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Boundary conditions and vortex wandering
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A direct numerical simulation of a Batchelor vortex has been carried out in the
presence of freely decaying turbulence, using both periodic and symmetric boundary
conditions; the latter most closely approximates typical experimental conditions, while
the former is often used in computational simulations for numerical convenience.
The higher-order velocity statistics were shown to be strongly dependent upon the
boundary conditions, but the dependence could be mostly eliminated by correcting for
the random, Gaussian modulation of the vortex trajectory, commonly referred to as
‘wandering’, using a technique often employed in the analysis of experimental data.
Once this wandering had been corrected for, the strong peaks in the Reynolds stresses
normally observed at the vortex centre were replaced by smaller local extrema located
within the core region but away from the centre. The distributions of the corrected
Reynolds stresses suggest that the formation and organization of secondary structures
within the core is the main mechanism in turbulent production during the linear
growth phase of vortex development.
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1. Introduction
Vortex flows remain a subject of considerable interest, not only because of

their fundamental importance but also because of their value in a wide variety of
applications. At the smallest scales, vortices can be considered as the basic elements
of turbulence and are directly responsible for dissipation; at larger scales, they may
be controlled to enhance mixing or the lift generated by flapping wings (Wang 2005;
Froehlich, Garcia-Villalba & Rodi 2008). At even larger scales, they are entirely
responsible for the induced drag generated by aircraft (Spalart 1998; Kroo 2001); at
atmospheric and planetary scales, they are of interest in meteorological modelling
and storm prediction (Kurihara, Bender & Ross 1993; Zhang & Sarkar 2012).

In experimental studies of vortex flows, a quasi-two-dimensional or trailing vortex
is typically produced by using a vortex generator composed of one or more lifting
bodies, installed in a flow facility. Once allowed sufficient streamwise distance to
achieve axisymmetry, the resultant vortex begins to closely approximate the Batchelor
(1964) profile, so that

Vθ(η)
V0
=
(

1+ 1
2α

)
1
η

[
1− exp

(−αη2
)]
, (1.1)

† Email address for correspondence: d.birch@surrey.ac.uk
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where Vθ(η) is the tangential velocity, V0=Vθ(1) is the maximum tangential velocity,
η = r/rc is the radial coordinate, with rc denoting the core radius (or the radial
location at which Vθ = V0), and α ∼ 1.256 is Lamb’s constant (uppercase variables
here are used to indicate time-mean or time-invariant quantities). Batchelor’s solution
also admits a Gaussian distribution of axial velocity,

Vz(η)

W0
= exp

(−αl2η2
)
, (1.2)

where W0 is the peak axial velocity (which may be positive or negative) and l is a
rescaling parameter for the axial profile. Good agreement is achieved with (1.1) and
(1.2) over a wide range of Reynolds numbers and boundary conditions (see Birch
et al. 2004), including cases of highly unsteady vortices (Ramaprian & Zheng 1998;
Birch & Lee 2005) and vortices subjected to intense free-stream turbulence (Beninati
& Marshall 2005; Bailey & Tavoularis 2008).

However, it is accepted that all vortices generated within experimental flow facilities
are subject to a low-amplitude random ‘wandering’; this phenomenon results in a
Gaussian distribution of the locus of vortex centres in both time and space. The
process of vortex wandering and its significant impact on experimental measurements
was reviewed in detail by Devenport et al. (1996). Though its mechanisms are still
not understood, vortex wandering is believed to be a consequence of the initial and
boundary conditions inherently imposed by wind tunnels, owing to the conspicuous
absence of this phenomenon in free-flight tests (McCormick, Tangler & Sherrieb
1968). The wandering amplitude is also highly sensitive to free-stream turbulence
intensity, which likewise vanishes in an ideal free-flight test (Bailey & Tavoularis
2008; van Jaarsveld et al. 2011).

The experimental characterization of vortex flows, however, remains limited by
current measurement technology. Conventional planar and tomographic particle-image
velocimetry (PIV) systems can resolve the instantaneous vortex structures but tend
to have fairly low bandwidths (relative to the inertial-range time scales). Although
high-speed PIV capability is advancing rapidly, high-Reynolds-number vortices are
difficult to seed effectively (Birch & Martin 2013). On the other hand, pointwise
measurements, such as those from multicomponent thermal anemometry probes or
laser-Doppler velocimeters, can have a very high bandwidth but are fundamentally
incapable of resolving structures. Most experiments are therefore limited in that the
vortex may be well-resolved in either space or time, but not both.

High-confidence time-resolved turbulence data is therefore usually obtained using
local measurements, and the contamination of the velocity statistics by the random,
passive wandering of the vortex must be either corrected for or removed. Isolating
the effect of vortex wandering and correcting the velocity statistics accordingly can
be difficult, as this usually requires some a priori assumptions about the velocity
distributions (Devenport et al. 1996; Iungo, Skinner & Buresti 2009); furthermore, a
number of sources of experimental error have been shown to artificially enhance the
agreement between pointwise measurements and (1.1) (Birch 2012). Alternatively,
multiple simultaneous local measurements within a vortex field will allow the
remapping of the vortex to remove the effect of wandering. This generalized approach
is more intrusive, and will also require some assumptions about the form of the vortex
(Bailey & Tavoularis 2008).

