is slightly better than our estimator (from a theoretical point of view at least).

We should point out that, contrary to [3], our estimator has a number of terms (Mu) in its
construction that depend on the threshold u (due to the discrete approximation of the integral).
Since Mu tends to infinity as u tends to infinity, this adds several technical issues and leads to
a slower rate of convergence than in [3].

https://doi.org/10.1017/jpr.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.57


372 Q. H. NGUYEN AND C. Y. ROBERT

3. Simulation

In this section we present numerical examples to study the performance of our estimator
(denoted here by ZNR) compared to the importance sampling estimator of [5] (denoted by
ZLX). We only consider the importance sampling estimator of [5] and not [6] because we do not
necessarily want to assume that f is a differentiable Gaussian random field. To understand the
advantage of splitting the probability wMu(u) into two parts in the construction of our estimator,
we also decided to include the estimator of [3], denoted by ZAK. All the results are based on
N = 104 independent simulations for ZNR and ZLX. The CPU time to generate 104 samples is
less than one second for the LX estimator, but more than ten seconds for both our estimator
and the AK estimator.

As in [5], we assume in this section that f is a zero-mean homogeneous Gaussian ran-
dom field with covariance function C(s, t) = e−|t−s|α . When α = 2, f is infinitely differentiable,
whereas when α = 1, f is non-differentiable. We take T = [ − 1/2, 1/2] and discretize it with
discretization size Su = 100 following the procedure given in the previous section. The detailed
simulation is described in the following steps.

i. Generate a random variable Ju according to the distribution (2). For j =Ju,

ii. Generate a vector Nj,u of Mu + 1 independent standard Gaussian random variables;
compute the matrix Aj,u and the vector Aj,uNj,u.

iii. Compute the probability

P

( Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u,

Mu∨
i=0

ωi,uXi,u = wj,uXj,u

∣∣∣N(−1)
j,u

)
.

iv. Compute

ZMu (u) = v1,Mu (u) +
( Mu∑

i=0

P
(
Xi,u > u

)) Zj (u)

P
(
Xj,u > u

) .

The computational complexity for generating an estimate of wMu (u) with our approach is
the number of simulations multiplied by the cost for generating one copy of ZMu (u), which is
mainly the cost of computing the matrix Aj,u, i.e. of order O

(
S3d

u

)
. The overall computational

cost is also a polynomial in η−1 and log (u).
First, we consider the case where μ(t) = 0 and σ (t) = 1 as in [5]. To validate the simulation

results, [5] computed crude Monte Carlo estimators:

Based on 106 independent simulations, for b = 3, the estimated tail probabilities were
4.7e–4 (Std. 2e–5) and 8.2e–4 (Std. 3e–5) when α = 1 and 2, respectively; based on
109 independent simulations, for b = 5, the estimated tail probabilities are 1.2e–8 (Std.
3e–9) and 7.7e–8 (Std. 9e–9) when α = 1 and 2, respectively.

The estimated tail probabilities of w(u) are shown in Table 1 (u = eb). To compare the
performance of the estimators, we provide their estimated coefficient of variation (CV , the
ratio of the standard deviation over the mean) as well as the ratio of their variance per unit
computer time over the variance per unit computer time of ZLX (RVCT). The variance per unit
computer time for a given estimator Z equals τ (Z)Var(Z), where τ (Z) is the expected time to
generate Z.
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TABLE 1. Estimates of w(u) on T = [ − 1/2, 1/2], μ(t) = 0, and σ (t) = 1 for u = eb. The results for ZLX
are from [5].

α b E {ZLX} E {ZAK} E {ZNR}
CV(ZLX)/RVCTLX CV(ZAK)/RVCTAK CV(ZNR)/RVCTNR

1 3 4.47e−04 4.604e−04 4.562e−04
3.14 / 1 0.49 / 0.23 0.17 / 0.03

1 5 1.13e−08 1.093e−08 1.098e−08
5.60 / 1 0.60 / 0.12 0.31 / 0.03

1 7 1.80e−15 1.892e−15 1.986e−15
9.23 / 1 1.04 / 0.11 0.71 / 0.05

2 3 8.49e−04 8.397e−04 8.390e−04
2.46 / 1 0.83 / 1.16 0.17 / 0.05

2 5 7.03e−08 7.145e−08 7.052e−08
3.27 / 1 0.82 / 0.61 0.30 / 0.08

2 7 8.27e−14 8.328e−14 8.391e−14
4.19 / 1 0.77 / 0.33 0.44 / 0.11

Comparing the simulation results for α = 1, 2 and b = 3, 5, 7, we can see that the condi-
tional Monte Carlo estimators have better performance for both measures (CV and RVCT)
than the estimator of [5]. Our estimator is also the better of the two conditional Monte Carlo
estimators. which proves that the split of the probability into two parts is very useful.

