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Let A be a minor-closed class of labelled graphs, and let Gn be a random graph sampled

uniformly from the set of n-vertex graphs of A. When n is large, what is the probability that

Gn is connected? How many components does it have? How large is its biggest component?

Thanks to the work of McDiarmid and his collaborators, these questions are now solved

when all excluded minors are 2-connected.

Using exact enumeration, we study a collection of classes A excluding non-2-connected

minors, and show that their asymptotic behaviour may be rather different from the 2-

connected case. This behaviour largely depends on the nature of the dominant singularity

of the generating function C(z) that counts connected graphs of A. We classify our

examples accordingly, thus taking a first step towards a classification of minor-closed

classes of graphs. Furthermore, we investigate a parameter that has not received any

attention in this context yet: the size of the root component. It follows non-Gaussian limit

laws (Beta and Gamma), and clearly merits a systematic investigation.

2010 Mathematics subject classification: Primary 05A15, 05C30

Secondary 05C83, 60C05

1. Introduction

We consider simple graphs on the vertex set {1, . . . , n}. A set of graphs is a class if it

is closed under isomorphisms. A class of graphs A is minor-closed if any minor1 of a

graph of A is in A. To each such class one can associate its set E of excluded minors: an

(unlabelled) graph is excluded if its labelled versions do not belong to A, but the labelled

† Both authors were partially supported by a CNRS–Oxford collaboration scheme (CNRS/John Fell Oxford

University Press Research fund, 2012).
1 Obtained by contracting or deleting some edges, removing some isolated vertices and discarding loops and

multiple edges.
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(a)

(b) (c)

Figure 1. A zoo of graphs: (a) the 3-star, the triangle K3, the bowtie and the diamond, (b) a caterpillar and

(c) the 4-spoon (a k-spoon consists of a ‘handle’ formed of k edges, to which a triangle is attached).

versions of each of its proper minors belong to A. A remarkable result of Robertson

and Seymour states that E is always finite [32]. We say that the graphs of A avoid the

graphs of E . We refer to [6] for a study of the possible growth rates of minor-closed

classes.

For a minor-closed class A, we study the asymptotic properties of a random graph Gn

taken uniformly in An, the set of graphs of A having n vertices: What is the probability pn
that Gn is connected? More generally, what is the number Nn of connected components?

What is the size Sn of the root component, that is, the component containing 1? Or the

size Ln of the largest component?

Thanks to the work of McDiarmid and his collaborators, a lot is known if all excluded

graphs are 2-connected: then pn converges to a positive constant (at least 1/
√
e), Nn

converges in law to a Poisson distribution, and n − Sn and n − Ln converge in law to the

same discrete distribution. Details are given in Section 3.

If some excluded minors are not 2-connected, the properties of Gn may be rather

different (imagine we exclude the one edge graph). This paper takes a preliminary step

towards a classification of the possible behaviours by presenting an organized catalogue

of examples.

For each class A that we study, we first determine the generating functions C(z)

and A(z) that count connected and general graphs of A, respectively. The minors that

we exclude are always connected,2 which implies that A is decomposable in the sense

of Kolchin [24]: a graph belongs to A if and only if all its connected components

belong to A. This implies that A(z) = exp(C(z)). We then derive asymptotic results

from the values of these series. They are illustrated throughout the paper by pictures

of large random graphs, generated using Boltzmann samplers [18]. Under a Boltzmann

distribution, two graphs of A having the same size always have the same probability.

The most difficult class we study is that of graphs avoiding the bowtie (shown in

Figure 1).

Our results make extensive use of the techniques of Flajolet and Sedgewick’s book [19]:

symbolic combinatorics, singularity analysis, the saddle point method, and their

2 We refer to [27] for an example where this is not the case.
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application to the derivation of limit laws. We recall a few basic principles in Section 2.

We also need and prove two general results of independent interest related to the saddle

point method or, more precisely, to Hayman-admissibility (Theorems 6.2 and 6.3).

Our results are summarized in Table 1. A first principle seems to emerge:

The more rapidly C(z) diverges at its radius of convergence ρ, the more components

Gn has, and the smaller they are.

In particular, when C(ρ) converges, then the properties of Gn are qualitatively the same

as in the 2-connected case (for which C(ρ) always converges [26]), except that the limit

of pn can be arbitrarily small. When C(ρ) diverges, a whole variety of behaviours can

be observed, depending on the nature of the singularity of C(z) at ρ: the probability pn
always tends to 0, but at various speeds; the number Nn of components goes to infinity

at various speeds (but is invariably Gaussian after normalization); the size Sn of the root

component and the size Ln of the largest component follow, after normalization, non-

Gaussian limit laws, for instance a Gamma or Beta law for Sn, and for Ln a Gumbel law

or the first component of a Poisson–Dirichlet distribution. Cases where C(z) converges,

or diverges at most logarithmically, are addressed using singularity analysis (Sections 4

and 5), while those in which C(z) diverges faster (in practice, with an algebraic singularity)

are addressed with the saddle point method (Sections 7 to 10). Section 6 gathers general

results on the saddle point method and Hayman-admissibility.

Let us conclude with a few words on the size of the root component. It appears that

this parameter, which can be defined for any exponential family of objects, has not yet

been studied systematically, and follows interesting (i.e., non-Gaussian!) continuous limit

laws, after normalization. In an independent paper [10], we perform such a systematic

study, in the spirit of what Bell, Bender, Cameron and Richmond [4] or Gourdon [21]

did for the number of components or the largest component, respectively. This project is

also reminiscent of the study of the 2-connected component containing the root vertex

in a planar map, which also leads to a non-Gaussian continuous limit law, namely an

Airy distribution [3]. This distribution is also related to the size of the largest 2- and

3-connected components in various classes of graphs [20].

2. ‘Generatingfunctionology’ for graphs

Let E be a finite set of (unlabelled) connected graphs that forms an antichain for the

minor order (this means that no graph of E is a minor of another one). Let A be the set

of labelled graphs that do not contain any element of E as a minor. We denote by An the

subset of A formed of graphs having n vertices (or size n) and by an the cardinality of An.

The associated exponential generating function is A(z) =
∑

n�0 anz
n/n!. We use similar

notation (cn and C(z)) for the subset C of A consisting of (non-empty) connected graphs.

Since the excluded minors are connected, A is decomposable, and

A(z) = exp(C(z)).
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Table 1. Summary of the results. For each quantity Nn, Sn and Ln, we give the order of the expected value (up to a multiplicative constant, except in the last

line where constants are exact) and a description (name or density) of the limit law. The examples are ordered according to the speed of divergence of C(z) near

its radius ρ. Spoons are defined in Figure 1. As we descend the table, the graphs have more components, of a smaller size. The symbol PD(1)(1/4) stands for the

first component of a Poisson–Dirichlet distribution of parameter 1/4.

Excluded Sing. Number Nn Root Largest Refs and

minors C(ρ) of C(z) lim pn of comp. comp. Sn comp. Ln methods

2-connected < ∞ ? � 1/
√
e O(1) n − Sn n − Ln [1, 26, 28, 29]

< 1 Poisson → disc. → disc. Sec. 3

at least a spoon < ∞ (1 − ze)3/2 > 0 idem idem idem Sec. 4

but no tree � 1/
√
e sing. analysis

∞ log 0 log n n PD(1)(1/4) Sec. 5

(+
√

) Gaussian 1
4 (1 − x)−3/4 sing. analysis

∞ 1/
√

0 n1/3 n2/3 ? Sec. 10

Gaussian 2
√

x/πe−x saddle point

∞ simple 0
√
n

√
n

√
n log n Sec. 8

pole Gaussian xe−x Gumbel saddle point

(path forests)

∞ idem 0 idem idem ? Sec. 8

saddle point

(forests of caterpillars)

∞ idem 0 idem idem ? Sec. 9

(+ log) saddle point

(max. deg. 2)

all conn. graphs ∞ entire 0 n/k k k Sec. 7

of size k+1 (polynomial) Gaussian Dirac Dirac saddle point
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Several refinements of this series are of interest, for instance the generating function that

keeps track of the number of (connected) components as well:

A(z, u) =
∑
G∈A

uc(G) z
|G|

|G|! ,

where |G| is the size of G and c(G) the number of its components. Of course,

A(z, u) = exp(uC(z)).

We let Gn denote a uniform random graph of An, and let Nn be the number of its

components. Clearly,

P(Nn = i) =
[zn]C(z)i

i![zn]A(z)
, (2.1)

where [zn]F(z) denotes the coefficient of zn in the series F(z). The ith factorial moment of

Nn is

E(Nn(Nn − 1) · · · (Nn − i + 1)) =
[zn] ∂

iA
∂ui

(z, 1)

[zn]A(z)
=

[zn]C(z)iA(z)

[zn]A(z)
.

Several general results provide a limit law for Nn if C(z) satisfies certain conditions: for

instance, the results of Bell, Bender, Cameron and Richmond [4] that require C(z) to

converge at its radius of convergence, or the exp-log schema of [19, Proposition IX.14,

p. 670], which requires C(z) to diverge with a logarithmic singularity (see also the closely

related results of [2] on logarithmic structures). We use these results when applicable, and

prove a new result of this type, based on Drmota et al.’s notion of extended Hayman-

admissibility, which applies when C(z) diverges with an algebraic singularity. We believe

it to be of independent interest (Theorem 6.3).

We also study the size c1 of the root component, which is the component containing the

vertex 1. Accordingly we define

Ā(z, v) =
∑

G∈A,G�=∅

vc1(G)−1 z|G|−1

(|G| − 1)!
.

The choice of |G| − 1 instead of |G| simplifies some calculations slightly. Note that

Ā(z, 1) = A′(z) = C ′(z)A(z). Letting Sn denote the size of the root component in Gn, we

have

P(Sn = k) =
ckan−k

(
n−1
k−1

)
an

=
k

n

ck

k!

an−k

(n − k)!

n!

an
. (2.2)

Equivalently, the series Ā(z, v) is given by

Ā(z, v) = C ′(zv)A(z). (2.3)

The ith factorial moment of Sn − 1 is

E((Sn − 1) · · · (Sn − i)) =
[zn−1] ∂

iĀ
∂vi

(z, 1)

[zn−1]Ā(z, 1)
=

[zn−i−1]C (i+1)(z)A(z)

n[zn]A(z)
. (2.4)
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Surprisingly, this parameter has not been studied before. Our examples give rise to non-

Gaussian limit laws (Beta or Gamma: see Propositions 5.3 or 8.3). In fact, the form (2.3)

of the generating function shows that this parameter is bound to give rise to interesting

limit laws, as both the location and nature of the singularity change as v moves from

1 − ε to 1 + ε. Using the terminology of Flajolet and Sedgewick [19, Section IX.11], a

phase transition occurs. We are currently working on a systematic study of this parameter

in exponential structures [10].

Finally, we let C [k](z) denote the generating function of connected graphs of A of size

less than k,

C [k](z) =

k−1∑
n=1

cn
zn

n!
,

and, for some classes of graphs, study the size Ln of the largest component. We have

P(Ln < k) =
[zn] exp(C [k](z))

[zn]A(z)
. (2.5)

In this paper we use two main methods for studying the asymptotic behaviour of a

sequence (an)n given by its generating function A(z). The first one is the singularity analysis

of [19, Chapter VI]. Let us describe briefly how it applies, for readers who may not be

familiar with it. Assume that A(z) has a unique singularity of minimal modulus (also

called dominant) at its radius of convergence ρ, and is analytic in a Δ-domain, that is, a

domain of the form

{z : |z| < r, z �= ρ and | Arg(z − ρ)| > φ}

for some r > ρ and φ ∈ (0, π/2). Assume finally that, as z approaches ρ in this domain,

A(z) = S(z) + O(R(z)),

where S(z) and R(z) are functions belonging to the simple algebraic–logarithmic scale

of [19, Section VI.2]. Then one can transfer the above singular estimates for the series

into asymptotic estimates for the coefficients:

[zn]A(z) = [zn]S(z) + O([zn]R(z)).

