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Hydromagnetic Taylor–Couette flow at very
small aspect ratio
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(Received 1 January 2005 and in revised form 5 July 2005)

The work of Benjamin, Mullin, Pfister and others on the non-uniqueness of solutions
of the Navier–Stokes equation in Couette flow at small aspect ratio has revealed the
existence of ‘anomalous’ 1-cell modes. A natural question to ask is whether these
‘anomalous’ modes are robust enough to survive the application of a body force, such
as an externally applied magnetic field. We find that the answer is positive, although,
with increasing magnetic field, steady 2-cell flows are generally more stable than 1-cell
states. We also show that new time-dependent flows are easy to excite at relatively
low Reynolds numbers compared to the case without a magnetic field, and we present
two such flows.

1. Introduction
Our concern is the motion of an incompressible conducting viscous fluid confined

between two rotating concentric cylinders in the presence of an axial magnetic
field. Without the magnetic field, this problem (hydrodynamic Couette flow) is one
of the most studied in fluid dynamics. The problem of the stability of Couette
flow in the presence of a magnetic field has been almost forgotten after the
pioneering work of Chandrasekhar (1961) and Donnelly & Ozima (1962), but is
now undergoing a renaissance. What motivates most of the current interest in this
and related configurations (e.g. spherical) are the astrophysical implications, such as
the magnetorotational instability (Willis & Barenghi 2002a; Goodman & Ji 2002;
Rüdiger, Schultz & Shalybkov 2003; Sisan et al. 2004) and dynamo action (Dobler,
Shukurov & Brandenburg 2002; Willis & Barenghi 2002b). The most immediate
application of our paper is however another. The work of Benjamin (1978a ,b),
Benjamin & Mullin (1981), Cliffe (1983), Pfister et al. (1988), Cliffe, Kobine & Mullin
(1992), Mullin, Toya & Tavener (2002), Furukawa et al. (2002) and Lopez & Marques
(2003) has highlighted the non-uniqueness of the Navier–Stokes equations and the
importance of using small aspect ratios in the Couette configuration to reduce the
multiplicity of solutions available. This approach led to the discovery of the so-called
‘anomalous’ modes induced by end effects. These modes have a direction of rotation of
one or both of the end cells which is apparently counter-intuitive. Near the endwalls,
the centrifugal forces are weakened by the stationary boundaries, and one would
expect flows toward the inner cylinder (inflow). On the contrary, anomalous modes
appear to have an outflow near the endwalls. Closer examination reveals the existence
of small vortices in all four corners but they are very much weaker than the larger
vortices. From the point of view of bifurcation theory, the main feature of anomalous
modes is that they are disconnected from the primary flow (with the exception that,
as the ratio of the height of the cylinders to the gap width becomes very small, the
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28 A. J. Youd and C. F. Barenghi

(a) (b)

Figure 1. Computed contours of the stream function for (a) the 1-cell (C1) and (b) 2-cell
(C2) modes at Γ = 1.2, η = 0.5, Re = 400. Solid contours represent vortices rotating counter-
clockwise; dashed contours represent vortices rotating clockwise. The inner cylinder is on the
left and the outer cylinder on the right.

anomalous 1-cell state is connected to the primary 2-cell solution and can be realized
by a smooth increase in the Reynolds number).

Figure 1 illustrates steady 1-cell and 2-cell modes. In (a) the flow is asymmetric
about the midplane and the axial velocity is non-zero there, whereas in (b) the flow
is symmetric about the midplane and the axial velocity is zero.

The natural question which we ask is: what is the effect of a body force on the
interaction between 1- and 2-cell modes? A convenient choice of body force is the
Lorentz force. To answer this question we thus impose an axial magnetic field,
generalizing the work of Mullin and collaborators from the hydrodynamic to the
hydromagnetic case. For simplicity we restrict our study to aspect ratios of order
unity.

2. Governing equations and boundary conditions
We consider an incompressible viscous fluid of constant kinematic viscosity ν,

magnetic diffusivity λ, magnetic permeability µ0, and density ρ, contained in the
gap between two coaxial concentric cylinders of radii R1 and R2, and height, h.
We assume that the outer cylinder is at rest while the inner cylinder rotates with
prescribed angular frequency, Ω .