Next, we consider the case with μ(t) = 2|t| and σ (t) = 1 − t2. To validate the simulation
results, [5] computed crude Monte Carlo estimators:

For b = 3, the crude Monte Carlo estimator based on 106 independent simulations gives
the estimated tail probabilities 1.4e–3 (Std. 4e–5) and 2.3e–3 (Std. 5e–5) when α =
1 and α = 2, respectively; for b = 5, the crude Monte Carlo estimator based on 109

independent simulations gives the estimated tail probabilities 1.8e–8 (Std. 4e–9) and
1.4e–7 (Std. 1e–8) when α = 1 and α = 2, respectively.

The estimated tail probabilities of w(u) with their estimated coefficient of variation (CV)
and their ratio of the variances per unit computer times (RVCT) are shown in Table 2 (u = eb).

As in [5], the simulation results show that the coefficients of variation increase as the tail
probabilities become smaller. The coefficients of variation and the ratios of the variance per
unit computer times of the conditional Monte Carlo estimators are also much smaller in this
case than the LX estimator. Moreover, the continuity of the process affects the empirical per-
formance of the three estimators: they admit smaller coefficients of variation when the process
is more continuous (corresponding to a larger value of α).

4. Proofs of the main results

4.1 Proofs under Assumptions 1

Lemma 1. As u → ∞, for some positive constants c̃1 and c̃2 we have

wMu (u) ≥ exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)
,

wMu (u) ≤ exp

(
− ( log u)2 − c̃2( log u)

2σ 2∗

)
.
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TABLE 2. Estimates of w(u) on T = [ − 1/2, 1/2], μ(t) = 2|t|, and σ (t) = 1 − t2 for u = eb. The results
for ZLX are from [5].

α b E {ZLX} E {ZAK} E {ZNR}
CV(ZLX)/RVCTLX CV(ZAK)/RVCTAK CV(ZNR)/RVCTNR

1 3 1.39e−03 1.290e−03 1.261e−03
2.56 / 1 0.51 / 0.46 0.14 / 0.04

1 5 2.22e−08 2.420e−08 2.520e−08
5.87 / 1 0.63 / 0.10 0.29 / 0.02

1 7 2.97e−15 2.402e−15 2.387e−15
14.93 / 1 1.02 / 0.07 0.77 / 0.04

2 3 2.30e−03 2.159e−03 2.129e−03
2.14 / 1 0.53 / 0.70 0.11 / 0.03

2 5 1.31e−07 1.364e−07 1.234e−07
3.57 / 1 0.75 / 0.41 0.24 / 0.05

2 7 1.19e−13 9.102e−14 9.964e−14
5.77 / 1 0.82 / 0.35 0.55 / 0.13

Proof. For the lower bound, we have

wMu (u) ≥ P
(
w0,uX0,u > u

)
= P

(
S−d

u eμ(0)+σ∗f (0) > u
)

= P (σ∗f (0) > log u + d log Su − μ(0))

≥ exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)

for some positive constant c̃1.
For the upper bound, we have

wMu (u) ≤ P

(
(Mu + 1)

Mu∨
i=0

ωi,uXi,u > u

)

≤ P

(
max
t∈T

eμ(t)+σ (t)f (t) >
u

mes (T)

)

≤ P

(
max
t∈T

σ (t)f (t) > log u − log (mes (T)) − max
t∈T

μ(t)

)
.