Since S and R are simple functions, the asymptotic behaviour of their coefficients is

well known, and the estimate of [zn]A(z) is thus explicit. We use singularity analysis in

Sections 3 to 5. The second method we use is the saddle point method. In Section 6 we

recall how to apply it, and then use it in Sections 7 to 10.

When dealing directly with sequences rather than generating functions, a useful notion

will be that of smoothness: the sequence (fn)n�0 is smooth if fn−1/fn converges as n grows.

The limit is then the radius of convergence of the series
∑

n fnz
n.

3. Classes defined by 2-connected excluded minors

We assume in this section that at least one minor is excluded, and that all excluded minors

are 2-connected. This includes the classes of forests, series-parallel graphs, outer-planar
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Figure 2. (Colour online) A random forest of size n = 1165. It has two connected components.

graphs, and planar graphs. Many results are known in this case. We recall some of them

briefly, and state a new (but easy) result dealing with the size of the root component. The

general picture is that the class A shares many properties with the class of forests.

Proposition 3.1 (number of graphs, when excluded minors are 2-connected). The gener-

ating functions C(z) and A(z) = eC(z) are finite at their (positive) radius of convergence ρ.

Moreover, the sequence (an/n!)n is smooth.

The probability that Gn is connected tends to 1/A(ρ), which is clearly in (0, 1). In fact,

this limit is also larger than or equal to 1/
√
e. The latter value is reached when A is the

class of forests.

The fact that ρ is positive is due to Norine, Seymour, Thomas and Wollan [30], and

holds for any proper minor-closed class. The next results are due to McDiarmid [26]

(see also the earlier papers [28, 29]). The fact that 1/A(ρ) � 1/
√
e, or equivalently, that

C(ρ) � 1/2, was conjectured in [29], and then proved independently in [1] and [23].

Example 3.2. A basic, but important example is that of forests, illustrated in Figure 2.

We have in this case

C(z) = T (z) − T (z)2

2
,

where T (z) = zeT (z) counts rooted trees (see for instance [19, p. 132]). The series T , C

and A = eC have radius of convergence ρ = 1/e, with the following singular expansions
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at this point:

T (z) = 1 −
√

2(1 − ze)1/2 +
2

3
(1 − ze) − 11

√
2

36
(1 − ze)3/2 + O((1 − ze)2),

C(z) =
1

2
− (1 − ze) +

2
√

2

3
(1 − ze)3/2 + O((1 − ze)2), (3.1)

A(z) =
√
e −

√
e(1 − ze) +

√
e
2
√

2

3
(1 − ze)3/2 + O((1 − ze)2).

The singularity analysis of [19, Chapter VI] applies: the three series are analytic in a

Δ-domain, and their coefficients satisfy

tn ∼ n!
en√

2πn3/2
, cn ∼ n!

en√
2πn5/2

, and an ∼
√
e cn.

We will also consider rooted trees of height less than k (where by convention the tree

consisting of a single vertex has height 0). Let Tk(z) denote their generating function.

Then T1(z) = z and for k � 1,

Tk+1(z) = zeTk(z).

Note that Tk(z) is entire.

Note. When all excluded minors are 2-connected, C(ρ) always converges, but the nature

of the singularity of C(z) at ρ depends on the class: it is for instance (1 − z/ρ)3/2 for forests

(and more generally, for subcritical classes [14]), but (1 − z/ρ)5/2 for planar graphs. We

refer to [20] for a more detailed discussion that applies to classes that exclude 3-connected

minors.

Proposition 3.3 (number of components, when excluded minors are 2-connected). The mean

of Nn satisfies

E(Nn) ∼ 1 + C(ρ),

and the random variable Nn − 1 converges in law to a Poisson distribution of parameter

C(ρ). That is, as n → ∞,

P(Nn = i + 1) → C(ρ)i

i!eC(ρ)
. (3.2)

We refer to [26, Corollary 1.6] for a proof. The largest component is known to contain

almost all vertices, and it is not hard to prove that the same holds for the root component.

In fact, the tails of the random variables Sn and Ln are related by the following simple

result.

Lemma 3.4. For any class of graphs A, and k < n/2,

P(Sn = n − k) =
n − k

n
P(Ln = n − k).
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Proof. Let us denote by Bn the (lexicographically first) biggest component of Gn. Its size

is thus Ln. For n > 2k we have

P(Sn = n − k) = P(Sn = n − k and 1 ∈ Bn) + P(Sn = n − k and 1 �∈ Bn)

= P(Ln = n − k and 1 ∈ Bn) + P(Sn = n − k and 1 �∈ Bn)

= P(1 ∈ Bn|Ln = n − k)P(Ln = n − k) + P(Sn = n − k and 1 �∈ Bn)

=
n − k

n
P(Ln = n − k).

Indeed, there cannot be two components of size n − k or more. This implies that P(Sn =

n − k and 1 �∈ Bn) = 0.

Proposition 3.5 (root component and largest component, when excluded minors are 2-

connected). The random variables n − Sn and n − Ln both converge to a discrete limit

distribution X given by

P(X = k) =
1

A(ρ)

akρ
k

k!
.

Proof. By Lemma 3.4, the two statements are equivalent. The Ln result has been proved

by McDiarmid [26, Corollary 1.6].

We give an independent proof (of the Sn result), as we will recycle its ingredients

later for certain classes of graphs that avoid non-2-connected minors. Let k � 0 be fixed.

By (2.2),

P(Sn = n − k) =
cn−kak

(
n−1
k

)
an

=
ak

k!

cn−k

an−k

(n − 1)!an−k

(n − k − 1)!an
.

By Proposition 3.1, the term cn−k/an−k , which is the probability that a graph of size n − k

is connected, converges to 1/A(ρ). Moreover, the sequence an/n! is smooth, so that

(n − 1)!an−k

(n − k − 1)!an

converges to ρk . The result follows.

In fact a more precise result is available. We use the term fragment to denote the union

of the components that differ from the biggest component Bn. Then McDiarmid describes

the limit law of the fragment [26, Theorem 1.5]: the probability that the fragment is

isomorphic to a given unlabelled graph H of size k is

1

A(ρ)

ρk

aut(H)
,

where aut(H) is the number of automorphisms of H .
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4. When trees dominate: C(z) converges at ρ

Let A be a decomposable class of graphs (for instance, a class defined by excluding

connected minors), satisfying the following conditions:

(1) A includes all trees,

(2) the generating function D(z) that counts the connected graphs of A that are not trees

has radius of convergence (strictly) larger than 1/e (which is the radius of trees).

We then say that A is dominated by trees. Some examples are presented below. In this

case, the properties that hold for forests (Section 3) still hold, except that the probability

cn/an that Gn is connected tends to a limit that is now at most 1/
√
e. We will see that this

limit can become arbitrarily small.

Proposition 4.1 (number of graphs, when trees dominate). Let T (z) be the generating

function of rooted trees, given by T (z) = zeT (z). Write the generating function of connected

graphs in the class A as

C(z) = T (z) − T (z)2

2
+ D(z).

The generating function of graphs of A is A(z) = eC(z). As n → ∞,

cn ∼ n!
en√

2πn5/2
and an ∼ A(1/e)cn.

In particular, the probability that Gn is connected tends to 1/A(1/e) = e−1/2−D(1/e) as n → ∞.

Proof. As in Example 3.2, we use singularity analysis [19, Chapter VI]. By assumption,

D(z) has radius of convergence larger than 1/e, and the singular behaviour of C(z) is that

of unrooted trees. More precisely, it follows from (3.1) that, as z approaches 1/e,

C(z) = 1/2 + D(1/e) − (1 − ze)(1 + D′(1/e)/e) +
2
√

2

3
(1 − ze)3/2 + O((1 − ze)2),

this expansion being valid in a Δ-domain. This gives the estimate of cn via singularity

analysis. For the series A, we find

A(z) = e1/2+D(1/e)

(
1 − (1 − ze)(1 + D′(1/e)/e) +

2
√

2

3
(1 − ze)3/2 + O((1 − ze)2)

)
,

and the estimate of an follows.

Proposition 4.2 (number of components, when trees dominate). The mean of Nn satisfies

E(Nn) ∼ 1 + C(1/e),

and Nn − 1 converges in law to a Poisson distribution of parameter C(1/e) (see (3.2)).

Proof. We can start from (2.1) and apply singularity analysis. Or we can apply a ready-

to-use result of Bell, Bender, Cameron and Richmond [4, Theorem 2], which uses the

facts (proved in Proposition 4.1) that the sequences ncn−1/cn and cn/an converge.
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Proposition 4.3 (size of components, when trees dominate). The random variable n − Sn
converges to a discrete limit distribution X given by

P(X = k) =
1

A(1/e)

ake
−k

k!
,

where ak and A(z) are given in Proposition 4.1. The same holds for n − Ln.

Proof. The two ingredients used in the proof of Proposition 3.5 to establish the limit

law of n − Sn (namely, smoothness of an/n! and convergence of cn/an) still hold here (see

Proposition 4.1). Lemma 3.4 then gives the law of n − Ln.

We now present a collection of classes dominated by trees.

Proposition 4.4. Let k � 1. Let A be a decomposable class of graphs that includes all trees,

and such that all graphs of A avoid the k-spoon (shown in Figure 1). Then A is dominated

by trees, and the results of Propositions 4.1, 4.2 and 4.3 hold.

Proof. Clearly, it suffices to prove this proposition when A is exactly the class of graphs

avoiding the k-spoon, which we henceforth assume.

We partition the set C of connected graphs of A into three subsets: the set C0 of trees,

counted by C0 = T − T 2/2 with T ≡ T (z), the set C1 of unicyclic graphs (counted by C1),

and finally the set C2 containing graphs with at least two cycles (counted by C2). Hence

C = T − T 2/2 + C1 + C2. We will prove that C1 has radius of convergence (strictly) larger

than 1/e, and that C2 is entire.

A unicyclic graph belongs to C if and only if all trees attached to its unique cycle have

height less than k. The generating function of cycles is given by

Cyc(z) =
1

2

∑
n�3

zn

n
=

1

2

(
log

1

1 − z
− z − z2

2

)
. (4.1)

Hence, the basic rules of the symbolic method of [19, Chapter II] give

C1(z) = Cyc(Tk) =
1

2

(
log

1

1 − Tk(z)
− Tk(z) − Tk(z)

2

2

)
, (4.2)

where Tk counts rooted trees of height less than k and is given in Example 3.2. Recall from

this example that T (z) equals 1 at its unique dominant singularity 1/e. Also, Tk(z) < T (z)

for all z ∈ [0, 1/e] since Tk counts fewer trees than T . In particular, Tk(1/e) < 1 and C1(z)

has radius of convergence larger than 1/e.

We now want to prove that C2 is entire. The (2)-core of a connected graph H is the

(possibly empty) unique maximal subgraph of minimum degree 2. It can be obtained from

H by deleting recursively all vertices of degree 0 or 1 (or, in a non-recursive fashion, all

dangling trees of H). By extension, we let core denote any connected graph of minimum

degree 2. Let C̄2 denote the set of cores having several cycles and avoiding the k-spoon,

and C̄2 the associated generating function. The inequality

C2(z) � C̄2(Tk(z))
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Figure 3. A core having several cycles and avoiding the k-spoon cannot contain a path of length 3k − 1.

holds, coefficient by coefficient, because the core of a graph of C2 has several cycles and

avoids the k-spoon. Since Tk is entire, it suffices to prove that C̄2 is entire. It follows

from [6, Theorem 3.1] that it suffices to prove that no graph G of C̄2 contains a path of

length 3k − 1. So let P = (v0, v1, . . . , v�) be a path of maximal length in G, and assume that

� � 3k − 1. We will prove that G contains the k-spoon as a minor. Since P is maximal

and G is a core, there exist vi and vj , with i � 2 and j � � − 2, such that the edges {v0, vi}
and {vj , v�} belong to G.