Direct numerical simulation (DNS) is therefore a very valuable tool in understanding
the structure and dynamics of vortices, as it is entirely free of experimental error and
can provide results which are simultaneously well-resolved in both space and time.
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However, computational simulations require that the governing equations be solved
within some finite domain; this necessarily imposes the requirement of boundary
conditions. Since boundary conditions are already understood to play a fundamental
role in vortex wandering, it is reasonable to expect vortices modelled via DNS to
likewise wander within the computational domain. Indeed, behaviour consistent with
bulk wandering can be observed in some of the available published data (Melander
& Hussain 1993; Pradeep & Hussain 2004).

In direct numerical simulations of nominally unbounded vortex flows, the boundary
conditions are typically selected as a matter of computational convenience. However,
because the vortex wandering is boundary condition-dependent and because the
velocity statistics can be significantly affected by the wandering, the statistics
themselves are also boundary condition-dependent. Since vortex wandering is an
‘inactive’ phenomenon (causing bulk advection but negligible net global production
or dissipation), it will necessarily mask any similarity characteristics in much the
same way as has been previously observed in the case of turbulent boundary layers
(Townsend 1961; Bradshaw 1967).

To address this problem, one possible approach is to significantly increase the size
of the domain. However, because the mechanisms behind wandering remain unclear,
no causal relationship between wandering amplitude and domain size is known to
exist. In wind-tunnel experiments, vortex wandering is universally observed, even in
cases where the integral scale of the flow facility is orders of magnitude larger than
the length scale of the vortex (see, for example, Iungo et al. 2009). By comparison,
DNS studies of vortex dynamics have domains typically limited to less than ∼30rc
by the computational resources available (Pradeep & Hussain 2004); simulating a
sufficiently large domain to altogether eliminate vortex wandering may therefore be
intractable with current technology. On the other hand, another approach would be
to use a smaller domain but remove the effects of vortex wandering from the results
a posteriori. This would provide insight into the generalized dynamics of vortex
development, independent of the specific (and arguably arbitrary) boundary conditions
used.

The purpose of this paper, then, is to: (a) demonstrate by example the influence that
specific boundary conditions may have on velocity statistics in vortex flow simulations
as a consequence of vortex wandering; (b) demonstrate that a correction for vortex
wandering can yield velocity statistics which are boundary condition-independent and
therefore more likely to be representative of unbounded vortices; and, by so doing,
(c) facilitate the characterization of the structure of these complex flow structures.

2. Numerical method
In order to address the points raised above, direct numerical simulations of a

Batchelor vortex were carried out in the presence of background turbulence. This
formulation has been used extensively for fundamental numerical studies of turbulent
vortex flows; for additional details, the reader is referred to Pradeep & Hussain
(2004), Duraisamy & Lele (2008) and Goto (2008).

2.1. Vortex model
The incompressible continuity and Navier–Stokes equations

∇ ·U = 0, (2.1)
∂U
∂t
=− 1

ρ
∇p− 1

2
[∇(U ⊗U)+ (U · ∇)U]+ ν∇2U (2.2)
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FIGURE 1. Illustration of the computational domain.

(where U is the velocity vector, p is the pressure, ρ is the density, t is time and
ν is the kinematic viscosity) were solved on a regular, structured 129× 129× 129
point grid extending 20, 20 and 40 in x/rc, y/rc and z/rc, respectively (where z
is the axial direction), resulting in an isotropic grid spacing equivalent to twice the
Kolmogorov length scale. The equations were solved in the spatial domain, in order to
facilitate the implementation of arbitrary boundary conditions. A sixth-order compact
difference scheme was used, with third-order, low-storage Runge–Kutta time-stepping.
Convective and viscous fluxes were resolved using the technique of Lele (1992),
with sixth-order accuracy. Continuity was enforced by solving the Poisson equation
for pressure using a direct solver in spectral space (see Laizet & Lamballais 2009
for details). Figure 1 shows a schematic illustration of the computational domain,
including the coordinate systems used.

The boundary conditions were periodic in z, and solutions were obtained using
both symmetric and periodic boundary conditions in x and y in order to provide a
comparative measure of boundary-condition sensitivity. It is important to note that
although periodic boundary conditions are naturally implemented when solving the
governing equations in the spectral domain, symmetric boundary conditions (which
impose vanishing wall-normal velocities at the boundaries) are a more representative
model of typical experimental conditions.

The solution was initialized using the two-dimensional Batchelor vortex mean
velocity field described by (1.1) and (1.2). The tangential and axial velocity
magnitudes were constrained by imposing a swirl parameter q= 1, where

q=
(

2α + 1
2
√
α

)
V0

W0
, (2.3)

and an axial scaling parameter l = 1. The core Reynolds number Rec = Γc/ν was
initially set to 4 × 103 (where Γc is the circulation about the circular path given by
η= 1).