A magnetic field, B0 = B0 ẑ is applied in the axial direction where we assume
cylindrical coordinates (r, θ, z), and we make our equations dimensionless using
δ =R2 − R1 as the length scale, δ2/ν as the time scale, ν/δ as the velocity scale and
B0 as the magnetic scale. The dimensionless parameters in the problem are the radius
ratio η = R1/R2, the inner-cylinder Reynolds number Re = R1Ωδ/ν, the aspect ratio
Γ =h/δ, the Chandrasekhar number Q =B2

0σδ2/(ρν) (where σ =1/(λµ0)) and the
magnetic Prandtl number Pm = ν/λ.

Laboratory liquid metals have very small magnetic Prandtl numbers, for example,
Pm ∼ O(10−5) and O(10−7) for liquid sodium and gallium respectively. In the small
Prandtl number limit we expect that B ∼ O(Pm) and u ∼ O(1) where u is the fluid
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Hydromagnetic Taylor–Couette flow at very small aspect ratio 29

velocity. Letting B = Pmb we have the following hydromagnetic equations:

∂t u + (u · ∇) u = −∇p + ∇2u + Q (∇ ∧ b) ∧ ẑ, (2.1a)

∇ · u =0, (2.1b)

∇2b = −∇ ∧ (u ∧ ẑ) , (2.1c)

∇ · b = 0, (2.1d )

where p is the pressure. We assume that all fields are axisymmetric, in agreement with
experimental findings at low and moderate Reynolds numbers (the exception being an
experiment by Pfister, Schulz & Lensch (1991) at high Reynolds numbers mentioned
in § 4). We then solve equations (2.1) by a finite-difference method using the stream
function–vorticity formulation (which corresponds to azimuthal magnetic field and
current). Typically we use Nr = 80 radial grid-points and Nz = NrΓ axial grid-points
with time steps 
t of the order of 10−4 or 10−5. The time-integration combines Crank–
Nicolson and Adams–Bashforth methods, which are second-order accurate in the time
step; the spatial discretization is based on second-order-accurate finite differences. The
Poisson equations for the stream function and azimuthal magnetic field and current
are solved using parallel ScaLAPACK (Blackford et al. 1997) linear algebra routines.
Since the matrices involved do not depend on time, an LU factorization is performed
before the time integration begins. This factorization is then used in a call to a solver
routine at each time step. The use of a time-stepping code allows us to examine
transients as steady states are approached and also to determine the structure of
time-dependent solutions in the (r, z)-plane. Steady-state solutions are computed by
monitoring the linear growth rate of the radial and/or axial velocities at the point
P = ((R1 + R2)/2, h/2). The growth rate of the radial velocity is given by

σr =
1


t
ln

∣
∣
∣
∣

un+1
r

un
r

∣
∣
∣
∣
, (2.2)

where n is the time index corresponding to the time t = n
t; and similarly for the
growth rate of the axial velocity σz. For a symmetric 2-cell flow the axial velocity at
P is zero. In a time-stepping scheme such as ours the axial velocity decays quickly to
zero after an initial transient and the growth rate of the axial velocity σz is negative.
In this case we monitor the growth rate of the radial velocity σr at the same point
and use the following criterion: a steady state has been reached when |σr | < 10−8. For
an asymmetric 1-cell flow the axial velocity at P is non-zero and as the time-stepping
proceeds |uz| increases. In this case we require that both |σr | < 10−8 and |σz| < 10−8 at
P for a steady state to have been reached.

The boundary conditions for the stream function and vorticity can be derived from
the usual no-slip conditions, so ur = uz = 0 at r = R1, R2, uθ = Re at r = R1, and uθ =0
at r =R2. Additionally, we require no-slip boundary conditions at the top and bottom
endwalls, so ur = uθ = uz = 0 at z = 0, h. The boundary conditions for the magnetic
field depend on the conductivity of the cylinders as discussed in Roberts (1964).
Hereafter, we assume perfectly conducting cylinders and so the boundary conditions
for the azimuthal magnetic field and current, J , are (1/r)Bθ + ∂rBθ = 0 and Jθ = 0 at
r = R1, R2, and ∂zBθ = 0 and Jθ = 0 at z = 0, h. The Appendix gives a more complete
description of the boundary conditions. An important point to consider is the effect
of the discontinuity which arises between the rotating inner cylinder and the fixed
endwalls where the azimuthal velocity increases from 0 to Re. This discontinuity is
present in any experiment where a small gap must be left between the inner cylinder
and the end walls to prevent a temperature gradient building up which would occur
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Figure 2. Critical Reynolds number Rec versus aspect ratio Γ for the transition between the
1- and 2-cell flows without a magnetic field, Q = 0, for η = 0.5. The arrows denote whether the
boundaries can be found by a quasi-static increase (↑) or decrease (↓) of the Reynolds number.
The inset is an enlargement of the hysteresis region.