If i = � or j = 0, let P̄ be the cycle of G formed of P and the edge {v0, v�}. Let Q̄

be another cycle of G. If Q̄ contains at most one vertex of P (Figure 3(a)), we find an

�-spoon by deleting one edge of P̄ , contracting Q̄ into a 3-cycle and one of the paths

joining P to Q̄ into a point. If Q̄ contains at least two vertices va and vb of P , with a < b

(Figure 3(b)), we may assume that Q̄ consists of the edges {va, va+1}, . . . , {vb−1, vb} and of a

path Q that only meets P at va and vb. Let R̄ denote the cycle formed of the path Q and

the path (vb, vb+1, . . . , v�, v0, . . . , va}. Then we obtain a p-spoon, with p � �3k/2 − 1 � k, by

contracting the shortest of the cycles Q̄ and R̄ into a 3-cycle and deleting an edge ending

at va from the other.

Assume now that i < � and j > 0. Suppose first that i � j (Figure 3(c)). By symmetry,

we may assume that the cycle P̄1 = (v0, . . . , vi) is shorter than (or equal in length to) the

cycle P̄2 = (vj , . . . , v�). In particular, i � �/2. Contract P̄1 into a 3-cycle, and remove the

edge {vj , v�} from P̄2: this gives a p-spoon with p = � − i � ��/2 � k. Assume now that

j < i (Figure 3(d)). Consider the three following paths joining vi and vj: (vi, vi−1, . . . , vj),

(vi, v0, v1, . . . , vj) and (vi, vi+1, . . . , v�, vj). Since the sum of the lengths of these paths is

� + 2 � 3k + 1, one of them, say (vi, v0, v1, . . . , vj), has length at least k + 1. That is, j � k.

Delete from this path the edge {vi, v0}, and contract the cycle formed by the other two

paths into a 3-cycle: this gives a j-spoon, with j � k.

The simplest non-trivial class of graphs satisfying the conditions of Proposition 4.4

consists of graphs avoiding the 1-spoon. By specializing the proof of that proposition
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Figure 4. (Colour online) A random graph of size n = 541 avoiding the diamond, the bowtie and the 20-spoon.

to k = 1, we find C1 = Cyc(z) and C2 = 0 (since no core with several cycles avoids the

2-path). Hence

C(z) = T (z) − T (z)2

2
+

1

2

(
log

1

1 − z
− z − z2

2

)
.

More generally, consider the class A(k) of graphs avoiding the k-spoon, but also the

diamond and the bowtie (both shown in Figure 1): excluding the latter two graphs means

that no graph of C can have several cycles, so C2 = 0. Hence the proof of Proposition 4.4

immediately gives the following result.

Proposition 4.5 (no diamond, bowtie or k-spoon). Let k � 1. Let T (z) be the generating

function of rooted trees, given by T (z) = zeT (z), and let Tk(z) be the generating function of

rooted trees of height less than k, given in Example 3.2.

Let A(k) be the class of graphs avoiding the diamond, the bowtie and the k-spoon. The

generating function of connected graphs of A(k) is

C (k)(z) = T (z) − T (z)2

2
+ D(k)(z),

where

D(k)(z) =
1

2

(
log

1

1 − Tk(z)
− Tk(z) − Tk(z)

2

2

)
.

The class A(k) is dominated by trees, and the results of Propositions 4.1, 4.2 and 4.3 hold.

In particular, the probability that a random graph of A(k)
n is connected tends to e−C(k)(1/e) as

n → ∞. Since Tk(1/e) tends to T (1/e) = 1 as k increases, this limit probability tends to 0.

A random graph of A(k)
n is shown in Figure 4 for k = 20 and n = 541. We have also

determined the generating function of graphs that avoid the 2-spoon.
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. . .

at least two vertices

. . .

at least three vertices

Figure 5. Graphs with several cycles avoiding the 2-spoon.

Proposition 4.6 (no 2-spoon). Let T (z) be the generating function of rooted trees, given by

T (z) = zeT (z). The generating function of connected graphs avoiding the 2-spoon is

C(z) = T (z) − T (z)2

2
+ D(z),

where

D(z) =
1

2

(
log

1

1 − zez
− zez − z2e2z

2

)
+

z4

4!
+ z2e2z

(
ez − 1 − z − z2

4

)
.

The class of graphs avoiding the 2-spoon is dominated by trees, and the results of Proposi-

tions 4.1, 4.2 and 4.3 apply.

Proof. We first follow the proof of Proposition 4.4: we write C = T − T 2/2 + C1 + C2,

where C1 is given by (4.2) with Tk = T2 = zez , and C2 counts connected graphs having

several cycles and avoiding the 2-spoon. Note that C1 is the first term in the above

expression of D(z). Let us now focus on C2.

In Section 10 below, we study the class of graphs that avoid the bowtie, and in particular

describe the cores of this class (Proposition 10.2). Since the bowtie contains the 2-spoon

as a minor, graphs that avoid the 2-spoon avoid the bowtie as well. Hence we will first

determine which cores of Proposition 10.2 have several cycles and avoid the 2-spoon,

and then check which of their vertices can be replaced by a small tree (that is, a tree of

height 1) without creating a 2-spoon.

Clearly, the cores of Proposition 10.2 that have several cycles are those of Figures 16,

17 and 18. Among the cores of Figure 16, only K4 avoids the 2-spoon. Moreover, none

of its vertices can be replaced by a non-trivial tree. This gives the term z4/4! in D(z).

Among the cores of Figures 17 and 18, only the ones drawn on the left-hand sides avoid

the 2-spoon. In these cores, only the two vertices of degree at least 3 can be replaced by a

small tree. The resulting graphs are shown in Figure 5 and together give the contribution

1

2
(zez)2(ez − 1 − z) +

1

2
(zez)2

(
ez − 1 − z − z2

2

)

(again an application of the symbolic method of [19, Chapter II]). The proposition follows.
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Figure 6. (Colour online) A random graph of size n = 859 avoiding the diamond and the bowtie.

5. Excluding the diamond and the bowtie: a logarithmic singularity

Let A be the class of graphs avoiding the diamond and the bowtie (both shown in

Figure 1). These are the graphs whose components have at most one cycle (Figure 6).

They were studied a long time ago by Rényi [31] and Wright [34], and the following

result has now become a routine exercise.

Proposition 5.1 (number of graphs avoiding a diamond and a bowtie). Let T (z) be the

generating function of rooted trees, defined by T (z) = zeT (z). The generating function of

connected graphs of A is

C(z) =
T (z)

2
− 3T (z)2

4
+

1

2
log

1

1 − T (z)
.

The generating function of graphs of A is A(z) = eC(z). As n → ∞,

cn ∼ n!
en

4n
and an ∼ n!

1

(2e)1/4Γ(1/4)

en

n3/4
. (5.1)

In particular, the probability that Gn is connected tends to 0 at speed n−1/4 as n → ∞.

Proof. The expression of C(z) is obtained by taking the limit k → ∞ in Proposition 4.5.

We now estimate cn and an via singularity analysis [19, Sect. VI.4]. Recall from

Example 3.2 that T (z) has a unique dominant singularity, at z = 1/e, with a singular

expansion (3.1) valid in a Δ-domain. Thus 1/e is also the unique dominant singularity of

C(z) and A(z), and we have, in a Δ-domain,

C(z) ∼ 1

4
log

(
1

1 − ze

)
and A(z) ∼ 1

(2e)1/4(1 − ez)1/4
. (5.2)

The asymptotic estimates of cn and an follow.
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Proposition 5.2 (number of components, no bowtie or diamond). The mean and variance

of Nn satisfy

E(Nn) ∼ log n

4
, V(Nn) ∼ log n

4
,

and the random variable

Nn − log n/4√
log n/4

converges in law to a standard normal distribution.

Proof. Using (3.1), the estimate (5.2) can be refined into

C(z) =
1

4
log

(
1

1 − ze

)
+ λ + O(

√
1 − ze), (5.3)

where λ is a constant, and the proposition is a direct application of [19, Proposition IX.14,

p. 670].

The number of connected components is about 1/4 log n. However, the size of the root

component is found to be of order n. More precisely, we have the following result.

Proposition 5.3 (size of the root component, no bowtie or diamond). The normalized

variable Sn/n converges in distribution to a Beta law of parameters α = 1, β = 1/4, with

density (1 − x)−3/4/4 on [0, 1]. In fact, a local limit law holds: for x ∈ (0, 1) and k = �xn�,

nP(Sn = k) → 1

4
(1 − x)−3/4.

The convergence of moments holds as well: for i � 0,

E(Si
n) ∼ Γ(5/4)i!

Γ(i + 5/4)
ni.

Proof. Recall that the existence of a local limit law implies the existence of a global

one [9, Theorem 3.3]. Thus it suffices to prove the local limit law. But this is easy, starting

from the rightmost expression in (2.2), and using (5.1).

For the moments, let us start from (2.4). Our first task is to obtain an estimate of

C (i+1)(z) near 1/e. Combining (5.3) and [19, Theorem VI.8, p. 419] gives, for i � 1,

C (i+1)(z) ∼ i!

4

(
e

1 − ze

)i+1

.

We multiply this by the estimate (5.2) of A(z), apply singularity analysis, and finally

use (5.1) to obtain the asymptotic behaviour of the ith moment of Sn. Since these

moments characterize the above Beta distribution, we conclude [19, Theorem C.2] that

Sn/n converges in law to this distribution.
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Figure 7. The distribution function P(Ln < m) for n = 100: the change of regime at (a) m = n/2, (b) m = n/3,

and (c) m = n/4.

We conclude with the law of the size of the largest component, which we derive

from general results dealing with components of logarithmic structures [2]. The following

proposition is illustrated by Figure 7.

Proposition 5.4 (size of the largest component, no bowtie or diamond). The normalized

variable Ln/n converges in law to the first component of a Poisson–Dirichlet distribution of

parameter 1/4: for x ∈ (0, 1),

P(Ln < xn) → ρ(1/x),

where ρ : R
+ → [0, 1] is the unique continuous function such that ρ(x) = 1 for x ∈ [0, 1],

and for x > 1,

x1/4ρ′(x) +
1

4
(x − 1)−3/4ρ(x − 1) = 0.

The function ρ is infinitely differentiable, except at integer points.

A local limit law also holds: for x ∈ (0, 1) and 1/x �∈ N,

nP(Ln = �xn�) → (1 − x)−3/4

4x
ρ

(
1 − x

x

)
.

Proof. A decomposable class of graphs A is an assembly in the sense of [2, Section 2.2].

In particular, it satisfies the conditioning relation [2, equation (3.1)]: conditional on the

total size being n, the numbers C
(n)
i that count connected components of size i, for

1 � i � n, are independent. When A is the class of graphs avoiding the diamond and

the bowtie, the estimate (5.1) of cn tells us that this assembly is logarithmic in the sense

of [2, equation (2.15)]; indeed, [2, equation (2.16)] holds with mi = ci, y = e and θ = 1/4.

Our random variable Ln coincides with the random variable L
(n)
1 of [2]. We then apply
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Theorem 6.12 and Theorem 6.8 of [2]: this gives the convergence in law of Ln and the

local limit law. The distribution function of the limit law is given by [2, equation (5.29)],

and the differential equation satisfied by ρ follows from [2, equation (4.23)].

Remark. If we push the singular expansion (5.3) of C(z) further, we find a subdominant

term in
√

1 − ze, but its influence is never felt in the asymptotics results. We would

obtain the same results (with possibly different constants) for any C(z) having a purely

logarithmic singularity.

6. Hayman-admissibility and extensions

Our next examples (Sections 7 to 10) deal with examples where C(z) diverges at ρ with

an algebraic singularity. This results in A(z) diverging rapidly at ρ. We then estimate an
using the saddle point method: more precisely, with a black box that applies to Hayman-

admissible (or H-admissible) functions. Let us first recall what this black box does [19,

Theorem VIII.4, p. 565].