By the Borel–TIS lemma and for sufficiently large u, we deduce that

wMu (u) ≤ exp

(
− (log u − log (mes (T)) − maxt∈T μ(t))2

2σ 2∗

)

≤ exp

(
− ( log u)2 − c̃2( log u)

2σ 2∗

)

for some positive constant c̃2. �
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Lemma 2. Let

σ 2
A =

∫
T2 eμ(t)+μ(s)σ (t)σ (s)C (t, s) dt ds∫

T2 eμ(t)+μ(s) dt ds
,

and ε > 0 be such that σ 2
A (1 + ε) < σ 2∗ . We have, as u → ∞,

v1,Mu (u) ≤ exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)

and, for some positive constant c̃1,

v2,Mu (u) ≥ 1

2
exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)
.

Therefore, we have

lim
u→∞

v1,Mu (u)

v2,Mu (u)
= 0.

Proof . We have

v1,Mu (u) = P

(
ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
> u

)
.

By Riemann integrability, we know that limu→∞ ω̄u = ∫T eμ(t) dt. Moreover, the random vari-

able 1
ω̄u

∑Mu
i=0 ωi,u log Xi,u = 1

ω̄u

∑Mu
i=0 ωi,uσ (ti)f (ti) is a centered Gaussian random variable

with variance

1

ω̄2
u

Mu∑
i=0

Mu∑
j=0

mes
(
TSu (ti)

)
eμ(ti)σ (ti)mes

(
TSu

(
tj
))

eμ(tj)σ (tj)C
(
ti, tj

)

converging to

σ 2
A =

∫
T2 eμ(t)+μ(s)σ (t)σ (s)C (t, s) dt ds∫

T2 eμ(t)+μ(s) dt ds
< σ 2∗ .

Therefore, for large u,

v1,Mu (u) ≤ exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)
.

Now,

v2,Mu (u) = P

( Mu∑
i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u

)

= P

( Mu∑
i=0

ωi,uXi,u > u

)
− v1,Mu (u)

≥ P
(
w0,uX0,u > u

)− v1,Mu (u).
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Moreover, in the same way as in Lemma 1,

P
(
w0,uX0,u > u

)≥ exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)

for some positive constant c̃1. It follows that, for large u,

P(w0,uX0,u > u) − v1,Mu (u)

≥ exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)
− exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)

≥ 1

2
exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)

and

lim
u→∞

v1,Mu (u)

v2,Mu (u)
= 0. �

Lemma 3.

E

{(
ZMu (u) − v1,Mu (u)

)2}=
Mu∑
j=0

E
{
Zj (u)2}

P (Ju = j)
.

Proof. As in [5, Lemma A.3], the proof follows by straightforward calculations. �

Proof of Proposition 2. It is easily seen that

E

{(
ZMu (u)

)2}=E

{(
ZMu (u) − v1,Mu (u)

)2}+ v1,Mu (u)
(
v1,Mu (u) + 2v2,Mu (u)

)
.

By Lemma 2, we have, for large u,

v1,Mu (u) ≤ exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)
,

and, by Lemma 1,

v2,Mu (u) ≤ wMu (u) ≤ exp

(
− ( log u)2 − c̃2( log u))

2σ 2∗

)
.

Moreover, we have

E{(ZMu (u) − w(u))2} =E{(ZMu(u))2} − w2
Mu

(u) + (wMu(u) − w(u))2

=E{(ZMu (u) − v1,Mu (u)
)2} + v1,Mu (u)

(
v1,Mu (u) + 2v2,Mu (u)

)
− w2

Mu
(u) + (wMu(u) − w(u))2

and, for large u,

E

{
(ZMu (u) − w(u))2

}
≤E

{(
ZMu (u) − v1,Mu (u)

)2}+ 3v1,Mu (u)w(u) + η2
uw(u)2 (4)

by Proposition 1.
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By Lemma 3, we deduce that

E

{(
ZMu (u) − v1,Mu (u)

)2}=
Mu∑
j=0

E
{
Zj (u)2}

P (Ju = j)
=

Mu∑
j=0

P (Ju = j)
E
{
Zj (u)2}

P (Ju = j)2
.

It is important to note that Zj (u) is bounded in the following way:

Zj (u) ≤ P

(
Xj,u >

u

eμ(tj)mes (T)

)
.