if the boundaries were allowed to meet. The exact form of the relevant boundary
condition to model this would be very difficult to determine and so many numerical
calculations use a small parameter ε � 1 which allows the azimuthal velocity to vary
smoothly between the boundary values along the endwalls. The calculations in the
previously cited works have used mesh refinement in the corners but it is generally
found that provided the mesh size is small enough in the corners the disturbance
caused by the discontinuity is local to the corners and does not extend significantly
into the fluid. Lücke et al. (1984) remarked that no anomalies could be found within
a distance of 0.2 mm of the corners of their experimental apparatus with a gap width
of δ = 1.126 cm. Nevertheless, we tested our code on a finer mesh by increasing the
number of radial grid points from 80 to 160. We calculated the critical Reynolds
numbers at Γ = 0.25 on the curve AB in figure 2, and at Γ = 0.97 on the curve CD,
where the greatest inaccuracies lie in our code. The critical Reynolds numbers are
altered by 0.1% with the increase in the number of mesh points. Therefore, in our
numerical code we do not implement mesh refinement or give any special treatment
to the discontinuity in the corners.

3. Results: steady flows
The purely hydrodynamic case (Q =0) was first studied experimentally by Benjamin

& Mullin (1981) and then numerically by Cliffe (1983) at radius ratio η = 0.615. At
the same time as Cliffe’s work Lücke et al. (1984) numerically and experimentally
studied the problem, although they only considered one aspect ratio Γ = 1.05 at radius
ratio η = 0.5066. The problem was later also studied numerically and experimentally
by Pfister et al. (1988) at radius ratio η = 0.5 who also determined time-dependent
boundaries. The papers by Benjamin & Mullin (1981), Cliffe (1983), and Pfister et al.
(1988) all produced bifurcation diagrams similar to figure 2. The figure shows our
numerical results for the interaction between the 1-cell and 2-cell modes at η = 0.5,
which agree with those of Pfister et al. (1988) to graphical accuracy. It is unfortunate
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Hydromagnetic Taylor–Couette flow at very small aspect ratio 31

that in the literature critical Reynolds numbers are usually displayed as graphs, but
are rarely tabulated. Cliffe (1983) gives actual numerical values of critical Reynolds
numbers at three different aspect ratios Γ = 0.67, 1.00, and 1.187 (Γ = 0.67 and 1.187
were where the greatest inaccuracies lay in his finite-element code) but his radius ratio
is different to ours so a direct comparison is not possible. Instead we compare the
critical values obtained by our code to graphically estimated values of Pfister et al.
(1988). At Γ = 0.67 (on AB) our critical Reynolds number is 202.8, at Γ = 1.00 (on
AB) it is 132.8, and at Γ = 1.187 (on CD) it is 292.6. The corresponding (graphically
estimated ∼ ±7%) critical values of Pfister et al. (1988) are 200, 132, and 295. Our
results differ from those of Pfister et al. (1988) by approximately 1.4%, 0.6%, and
0.8% at the three values of Γ considered.