Theorem 6.1. Let A(z) be a power series with real coefficients and radius of convergence

ρ ∈ (0,∞]. Assume that A(r) is positive for r ∈ (R, ρ), for some R ∈ (0, ρ). Let

a(r) = r
A′(r)

A(r)
and b(r) = r

A′(r)

A(r)
+ r2

A′′(r)

A(r)
− r2

(
A′(r)

A(r)

)2

.

Assume that the following three properties hold.

H1 (Capture condition.)

lim
r→ρ

a(r) = lim
r→ρ

b(r) = +∞.

H2 (Locality condition.) For some function θ0(r) defined on (R, ρ) and satisfying 0 < θ0(r) <

π, one has, as r → ρ,

sup
|θ|�θ0(r)

∣∣∣∣A(reiθ)

A(r)
e−iθa(r)+θ2b(r)/2 − 1

∣∣∣∣ → 0.

H3 (Decay condition.) As r → ρ,

sup
|θ|∈[θ0(r),π)

∣∣∣∣A(reiθ)

A(r)

√
b(r)

∣∣∣∣ → 0.

We say that A(z) is Hayman-admissible. Then the nth coefficient of A(z) satisfies, as n → ∞,

[zn]A(z) ∼ A(ζ)

ζn
√

2πb(ζ)
, (6.1)

where ζ ≡ ζn is the unique solution in (R, ρ) of the saddle point equation ζA′(ζ) = nA(ζ).

Conditions H2 and H3 are usually stated in terms of uniform equivalence as r → ρ, but

we find the above formulation more explicit.
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The set of H-admissible series has several useful closure properties [19, Theorem VIII.5,

p. 568]. Here is one that we were not able to find in the literature.

Theorem 6.2. Let A(z) = F(z)G(z) where F(z) and G(z) are power series with real coef-

ficients and radii of convergence 0 < ρF < ρG � ∞. Assume that F(z) has non-negative

coefficients and is Hayman-admissible, and that G(ρF ) > 0. Then A(z) is Hayman-admissible.

Proof. Let us first prove that the radius of convergence ρ of A(z) is ρF . Clearly,

ρ � ρF . Now, suppose ρ > ρF . Then A(z) is analytic at ρF . Together with G(ρF ) > 0 this

implies that F(z) = A(z)/G(z) has an analytic continuation at ρF , which is impossible

by Pringsheim’s Theorem (since F(z) has non-negative coefficients) [19, Theorem IV.6,

p. 240]. Note also that A(r) is positive on an interval of the form [R, ρ) (by continuity

of G). Let us now check the three conditions of Theorem 6.1. We have

a(r) = aF (r) + aG(r), b(r) = bF (r) + bG(r),

with

aF (r) = r
F ′(r)

F(r)
and bF (r) = r

F ′(r)

F(r)
+ r2

F ′′(r)

F(r)
− r2

(
F ′(r)

F(r)

)2

,

and similarly for aG and bG.

H1. The capture condition holds for A since it holds for F , given that G(ρ) > 0 and

ρG > ρ.

H2. Choose θ0(r) = θF0 (r), where θF0 (r) is a function for which F(z) satisfies H2 and H3.

We have

A(reiθ)

A(r)
· e−ia(r)θ+θ2b(r)/2 =

F(reiθ)

F(r)
e−iaF (r)θ+θ2bF (r)/2G(reiθ)

G(r)
· e−iaG(r)θ+θ2b2

G(r)/2. (6.2)

By assumption, F satisfies the locality condition: hence

F(reiθ)

F(r)
· e−iaF (r)θ+bF (r)θ2/2 = 1 + M(r, θ), (6.3)

where

sup
|θ|�θ0(r)

|M(r, θ)| → 0 (6.4)

as r → ρ. For r ∈ [R, ρ) and |θ| � θ0(r), let us expand logG(reiθ) in powers of θ:

logG(reiθ) = logG(r) + iθaG(r) − θ2

2
bG(r) + θ3S(r, θ),

where S(r, θ) is bounded uniformly in a neighbourhood of (ρ, 0). We can assume that

θ0(r) → 0 as r → ρ (see [22, equation (12.1)]). Thus

G(reiθ)

G(r)
· e−iaG(r)θ+θ2bG(r)/2 = eθ

3S (r,θ) = 1 + N(r, θ), (6.5)
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where

sup
|θ|�θ0(r)

|N(r, θ)| → 0 (6.6)

as r → ρ. Putting together equations (6.2) to (6.6), we obtain that A(z) satisfies H2.

H3. We have ∣∣∣∣A(reiθ)

A(r)

√
b(r)

∣∣∣∣ =

∣∣∣∣F(reiθ)G(reiθ)

F(r)G(r)

√
bF (r) + bG(r)

∣∣∣∣
�

∣∣∣∣F(reiθ)

F(r)

√
2bF (r) · G(reiθ)

G(r)

∣∣∣∣ for r close to ρ,

because bF (r) → ∞ as r → ρ while bG(r) is bounded around ρ. Also, since G has radius

larger than ρ and G(ρ) > 0, the term G(reiθ)/G(r) is uniformly bounded in a neighbourhood

of the circle of radius ρ. Since by assumption, F(z) satisfies H3, this shows that A(z) satisfies

it as well.

We will also need a uniform version of Hayman-admissibility for series of the form

euC(z).

Theorem 6.3. Let C(z) be a power series with non-negative coefficients and radius of

convergence ρ. Assume that A(z) = eC(z) has radius ρ and is Hayman-admissible. Define

b(r) = rC ′(r) + r2C ′′(r) and V (r) = C(r) − (rC ′(r))2

rC ′(r) + r2C ′′(r)
.

Assume that, as r → ρ,

V (r) → +∞, (6.7)

C(r)

V (r)3/2
→ 0, (6.8)

b(r)1/
√
V (r) = O(1). (6.9)

Then A(z, u) := euC(z) satisfies conditions (1)–(6), (8) and (9) of [16, Definition 1]. If Nn is

a sequence of random variables such that

P(Nn = i) =
[zn]C(z)i

i![zn]eC(z)
,

then the mean and variance of Nn satisfy

E(Nn) ∼ C(ζn), V(Nn) ∼ V (ζn), (6.10)

where ζn ≡ ζ is the unique solution in (0, ρ) of the saddle point equation ζC ′(ζ) = n. Moreover,

the normalized version of Nn converges in law to a standard normal distribution:

Nn − E(Nn)√
V(Nn)

→ N (0, 1).
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Remark. The set of series covered by this theorem seem to have only a small intersection

with the set of series (of the form g(z)F(uf(z))) covered by Section 4 of [17].

Proof. With the notation of [16, Definition 1], we have

a(r, u) = c(r, u) = ruC ′(r) = ua(r), b(r, u) = ruC ′(r) + r2uC ′′(r) = ub(r),

ā(r, u) = b̄(r, u) = uC(r), ε(r) =
K√
V (r)

,
(6.11)

for a fixed constant K . Condition (1) of [16, Definition 1] holds for R = ρ, any ζ > 0

and any R0 ∈ [0, ρ): indeed, the series A(z, u) is analytic for |z| < ρ and u ∈ C, and A(z, 1)

is positive on [0, ρ). Conditions (8) and (9) are simply our assumptions (6.7) and (6.8).

Condition (4) is that b(r) → +∞ as r → ρ: this holds because A is Hayman-admissible.

Condition (5) requires that b(r, u) ∼ b(r, 1) for r → ρ, uniformly for u ∈ [1 − ε(r), 1 + ε(r)]:

this holds because b(r, u)/b(r, 1) = u and ε(r) → 0 as r → ρ. Condition (6) requires that

a(r, u) = a(r, 1) + c(r, 1)(u − 1) + O(c(r, 1)(u − 1)2)) uniformly for r ∈ (0, ρ) and u ∈ [1 −
ε(r), 1 + ε(r)]. Since a(r, u) = a(r, 1) + c(r, 1)(u − 1), this condition obviously holds.

We are thus left with conditions (2) and (3), which are uniform versions (in u) of the

locality and decay conditions H2 and H3 defining Hayman-admissibility. They can be

stated as follows.

H′
2 (Uniform locality condition.) There exists R ∈ (0, ρ) such that, for any K > 0, there

exists a function δ(r) defined over (R, ρ), and satisfying 0 < δ(r) < π, such that, as

r → ρ,

sup
|θ|�δ(r),

|u−1|�ε(r)

∣∣∣∣A(reiθ, u)

A(r, u)
e−iθa(r,u)+θ2b(r,u)/2 − 1

∣∣∣∣ → 0.

H′
3 (Uniform decay condition.) As r → ρ,

sup
|θ|∈[δ(r),π)
|u−1|�ε(r)

∣∣∣∣A(reiθ, u)

A(r, u)

√
b(r, u)

∣∣∣∣ → 0.

We begin with H′
2. Since A(z) is H-admissible, let θ0(r) be a function for which H2 (and

H3) holds:

A(reiθ)

A(r)
e−iθa(r)+θ2b(r)/2 = 1 + M(r, θ),

where

M(r) := sup
|θ|�θ0(r)

|M(r, θ)|

tends to 0 as r → ρ. Then, for u ∈ [1 − ε(r), 1 + ε(r)],

A(reiθ, u)

A(r, u)
e−iθa(r,u)+θ2b(r,u)/2 = exp

(
u
(
C(reiθ) − C(r) − iθa(r) + θ2b(r)/2

))
= (1 + M(r, θ))u,
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where we have taken the principal determination of log to define

(1 + M(r, θ))u = exp(u log(1 + M(r, θ)))

(because M(r, θ) is close to 0). Thus

sup
|θ|�θ0(r)

|u−1|�ε(r)

∣∣∣∣A(reiθ, u)

A(r, u)
e−iθa(r,u)+θ2b(r,u)/2 − 1

∣∣∣∣ = sup
|θ|�θ0(r)

|u−1|�ε(r)

|(1 + M(r, θ))u − 1|

� (1 + ε(r))M(r) + O
(
(1 + ε(r))M(r)2

)
,

and this upper bound tends to 0 as r → ρ. This proves H′
2 with δ(r) = θ0(r).

We finally address H′
3. Since A(z) satisfies the decay condition H3, the quantity

N(r, θ) :=
A(reiθ)

A(r)

√
b(r)

satisfies

sup
|θ|∈[θ0(r),π]

|N(r, θ)| → 0 (6.12)

as r → ρ. We have, for u ∈ [1 − ε(r), 1 + ε(r)],∣∣∣∣A(reiθ, u)

A(r, u)

√
b(r, u)

∣∣∣∣ = |N(r, θ)|u
√

b(r)
1−u√

u

� |N(r, θ)|1+ε(r)
√

b(r)
ε(r)√

1 + ε(r),

and this tends to 0 uniformly for |θ| ∈ [θ0(r), π] thanks to (6.12), (6.11), (6.7) and (6.9).

As explained in [16] just below Theorem 2, these eight conditions give the estimates

(6.10) of E(Nn) and V(Nn) and imply the existence of a Gaussian limit law.

We finish this section with a simple but useful result of products of series [5, Theorem 2].

Proposition 6.4. Let

F(z) =
∑
n

fnz
n and G(z) =

∑
n

gnz
n

be power series with radii of convergence 0 � ρF < ρG � ∞, respectively. Suppose G(ρF ) �= 0,

and the sequence (fn)n�0 is smooth. Then [zn]F(z)G(z) ∼ G(ρF )fn.

7. Graphs with bounded components: C(z) is a polynomial

Let C be a finite class of connected graphs, and let A be the class of graphs with connected

components in C. Note that A is minor-closed if and only if C itself is minor-closed. This

is the case, for instance, if C is the class of graphs of size at most k. In general, we denote

by k the size of the largest graphs of C.