2.2. Background turbulence
In order to model free-stream turbulence (and provide a perturbation for the vortex),
a synthetic field of homogeneous isotropic turbulent velocity fluctuations was
superimposed upon the mean velocity field in the initial condition. The fluctuations
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had a prescribed Gaussian energy spectrum E(κ) (where κ is the wavenumber), such
that

E(κ)∝ κ2 exp(−κ2), (2.4)

and were constrained to satisfy continuity. The synthetic turbulence was generated
by assigning random phases to the velocity field in Fourier space and mapping the
resultant velocity field back into the physical domain by means of a three-dimensional
inverse Fourier transform. This technique is described in detail by Qin (1998).

2.3. Post-processing
The velocity fields obtained with the DNS model were corrected for vortex wandering
in post-processing. At each time step, the vortex centre (taken to be the location of
minimum tangential velocity) was identified on individual cross-flow (x–y) planes
using a third-order subgrid interpolation. The vortex trajectory (xc(z), yc(z)) was
then identified as the locus of these points of minimum tangential velocity. To
remove the influence of wandering, the velocity data on each cross-flow plane were
simply subjected to a planar translation, so that xc(z) and yc(z) would both be
forced to vanish. In so doing, the axis of the vortex was forced to lie on the z-axis,
thereby mapping each instantaneous vortex trajectory onto the trajectory of the initial
condition. Because the curvature of the trajectory was negligible, no out-of-plane
rotation or scaling of the cross-flow velocity fields was required.

It should be noted here that, for both the implementation of the wandering
correction and the subsequent conversion to polar coordinates, the definition of
the vortex centre is critical and can have a significant effect on the results, especially
if the vortex becomes distorted. For a discussion of the different techniques of vortex
identification and the advantages associated with each, the reader is referred to Giuni
(2013). The criterion used here to identify the vortex centre was selected specifically
for its robustness in ensuring that the post-processing remained insensitive to the
appearance of secondary vortical structures. In the absence of secondary structures,
the locations of peak vorticity and minimum tangential velocity typically agreed to
within the grid resolution.

As a consequence of the wandering corrections, the resultant instantaneous
velocity fields may be, to some extent, discontinuous and therefore non-physical; the
resolution of individual structures from the fields is therefore precluded. However, as
discussed above, it is well-accepted that vortex wandering introduces only large-scale,
low-amplitude modulations in the vortex trajectory without significantly affecting the
vortex dynamics. Because the correction procedure is effectively a high-pass filtering
process, its influence will be limited to very low wavenumbers and will therefore
not significantly affect the velocity statistics (relative to a vortex not subjected to
wandering).

Once the instantaneous velocity fields had been corrected for wandering, velocity
moments were obtained by spatial averaging along the z-axis. Because the vortex and
background turbulence were freely decaying, temporal averages could not be defined.
These spatially averaged statistics may, however, be directly compared to temporal
statistics obtained in a trailing vortex flow by applying Taylor’s hypothesis.

3. Results
3.1. Validation

The numerical method and synthetic turbulence field used for the initial condition
were validated by simulating the natural decay of the initial turbulence in the absence
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Dauzats et al. (2002) 
Periodic boundary conditions
Symmetric boundary conditions
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FIGURE 2. Results from simulation of freely decaying synthetic homogeneous isotropic
turbulence: (a) time-evolution of total turbulent kinetic energy; (b) time-evolution of r.m.s.
velocity components (with periodic boundary conditions).

of the vortex. The homogeneous isotropic turbulence field was initialized using (2.4)
with k/2U2

∞ = 6.0 × 10−4 (where k is the turbulent kinetic energy and U∞ is the
integral velocity scale), in a structured periodic cube of length 2π having 64 evenly
spaced grid points in each direction. The simulation was run at a Reynolds number
Re = L∞U∞/ν = 1660 (where L∞ is the integral length scale), corresponding to a
Taylor-microscale Reynolds number Reλ = 11.6. The simulation was run for a total
of ∼4× 104 time steps of non-dimensional time tU∞/L∞ = 2.5× 10−3. These initial
conditions and non-dimensional test parameters were selected in order to match those
of Dauzats et al. (2002) obtained using the CERFACS NTMIX code (for details on the
implementation, see Hélie 2001), thereby permitting direct comparison of the present
results against this available DNS database.

Figure 2(a) shows the evolution of the total k with the non-dimensional time t/τ
(where τ =∑(L/u′2) is the global autocorrelation time scale, with L being the local
autocorrelation length scale and u′2 the standard deviation of the velocity field at
t = 0), along with the available data for comparison, from simulations with periodic
and symmetric boundary conditions. The curves agree very well at least over the range
of t/τ < 4 (at which time k/2U2

∞ has decayed to ∼4.3 % of its initial value).
The isotropy of the turbulence was also assessed by examining the time-evolution

of the individual normalized Cartesian root-mean-square (r.m.s.) velocity components
urms/U∞, vrms/U∞ and wrms/U∞ taken over the entire domain for the case of periodic
boundary conditions; see figure 2(b). The three r.m.s. velocities collapse to within
2 % over the range t/τ . 4, demonstrating that the isotropy (and, by inference, the
homogeneity) of the initial synthetic turbulence field is preserved to at least the second
moment of velocity. These results are also indistinguishable from those of Dauzats
et al. (2002) (not shown).

