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AMETRIC VERSION OF SCHLICHTING’S THEOREM

ITAÏ BEN YAACOV AND FRANK O. WAGNER

Abstract. If F is a type-definable family of commensurable subsets, subgroups or subvector spaces in

a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with F.

This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.

Introduction. Schlichting’s Theorem [5] states that if a subgroupH of a groupG is
uniformly commensurable with all its G-conjugates, then it is commensurable with
a normal subgroup of G. This was generalized by Bergman and Lenstra [1], who
showed that if H is uniformly commensurable with all its K-conjugates for some
subgroup K of G, then it is commensurable with a K-invariant subgroup. Peter
Neumann deduced from this an analogous theorem for sets: A family of subsets
of some set Ω invariant under a subgroup K of Sym (Ω) with bounded symmetric
differences yields a K-invariant subset whose symmetric difference with members of
the original family is bounded. This was studied further by Brailovsky, Pasechnik,
and Praeger [2], Neumann [4] and the second author [6], who proved a version for
vector spaces, as well as more general objects.
Meanwhile, a similar theorem was shown for type-definable groups in simple

theories, where the finite index condition of commensurability is re-interpreted
as bounded index [7, Theorem 4.5.13] (building on results of Hrushovski for the
S1-case). However, simplicity seemed a necessary condition, as the proof is based
on the Independence Theorem.
Recently, the second author proved a hyperdefinable version of Schlichting’s

Theorem in [8] without any hypotheses on the ambient theory. In this note we
shall rephrase the result in the language of continuous logic and metric structures,
and generalize it to families of subobjects other than groups. As already in [6] it will
follow from a corresponding fixed point theorem for a certain kind of lattice.
It should be noted that in [3] Hrushovski has generalized the so-called Stabilizer

Theorem, which in simple theories is closely related to Schlichting’s Theorem, to
a much more general context, assuming the existence of an S1-ideal of “small”
formulae. An intriguing question is thus to what extent our version of Schlichting’s
Theorem is related to Hrushovski’s Stabilizer Theorem, and whether our approach
might be used to generalize the Stabilizer Theorem even further.
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Finally, in the last section we use Galois Theory to deduce a new version of
Schlichting’s Theorem for (finitely) commensurable fields.

§1. Close-knit families. Recall that Peter Neumann [4] calls a family F of subsets
of some ambient set close-knit if there is a finite bound on the cardinality of the
difference F \F ′ for F,F ′ ∈ F. This was generalized by the second author [6] to
a family F of points of a lattice with some integer-valued distance function ä: it
is close-knit if ä(F,F ′) is bounded for all F,F ′ ∈ F. In our set-up, the distance
function on the lattice is no longer integer-valued; finiteness of the number of values
is replaced by a suitable compactness condition.

Definition 1.1. Assume the following data are given:

• A κ-complete lower semi-lattice L (i.e., every subfamily of size < κ admits an
infimum), for some regular cardinal κ.

• A family F= {fa : a ∈ A} ⊆ L, where the enumeration may have repetitions.
• A compact Hausdorff topological space I equipped with a closed partial order
relation. We let ë=w(I)++ℵ0, where w denotes the weight of I (i.e., the least
cardinal of an open basis), and require that κ ≥ ë.

• A map ä : L×A→ I.
• A map Fκ×A→ L denoted (s,a) 7→ sa , where Fκ ⊆ L denotes the family of
meets of < κ elements of F.

We say thatF (together with the additional data) is a close-knit family if the following
holds:

(i) The map ä is monotonous and “upper semi-continuous” in its first argument
in the sense that if S ⊆ L is closed under finite meet and |S| < κ, then
ä(

∧

S,a) =
∧

{ä(s,a) : s ∈ S}.
(ii) Let î ∈ I and let S ⊆L be closed under finite meet such that |S|<κ. Assume
that for every neighborhood î ∈ U ⊆ I and s ∈ S there exists æ ∈ U and
a ∈A such that ä(s,a)≥ æ . Then there exists a ∈A satisfying ä(s,a)≥ î for
all s ∈ S. (In this case, ä

(
∧

S,a
)

≥ î as well, by item (i).)
(iii) We have s ≤ sa , and whenever t ≤ s are in Fκ with ä(t,a) = ä(s,a), then
ta = sa .