We begin with the enumeration of the graphs of A. The following proposition is a bit

more precise than the standard result on exponentials of polynomials [19, Corollary VIII.2,
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p. 568], since it makes explicit the behaviour of the term b(ζ) occurring in the saddle

point estimate (6.1). We assume here aperiodicity of C(z).

Proposition 7.1 (number of graphs with small components). Write the generating function

of graphs of C as

C(z) =

k∑
i=0

ci

i!
zi. (7.1)

The generating function of graphs of A is A(z) = eC(z). As n → ∞,

an ∼ n!
1√

2πkn

A(ζ)

ζn
, (7.2)

where ζ ≡ ζn is defined by ζC
′
(ζ) = n and satisfies

ζ = αn1/k + β + O(n−1/k) (7.3)

with

α =

(
(k − 1)!

ck

)1/k

and β = − (k − 1)ck−1

kck
. (7.4)

The probability that Gn is connected is of course zero as soon as n > k.

Proof. The series A(z) is H-admissible ([19, Theorem VIII.5, p. 568]) and Theorem 6.1

applies. The saddle point equation ζC ′(ζ) = n is an irreducible bivariate polynomial in ζ

and n, of degree k in ζ. Consider 1/n as a small parameter x. By [33, Proposition 6.1.6],

the saddle point ζ admits an expansion of the form

ζ =
∑
i�i0

αin
−i/k, (7.5)

for some integer i0 and complex coefficients αi. Using Newton’s polygon method [19,

p. 499], one easily finds i0 = −1 and the values (7.4) of the first two coefficients.

Since b(r) = rC ′(r) + r2C ′′(r) has leading term kckr
k/(k − 1)!, the first-order expansion

of b(ζ) reads

b(ζ) = kn + O(n(k−1)/k),

and the asymptotic behaviour of an follows.

Again, the following proposition is more precise than the statement found, for instance,

in [11, Theorem I], because our estimates of E(Nn) and V(Nn) are explicit. Note in

particular that E(Nn) ∼ n/k suggests that most components have maximal size k.

Proposition 7.2 (number of components, graphs with small components). Assume that the

coefficient ck−1 in (7.1) is non-zero. The mean and variance of Nn satisfy

E(Nn) ∼ n

k
, V(Nn) ∼ ck−1

k · k!α
k−1n(k−1)/k,
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Figure 8. (Colour online) A random graph of size n = 1171 with component size at most 3. Observe that

most components have size 3, so the root component is very likely to have size 3.

where α is given by (7.4), and the random variable

Nn − E(Nn)√
V(Nn)

converges in law to a standard normal distribution.

Proof. We apply [11, Theorem I] (we can also apply Theorem 6.3 if k > 3). Still denoting

the saddle point by ζ ≡ ζn, we just have to find estimates of

μn = C(ζ) and σ2
n = C(ζ) − (ζC ′(ζ))2

ζC ′(ζ) + ζ2C ′′(ζ)
.

Given (7.3), we obtain

μn =
n

k
+

ck−1

k!
αk−1n(k−1)/k + O(n(k−2)/k),

ζ2C ′′(ζ) = (k − 1)n − ck−1

(k − 2)!
αk−1n(k−1)/k + O(n(k−2)/k),

and finally

σ2
n = μn − n2

n + ζ2C ′′(ζ)
=

ck−1

k · k!α
k−1n(k−1)/k + O(n(k−2)/k).

Since there are approximately n/k components, one expects the size Sn of the root

component to be k. This is indeed the case, as illustrated in Figure 8.
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Proposition 7.3 (size of the components, graphs with small components). The distribution

of Sn converges to a Dirac law at k:

P(Sn = j) →
{

1 if j = k,

0 otherwise.

The same holds for the size Ln of the largest component.

Proof. We combine the second formulation in (2.2) with the estimate (7.2) of an. This

gives

P(Sn = j) ∼ 1

n

cj

(j − 1)!

A(ζn−j)

A(ζn)

ζnn

ζ
n−j
n−j

.

Clearly, it suffices to prove that this probability tends to 0 if j < k. So let us assume j < k.

Since ζn is increasing with n, it suffices to prove that

1

n

ζnn

ζ
n−j
n−j

→ 0. (7.6)

Recall from (7.3) and (7.5) that ζn admits an expansion of the form

ζn = αn1/k +

k−1∑
i=0

n−i/kβi + O(1/n).

This gives, for some constants γi,

n log ζn =
n

k
log n + n log α +

k∑
i=1

γin
1−i/k + O(n−1/k).

Hence

(n − j) log ζn−j =
n − j

k
log n + (n − j) log α +

k∑
i=1

γin
1−i/k + O(1).

This gives

n log ζn − (n − j) log ζn−j − log n =
j − k

k
log n + O(1),

and (7.6) follows, since j < k. Since Ln � Sn, the behaviour of Ln is then clear.

8. Forests of paths or caterpillars: a simple pole in C(z)

Let A be a decomposable class (for instance defined by excluding connected minors), with

generating function A(z) = exp(C(z)). Assume that

C(z) =
α

1 − z/ρ
+ D(z), (8.1)

where D has radius of convergence larger than ρ. Of course, we assume α > 0.
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Proposition 8.1 (number of graphs, when C has a simple pole). Assume that the above

conditions hold, and let β = D(ρ). As n → ∞,

cn ∼ n! αρ−n and an ∼ n!
α1/4eα/2+β

2
√
πn3/4

ρ−ne2
√
αn. (8.2)

In particular, the probability that Gn is connected tends to 0 at speed n3/4e−2
√
αn.

Proof. The asymptotic behaviour of cn follows from [19, Theorem IV.10, p. 258]. To

obtain the asymptotic behaviour of an, we first write

A(z) = F(z)G(z) with F(z) = exp

(
α

1 − z/ρ

)
and G(z) = eD(z), (8.3)

where G(z) has radius of convergence larger than ρ. To estimate the coefficients of F ,

we apply the ready-to-use results of Macintyre and Wilson [25, equations (10)–(14)],

according to which, for α, γ > 0 and a non-negative integer k,

[zn]

(
log

1

1 − z

)k
1

(1 − z)γ
exp

(
α

1 − z

)
∼ α1/4eα/2

2
√
πn3/4

(
n

α

)γ/2(
log n

2

)k

e2
√
αn. (8.4)

This gives

fn := [zn]F(z) ∼ α1/4eα/2

2
√
πn3/4

ρ−ne2
√
αn.

This shows in particular that fn−1/fn tends to ρ as n → ∞, so that we can apply

Proposition 6.4 to (8.3) and conclude.

Proposition 8.2 (number of components, when C has a simple pole). Assume (8.1) holds.

The mean and variance of Nn satisfy

E(Nn) ∼
√
αn, V(Nn) ∼

√
αn/2,

and the random variable

Nn −
√
αn

(αn/4)1/4

converges in law to a standard normal distribution.

Proof. We apply Theorem 6.3. The H-admissibility of A(z) follows from Theorem 6.2,

using (8.3) and the H-admissibility of exp(α/(1 − z/ρ)) (see [19, p. 562]). Conditions (6.7)–

(6.9) are then readily checked, using

C(r) ∼ α

1 − r/ρ
, b(r) ∼ 2α

(1 − r/ρ)3
and V (r) ∼ α

2(1 − r/ρ)
.

We thus conclude that the normalized version of Nn converges in law to a standard

normal distribution. For the asymptotic estimates of E(Nn) and V(Nn), we use (6.10) with

the saddle point estimate ζn = ρ − ρ
√
α/n + O(1/n).
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Since there are approximately
√
n components, one may expect the size Sn of the root

component to be of the order of
√
n.

Proposition 8.3 (size of the root component, when C has a simple pole). The normalized

variable Sn/
√
n/α converges in distribution to a Gamma(2, 1) law of density xe−x on [0,∞).

In fact, a local limit law holds: for x > 0 and k = �x
√

n/α�,√
n/α P(Sn = k) → xe−x.

The convergence of moments holds as well: for i � 0,

E(Si
n) ∼ (i + 1)!(n/α)i/2.

Proof. For the local (and hence global) limit law, we simply combine (2.2) with (8.2).

For the moments, we start from (2.4), with

C (i+1)(z) =
α(i + 1)!

ρi+1(1 − z/ρ)i+2
+ D(i+1)(z).

Let us first observe that (8.2) implies that an/n! is smooth. We can thus apply Proposi-

tion 6.4 to the product D(i+1)(z)A(z), which gives

[zn−i−1]D(i+1)(z)A(z)

n[zn]A(z)
∼ D(i+1)(ρ)

n

an−i−1

(n − i − 1)!

n!

an
∼ D(i+1)(ρ)

n
ρi → 0.

We thus have

an

(n − 1)!
E(Si

n) ∼ [zn−i−1]
α(i + 1)!

ρi+1(1 − z/ρ)i+2
exp

(
α

1 − z/ρ
+ D(z)

)
. (8.5)

Now (8.4) gives

[zn−i−1]
α(i + 1)!

ρi+1(1 − z/ρ)i+2
exp

(
α

1 − z/ρ

)
∼ α(i + 1)!

α1/4eα/2

2
√
πn3/4

(
n

α

)i/2+1

ρ−ne2
√
αn. (8.6)

In particular, this sequence of coefficients is smooth. Hence, by Proposition 6.4, the

asymptotic behaviour of (8.5) only differs from (8.6) by a factor eβ , where β = D(ρ).

Combined with (8.2), this gives the limiting ith moment of Sn. Since these moments

characterize the above Gamma distribution, we can conclude [19, Theorem C.2] that

Sn/
√

n/α converges in law to this distribution.

We now present two classes for which C(z) has a simple isolated pole (Figure 9): forests

of paths, and forests of caterpillars (a caterpillar is a tree made of a simple path to which

leaves are attached: see Figure 1). In forests of paths, the excluded minors are the triangle

K3 and the 3-star. The fact that Nn converges in probability to
√

n/2 for this class was

stated in [26, p. 587]. For forests of caterpillars, the excluded minors are K3 and the tree

shown in Table 1 (sixth line). This class is also considered in [6]. It is also the class of

graphs of path width 1.
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Figure 9. (Colour online) (a) A random forest of paths of size n = 636 and (b) a forest of caterpillars of size

n = 486.

Proposition 8.4 (forests of paths or caterpillars). The generating functions of paths and of

caterpillars are respectively

Cp(z) =
z(2 − z)

2(1 − z)
and Cc(z) =

z2(ez − 1)2

2(1 − zez)
+ zez − z2

2
. (8.7)

For both series, condition (8.1) is satisfied and Propositions 8.1, 8.2 and 8.3 hold. For paths

we have ρ = 1, α = 1/2 and β := D(ρ) = 0. For caterpillars, ρ � 0.567 is the only realsuch
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that ρeρ = 1,

α =
(1 − ρ)2

2(1 + ρ)
� 0.06 and β =

ρ (10 + 3 ρ − 4 ρ2 − ρ3)

4(1 + ρ)2
� 0.59. (8.8)

Proof. The expression of Cp(z) is straightforward. One can also write

Cp(z) =
1

2(1 − z)
+

z − 1

2
,

which gives Dp(1) = 0. Let us now focus on caterpillars. Let us call star a tree in which

all vertices, except maybe one, have degree 1. By a rooted star we mean a star with a

marked vertex of maximum degree: hence the root has degree 0 for a star with 1 vertex,

1 for a star with 2 vertices, and at least 2 otherwise. Clearly, there are n rooted stars on n

labelled vertices, so that their generating function is

S•(z) =
∑
n�1

zn

(n − 1)!
= zez.

The generating function of (unrooted) stars is

S(z) = S•(z) − z2

2
= zez − z2

2

(because all stars have only one rooting, except the star on two vertices which has two).

Now a caterpillar is either a star, or is a (non-oriented) chain of at least two rooted stars,

the first and last having at least two vertices each. This gives

C(z) = S(z) +
(S•(z) − z)2

2(1 − S•(z))
,

which is equivalent to the right-hand side of (8.7).