3.2. Time-evolution of a Batchelor vortex
DNS results were obtained for the case of the velocity fields initialized with (1.1)
and (1.2), superimposed upon the random turbulence field having the energy spectrum
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given by (2.4), using conventional periodic boundary conditions. Figure 3(a) shows
isocontours of ζzrc/V0 (where ζz= ∂v/∂x− ∂u/∂y is the cross-flow vorticity), taken at
the centre plane of the domain at non-dimensional times t/T = 0.19, 0.96 and 2.87
(where T = 2πrc/V0 ∼ 0.56τ is the vortex turnover time). Early in the simulation,
the peak normalized vorticity closely approximates 1+ 2α and the vortex appears to
be highly axisymmetric for η . 1. At t/T = 0.96, the core remains well-defined and
fairly axisymmetric. The vortex has also begun to organize the background turbulence,
winding it around the outer core region (1. η. 3); this behaviour is consistent with
the results presented by Melander & Hussain (1993). Some distortion of the vortex
core is also apparent, as the ζzrc/V0> 1 contour lines approximate ellipses. By t/T ∼
2.87, the core has begun to destabilize and lose axisymmetry. Three distinct lobes
are evident in the ζzrc/V0 > 2 contour lines, consistent with the formation of three
co-rotating helical structures within the core.

To assess the turbulence intensity within the cross-flow plane independently of the
location of the vortex centre (upon which the transformation of the Cartesian velocity
components into polar coordinates depends strongly), a cross-flow turbulence intensity
u′z was defined as

u′z =
(〈

u2
〉+ 〈v2

〉
〈U〉2 + 〈V〉2

)1/2

, (3.1)

where u and v are the turbulent defect velocities and U and V are the total velocities
in the x and y directions, respectively, and the angled brackets indicate a spatial
average along the z-axis. Note that this definition will necessarily result in a singularity
at the vortex centre, where the cross-flow velocity magnitude vanishes. Again, the
results show an initial random distribution of turbulence (figure 3b), with fairly
low values around the vortex centre relative to the cases at later t/T (the localized
concentrations of u′z near the vortex centre may be attributed to the singularity in
(3.1)), as the near-solid-body rotation stabilizes the fluctuations. At t/T= 0.96, slightly
higher levels of cross-flow turbulence are evident in the core region, as secondary
structures are wound into the vortex and transport turbulence towards the vortex
centre. For large t/T , high levels of turbulence are evident at the vortex centre,
suggestive of production; however, this is more likely the result of a low-wavenumber
modulation stemming from the lobe-like asymmetry of the core seen in figure 3(a).

In previous direct numerical simulations, vortices have been shown to exhibit three
distinct stages of development based on the evolution of k. Initially, the vortex will
undergo a phase of linear growth, during which ambient turbulent structures are
organized and concentrated by the mean rotational velocity as the vortex adjusts to
the initial and boundary conditions. Once the vortex begins to respond to the influence
of the boundary conditions, it transitions to a state of saturation. During this stage,
the total turbulent kinetic energy remains relatively constant, but the vortex core
undergoes structural changes as it reorganizes and adjusts to the boundary conditions.
Finally, the vortex will begin to decay slowly as kinetic energy is lost to viscosity.
The vortex will also become increasingly sensitive to the boundary conditions as it
grows to the point that the assumption rc� L0 (where L0 is the integral length scale)
weakens.

Figure 4 shows the evolution of the normalized total turbulent kinetic energy∑
k(x, y, z)/2V2

0 as a function of time both with and without correction for the effects
of vortex wandering. Results from simulations using symmetric and periodic boundary
conditions are shown. The choice of boundary conditions can have a significant impact
on k; before correcting for wandering, the simulation with symmetric boundary
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FIGURE 3. Contours of (a) normalized cross-flow vorticity, and (b) normalized cross-flow
turbulence intensity at t/T = 0.19, 0.96 and 2.87, with periodic boundary conditions.

conditions predicted a very linear increase in k for 0 6 t/T . 2 and a gradual
transition from t/T & 2. On the other hand, the periodic boundary conditions resulted
in a growth which was less linear, followed by a clear plateau for 2.5. t/T . 4. Once
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0 1 2 3 4
10−4

10−3

FIGURE 4. Evolution of normalized total turbulent kinetic energy, with (solid lines) and
without (dashed lines) correction for the effects of vortex wandering, in the cases of
periodic boundary conditions (◦) and symmetric boundary conditions (�); symbols show
every 1000th time step.

corrected for wandering, though, the results collapse independently of the boundary
conditions for t/T . 2.5, suggesting that the boundary conditions have not yet exerted
a major influence on the vortex development (or that the influence of the boundary
conditions is effectively removed by correcting for wandering). For t/T > 2.5, the
difference between the corrected results increases, but it remains small relative to
that for the uncorrected cases; also, both curves exhibit a small plateau followed by
a clear decrease in k/2V2

0 , consistent with the transition to saturation.
These results provide compelling evidence that vortex wandering occurs as a

consequence of the boundary conditions. Also, including the effects of this large-scale
inactive wandering in estimates of turbulence intensity not only results in a significant,
boundary condition-specific (and therefore arguably artificial) increase in k but also
may entirely mask the characteristic stages of vortex evolution.