Mullin et al. (2002) further explored the parameter space by considering larger
Reynolds numbers and other radius ratios and found bifurcations of 1- and 2-cell
flows (at η = 0.5) for Γ � 0.7. (A graphical estimate (∼ ±2%) of their critical Reynolds
number at Γ = 0.67 is Rec =205) which differs from that of Pfister et al. (1988) by
2.5% and from ours by 1.1%. Time-dependent flows also exist in this region Γ � 0.7.
The curve ABCD corresponds to a path of symmetry-breaking bifurcation points.
As the Reynolds number is increased quasi-statically across AB, the symmetric 2-
cell state loses stability and the asymmetric 1-cell state sets in. Any further increase
in the Reynolds number simply increases the amplitude of the 1-cell solution. The
same instability from 2-cell flow (obtained by suddenly starting the inner cylinder
at a value above CD) to 1-cell flow is found as the Reynolds number is decreased
quasi-statically across CD; if the Reynolds number is further decreased the 2-cell
state regains stability as the curve AB is crossed. In the small range of Γ between B
and C there is hysteresis between the 1-cell and 2-cell modes. Finally, the curve BE
corresponds to a path of limit points of the 1-cell flow. In this range of Γ , the 2-cell
flow no longer loses stability to the 1-cell flow as the Reynolds number is increased
quasi-statically. The 1-cell flow is now disconnected and can only be obtained by a
trick, such as a jump of the aspect ratio from inside the region ABCD to the region
outside, holding the Reynolds number above the critical value; BE is thus a stability
boundary only for decreasing Reynolds number. Schematic bifurcation diagrams of
these three cases can be seen in figure 3. The hysteresis region may be extremely
sensitive to imperfections in an experimental apparatus and also to inaccuracies
in a numerical code. Pfister et al. (1988) explicitly state the range of Γ for which
the hysteresis is present and they determined it to be 1.267 � Γ � 1.304; using our
numerical code we have found the phenomenon to exist for 1.267 � Γ � 1.294. The
agreement is excellent.

The methods used to determine paths of steady symmetry-breaking bifurcations
depend on whether the boundaries can be found with both a quasi-static increase
and decrease of the Reynolds number (e.g. the path AB) or whether the boundary
can be found in only one direction (e.g. the paths CD and BE). Sufficiently close to
the critical Reynolds number for the onset of asymmetry σz at P is approximately
constant. If σz > 0 then |uz| is increasing and an asymmetric state sets in; if σz < 0
then |uz| is decreasing and a symmetric state sets in. The boundary AB was found in
the following way: the Reynolds number is set to a value just below critical and once
σz is constant (i.e. σz varies by less than 10−8 between successive time-steps) the sign
of σz is checked. The Reynolds number is then automatically stepped in arbitrarily
small increments until a change of sign in σz is detected. Once this change of sign
occurs a bisection method is employed to determine the critical Reynolds number. At
the critical Reynolds number |σz| is found to be less than 10−6. Finding the boundary
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Figure 3. Schematic bifurcation diagrams for the interaction between the 1- and 2-cell states
after Pfister et al. (1988). The vertical axis shows the amplitude of the axial velocity vz in the
middle of the gap at z = h/2 which distinguishes between symmetric and asymmetric flows. The
Reynolds number is on the horizontal axis. Rec1 and Rec2 are the critical Reynolds numbers
for the onset of the 1-cell and 2-cell flows respectively. C1 denotes (stable) 1-cell branches;
C2 denotes (stable) 2-cell branches. In (a) the 1-cell solution branch is connected (the curve
AB in figure 2); in (b) there is hysteresis between the 1- and 2-cell flows (BC); in (c) the
1-cell solution branch is disconnected (CE). Stable branches are shown as solid lines, unstable
branches as dashed lines.

CD is a little more difficult since it can be found only by a quasi-static decrease
of the Reynolds number after a sudden start of the cylinder to a Reynolds number
above the critical value. The Reynolds number is automatically decreased in small
steps until σz switches sign from negative to positive (indicating a transition from
a symmetric to an asymmetric state). It is then no longer possible to increase the
Reynolds number again, since CD can only be found by a decrease in the Reynolds
number. To overcome this difficulty the Reynolds number is instantaneously set to
zero and then to a value above critical after the axial velocity has decayed sufficiently.
In this way it is possible to carry out the bisection method using the two Reynolds
numbers between which a change of sign of σz occurs, approaching the critical value
only from above the boundary CD. At the critical Reynolds number |σz| is again
found to be less than 10−6. The path BE and the hysteresis region are found in similar
ways with further minor modifications.

Figure 4 shows the same bifurcation diagram as in figure 2 but now including
various strengths of applied magnetic field (Q �= 0).