(iv) For any s ∈ Fë, where Fë denotes the family of meets of < ë elements of F,
there is some cardinal ìs < κ such that for all a ∈A, any chain in L between
s and sa has cardinality < ìs .

If Γ is a group of automorphisms of L, also acting on A, and all the data (namely,
the maps a→ fa , ä and (s,a) 7→ s

a) are invariant under Γ, then we say that F is a
Γ-close-knit family.

We should think of ä(s,a) as a measure of how much s � fa . In particular,
in most applications s ≤ fa if and only if ä(s,a) = 0. The idea behind the map
(s,a) 7→ sa is to increase s a little, toward being greater than fa . For example, in
the next section, when s and fa represent sets of small symmetric difference, we
let sa = s ∪ fa . Similarly, when they represent vector spaces not much bigger than
their intersection, we achieve the same effect with sa = s+fa . However, unlike what
these examples might suggest, we cannot actually require that sa ≥ fa , since this
fails in the setting of commensurable groups.
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Theorem 1.2. Let L be a κ-complete lower semi-lattice, Γ a group of automor-
phisms of L, and F a Γ-close-knit family in L. Then Γ has a fixed point in L.

Proof. For s ∈ L define

m(s) =
{

î ∈ I : î ≤ ä(s,a) for some a ∈ A
}

.

Definition 1.1 item (ii) with S = {s} implies thatm(s) is closed. As ë=w(I)++ℵ0,
it follows that there is no strictly decreasing chain (m(si) : i < ë) with si ∈ L. But if
s,t ∈ L with t ≤ s , then ä(t,a) ≤ ä(s,a) for all a ∈ A, whence m(t) ⊆m(s). Hence
{m(s) : s ∈ Fκ} has a unique minimal elementm. We call s ∈ Fκ strong ifm(s) =m.
If S ⊂ L is closed under finite meets with |S| < κ and î /∈ m(

∧

S), then by
Definition 1.1 item (ii) there exists s ∈ S such that î /∈ m(s). It follows that for
any strong s ∈ Fκ there is some strong s

′ ∈ Fë with s ≤ s
′ (and in fact s ′ is a

subintersection of s). For strong s we define

A(s) =
{

a ∈ A : ä(s,a) is maximal in m
}

, and

n(s) =
∧

{

sa : a ∈ A(s)
}

.

Since m is closed, it contains maximal elements, so A(s) is nonempty. Note that if
t ∈ Fκ with t ≤ s , then m(t) ⊆ m(s) = m, so t is also strong by minimality of m,
and A(t)⊆A(s). If, in addition, we have a ∈A(t), then ä(t,a) = ä(s,a) (since both
are maximal in m, and they are comparable), whence ta = sa by Definition 1.1 item
(iii). In particular, if Fë ∋ s

′ ≥ s is strong and a ∈A(s) we have s ≤ s ′ ≤ s ′a = sa , so
by Definition 1.1 item (iv) applied to s ′, the meet n(s) is indeed defined. Note that
for t ≤ s we have n(t)≥ n(s).
Suppose there is no greatest n(s) for strong s. Choose strong s0 ∈ Fë and let

ì = ìs0 as per Definition 1.1 item (iv). Since ì < κ, we may then construct by
induction a sequence (sα)α≤ì of strong elements, startingwith s0. At successor stages
take some strong t such that n(t) � n(sα) and let sα+1 = sα ∧ t, so n(sα+1) ≥ n(t)
and n(sα+1)≥ n(sα), whence n(sα+1)> n(sα). At limit stages put sα =

∧

â<α sâ . If

a ∈ A(sì) then for every α ≤ ì we have a ∈ A(sα) and

s0 ≤ n(s0)≤ n(sα)≤ s
a
α = s

a
0 .

This produces a chain of length ì between s0 and s
a
0 , contradicting the choice of ì.