Since the effect of vortex wandering is primarily to distort the vortex trajectory
in both space and time, the trajectories are of particular interest and warrant some
additional attention. Figure 5 shows the vortex trajectories at t/T = 0.72, 1.44 and
2.40 for the cases of periodic and symmetric boundary conditions. Early in the vortex
development, the trajectory is characterized by fairly small disturbances concentrated
within limited regions of z/rc. As the vortex ages, larger-amplitude wave-like
deviations having amplitudes of ∼0.2rc and wavelengths of ∼15rc begin to form.
A second mode of deviation, in the form of short-wavelength, rapid displacements
also emerges. These discrete ‘jumps’ occur as the criteria used to identify the vortex
centre select between multiple candidate points within an increasingly asymmetric
vortex core. It is interesting to note that the larger-wavelength modulations appear to
be fairly independent of the boundary conditions, while the ‘jumps’ are more frequent
under symmetric boundary conditions. These results suggest that the clear boundary
condition-dependence in the uncorrected curves presented in figure 4 occurs as a
consequence of fairly subtle structural differences in the core region of the vortex.
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FIGURE 5. Trajectory of vortex centre normalized against initial core radius, at t/T=0.72,
1.44 and 2.40, in the cases of periodic boundary conditions (solid lines) and symmetric
boundary conditions (dashed lines); mean paths have been offset in y for clarity.

The effect of the boundary conditions on the time evolution of the vortex trajec-
tories is more clearly demonstrated in figure 6(a), which shows the peak normalized
vortex excursion 1r(z; t)/rc (defined as the maximum displacement of the vortex
centre from its initial condition) as well as the standard deviation of the normalized
vortex excursion, σ/rc. The peak excursions are significantly smaller and increase
more gradually with time in the case of periodic boundary conditions. For t/T . 2.5,
excursions by as much as 0.3rc and 0.5rc are apparent in the cases of periodic
and symmetric boundary conditions, respectively. Through most of the range
0.5. t/T . 2.5, σ/rc ∼ 0.07 for both types of boundary conditions.

For the case of an axisymmetric Batchelor vortex undergoing an isotropic and
purely Gaussian wandering about the origin, Devenport et al. (1996) showed that the
wandering tends to act as a convolution filter with a Gaussian kernel, so that the
maximum tangential velocity V0 of the spatially averaged vortex varies from the true
peak tangential velocity as

V0

V0
=
(

1− 2α
σ 2

r2
c

)1/2

. (3.2)

For σ/rc ∼ 0.07, (3.2) predicts that the convolution will result in a reduction of peak
velocity of less than 1 %. Figure 6(b) shows the evolution of peak tangential velocity
with time. For the case of periodic boundary conditions, the wandering correction has
a negligible effect on V0 for t/T . 4, consistent with the prediction of (3.2). For
the case of symmetric boundary conditions, the difference between the corrected and
uncorrected peak tangential velocities is as large as 10 %, an order of magnitude larger
than the difference predicted by (3.2). Since (3.2) necessarily must be satisfied if the
wandering is isotropic and Gaussian, and since statistical anisotropy is unlikely given
the symmetry of the problem, the failure of (3.2) suggests that vortex wandering in
the case of symmetric boundary conditions is non-Gaussian. It is also important to
note that, once the effects of wandering have been corrected for, the peak tangential
velocities in this case are increased by approximately 5 %.
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FIGURE 6. (a) Evolution of wandering amplitude with time: plots of the peak normalized
vortex excursion 1r/rc (solid lines) and the standard deviation σ/rc of the normalized
vortex excursion (dashed lines), for the cases of periodic boundary conditions (◦) and
symmetric boundary conditions (�). (b) Evolution of V0 with time, with (solid lines) and
without (dashed lines) correction for vortex wandering, in the cases of periodic boundary
conditions (◦) and symmetric boundary conditions (�); symbols show every 1000th time
step.

3.3. Mean velocity components
In order to examine the effect of boundary conditions on the spatially averaged
velocity statistics, the circumferentially averaged profiles of the velocity components
were evaluated at t/T ∼ 1.44, when the vortex had had sufficient time to develop from
the initial condition, but was still at a stage where it would be expected to remain only
minimally affected by the presence of the boundaries. Figure 7 shows the tangential
and axial velocity profiles (normalized against the velocity magnitude from the initial
condition), as well as the Batchelor profile from the initial condition for comparison.
The peak velocities have decayed, as rc has increased with vortex age. The periodic
boundary conditions result in slightly higher uncorrected magnitudes, though the
first-order velocity statistics show only a small boundary-condition sensitivity (∼3 %).
The profiles collapse throughout the domain once corrected.