The general trend is that, by increasing the magnetic field, the instability to 1-cell
flows is pushed to higher Reynolds numbers, so 2-cell flows are more likely. In a
qualitative sense, this is consistent with the findings of Chandrasekhar (1961) that,
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Figure 4. Critical Reynolds number Rec versus aspect ratio Γ for the transition between the
1- and 2-cell flows (as figure 2) in the presence of various applied magnetic fields, Q.

for Γ → ∞ and Q � 100, the characteristic axial wavelength decreases. Schulz, Pfister
& Tavener (2003) considered the effect of outer cylinder rotation on the transition
between the 1- and 2-cell states and found that symmetric 2-cell flows were stabilized
by co-rotation of the cylinders with the stabilizing effect being greater the larger the
rotation rate of the outer cylinder; in fact for a certain value of the outer cylinder
Reynolds number (at Γ = 1) the 2-cell state remained stable for all rotation rates
of the inner cylinder examined. We have found a similar effect with the application
of a magnetic field; for the same aspect ratio (Γ = 1) there is a critical Q at which
the 1-cell state is no longer realizable. This can be seen in figure 4 where, with
Q =100, the 1-cell state no longer exists for a quasi-static increase of the Reynolds
number.

This stabilization of the 2-cell flow is less pronounced as the aspect ratio is decreased
and all curves seem to tend to an asymptote at approximately Γ = 0.2. It was shown
by Mullin et al. (2002) at various radius ratios that there is a critical value of Γ

below which the 1-cell flow no longer exists, and the flow is symmetric and unique, at
least for not too large Reynolds numbers. The left-hand side of figure 4 shows that
the application of a magnetic field does not alter Mullin’s critical aspect ratio.

There is another critical aspect ratio, Γc, (corresponding to the point C in figure 2)
at which the 1-cell flow is no longer realizable by a quasi-static increase of the
Reynolds number across AB or decrease across CD. Figure 5 shows Γc versus Q.
Apparently, Γc increases with increasing Q for Q � 10 but then for Q � 10 it decreases
with increasing Q.

Figures 6 and 7 show contour plots of various fields in the presence of an applied
magnetic field, Q = 100. The aspect ratio of Γ = 0.97 is chosen in such a way so as to
allow both the 1- and 2-cell flows to exist at the same Reynolds number, Re = 500,
ensuring a fairer comparison, with only the route taken through parameter space
differing in each case. It is apparent from both sets of figures that the cells are
compressed toward the inner cylinder. This is in contrast to the case of no magnetic
field, Q =0, as in figure 1 (albeit at slightly different aspect ratio and Reynolds
number) where the cells are much more centrally located. Goodman & Ji (2002)
show similar contour plots of the stream function and azimuthal magnetic field (as
well as the flux function and azimuthal velocity perturbation) with both perfectly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

77
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007743


34 A. J. Youd and C. F. Barenghi

0.95

1.05

1.15

1.25

1.35

1.45

0 20 40 60 80 100

Γc

Q

Figure 5. Critical aspect ratio Γc versus Q (the point at which the 1-cell flow is no longer
realizable by a quasi-static increase of Re across the curve AB or decrease across the curve
CD).

(a) (b) (c)

(d ) (e) ( f )

Figure 6. Computed contours of various fields for a 2-cell flow for Q = 100, Re =500,
Γ = 0.97. Inner cylinder on the left. (a) Radial velocity, ur , (b) azimuthal velocity, uθ (including
the underlying circular Couette flow), (c) axial velocity, uz, (d) stream function, ψ , (e) azimuthal
magnetic field, Bθ , (f ) azimuthal current, Jθ .

conducting and insulating boundaries for the infinite cylinder case. From their plots
(with conducting boundaries) it is also evident that the cells are compressed toward
the inner cylinder under the influence of a magnetic field.
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(a) (b) (c)

(d ) (e) ( f )

Figure 7. Contour plots as in figure 6 with the same parameters but now for a 1-cell flow.

4. Results: time-dependent flows
So far we have been concerned only with steady flows. Time-dependent 1- and 2-cell

states at aspect ratios up to Γ ≈ 0.5 have been described in the literature. Pfister
et al. (1988) discovered axisymmetric oscillations for Γ � 0.35; this time-dependence
disappeared for Γ � 0.55. Furukawa et al. (2002) confirmed the existence of time-
dependence in this region. Lopez & Marques (2003) extended the study to include
non-axisymmetric motion for a fixed aspect ratio of Γ =0.5 and found interesting
dynamics including double Hopf bifurcations, Neimark–Sacker bifurcations to a
modulated rotating wave, and saddle-node-infinite-period bifurcations. These time-
dependent solutions for Γ � 0.5 are not included in figure 2 for clarity. In this
paper we concentrate on what happens to the right-hand side of figure 2, where we
have discovered that the magnetic field induces time-dependence at relatively small
Reynolds numbers.