Therefore there exists a greatest n(s) ∈ L; as it must be unique, it is a fixed point
of Γ. ⊣

If I is finite then ë = ℵ0; if all ìs are finite, we can also take κ = ℵ0
(in particular, condition item (ii) of Definition 1.1 holds automatically), and
Theorem 1.2 allows us to recover [6, Theorem 1] at least qualitatively. The finite
index/difference/codimension versions of Schlichting’s Theorem follow.

§2. Almost invariant families in continuous logic. Recall that in a κ-saturated
metric structure M with domain M, a subset of M n is type-definable if it is the
intersection of the zero-sets of fewer than κ many formulae. Given a set F ⊆Mα×
M â and a ∈M â , we define Fa =

{

b : (b,a) ∈ F
}

. A family F of subsets of Mα is

type-definable if there are type-definable sets F ⊆Mα×M â and A⊆M â such that
F= FA = {Fa : a ∈ A}.
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Definition 2.1. We shall consider a type-definable ambient object X of one
of three kinds: sets, groups or vector-spaces over a definable field K. For two
type-definable subobjects of the same kindS,S ′ ⊆X , we say thatS is commensurably
contained in S ′ if

• |S \S ′|, or
• [S : S ∩S ′], or
• codimS(S ∩S

′), respectively,

is strictly less than κ. We say that S and S ′ are commensurable if either is
commensurably contained in the other.

Note that by κ-saturation this implies that the difference/index/codimension
does not increase when we replace M by an elementary extension; we say that it
is bounded. In the following, whenever we talk about type-definable sets, we shall
assume thatM is sufficiently saturated.

Definition 2.2. Let X be a type-definable set/group/vector space over K in
a metric structure M. A type-definable family F of subsets/subgroups/subspaces
of X is almost invariant if F and F ′ are commensurable for all F,F ′ ∈ F. For
an almost invariant family F, we shall say that a subset/subgroup/subspace S is
commensurable with F if S is commensurable with some (equivalently, all) F ∈ F.

Remark 2.3. If F is an almost invariant type-definable family, then by
compactness the commensurability must be uniform: There is a cardinal ë < κ
such that the difference/index/codimension is bounded by ë for all F,F ′ ∈ F. This
implies that if S is commensurable with F, it is uniformly commensurable with F, i.e.
the difference/index/codimension is bounded independently of F ∈ F.

Theorem 2.4. Let X be a type-definable set/group/vector space over a definable
field K in a metric structure M, and Γ a type-definable group of automorphisms
of X. Suppose F is a Γ-invariant almost invariant type-definable family of sub-
sets/subgroups/subspaces of X. Then there is aΓ-invariant subset/subgroup/subspace
N of X commensurable with all F ∈ F, which is moreover type-definable over the same
parameters.

Proof. We may assume that X, Γ and F = {Fa : a ∈ A} are type-defined over
∅, and K is definable over ∅. Notice that then we may also enumerate the family F
as {Fa,ã : a ∈ A,ã ∈ Γ} where Fa,ã = ãFa . Let S ⊆ X be type-definable. Suppose Fa
is defined (for a ∈ A) by Φ(x,a) = 0, where Φ is a family of [0,1]-valued formulae
closed under the connective max, and |Φ|< κ. For ã ∈ Γ, n ∈ N and ϕ ∈Φ define

• in the set case: äϕ,n(S,a,ã) = supx∈Sn
(

mini<j<n d (ã
–1xi,ã

–1xj)
∧mini<nϕ(ã

–1xi,a)
)

,
• in the group case: äϕ,n(S,a,ã) = supx∈Sn mini<j<nϕ

(

ã–1(x–1i xj),a
)

,
• in the vector space case: äϕ,n(S,a,ã) = supx∈Sn infç∈Kn\0̄ϕ

(

ã–1(
∑

çixi),a
)

.