The relative insensitivity of the mean velocity profiles to the random wandering is,
to some extent, expected; it has already been shown that the form of a Batchelor
vortex is preserved through a Gaussian convolution (Devenport et al. 1996; Birch
2012). Although the wandering in the case of the symmetric boundary conditions
appears to be non-Gaussian, this is not causing a significant variation in the expected
velocity profile.

3.4. Reynolds stresses
The second-order velocity statistics exhibit a much stronger sensitivity to the boundary
conditions and response to vortex wandering. Figure 8 shows the normalized
circumferentially averaged polar Reynolds stresses 〈v2

θ 〉/V2
0 , 〈v2

r 〉/V2
0 and 〈v2

z 〉/V2
0

(where V0 here is taken from the initial condition) for both boundary conditions,
with and without correction for wandering. In all cases, the uncorrected stresses
exhibit much larger peak magnitudes, demonstrating that the inactive wandering
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FIGURE 7. Circumferentially averaged radial profiles of tangential velocity (left) and
axial velocity (right) at t/T ∼ 1.44, for the cases of periodic boundary conditions (solid
lines), symmetric boundary conditions (dashed lines) and (1.1) or (1.2) (dot-dashed lines):
(a) uncorrected; (b) corrected.
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FIGURE 8. Circumferentially averaged radial profiles of Reynolds stresses at t/T ∼ 1.44,
for the cases of periodic boundary conditions (solid lines) and symmetric boundary
conditions (dashed lines): (a) uncorrected; (b) corrected.
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0.04

0.08

0.12

FIGURE 9. Comparison of 〈v2
θ 〉/V2

0 at t/T ∼ 2.4, in the cases of periodic boundary
conditions (solid lines) and symmetric boundary conditions (dashed lines), with the data
of Qin (1998) (◦); other symbols represent rescaled data taken from Bailey & Tavoularis
(2008).

contributes significantly to the measured stresses. Furthermore, the uncorrected profiles
are strongly boundary condition-dependentbut collapse when corrected, providing
additional evidence to support the concept that vortex wandering is driven primarily
by boundary conditions.

The radial distributions of the Reynolds stresses are also strongly affected by
wandering. The uncorrected profiles of 〈v2

θ 〉 and 〈v2
r 〉 both exhibit local maxima at

or near the vortex centre, and are approximately Gaussian in form. However, this
distribution is necessarily an artefact of wandering; once corrected, both the tangential
and radial Reynolds stresses drop to negligible levels at the origin, with the peak
shifted to 0.4 . η . 0.6. This corresponds qualitatively to the form of uncorrected
〈v2

z 〉; since vortex wandering is essentially a cross-flow phenomenon, the effect of
boundary conditions and wandering on the form of 〈v2

z 〉 is expected to be marginal.
The importance of the boundary conditions in determining the vortex behaviour is

further illustrated in figure 9, which shows the radial distributions of 〈v2
θ 〉/V2

0 at a time
t/T∼ 2.4; results at this t/T are directly comparable to the DNS data presented in Qin
(1998). As expected, the available DNS data agree reasonably well with the present
results in the case of periodic boundary conditions; the magnitudes were similar, with
very low gradients near the vortex centre and into the core region. The solutions begin
to differ for η & 0.5, though this is likely due to differences in the both the domain
size and the initial and boundary conditions: Qin (1998) used only 15× 15 points in
the cross-flow plane, and implemented some inviscid modelling near the boundaries as
well (see also Duraisamy & Lele 2008). Since solutions express boundary-condition
sensitivity at this t/T , some disagreement at larger η between the models is expected.

Figure 9 also includes (uncorrected) experimental data presented in Bailey &
Tavoularis (2008), from high-bandwidth single-point measurements of a vortex formed
in varying levels of grid-generated background turbulence. These measurements were
collected using multisensor hot-wire probes, in a facility measuring approximately
65rc× 100rc in the cross-flow plane. Because the background turbulence intensity and
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FIGURE 10. Circumferentially averaged radial profiles of Reynolds stresses at t/T ∼
1.44, for the cases of periodic boundary conditions (solid lines) and symmetric boundary
conditions (dashed lines): (a) uncorrected; (b) corrected.

vortex ‘age’ could not be matched, a direct quantitative comparison with the present
results cannot be made; however, the form of these distributions may be considered
by rescaling the results. Although the rescaling is arbitrary, three different cases from
Bailey & Tavoularis (2008) are shown, having upstream turbulence intensities k/2V2

0 ∼
5.0 × 10−3, 2.0× 10−3 and 1.9 × 10−5. Once appropriately rescaled, these cases all
collapse; this demonstrates that the form of the solution is independent of the vortex
state and the magnitude of the background turbulence. Furthermore, the rescaled data
agree well with the uncorrected results of the present symmetric boundary condition
case, and, independent of the radial scaling, no plateau is apparent in the core
region of the experimental data. Aside from providing some validation for the present
simulations, these results also provide a good example of the poor agreement between
experiment and simulation which can become evident in the higher-order velocity
statistics, and suggest that this is, again, due to the effect of boundary conditions.