Figure 8 shows the critical Reynolds number, Retd, for the onset of time-dependent
flow versus aspect ratio at various strengths of magnetic field. For Q =0, the 1-cell
mode realized by a quasi-static increase in the Reynolds number across AB in figure 2
undergoes a Hopf bifurcation to the unsteady state across the curve XY. The transition
between steady 1-cell flow and time-dependent flow takes place in both directions
(either increasing Re or decreasing it) for aspect ratios less than Γc; for aspect ratios
larger than this, the transition boundary can only be found by a quasi-static decrease
of the Reynolds number. Γc is represented as a vertical bar on each of the curves
in the figure. The Hopf bifurcation for Q =0 is in a regime where the Reynolds
number is so high (above 1000) that our assumption of axisymmetry may be invalid.
In fact, Pfister et al. (1991) experimentally determined a 1-cell state which undergoes
a Hopf bifurcation for a range of aspect ratios and Reynolds numbers similar to
those we report. The oscillation of this state is interrupted as the Reynolds number is
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Figure 8. Critical Reynolds number Retd versus aspect ratio Γ for the transition to
time-dependent motion at various strengths of magnetic field, Q. To the left of the vertical
bar on each curve (which corresponds to the aspect ratio of the point C on figure 2)
the time-dependent boundary can be realized by a quasi-static increase or decrease of the
Reynolds number; to the right it can only be found by a quasi-static decrease.

steadily increased and a stationary state sets in, which exists for a range of Reynolds
numbers before the oscillatory state is resumed. They found that this unsteady mode
is non-axisymmetric and has azimuthal wavenumber m =2 or 3.

Note that, for Q =0, the critical Reynolds number Retd for the onset of time-
dependent flow increases with increasing Γ . The most important finding is that, if
Q is increased from Q =0, the curve XY moves down to regions of much smaller
Reynolds number, as shown in figure 8. If Q becomes larger than about 15, the 2-cell
flow becomes more stable and Retd increases, delaying the onset of time-dependence
to higher Reynolds numbers (but still much less than for Q =0).

We find that the path of limit points, BE of the 1-cell state merges with XY at
the point Y (which, for Q � 5, corresponds to the rightmost point of each curve in
figure 8). As the Reynolds number is decreased quasi-statically across XY, to the left
of Y the time-dependent flow disappears and the 1-cell state regains stability; a further
decrease of the Reynolds number across BE causes the appearance of the 2-cell state.
To the immediate right of Y the 1-cell flow no longer exists as the Reynolds number
is decreased and instead the 2-cell flow immediately regains stability.

We also find that there is an intersection of the curves CD and XY which, for
smaller Q, occurs at high Reynolds numbers. As the strength of the magnetic field
is increased further this intersection tends to the point C. The bifurcations that the
system undergoes are slightly different to the left and to the right of this point. This
is shown schematically in figure 9. In (a), to the left of the intersection, the 2-cell
state (created by a sudden start of the inner cylinder to a value higher than the
transition) first loses stability to the time-dependent state as the Reynolds number
is decreased across CD, before this flow then loses stability to the 1-cell flow as the
Reynolds number is further decreased across XY. However, in (b), to the right of
the intersection, the 2-cell state does not lose stability to the time-dependent state as
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Figure 9. Schematic bifurcation diagrams (a) to the left and (b) to the right of the intersection
point of curves CD and XY. The arrows denote the critical Reynolds number at which the
2-cell flow loses stability to (a) the time-dependent flow and (b) the 1-cell flow.
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Figure 10. Frequency f of the oscillations at the onset of axisymmetric time-dependence
versus aspect ratio Γ at various strengths of magnetic field Q. f is non-dimensionalized
with respect to the inner-cylinder angular frequency, Ω . The relation between f and ω, the
frequency which has been non-dimensionalized with respect to the diffusion time δ2/ν, is
ω = Re(1 − η)f/η.

the Reynolds number is decreased across XY, and instead loses stability to the 1-cell
state as the Reynolds number is decreased across CD.