Let I = [0,1]Φ×N, so ë = |Φ|++ℵ0. For type-definable S ⊆ X and (a,ã) ∈ A×Γ
define

ä(S,a,ã) =
(

äϕ,n(S,a,ã) : (ϕ,n) ∈Φ×N
)

∈ I.
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Let L be the lower semi-lattice of type-definable subsets/subgroups/subspaces
commensurable with F. Then conditions item (i) and item (ii) of Definition 1.1
hold by compactness.
For S ∈L and F ∈ F put SF = S∪F in the set case, and SF = S+F in the vector

space case. In the group case, put

SF =
⋂

s∈S

(SF )s

and note that SF is a supergroup of S with [SF : S] bounded. Moreover, since S
and F are commensurable, there is a bounded set I ⊆ S with S = (S ∩F )I . Then
SF =

⋂

s∈S(SF )
s =

⋂

s∈I (SF )
s , so SF is type-definable, Finally, put Sa,ã = SFa,ã .

We claim that in all three cases, condition item (iii) ofDefinition 1.1 holds. Clearly
S ⊆ SF . So assume that T ⊆ S and T F 6= SF , where F = Fa,ã .
In the set case, since T ∪F ⊆ S ∪F , this means that there exists x ∈ S \ (T ∪F ).

In particular, d (ã–1x,ã–1T ) > 0, so for some ϕ ∈ Φ and 0 < e < 1 we have
d (ã–1x,ã–1y)∧ϕ(ã–1x,a) ≥ e for all y ∈ T . Since T and F are commensurable,
there exists n such that äϕ,n(T,a,ã) < e, and we may assume that n is least such.
As äϕ,0 ≡ 1, we have n > 0, and äϕ,n–1(T,a,ã) ≥ e by minimality of n. Therefore
äϕ,n(S,ã)≥ e, so ä(T,F )< ä(S,F ).
In the group case, note that if T ≤ S with SF = TF and I ⊂ T is a system of

representatives for S/(S ∩F )∼= SF/F = TF/F ∼= T/(T ∩F ), then

SF =
⋂

s∈S

(SF )s =
⋂

s∈I

(SF )s =
⋂

s∈I

(TF )s =
⋂

s∈T

(TF )s = T F .

It hence suffices to show that S ⊆ TF , as then SF = TF . Suppose not, and consider
x ∈ S \TF . In other words y–1x /∈ F for all y ∈ T . By compactness, for some ϕ ∈Φ
and 0< e < 1 the partial type y ∈ T implies that ϕ

(

ã–1(y–1x),a
)

≥ e. We conclude
as above.
In the vector space case, since T + F ≤ S + F , this means that there is x ∈

S \(T +F ). That is, çx+y /∈ F for all ç ∈K× and y ∈T . By compactness, for some
ϕ ∈Φand0<e< 1 the partial typey ∈T implies that infç∈K× ϕ

(

ã–1(çx+y),a
)

≥ e.
Again we conclude as above.
If F ∈ F and S ∈ Fë, then S

F is type-definable with strictly less than ë parameters.
Since F and S are commensurable, the difference |SF \S|, the index [SF : S] or the
co-dimension codimSF (S) are bounded by 2

<ë. It follows that any chain between
S and SF has length at most 2

<ë. We can thus put κ = (2<ë)+ to satisfy condition
item (iv) of Definition 1.1.
Define an action of Γ on (A×Γ) by ã ′ · (a,ã) = (a,ã ′ã). Then

ã ′Fa,ã = ã ′ãFa = Fa,ã′ã = Fã′·(a,ã),
äϕ,n(ã

′S,ã ′ · (a,ã)) = äϕ,n(ã
′S,a,ã ′ã) = äϕ,n(S,a,ã),

(ã ′S)Fã′·(a,ã) = (ã ′S)ã
′Fa,ã = ã ′(SFa,ã ),

so everything is Γ-invariant. Clearly, we also have invariance under Aut(M).
By Theorem 1.2 there is someN ∈L invariant under the group of automorphisms

of L generated by Γ∪Aut(M). In particular N is commensurable with F, type-
definable over ∅, and Γ-invariant. ⊣

https://doi.org/10.1017/jsl.2020.29 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.29
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Remark 2.1. The usual metrization of quotients modulo type-definable
equivalence relations shows that Theorem 2.4 also holds for hyperdefinable families
of commensurable subsets/subgroups/subvector spaces. (If the equivalence relation
is given by an uncountable partial type, we first express the quotient as a type-
definable subset of an infinite (possibly uncountable) product of hyperimaginary
sets modulo countable equivalence relations, which in turn are equivalent to
imaginary metric sorts.)