The series Cc(z) is meromorphic on C, with a unique dominant pole at ρ, and its

behaviour around this point is easily found using a local expansion of zez at ρ:

Cc(z) =
α

1 − z/ρ
+ β + O(1 − z/ρ),

with α and β as in (8.8).

For forests of paths, we have also obtained the limit law of the size Ln of the largest

component. It is significantly larger than the root component (
√
n log n instead of

√
n).

Proposition 8.5 (size of the largest component, forests of paths). In forests of paths, the

(normalized ) size of the largest component converges in law to a Gumbel distribution: for

x ∈ R and as n → ∞,

P

(
Ln −

√
n/2 log n√
n/2

< x

)
→ exp

(
−e−x/2

√
2

)
.

Proof. We start from (2.5), where

k =
√
n/2(log n + x) (8.9)
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and the generating function of paths of size less than k is

C [k](z) =
z

2
+

z − zk

2(1 − z)
. (8.10)

Using a saddle point approach for integrals [19, p. 552], we will find an estimate of

[zn] exp(C [k](z)) =
1

2iπ

∫
Cr

exp(C [k](z))
dz

zn+1
, (8.11)

where the integration contour is any circle Cr of centre 0 and radius r < 1.

Let us first introduce some notation. We denote C [k](z) by K(z), the integrand in (8.11)

by F , and its logarithm by f:

K(z) = C [k](z), F(z) =
exp(K(z))

zn+1
, f(z) = K(z) − (n + 1) log z.

We choose the radius r ≡ rn that satisfies the saddle point equation

F ′(r) = 0, or equivalently f′(r) = 0 or rK ′(r) = n + 1.

Note that rK ′(r) increases from 0 to ∞ as r grows from 0 to 1, so that the solution of this

equation is unique and simple to approximate via bootstrapping. We find that

r = 1 − 1√
2n

+
e−x/2

4
√

2

log n

n
+ O

(
1

n

)
. (8.12)

Gaussian approximation. Let θ0 ∈ (0, π). By expanding the function g : θ �→ f(reiθ) in the

neighbourhood of θ = 0, we find, for |θ| � θ0,

|f(reiθ) − f(r) + θ2r2f′′(r)/2| � θ3
0

6
sup

|α|�θ0

|g(3)(α)|, (8.13)

with

|g(3)(α)| = | − ireiαf′(reiα) − 3ir2e2iαf′′(reiα) − ir3e3iαf′′′(reiα)|

� K ′(r) +
n + 1

r
+ 3K ′′(r) + 3

n + 1

r2
+ K ′′′(r) + 2

n + 1

r3
.

By combining the expression (8.10) of K(z) = C [k](z) and the saddle point estimate (8.12),

we find that K ′(r) = (n + 1)/r ∼ n, that K ′′(r) ∼ 2
√

2n3/2 and finally that K ′′′(r) ∼ 12n2.

This term dominates the above bound on |g(3)(α)|. Hence, if

θ0 ≡ θ0(n) = o(n−2/3), (8.14)

we find, by taking the exponential of (8.13),

F(reiθ) ∼ F(r)e−θ2r2f′′(r)/2,

uniformly in |θ| � θ0.

Completion of the Gaussian integral. We split the integral (8.11) into two parts, depending

on whether |θ| � θ0 or |θ| � θ0. The first part is∫ θ0

−θ0

F(reiθ)
reiθdθ

2π
∼ rF(r)

2π

∫ θ0

−θ0

e−θ2r2f′′(r)/2eiθdθ.
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As argued above, r2f′′(r) ∼ K ′′(r) ∼ 2
√

2n3/2. Hence, if we choose θ0 ≡ θ0(n) such that

θ2
0n

3/2 → ∞ (which is compatible with (8.14), for instance if

θ0 = n−5/7, (8.15)

which we henceforth assume), we obtain

∫ θ0

−θ0

F(reiθ)
reiθdθ

2π
∼ F(r)

2π
√
f′′(r)

∫ θ0r
√

f′′(r)

−θ0r
√

f′′(r)
e−α2/2eiα/(r

√
f′′(r))dα

∼ F(r)

2π
√
f′′(r)

∫
R

e−α2/2dα

∼ F(r)√
2πf′′(r)

∼ e1/4e
√

2n

21/42
√
πn3/4

exp

(
−e−x/2

√
2

)
(8.16)

by (8.12).

The second part of the integral can be neglected. The second part of the integral (8.11) is∫
θ0<|θ|<π

F(reiθ)
reiθdθ

2π
,

and we want to prove that it is dominated by (8.16). It suffices to prove that, for

θ0 < |θ| < π,

|F(reiθ)| = o

(
F(r)√
f′′(r)

)
. (8.17)

Let us denote z = reiθ and z0 = reiθ0 . We have

|F(reiθ)|
F(r)

= | exp(K(z) − K(r))|

� exp(|K(z)| − K(r)) = exp

(∣∣∣∣z2 +
z − zk

2(1 − z)

∣∣∣∣ − r

2
− r − rk

2(1 − r)

)

� exp

(
r + rk

2|1 − z| − r − rk

2(1 − r)

)

� exp

(
r + rk

2|1 − z0| − r − rk

2(1 − r)

)
= exp

(
−n1/14

√
2

(1 + o(1))

)
,

given the values (8.9), (8.12) and (8.15) of k, r and θ0. Since f′′(r) ∼ 2
√

2n3/2, we conclude

that (8.17) holds.

Conclusion. We have now established that the integral (8.11) is dominated by its first part,

and is thus equivalent to (8.16). To obtain the limiting distribution function, it remains

to divide this estimate by an/n!. The asymptotic behaviour of an is given by (8.2), with

α = 1/2, ρ = 1 and β = 0, and this concludes the proof.
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Figure 10. (Colour online) A random graph of size n = 1034 avoiding the 3-star.

9. Graphs with maximum degree 2: a simple pole and a logarithm in C(z)

Let A be the class of graphs of maximum degree 2, or equivalently, the class of graphs

avoiding the 3-star (Figure 10). The connected components of such graphs are paths or

cycles. This class differs from those studied in the previous section in that the series C(z) has

now, in addition to a simple pole, a logarithmic singularity at its radius of convergence ρ.

As we shall see, the logarithm changes the asymptotic behaviour of the numbers an, but the

other results remain unaffected. The proofs are very similar to those of the previous section.

Proposition 9.1 (number of graphs of maximum degree 2). The number of connected

graphs (paths or cycles) of size n in the class A is cn = n!/2 + (n − 1)!/2 for n � 3 (with

c1 = c2 = 1) and the associated generating function is

C(z) =
z(2 − z + z2)

4(1 − z)
+

1

2
log

1

1 − z
.

The generating function of graphs of A is

A(z) = eC(z) =
1√

1 − z
exp

(
z(2 − z + z2)

4(1 − z)

)
.

As n → ∞,

an ∼ n!
1

2
√
eπn1/2

e
√

2n.

In particular, the probability that Gn is connected tends to 0 at speed n1/2e−
√

2n as n → ∞.
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Proof. Again, the exact results are elementary. To obtain the asymptotic behaviour of

an, we write

A(z) = F(z)G(z) with F(z) =
1√

1 − z
exp

(
1

2(1 − z)

)
and G(z) = exp

(
−1

2
− z2

4

)
(9.1)

and combine Proposition 6.4 with (8.4).

For the number of components, we find the same behaviour as in the case of a simple

pole (Proposition 8.2 with α = 1/2). We have also determined the expected number of

cyclic components.

Proposition 9.2 (number and nature of components, graphs of maximum degree 2). The

mean and variance of Nn satisfy

E(Nn) ∼
√
n/2, V(Nn) ∼

√
n/8,

and the random variable

Nn −
√

n/2

(n/8)1/4

converges in law to a standard normal distribution.

The expected number of cycles in Gn is of order (log n)/4.

Proof. We want to apply Theorem 6.3. To prove that A(z) is Hayman-admissible, we

apply Theorem 6.2 to (9.1). This reduces our task to proving that F(z) is H-admissible,

which is done along the same lines as [19, Ex. VIII.7, p. 562] (see also the footnote of [22,

p. 92], and Lemma 1 in [17]). Conditions (6.7)–(6.9) are readily checked. The asymptotic

estimates of E(Nn) and V(Nn) are obtained through (6.10), using the saddle point estimate

ζn = 1 − 1/
√

2n + O(1/n).

The bivariate generating function of graphs of A, counted by the size (variable z) and

the number of cycles (variable v) is

Ã(z, v) = exp

(
z +

z2

2(1 − z)
+ vCyc(z)

)
,

where Cyc(z) is given by (4.1). By differentiating with respect to v, the expected number

of cycles in Gn is found to be

[zn] Cyc(z)A(z)

[zn]A(z)
.

The asymptotic behaviour of [zn]A(z) = an/n! has been established in Proposition 9.1.

We determine an estimate of [zn] Cyc(z)A(z) in a similar fashion, using a combination of

Proposition 6.4 and (8.4). We find

[zn] Cyc(z)A(z) ∼ log n

8
√
eπn1/2

e
√

2n,

and the result follows.
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Figure 11. (Colour online) A random graph of size n = 758 avoiding the bowtie.

The size of the root component is still described by Proposition 8.3, with α = 1/2. The

proof is very similar, but now with

C (i+1)(z) =
i!

2

2 + i − z

(1 − z)i+2
− 1

2
1i=1,

where 1i=1 is 1 if i = 1 and is 0 otherwise.

10. Excluding the bowtie: a singularity in (1 − z/ρ)−1/2

We now denote by A the class of graphs avoiding the bowtie (Figure 11). The following

proposition answers a question raised in [27].

Proposition 10.1 (generating function of graphs avoiding a bowtie). Let T ≡ T (z) be the

generating function of rooted trees, defined by T (z) = zeT (z). The generating function of

connected graphs in the class A is

C(z) =
T 2(1 − T + T 2)eT

1 − T
+

1

2
log

(
1

1 − T

)
+

T (12 − 54T + 18T 2 − 5T 3 − T 4)

24(1 − T )
.

(10.1)

The generating function of graphs of A is A(z) = eC(z).

This is the most delicate enumeration of the paper. The key point is the following

characterization of cores (graphs of minimum degree 2) avoiding the bowtie.
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)b()a(

seyonon

Figure 12. (Colour online) The relative positions of two (short) chords in a cycle. The two configurations in

(a) are not valid, as these graphs contain a bowtie (shown with shaded edges).

Proposition 10.2. The cores that avoid the bowtie are:

• the empty graph,

• all cycles,

• K4, with one edge possibly subdivided, as shown in Figure 16,

• the graphs of Figures 17 and 18.

We will first establish a number of properties of cores avoiding a bowtie. Recall that a

chord of a cycle C is an edge, not in C , joining two vertices of C .

Lemma 10.3. Let C = (v0, v1, . . . , vn−1) be a cycle in a core G avoiding the bowtie. Let us

write vn = v0 and vn+1 = v1. Every chord of C joins vertices that are at distance 2 on C (we

say that it is a short chord ). Moreover, C has at most two chords. If it has two chords, say

{v0, v2} and {vi, vi+2}, with 1 � i � n − 1, then vi = v1 or vi+2 = v1.

Proof. If a chord were not short, contracting it (together with some edges of C) would

give a bowtie. Figure 12 then proves the second statement, which can be loosely restated

as follows: the two chords cross and their four endpoints are consecutive on C .

Lemma 10.4. Let C be a cycle of maximal length in a core G avoiding the bowtie. Let v

be an external vertex, that is, a vertex not belonging to C . Then v is incident to exactly two

edges, both ending on C . The endpoints of these edges are at distance 2 on C .