Figure 10 shows the normalized polar Reynolds shear stresses 〈vθvr〉/V2
0 , 〈vθvz〉/V2

0
and 〈vrvz〉/V2

0 . Both 〈vθvr〉 and 〈vrvz〉 are an order of magnitude smaller than the
other Reynolds stresses. The forms of the distributions and the amplitudes are not
significantly affected by correction relative to the other Reynolds stress components,
suggesting that the radial velocity fluctuations are at most only weakly correlated
with the axial and tangential components. It is interesting to note, however, that these
Reynolds stresses nearly vanish under symmetric boundary conditions, but show small
local extrema at η. 1 under periodic boundary conditions.

The axial–tangential Reynolds shear stress, on the other hand, demonstrates
boundary condition sensitivity, but again collapses when corrected. A negative peak
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FIGURE 11. Evolution of peak circumferentially averaged Reynolds stresses 〈v2
θ 〉/V2

0
(◦), 〈v2

r 〉/V2
0 (�) and 〈v2

z 〉/V2
0 (�), for the cases of periodic boundary conditions (solid

lines) and symmetric boundary conditions (dashed lines): (a) without correction; (b) with
correction. Symbols show every 1000th time step.

is apparent at η ∼ 0.5 in both the uncorrected and the corrected profiles, though the
wandering significantly increases the apparent amplitude.

Figure 11 shows the evolution in time of the peak circumferentially averaged
Reynolds stresses, with and without correction for wandering. For the case of
symmetric boundary conditions, the wandering clearly dominates in the peak Reynolds
stresses, as the cross-flow components 〈v2

θ 〉 and 〈v2
r 〉 collapse, and achieve amplitudes

an order of magnitude larger than when corrected. With periodic boundary conditions,
all three Reynolds stress maxima collapse for t/T . 1.5. For t/T & 1.5, the radial
component increases in magnitude, and collapses again with the tangential component
for t/T & 3.

Once corrected for wandering, the peak Reynolds stresses become largely boundary
condition-independent. A clear maximum was apparent at 2 . t/T . 3 for all three
orthogonal components, which is consistent with the broad maximum in k (see
figure 4). For t/T & 3, the strong differences between the Reynolds stresses diminish
as the turbulence decays.

More revealing, perhaps, is the time-map of the radial distribution of the corrected
Reynolds stresses. Figure 12 shows the evolution of the circumferentially averaged
Reynolds stresses in both space and time, so that the curves shown in figure 10
represent horizontal sections through the isosurfaces plotted (at t/T = 1.44), while the
curves in figure 11 represent vertical sections along a line of maximum local stress.

Figure 12(a) shows contours of 〈v2
θ 〉/V2

0 as a function of both radius and time. The
peak begins to manifest at t/T ∼ 1, and grows rapidly with time. By t/T ∼ 2, a
second peak forms at η∼ 1 and persists through to t/T ∼ 3. Similar peaks were not
observed in the distributions of 〈v2

r 〉/V2
0 or 〈v2

z 〉/V2
0 (figure 12b,c), though a distinct

increase in skewness towards larger η is apparent in these distributions, especially
for t/T & 2. The magnitudes of 〈vθvr〉 (figure 12d) are small compared to the other
stresses (as demonstrated in figure 10). While the amplitudes of 〈vθvz〉 and 〈vrvz〉 are
still fairly small, strong local maxima are nevertheless apparent in these distributions
at η∼ 0.5 and 1, respectively (figures 12e,f ). Note that, of all the Reynolds stresses,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

16
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.169


Boundary conditions and vortex wandering 365

1

23

13

0

1

2

3

4

246

24

0

1

2

3

4

234

17

0 0.5 1.0 1.5 0

1

2

3

4

(c)

(b)

(a)

( f )

(e)

(d)

1
2

7

0.5 1.0 1.5 2.02.0

−1

−2

−1−2

−8

FIGURE 12. Contours of (a) 〈v2
θ 〉/V2

0 × 103, (b) 〈v2
r 〉/V2

0 × 103, (c) 〈v2
z 〉/V2

0 × 103,
(d) 〈vθvr〉/V2

0 × 103, (e) 〈vθvz〉/V2
0 × 103 and (f ) 〈vrvz〉/V2

0 × 103, showing evolution of
profiles in both space and time; data are from the periodic boundary condition case,
corrected for wandering.

〈vrvz〉 exhibits the most significant skewness, with the peak drifting towards larger η
with increasing time.

4. Discussion
The effect of vortex wandering on the mean velocities in a turbulent vortex is not

significant. Owing to the robustness of (1.1) and (1.2) in describing vortices and their
invariance through the convolution, it is expected that the isotropic low-wavenumber
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and low-amplitude Gaussian modulations characteristic of wandering will have a
marginal effect. However, the absence of a universal scaling for the higher-order
velocity statistics within vortex flows suggests that these quantities may be more
sensitive to wandering. Because nearly all of the second-order statistics obtained
showed strong boundary condition-dependence that was eliminated by correcting
for wandering, a compelling argument can be made that the wandering occurs as a
direct consequence of the combined action of boundary conditions and background
turbulence. The symmetric boundary conditions (which most closely model physical
boundaries) produced wandering amplitudes significantly larger than the periodic
boundary conditions commonly used in spectral-domain simulations, and had a
pronounced effect on the uncorrected statistics. The good agreement between the
(uncorrected) velocity moments from the symmetric boundary condition case and
rescaled, uncorrected experimental data further reinforces this point. The direct
comparison of DNS results obtained using conventional spectral methods and
experimental data is therefore not valid, at least not for velocity statistics above
the first moment.