Figure 10 shows the frequency f of the oscillations at the onset of time-dependence
versus the aspect ratio Γ at various strengths of applied magnetic field Q. Here, f is
non-dimensionalized with respect to the inner cylinder angular frequency, Ω .

Note that the curves of f versus Γ follow the same trend as the curves of Retd

versus Γ of figure 8: f is lower the higher Q is. All frequencies f which we have
found are much higher (at least one order of magnitude higher) than values of f

reported by Pfister et al. (1988) in the absence of a magnetic field.
The nature of these time-dependent flows is revealed by figure 11, which shows

contour plots of the stream function at various times over one period for Q =10.
Initially, in (a), the flow has the familiar 1-cell structure with a large main vortex
and a smaller vortex in the corner near to the inner cylinder. Then the large vortex
is deformed slightly and a very weak third vortex begins to appear near the inner
cylinder at the upper-left corner. As the third vortex travels down the inner cylinder
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(a) (b) (c)

(d ) (e) ( f )

Figure 11. Snapshots of the stream function over one period for the time-dependent flow for
Q =10, Re = 400, and Γ = 1.7. Inner cylinder on the left, outer on the right. Solid contours
represent vortices rotating counter-clockwise; dashed contours represent vortices rotating
clockwise. (a) t = 25.9857, (b) t = 25.9962, (c) t = 25.9998, (d) t =26.0034, (e) t = 26.0091,
(f ) t = 26.0142.

it becomes stronger as shown in (b). In (c) the third vortex begins to merge with
the second vortex in the lower-left corner until a vortex roughly twice the size of
the original second small vortex is produced in (d). In (e) this new vortex spreads
across the gap towards the outer cylinder and splits in two in (f ), before the process
is repeated again. Although there is no direct evidence that this flow is the same
as the one observed by Lensch (1988) and Pfister et al. (1991) the spatial-temporal
dependence does bear a qualitative resemblance to their non-axisymmetric time-
dependent flow; the main difference is that the third vortex which appears near the
inner cylinder travels all the way around the first vortex.

We have also discovered the existence of a time-dependent 2-cell flow which exists
for both Q =0 and Q �=0. Contour snapshots of this flow can be seen in figure 12
for Q = 10, Re =700, and Γ = 1.3. The effect is quite subtle and not as easy to see as
the 1-cell time-dependence; the oscillation is caused by each cell, in turn, tilting and
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(a) (b) (c)

(d) (e) ( f )

Figure 12. Snapshots of the stream function over one period for the time-dependent 2-cell
flow for Q =10, Re = 700, and Γ = 1.3. Inner cylinder on the left, outer on the right. Solid
contours represent vortices rotating counter-clockwise; dashed contours represent vortices
rotating clockwise. (a) t = 4.0453, (b) t = 4.0477, (c) t = 4.0500, (d) t = 4.0524, (e) t = 4.0548,
(f ) t =4.0572.

growing larger across the midplane. Figures 13(a) and 13(b) show enlarged views of
the right-hand side of the transition diagrams for Q =0 and Q =10. They show the
interaction of the 1-cell and 2-cell steady flows, the 1-cell time-dependent flow (XY)
and also the 2-cell time-dependent flow (ST). We found this flow by instantaneously
setting the Reynolds number, from seed, to a value above the transition, and then
decreasing the Reynolds number until a new flow structure emerged. For the case
Q =0, and for the aspect ratios considered, the time-dependent 2-cell flow has a
critical Reynolds number below that of the time-dependent 1-cell flow. For Q =10
the situation is reversed. For both Q =0 and Q =10, as the Reynolds number is
decreased across ST, the time-dependent 2-cell flow loses stability to the steady 2-cell
flow. There is one exception to this for Q =0 at the point S. Here, the curve takes
a sharp upturn and the time-dependent 2-cell flow immediately loses stability to the
steady 1-cell flow as ST is crossed (ST and CD do not actually meet). Further to the
left of this point it is increasingly difficult to find the boundary of either CD or ST
as the curves become nearly vertical. Because of this, any critical Reynolds numbers
found are likely to be inaccurate. A similar situation arises for Q =10 although it
does not appear that the curve ST becomes too steep. To the left of the points D and
S in both figures, a decrease of 0.01 in the aspect ratio does not allow the boundaries
CD or ST to be extended further. Further calculations have shown the existence
of the time-dependent 2-cell flow at Q = 5, but more work is necessary to explore
the existence of this flow at other strengths of applied magnetic field and to better
understand the transition boundaries for Q =0 and Q =10.
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Figure 13. Reynolds number versus aspect ratio showing the boundary for the transition to
the 2-cell time-dependent flow, for (a) Q = 0, (b) Q =10.