Proof. Since G is a core, v belongs to a cycle C ′. Since G is connected and avoids the

bowtie, C ′ shares at least two vertices with C . Thus let P1 and P2 be two vertex-disjoint

paths (taken from C ′) that start from v and end on C without hitting C before. Let v1
and v2 be their respective endpoints on C . Then v1 and v2 lie at distance at least 2 on C ,

otherwise C would not have maximal length. Now contracting the path P1P2 into a single

edge gives a chord of C . By the previous lemma, this chord must be short, so that v1 and

v2 are at distance exactly 2. Since C has maximal length, P1 and P2 have length 1 each,

and thus are edges.

Assume now that v has degree at least 3, and let e be a third edge (distinct from P1

and P2) adjacent to v. Again, e must belong to a cycle, sharing at least two vertices with
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v

C
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Figure 13. (Colour online) A cycle C with an external vertex v of degree at least 3. The shaded cycle has a

chord that is not short, the contraction of which gives a bowtie.

)b()a(

vv
e

C

C

no

Figure 14. A cycle C with (a) two chords and an external vertex v, and (b) one chord and an external vertex v.

C , and the same argument as before shows that e ends on C . But then Figure 13 shows

that G contains a bowtie.

Lemma 10.5. Let C be a cycle of maximal length in a core G avoiding the bowtie. If C

has two chords, it contains all vertices of G.

Proof. Let e1 and e2 be the two chords of C . Lemma 10.3 describes their relative

positions. Let v be a vertex not in C . Lemma 10.4 describes how it is connected to C .

Contract one of the two edges incident to v to obtain a chord of C . By Lemma 10.3, this

chord must be a copy of e1 or e2. But then Figure 14(a) shows that G contains a bowtie

(delete the two bold edges).

Lemma 10.6. Let C be a cycle of maximal length in a core G avoiding the bowtie. If C

has a chord e, all external vertices of C are adjacent to the endpoints of e.

Proof. Let v be external to C . Contract one of the incident edges. This gives a chord e′.

If e′ is a copy of e, then we are done. Otherwise, the relative positions of e and e′ are

described by Lemma 10.3. But then Figure 14(b) shows that C does not have maximal

length (consider the cycle shown with the dotted line).

Lemma 10.7. Let C be a cycle of maximal length in a core G avoiding the bowtie. If C

has several external vertices, they are adjacent to the same points of C .

Proof. Consider two external vertices v1 and v2. Lemma 10.4 describes how each of them

is connected to C . Contract an edge incident to v1 and an edge incident to v2. This gives

two chords of C . Either these two chords are copies of one another, which means that
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no

v1

v2

e

Figure 15. A cycle C with two external vertices.

0

Figure 16. K4 with a subdivided edge.

v1 and v2 are adjacent to the same points of C , or the relative position of these two

chords is as described in Lemma 10.3. But then Figure 15 shows that G contains a bowtie

(contract e).

Proof of Propositions 10.1 and 10.2. Observe that a graph G avoids the bowtie if and

only if its core (defined as its maximal subgraph of degree 2) avoids it. Hence, if C̄(z)

denotes the generating function of non-empty cores avoiding the bowtie, we have

C(z) = T (z) − T (z)2

2
+ C̄(T (z)). (10.2)

Using the above lemmas, we can now describe and count non-empty cores avoiding the

bowtie. We start with cores reduced to a cycle: their contribution to C̄(z) is given by (4.1).

We now consider cores G having several cycles. Let C be a cycle of G of maximal length,

chosen so that it has the largest possible number of chords. By Lemma 10.3, this number

is 2, 1 or 0.

If C has two chords, it contains all vertices of G (Lemma 10.5). By Lemma 10.3 and

Figure 12(b), either all vertices have degree 3 and G = K4, or G consists of K4 where one

edge is subdivided (Figure 16).

This gives the generating function

z4

4!
+

z4

4!
· 6 · z

1 − z
, (10.3)

where, in the second term, we read first the choice of the 4 vertices of degree 3 forming

a K4, then the choice of one edge of this K4, and finally the choice of a (directed) path

placed along this edge.

Assume now that C has exactly one chord e. By Lemma 10.6, all external vertices are

adjacent to the endpoints of e. To avoid problems with symmetries, we count separately

the cores where C has length 4, or length � 5 (Figure 17). This gives the generating

function

z2

2
(ez − 1 − z) +

z2

2
(ez − 1)

z2

1 − z
. (10.4)
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e . . .

at least two vertices

2 e . . .

at least one vertex

Figure 17. A maximal cycle C with one chord e and external vertices.

. . .

at least three vertices

2 . . .

at least two vertices

Figure 18. A maximal cycle with no chord and several external vertices.

In the second term, the factor z2/(1 − z) accounts for the directed chain of vertices of

degree 2 lying on the maximal cycle.

Assume finally that C has no chord. By Lemma 10.7, all external vertices are adjacent

to the same points of C . Again, we treat separately the cases where C has length 4, or

length � 5 (Figure 18). This gives the generating function

z2

2
(ez − 1 − z − z2/2) +

z2

2
(ez − 1 − z)

z2

1 − z
. (10.5)

Putting together the contributions (4.1), (10.3), (10.4) and (10.5) gives the value of C̄(z)

(the generating function of cores), from which we obtain the series C(z) using (10.2).

We now derive asymptotic results from Proposition 10.1.

Proposition 10.8 (asymptotic number of graphs avoiding the bowtie). As n → ∞,

cn ∼ n!
e − 5/4√

2π

en√
n

and

an ∼ n!
(e − 5/4)1/6e19/8−11e/3

√
6π

en

n2/3
exp

(
3

2
(e − 5/4)2/3n1/3

)
.

Proof. Let us first recall that the series T (z) has radius of convergence 1/e, and can be

continued analytically on the domain D := C \ [1/e,+∞). In fact, T (z) = −W (−z), where

W is the (principle branch of the) Lambert function [12]. The singular behaviour of T (z)

near 1/e is given by (3.1). Moreover, the image of D by T avoids the half-line [1,+∞).

It thus follows from the expression (10.1) of C(z) that C(z) and A(z) are analytic in the

domain D. Moreover, we derive from (3.1) that, as z approaches 1/e in a Δ-domain,

C(z) ∼ e − 5/4√
2

√
1 − ze

. (10.6)
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The above estimate of cn then follows from singularity analysis.

We now embark on the estimation of an. We first prove (see Proposition A.1 in the

Appendix) that A(z) is H-admissible. We then apply Theorem 6.1. The saddle point

equation reads ζC ′(ζ) = n. Using the singular expansion (3.1) of T (z), and a similar

expansion for T ′(z), this reads

e − 5/4

2
√

2(1 − ζe)3/2
+

1

4(1 − ζe)
+ O

(
1

(1 − ζe)1/2

)
= n. (10.7)

This gives the saddle point as

ζ =
1

e
− (e − 5/4)2/3

2en2/3
− 1

6en
+ O(n−4/3). (10.8)

We now want to obtain estimates of the values A(ζ), ζn and b(ζ) occurring in Theorem 6.1.

Refining (10.6) into

C(z) =
e − 5/4√
2

√
1 − ze

+
1

4
log

1

2(1 − ze)
+

19

8
− 11e

3
+ O(

√
1 − ze), (10.9)

we find

C(ζ) = (e − 5/4)2/3n1/3 +
1

6
log

n

e − 5/4
+

53

24
− 11e

3
+ O(n−1/3),

which gives

A(ζ) ∼ e
53
24 − 11e

3

(e − 5/4)1/6
n1/6 exp((e − 5/4)2/3n1/3). (10.10)

It then follows from (10.8) that

ζn ∼ e−1/6 exp
(
−n − (e − 5/4)2/3 n1/3/2

)
. (10.11)

Finally,

b(r) = rC ′(r) + r2C ′′(r) ∼ 3
√

2(e − 5/4)

8(1 − re)5/2
, (10.12)

so that

b(ζ) ∼ 3

(e − 5/4)2/3
n5/3.

Putting this estimate together with (10.10) and (10.11), we obtain the estimate of an/n!

given in the proposition.

Proposition 10.9 (number of components, no bowtie). The mean and variance of Nn satisfy

E(Nn) ∼ (e − 5/4)2/3n1/3, V(Nn) ∼ 2

3
(e − 5/4)2/3n1/3,

and the random variable

Nn − E(Nn)√
V(Nn)

converges in law to a standard normal distribution.
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Proof. We want to apply Theorem 6.3. By Proposition A.1, A(z) is H-admissible.

Conditions (6.7)–(6.9) are readily checked, using

C(z) ∼ e − 5/4√
2

√
1 − ze

, b(r) ∼ 3
√

2(e − 5/4)

8(1 − ze)5/2
and V (r) ∼

√
2(e − 5/4)

3
√

1 − ze
.

The asymptotic estimates of E(Nn) and V(Nn) are obtained through (6.10), using the

saddle point estimate (10.8).

Since there are approximately n1/3 components, one may expect the size Sn of the root

component to be of the order of n2/3. More precisely, we have the following result.

Proposition 10.10 (size of the root component, no bowtie). The normalized variable (e −
5/4)2/3Sn/(2n

2/3) converges in distribution to a Gamma(3/2, 1) law, of density 2
√
xe−x/

√
π

on [0,∞). In fact, a local limit law holds: for x > 0 and

k =

⌊
x

2n2/3

(e − 5/4)2/3

⌋
,

we have

2n2/3

(e − 5/4)2/3
P(Sn = k) → 2

√
x

π
e−x.

Convergence of moments holds as well: for i � 0,

E(Si
n) ∼ Γ(i + 3/2)

Γ(3/2)

(
2n2/3

(e − 5/4)2/3

)i

.

Proof. The local (and hence global) limit law follows directly from Proposition 10.8,

using (2.2). For the convergence of the moments, we start from (2.4). We first prove

(see Proposition A.1 in the Appendix) that C (i+1)(z)A(z) is H-admissible. We then apply

Theorem 6.1 to estimate the coefficient of zn in this series (we will replace n by n − i − 1

later). Our calculations mimic those of Proposition 10.8, but the saddle point equation

now reads

ζC ′(ζ) + ζ
C (i+2)(ζ)

C (i+1)(ζ)
= n,

where ζ ≡ ζ(i)
n depends on i and n. Comparing with the original saddle point equa-

tion (10.7), and using the estimate (A.5) of C (i)(z), this reads

e − 5/4

2
√

2(1 − ζe)3/2
+

7 + 4i

4(1 − ζe)
+ O

(
1

(1 − ζe)1/2

)
= n.

This gives the saddle point as

ζ =
1

e
− (e − 5/4)2/3

2en2/3
− 7 + 4i

6en
+ O(n−4/3). (10.13)
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We now want to obtain estimates of C (i+1)(ζ)A(ζ), ζn and bi(ζ). We first derive from (10.9)

that

C(ζ) = (e − 5/4)2/3n1/3 +
1

6
log

n

e − 5/4
+

29

24
− 11e

3
− 2i

3
+ O(n−1/3).

This gives

A(ζ) ∼ e
53
24 − 11e

3 − 2i
3

(e − 5/4)1/6
n1/6 exp((e − 5/4)2/3n1/3). (10.14)

Moreover, we derive from (A.5) that

C (i+1)(ζ) ∼ (2i + 1)!

2ii!
ei+1 n1+2i/3

(e − 5/4)2i/3
. (10.15)

It then follows from (10.13) that

ζn ∼ e−7/6−2i/3 exp
(
−n − (e − 5/4)2/3 n1/3/2

)
. (10.16)

Finally, (A.7) and (10.12) give

bi(ζ) ∼ b(ζ) ∼ 3

(e − 5/4)2/3
n5/3.

Putting this estimate together with (10.14), (10.15) and (10.16), we obtain

[zn]C (i+1)(z)A(z)

∼ (2i + 1)!

2ii!

(e − 5/4)1/6e19/8−11e/3

√
6π

en+i+1

n2/3

n1+2i/3

(e − 5/4)2i/3
exp

(
3

2
(e − 5/4)2/3n1/3

)
.