Since

P (Ju = j) = P
(
Xj,u > u

)
∑Mu

i=0 P
(
Xi,u > u

) ,
it follows that, for large u,

E
{
Zj (u)2}

P (Ju = j)2
≤

P
(

Xj,u > u
eμ(tj)mes(T)

)2

P
(
Xj,u > u

)2
( Mu∑

i=0

P
(
Xi,u > u

))2

≤ ( log u)2

σ 2(tj)
exp

(
− ( log u − μ(tj) − log (mes (T)) )2

σ 2(tj)
+ ( log u)2

σ 2(tj)

)

×
( Mu∑

i=0

P
(
Xi,u > u

))2

≤ C( log u)2 exp

(
2
μ(tj) + log (mes (T))

σ 2(tj)
log u

)( Mu∑
i=0

P
(
Xi,u > u

))2

= C( log u)2u2(μ(tj)+log(mes(T))/σ 2(tj)

( Mu∑
i=0

P
(
Xi,u > u

))2

for some positive constant C. Then we have

Mu∑
j=0

E
{
Zj (u)2}

P (Ju = j)
=

Mu∑
j=0

P (Ju = j)
E
{
Zj (u)2}

P (Ju = j)2

≤ C( log u)2
Mu∑
j=0

P (Ju = j) u2(maxT μ(t)+log(mes(T)))/ minT σ 2(t)

×
( Mu∑

i=0

P
(
Xi,u > u

))2

≤ C( log u)2u2(maxT μ(t)+log(mes(T)))/ minT σ 2(t)

( Mu∑
i=0

P
(
Xi,u > u

))2

.
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Moreover, we have

Mu∑
i=0

P
(
Xi,u > u

)≤ (1 + Mu)P

(Mu∨
i=0

Xi,u > u

)
≤ (1 + Mu)P

(
emaxt∈T σ (t)f (t) > u

)
,

where P (exp {maxt∈T σ (t)f (t)} > u) = P (maxt∈T σ (t)f (t) > log u). By the Borel–TIS lemma,
we also have

P

(
max
t∈T

σ (t)f (t) > log u

)
≤ exp

(
− ( log u)2

2σ 2∗

)
.

It follows that

E

{(
ZMu (u) − v1,Mu (u)

)2}≤

C( log u)2u2(maxT μ(t)+log(mes(T)))/ minT σ 2(t)(1 + Mu)2 exp

(
− ( log u)2

σ 2∗

)
.

We know from [5, Lemma 4.3] that there exist constants c0, c1, c2 such that

− (log u)2 + c1 log u log (log u) + c0

2σ∗
≤ log w(u) ≤ − (log u)2

2σ∗
+ c2 log u.

We therefore deduce from (4) that

lim
u→∞

log E
{
ZMu (u)2

}
log w2(u)

= 1. �

4.2. Proofs under Assumptions 2

Lemma 4. Let

σ 2
A = σ 2

∫
T2 C (t − s) dt ds

mes(T)2
< σ 2,

and ε > 0 be such that σ 2
A (1 + ε) < σ 2∗ . We have, as u → ∞,

v1,Mu (u) ≤ exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)

and, for some positive constant c̃1,

v2,Mu (u) ≥ 1

2
exp

(
− ( log u)2 + c̃1 log u log Su

2σ 2∗

)
.

Therefore, we have

lim
u→∞

v1,Mu (u)

v2,Mu (u)
= 0.

Proof. The proof proceeds in the same way as for Lemma 2. �
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Lemma 5. For some positive constant C, we have, for large u, E{Z0 (u)2} ≤ Cw2 (u).

Proof. Let cu be defined as

cu = (1 + ε)

√
4

log (1 + Mu)

σ 2

with ε > 0.
Note that there exist standard Gaussian random variables Ñj for j �= 0 (independent of f (0),

i.e. N0,u,1) such that f (tj) = ρj f (0) +
√

1 − ρ2
j Ñj, j �= 0, where ρj = C(tj).

We have

E
{
Z0 (u)2 }=E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣>cu

√
log (u)

}}+E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣≤cu

√
log (u)

}} .

Let us consider the first component of the previous sum. We have

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣>cu

√
log (u)

}}≤
Mu∑
i=1

E

{
Z0 (u)2 1{∣∣Ñi

∣∣>cu
√

log (u)
}}

≤ MuP2
(

eσ f (t0) >
u

mes (T)

)
P
(|Ñi| > cu

√
log (u)

)
.