§3. Fields. For two fields F and K we say that F is commensurably contained
in K if the degree [FK : K ] is finite. Then commensurable fields form an upper
semi-lattice which need not be closed under meet. Theorem 1 applied to Example
1(v) in [6] implies in particular that if K is a field, Γ a group of automorphisms of
K and F a family of uniformly commensurable subfields of K such that any finite
intersection of elements in F is commensurable with F, then there is a Γ-invariant
subfield ofK commensurable withF. However, the condition that finite intersections
be commensurable with F is much stronger than mere pairwise commensurability.
In this section, we shall show that in case the extensions FF ′/F for F,F ′ ∈ F are
separable, or the Eršov invariant of any field in F is finite, there still is a Γ-invariant
commensurable subfield.

Theorem 3.1. Let K be a field, Γ a group of automorphisms of K and F a Γ-
invariant family of uniformly commensurable subfields of K. If FF ′/F is separable
for all F,F ′ ∈ F, or if the Eršov invariant [F : F p] is finite for any F ∈ F, there is a
Γ-invariant subfield N commensurable with F.

Proof. Clearly we may assume that F consists of a single orbit under Γ. For a
subfield F ≤K let F s be the separable closure of F in K, and put Ks =

⋂

F∈F
F s , a

Γ-invariant subfield ofK satisfyingKs =K
s
s . If FF

′/F is separable for all F,F ′ ∈ F,
then F ≤ Ks = F

s for all F ∈ F, and Ks is Galois over F ∩Ks = F . We put
Fs = F.
Otherwise, byuniformcommensurability ofF there is a finite power qof p such that

F qF ′/F ′ is separable for all F,F ′ ∈ F, where p = char(K)> 0 is the characteristic.
Then F q ≤ F ∩Ks ≤ F ≤ F s for all F ∈ F; note that F s is normal over F q , whence
over F ∩Ks , and F is the pure inseparable closure of F ∩Ks inside F

s . Hence
F s = F (F ∩Ks)

s . Since (F ∩Ks)
s ≤K ss =Ks ≤ F

s , we have (F ∩Ks)
s =Ks , soKs

is Galois over (F ∩Ks).Moreover, as F has finite Eršov invariant, [F : F
q] is finite; it

is independent of F since F consists of a single Γ-orbit. Thus Fs = {F ∩Ks :F ∈ F} is
a family of uniformly commensurable subfields of Ks .
Let G = Aut(Ks) with the topology of pointwise convergence and the induced

action of Γ. For F ∈ F putHF =Gal(Ks/F ∩Ks)≤G . Then F ∩Ks =FixKs (HF ).

NowHãF =H
ã–1

F forã ∈Γ.UniformcommensurabilityofFs impliesthatH= {HF :
F ∈ F} is a Γ-invariant family of uniformly commensurable closed subgroups of G.
By Schlichting’s Theorem [1, Theorem 6(iii)] applied to the familyH of subgroups of
G ⋊Γ, there is a Γ-invariant subgroupH ≤G commensurable with H. MoreoverH
is closed as it is a finite extension of a finite intersection of groups in H. Then N =
FixKs (H ) is a Γ-invariant subfield of Ks commensurable with FixKs (HF ) = F ∩Ks
for anyHF ∈ H. As F ∩Ks is commensurable with F, we are done. ⊣
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[9] gives examples of commensurable fields F and F ′ such that FF ′/F is purely
inseparable, FF ′/F ′ is either separable or purely inseparable, and F ∩F ′ has infinite
degree in F and in F ′. As we have not been able to deal with this problem, we have
not managed to prove Theorem 3.1 in full generality.

§4. Acknowledgment. This work was partially supported by ANR-13-BS01-0006
ValCoMo and ANR-17-CE40-0026 Agrume.
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