We finally replace n by n − i − 1 (the only effect is to replace en+i+1 by en), and divide by

the estimate of nan/n! given in Proposition 10.8: this gives the estimate of the ith moment

of Sn as stated in the proposition, and concludes the proof.

11. Final comments and further questions

11.1. Random generation

For each of the classes A that we have studied, we have designed an associated Boltzmann

sampler, which generates a graph G of A with probability

P(G) =
x|G|

|G|!A(x)
, (11.1)

where x > 0 is a fixed parameter such that A(x) converges. We refer to [18, Section 4]

for general principles on the construction of exponential Boltzmann samplers, and only

describe how we have addressed certain specific difficulties. Most of them are related to

the fact that our graphs are unrooted.

Trees and forests. Designing a Boltzmann sampler for rooted trees is a basic exercise

after reading [18]. Note that the calculation of T (x) can be avoided by feeding the

sampler directly with the parameter t = T (x), taken in (0, 1]. To sample unrooted trees, a
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first solution is to sample a rooted tree G and keep it with probability 1/|G|. However,

this sometimes generates large rooted trees that are rejected with high probability. A

much better solution is presented in [13, Section 2.2.1]. In order to obtain an unrooted

tree distributed according to (11.1), one calls the sampler of rooted trees with a random

parameter t. The density of t must be chosen to be (1 − t)/C(x) on [0, T (x)], with

C(x) = T (x) − T (x)2/2. To sample t according to this density, we set t = 1 −
√

1 − 2uC(x),

where u is uniform in [0, 1]. Again, we actually avoid computing the series C(x) by feeding

directly our sampler with the value T (x) ∈ (0, 1]. We use this trick for all classes that

involve the series T (x).

To obtain large forests (Figure 2), we actually sample forests with a distinguished

vertex; that is, a rooted tree plus a forest [18, Section 6.3].

Paths, cycles and stars. The sequence operator of [18, Section 4] produces directed paths,

while we need undirected paths. Let u be uniform on [0, 1]. Our generator generates the

one-vertex path if u < x/Cp(x), where Cp(x) is given by (8.7), and otherwise generates a

path of length 2 + Geom(x). An alternative is to generate a directed path, and reject it

with probability 1/2 if its size is at least 2.

Although the cycle operator of [18, Section 4] generates oriented cycles, this does not

create a similar problem for our non-oriented cycles: indeed, a cycle of length at least 3

has exactly two possible orientations.

Designing a Boltzmann sampler ΓRS for rooted stars is elementary. For unrooted stars,

we simply call ΓRS , but reject the star with probability 1/2 if it has size 2 (because the

only star with two rootings has size 2).

Graphs avoiding the bowtie. This is the most complex of our algorithms, because the

generation of connected graphs involves seven different cases (see the proof of Proposi-

tion 10.1). There is otherwise no particular difficulty. We specialize this algorithm to the

generation of graphs avoiding the 2-spoon (Proposition 4.6). However, the probability to

obtain a forest is about 0.95, and thus there is no point in drawing a random graph of

this class.

The graphs shown in the paper have been drawn with the graphviz software.

11.2. The nature of the dominant singularities of C(z)

This is clearly a crucial point, as the probability that Gn is connected and the quantities Nn

and Sn seem to be directly correlated to it (see the summary of our results in Table 1). This

raises the following question: Is it possible to describe an explicit correlation between the

properties of the excluded minors and the nature of the dominant singularities of C(z)?

For instance, it is known that C(ρ) is finite when all excluded minors are 2-connected, but

Section 4 shows that this happens as well with some non-2-connected excluded minors.

Which excluded minors give rise to a simple pole in C(z) (as in caterpillars)? Or to a

logarithmic singularity (as for graphs with no bowtie or diamond), or to a singularity in

(1 − z/ρ)−1/2 (as for graphs with no bowtie)?

Some classes for which C(z) has a unique dominant pole of high order are described

in the next subsection.
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11.3. More examples and predictions

Our examples, as well as a quick analysis, lead us to predict the following results when

C(z) has a unique dominant singularity and a singular behaviour of the form (1 − z/ρ)−α,

with α > 0:

• the mean and variance of the number Nn of components scale like nα/(1+α), and Nn

admits a Gaussian limit law after normalization,

• the mean of Sn scales like n1/(1+α), and Sn, normalized by its expectation, converges to

a Gamma distribution of parameters α + 1 and 1.

The second point is developed in [10]. To confirm these predictions one could study the

following classes, which yield series C(z) with a high-order dominant pole. Fix k � 2, and

consider the class A(k) of forests of degree at most k, in which each component has at

most one vertex of degree � 3. This means that the components are stars with long rays

and ‘centres’ of degree at most k. It is not hard to see that

C (k)(z) = z +
z2

2(1 − z)
+

k∑
i=3

zi+1

i!(1 − z)i
,

so that Ck has a pole of order k (for k � 3). The case k = 2 corresponds to forests of

paths (Section 8). The limit case k = ∞ (forests of stars with long rays) looks interesting,

with very fast divergence of C at 1:

C (∞)(z) = z exp

(
z

1 − z

)
− z2

2(1 − z)2
.

We do not dare make any prediction here.

11.4. Other parameters

We have focused in this paper on certain parameters that are well understood when all

excluded minors are 2-connected. But other parameters – number of edges, size of the

largest 2-connected component, distribution of vertex degrees – have been investigated in

other contexts, which sometimes intersect the study of minor-closed classes [8, 7, 14, 15, 20].

When specialized to the theory of minor-closed classes, these papers generally assume

that all excluded minors are 2-connected, sometimes even 3-connected.

Clearly, it would not be hard to keep track of the number of edges in our enumerative

results. Presumably, keeping track of the number of vertices of degree d for any (fixed) d

would not be too difficult either. This may be the topic of future work. The size of the

largest component clearly warrants further investigation as well.

Acknowledgements

KW would like to thank Colin McDiarmid for many inspiring and helpful discussions as

well as for constant support. We also thank Philippe Duchon and Carine Pivoteau for

their help with Boltzmann samplers, Nicolas Bonichon for a crash course on the Graphviz

software, Jean-François Marckert for pointing out the relevance of [2] and finally Bruno

Salvy for pointing out reference [25].

We also thank the referees for their careful and detailed reports.

https://doi.org/10.1017/S0963548314000303 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000303


792 M. Bousquet-Mélou and K. Weller

Appendix: Hayman-admissibility for bowties

Proposition A.1. Let C(z) and A(z) be the series given in Proposition 10.1. Then the series

A(z) and C (i+1)(z)A(z) are H-admissible, for any i � 1.

Proof. We begin with the series A(z). Recall the analytic properties of T (z), listed at the

beginning of the proof of Proposition 10.8. The capture condition H1 is readily checked.

In fact,

a(r) = rC ′(r) ∼ e − 5/4

2
√

2(1 − re)3/2
and b(r) = rC ′(r) + r2C ′′(r) ∼ 3

√
2(e − 5/4)

8(1 − re)5/2
. (A.1)

Let us now prove H2. By Taylor’s formula applied to the function f : θ �→ C(reiθ), for

r ∈ (0, 1/e) and θ ∈ [−θ0, θ0] we have

|C(reiθ) − C(r) − iθa(r) + θ2b(r)/2| � |θ3
0 |/6 sup

|α|�θ0

|f(3)(α)|,

with

|f(3)(α)| = | − ireiαC ′(reiα) − 3ir2e2iαC ′′(reiα) − ir3e3iαC ′′′(reiα)|

� rC ′(r) + 3r2C ′′(r) + r3C ′′′(r) ∼ κ

(1 − re)7/2
(A.2)

as r → 1/e, for some constant κ. Hence, if we take θ0 ≡ θ0(r) = o((1 − re)7/6), then

sup
|θ|�θ0(r)

∣∣∣∣A(reiθ)

A(r)
e−iθa(r)+θ2b(r)/2 − 1

∣∣∣∣ = |eo(1) − 1| → 0

as r → 1/e. Thus H2 holds for such values of θ0. We now take

θ0(r) = (1 − re)6/5, (A.3)

and want to prove that H3 also holds.

Recall that C(z) is analytic on C \ [1/e,∞), and let us isolate in C(z) the part that

diverges at z = 1/e:

C(z) =
c√

1 − ze
+

1

4
log

1

1 − ze
+ O(1), (A.4)

where c = (e − 5/4)/
√

2 > 0. It follows that

B(z) := C(z) − c√
1 − ze

− 1

4
log

1

1 − ze

is uniformly bounded on {|z| < 1/e}. Hence, writing z = reiθ , we have

sup
|θ|∈[θ0 ,π)

∣∣∣∣A(z)

A(r)

√
b(r)

∣∣∣∣ � M sup
|θ|∈[θ0 ,π)

∣∣∣∣ 1 − re

1 − ze

∣∣∣∣
1/4∣∣∣∣exp

(
c√

1 − ze
− c√

1 − re

)∣∣∣∣√b(r)

for some constant M.

For any z of modulus r < 1/e, we have |1 − re| � |1 − ze|, and we can bound the first

factor above by 1. Also, it is not hard to prove that �
(
1/

√
1 − ze

)
is a decreasing function
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of θ ∈ (0, π). Hence, denoting z0 = reiθ0 ,

sup
|θ|∈[θ0 ,π)

∣∣∣∣A(z)

A(r)

√
b(r)

∣∣∣∣ � M exp

(
�

(
c√

1 − z0e

)
− c√

1 − re

)√
b(r).

But as r → 1/e, the choice (A.3) of θ0 implies that

�
(

c√
1 − z0e

)
− c√

1 − re
= − 3c

8(1 − re)1/10
+ o(1).

Condition H3 now follows, using the estimate (A.1) of b(r).

Let us now consider the series Ai(z) := C (i+1)(z)A(z), for i � 1. It is easy to prove by

induction on i that for i � 1,

C (i)(z) =
(2i)!(e − 5/4)ei

4i
√

2i!(1 − ze)i+1/2
+ O

(
1

(1 − ze)i

)
. (A.5)

This can be proved either from the expression of C(z) given in Proposition 10.1, or

by starting from the singular expansion (A.4) of C(z) and applying [19, Theorem VI.8,

p. 419].

Recall the behaviour (A.1) of the functions a(r) and b(r) associated with A(z). It follows,

with obvious notation, that as r → 1/e,

ai(r) = a(r) + r
C (i+2)(r)

C (i+1)(r)
= a(r) + O

(
1

1 − re

)
(A.6)

and

bi(r) = b(r) + r
C (i+2)(r)

C (i+1)(r)
+ r2

C (i+3)(r)

C (i+1)(r)
− r2

(
C (i+2)(r)

C (i+1)(r)

)2

= b(r) + O

(
1

(1 − re)2

)
(A.7)

both tend to infinity. Thus H1 holds.

Let us now prove that Ai(z) satisfies H2 with the same value of θ0 as for A(z) (that is,

θ0 = (1 − re)6/5). Thanks to (A.6–A.7), for |θ| � θ0 and uniformly in θ we have

e−iθai(r)+θ2bi(r)/2 = e−iθa(r)+θ2b(r)/2
(
1 + O((1 − re)1/5)

)
.

Now, using (A.5), and denoting z = reiθ , we have

C (i+1)(z)

C (i+1)(r)
=

(
1 − ze

1 − re

)−i−3/2(
1 + O((1 − re)1/2)

)
= 1 + O((1 − re)1/5).

Hence

Ai(z)

Ai(r)
e−iθai(r)+θ2bi(r)/2 =

A(z)

A(r)
e−iθa(r)+θ2b(r)/2

(
1 + O((1 − re)1/5)

)
,

and condition H2 holds for Ai since it holds for A.

Finally, since C(z) has non-negative coefficients, we have |C (i+1)(z)| � C (i+1)(r) for

z = reiθ . Thus the fact that Ai(z) satisfies H3 follows from the fact that A(z) satisfies H3,

together with bi(r) ∼ b(r).
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