Moreover, for large u, we have

MuP
(
|Ñi| > cu

√
log (u)

)
∼ mes(T)Sd

u

cu
√

log (u)
exp

(
−c2

u

2
log (u)

)

and

P2
(

eσ f (0) >
u

mes (T)

)
= P2 (f (0) > log u/σ)

∼ σ 2

(log u − log (mes (T)))2
exp

(
− (log u − log (mes (T)))2

σ 2

)
.

Therefore, using the definition of cu, there exists a positive constant α such that, for large u,

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣>cu

√
log (u)

}}≤

CSd
u

1

cu( log (u))3/2
exp

(
− ( log u)2 + 2 log (1 + Mu) log (u)

σ 2
− α log (1 + Mu) log (u)

)
.

Note that, for some positive constant C,

P
(
ω0,uX0,u > u

)2 ∼ P (f (0) > (log u + log Mu + log mes(T)) /σ )2

∼ C
1

( log u)2
exp

(
− ( log u)2 + 2 log (Mu) log (u)

σ 2

)
.

It follows that

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣>cu

√
log (u)

}}= o
(

P
(
w0,uX0,u > u

)2)
,
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and also

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣>cu

√
log (u)

}}= o
(

w2 (u)
)

,

since w0,uX0,u ≤ I (T).
Let us now consider the second component. Let

�u =
{ Mu∑

i=0

ωi,uXi,u > u, ω̄u exp

( Mu∑
i=0

ωi,u log Xi,u/ω̄u

)
≤ u,

Mu∨
i=0

ωi,uXi,u = ω0,uX0,u

}
.

We have

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣≤cu

√
log (u)

}}

=E

{(
P
(
�u| N(−1)

0,u

)
1{∨Mu

i=1

∣∣Ñi
∣∣≤cu

√
log (u)

})2
}

=E

⎧⎨
⎩P

(
�u,

Mu∨
i=1

∣∣Ñi
∣∣≤ cu

√
log (u)

∣∣∣N(−1)
0,u

)2
⎫⎬
⎭

≤E

{
P

( Mu∑
i=0

ωi,uXi,u > u,

Mu∨
i=0

ωi,uXi,u = ω0,uX0,u,

Mu∨
i=1

∣∣Ñi
∣∣≤ cu

√
log (u)

∣∣∣N(−1)
0,u

)2}

≤E

{
P

(
w0,uX0,u +

Mu∑
i=1

ωi,uXi,u > u, ω0,uX0,u >
u

1 + Mu
,

Mu∨
i=1

∣∣Ñi
∣∣≤ cu

√
log (u)

∣∣∣N(−1)
0,u

)2}
.

Moreover, we have
∑Mu

i=1 ωi,uXi,u =∑Mu
i=1 ωi,u exp

{
σ (ti)

(
ρif (0) +

√
1 − ρ2

i Ñi
)}

and, if∨Mu
i=1

∣∣Ñi
∣∣≤ cu

√
log (u), we deduce that

Mu∑
i=1

ωi,uXi,u ≤
Mu∑
i=1

ωi,u exp

{
σ (ti)

(
ρif (0) +

√
1 − ρ2

i cu
√

log (u)

)}

=
Mu∑
i=1

ωi,u exp

{
σ (ti)f (0)

(
ρi +

√
1 − ρ2

i cu

√
log (u)/f (0)2

)}
.

If we also assume that w0,uX0,u > u/(1 + Mu), or equivalently f (0) > ( log u −
log (mes(T)) )/σ , we get, for large u,

cu

√
log (u)/f (0)2 = (1 + ε)

√
4

log (1 + Mu)

σ 2

√
log (u)

( log u − log (mes(T)) )2/σ 2

∼ (1 + ε)

√
4

log (1 + Mu)

log (u)
.

Then we have, for some positive constant c and for large u,

Mu∑
i=1

ωi,uXi,u ≤
Mu∑
i=1

ωi,u exp

{
σ (ti)f (0)

(
ρi +

√
1 − ρ2

i c
√

log (1 + Mu) / log (u)

)}
.
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It follows that{
ω0,uX0,u +

Mu∑
i=1

ωi,uXi,u > u, w0,uX0,u >
u

1 + Mu
,

Mu∨
i=1

∣∣Ñi
∣∣≤ cu

√
log (u)

}

⊂
{

ω0,uX0,u +
Mu∑
i=1

ωi,u exp

{
σ f (0)

(
ρi +

√
1 − ρ2

i c
√

log (1 + Mu) / log (u)

)}}
.