5. Conclusion
In conclusion, the presence of a body force, such as an axially imposed magnetic

field, does not reduce the multiplicity of solutions available even at small aspect ratio,
which was revealed by Benjamin, Mullin, Pfister and others. However, if one increases
the magnetic field, the general trend is that a larger Reynolds number is necessary
to obtain steady 1-cell states, that is, steady 2-cell states are more stable. We have
also found that, under an applied magnetic field, it is easy to excite time-dependent
flows at relatively small Reynolds numbers. Hydromagnetic Couette flow seems to
be a very rich system, and the work presented here is only an initial investigation
of axisymmetric flows in a restricted region of parameter space. Further work will
consider time-dependent 2-cell flows under a larger magnetic field, what happens at
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smaller aspect ratio, the effect of electrically insulating boundary conditions and the
possibility of non-axisymmetric motion.

A.J.Y. is grateful to Tom Mullin for discussions.

Appendix. Boundary conditions
Using cylindrical coordinates, the stream function ψ is defined by ur = −(1/r)∂zψ

and uz =(1/r)∂rψ .
From the no-slip boundary condition at the cylinder walls, ur = 0 at r =R1 and R2,

we find that ∂zψ = 0 at r = R1 and R2. Integrating and setting the arbitrary constant
equal to zero we conclude that ψ =0 at r = R1 and R2. Similarly, from the condition
uz =0 at z =0 and h we conclude that ψ = 0 at z = 0 and h.

Boundary conditions for the azimuthal vorticity ωθ must be derived from those for
ψ . The equation for the azimuthal vorticity is

ωθ = −1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r
. (A 1)

The first r- and second z-derivatives vanish at the cylinder walls due to the no-slip
boundary conditions for uz, and hence, ωθ = (−1/r)∂rrψ at r = R1 and R2. Similarly,
ωθ = (−1/r)∂zzψ at z = 0 and h.

The electric field, E must be continuous at the cylinder walls, so n̂ ∧ (Ec − Ef ) = 0,
where the superscripts c and f refer to the electric field in the cylinder and fluid
respectively, and n̂ is the unit normal to a cylinder wall (n̂ = ± r̂).

In general, r̂ ∧ E = (0, −Ez, Eθ ), so to match the electric field across the boundary we
require Ec

z = Ef
z and Ec

θ = E
f
θ . Using Ohm’s law J = σ E, where J is the current and σ

the electrical conductivity, we then have (1/σc)J
c
z =(1/σf )J f

z and (1/σc)J
c
θ = (1/σf )J f

θ .
Assuming that the cylinders are perfectly conducting, we take σc → ∞ and from the

second equation we conclude that J
f
θ = 0 at r = R1 and R2.

The boundary condition for the azimuthal magnetic field is obtained from the
equation J = ∇ ∧ B; using (1/σc)J

c
z = (1/σf )J f

z with σc → ∞ we have (1/r)Bf
θ +

∂rB
f
θ − (1/r)∂θB

f
r = 0, where the superscript f has the same meaning as before;

assuming axisymmetry we conclude that (1/r)Bf
θ + ∂rB

f
θ = 0 at r = R1 and R2.

We again require the electric field to be continuous across the endwall boundaries
z = 0 and h, hence taking n̂ = ± ẑ we have ẑ ∧ (Ec − Ef ) = 0.

Since, ẑ ∧ E = (−Eθ, Er, 0), we have Ec
θ = E

f
θ and Ec

r = Ef
r . As before, using Ohm’s

law we then have (1/σc)J
c
θ = (1/σf )J f

θ and (1/σc)J
c
r =(1/σf )J f

r , and using σc → ∞ we

have that J
f
θ = 0 at z = 0 and h.

Since J = ∇∧ B, from the first equation with σc → ∞ we have (1/r)∂θB
f
z −∂zB

f
θ = 0,

and under the assumption of axisymmetry we conclude that ∂zB
f
θ = 0 at z = 0 and h.
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