Since Mu ∼ mes(T)Sd
u , we have

lim
u→∞

(
sup

i=1,...,Mu

√
1 − ρ2

i

)√
log (1 + Mu) / log (u) = 0

and

ω0,uX0,u +
Mu∑
i=1

ωi,u exp

{
σ f (0)

(
ρi +

√
1 − ρ2

i c
√

log (1 + Mu) / log (u)

)}
∼
∫

T
eσ f (0)C(t) dt.

Now, by the method of steepest descent we know that, for large v,∫
T

eσvC(t) dt ∼
(

2π

σv

)d/2

eσv,

and then, for large u, P
(∫

T eσ f (0)C(t) dt > u
)∼ P (f (0) > v), where v is the unique solution to

(2π/σ )d/2v−d/2eσv = u. Since

P (f (0) > v) ∼ 1

v
exp

(
−1

2
v2
)

∼ 1

Hmes (T) vd
w (u) ,

we deduce that, for some positive constant C,

E

{
Z0 (u)2 1{∨Mu

i=1

∣∣Ñi
∣∣≤cu

√
log (u)

}}≤ Cw2 (u) ,

and the result follows. �

Proof of Proposition 3. Recall that Su is chosen as Su = κ0η
−(1+ε)
u (log u)2+ε for some ε > 0,

where (ηu) is a sequence such that limu→∞ηu = 0, and that we have

lim
u→∞

wMu (u)

w(u)
= 1.

Due to homogeneity, we have, for large u, P (Ju = j) ∼ 1/Mu and, by Lemma 5,
E{Zj (u)2} ≤ Cw(u)2.

We have

E

{(
ZMu (u)

)2}=
[
E

{(
ZMu (u) − v1,Mu (u)

)2}+ v1,Mu (u)
(
v1,Mu (u) + 2v2,Mu (u)

)]
.

By Lemma 3,

E

{(
ZMu (u) − v1,Mu (u)

)2}=
Mu∑
j=0

E
{
Zj (u)2}

P (Ju = j)
=

Mu∑
j=0

P (Ju = j)
E
{
Zj (u)2}

P (Ju = j)2
.
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By Lemma 4,

v1,Mu (u) ≤ C exp

(
−
(
log u − log

(∫
T eμ(t) dt

))2
2σ 2

A (1 + ε)

)
,

and

v2,Mu (u) ≤ wMu (u) ≤ C exp

(
− ( log u)2 − c̃2( log u))

2σ 2∗

)

as in Lemma 1. Moreover, we have

E

{
(ZMu (u) − w(u))2

}
=E

{
(ZMu(u))2

}
− w2

Mu
(u) + (wMu(u) − w(u))2

=E
{
(ZMu (u) − v1,Mu (u))2}+ v1,Mu (u)(v1,Mu (u) + 2v2,Mu (u))

− w2
Mu

(u) + (wMu(u) − w(u))2

and, for large u, E
{
(ZMu (u) − w(u))2

}≤E
{ (

ZMu (u) − v1,Mu (u)
)2 }+ 3v1,Mu (u)w(u) +

η2
uw(u)2 by Proposition 1.

Now,

E

{(
ZMu (u) − v1,Mu (u)

)2}
wMu (u)2

≤
(

w(u)2

wMu (u)2

) Mu∑
j=0

1

P (Ju = j)

E
{
Zj (u)2}
w(u)2

≤ C (Mu)
2

as u → ∞. We deduce that, for large u,

lim
u→∞

E
{
(ZMu (u) − w(u))2

}
w2

Mu
(u)

≤ CM2
u .

Finally, Mu ∼ mes(T)Sd
u ∼ mes(T)η−(1+ε)d

u (log u)(2+ε)d, and, for large u and some positive
constants c′

1 and c′
2, we have c′

1| log w(u)| ≤ (log u)2 ≤ c′
2| log w(u)|. It follows that

lim
u→∞

E
{
(ZMu (u) − w(u))2

}
| log (w(u))|[(2+ε)+(1+ε)ν]dw2(u)

< ∞. �
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