As a consequence of the ‘inactive’ modulation introduced by wandering, the
cross-flow Reynolds stresses developed a strong peak at the centre of the vortex. If
the wandering is considered as part of the vortex evolution, this might be interpreted
as a strongly turbulent core. However, once the velocities have been corrected for
wandering, very low levels of turbulence are recovered near the centre of the vortex.
Of more interest, perhaps, is the strong peak in Reynolds stresses which emerges
away from the vortex centre but within the core region. This provides evidence of
the presence of energetic secondary structures within the core, which is normally
taken to have a strongly stabilizing effect on turbulence. Weaker, distributed peaks
in the Reynolds stresses are apparent at around η ∼ 1 for t & 2. These, with the
strong cross-correlations between the different velocity components at different radii,
are consistent with the ‘hairpin’ structures identified by Duraisamy & Lele (2008),
while the very poor correlation between the radial and tangential velocity components
indicate that the dominant secondary structures in the core flow are not aligned
with the primary vortex. Taken together with the overall increase in turbulent kinetic
energy for t/T . 2.5, this provides further evidence that the main mechanism of
turbulent production during this stage of vortex development is the formation and
organization of these secondary structures within the core.

It is also significant to note here that, once corrected for vortex wandering, the
radial profiles of Reynolds stresses (scaled against the instantaneous core radius)
demonstrate some time-dependence; peak values slowly drifted towards larger η,
and some bimodality emerged with increasing time. This suggests that the strong
self-similarity of turbulent vortices demonstrated by Birch (2012) may not necessarily
extend to the higher-order velocity statistics.

5. Conclusion
A DNS of a turbulent vortex evolving in naturally decaying background turbulence

has been carried out using both periodic and symmetric boundary conditions. The
results were shown to be strongly dependent on the boundary conditions, but collapsed
once the random vortex ‘wandering’ had been corrected for using a technique common
in the analysis of experimental vortex data. Vortex wandering was therefore shown to
be strongly influenced by the boundary conditions, and thus the modelling of a free
vortex by a ‘vortex in a box’ may not be valid, even if the effect of the walls on the
vortex appears to be small at the leading order.
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Because vortex wandering is a low-wavenumber Gaussian modulation, it is expected
to play only a passive role in the development of turbulent vortices. Once the effect
of vortex wandering was removed from the velocity statistics, the Reynolds stresses
began to more accurately reflect the true structure of the vortex. Strong local maxima
were apparent within the core region in all of the circumferentially averaged Reynolds
stress distributions, with the notable exception of the radial–tangential component.
These Reynolds stress distributions were consistent with the presence of organized
secondary structures within the core region which were primarily responsible for
turbulent production.

Acknowledgement
This work was supported in part by the UK Engineering and Physical Sciences

Research Council under grant number EP/H030360/1.

REFERENCES

BAILEY, S. C. C. & TAVOULARIS, S. 2008 Measurements of the velocity field of a wing-tip vortex,
wandering in grid turbulence. J. Fluid Mech. 601, 281–315.

BATCHELOR, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645–658.
BENINATI, M. & MARSHALL, J. 2005 An experimental study of the effect of free-stream turbulence

on a trailing vortex. Exp. Fluids 38, 244–257.
BIRCH, D. M. 2012 Self-similarity of trailing vortices. Phys. Fluids 24 (2), 025105.
BIRCH, D. M. & LEE, T. 2005 Investigation of the near-field tip vortex behind an oscillating wing.

J. Fluid Mech. 544, 201–241.
BIRCH, D. M., LEE, T., MOKHTARIAN, F. & KAFYEKE, F. 2004 Structure and induced drag of a

tip vortex. J. Aircraft 41 (5), 1138–1145.
BIRCH, D. M. & MARTIN, N. 2013 Tracer particle momentum effects in vortex flows. J. Fluid

Mech. 723, 665–691.
BRADSHAW, P. 1967 Inactive motion and pressure fluctuations in turbulent boundary layers. J. Fluid

Mech. 30, 241–258.
DAUZATS, S., HELIE, J., BEDAT, B. & POINSOT, T. 2002 Homogenous isotropic turbulence. Available

at: http://www.cerfacs.fr/∼ntmix/qpf.html.
DEVENPORT, W. J., RIFE, M. C., LIAPIS, S. I. & FOLLIN, G. J. 1996 The structure and development

of a wing-tip vortex. J. Fluid Mech. 312, 67–106.
DURAISAMY, K. & LELE, S. K. 2008 Evolution of isolated turbulent trailing vortices. Phys. Fluids

20, 035102.
FROEHLICH, J., GARCIA-VILLALBA, M. & RODI, W. 2008 Scalar mixing and large-scale coherent

structures in a turbulent swirling jet. Flow Turbul. Combust. 80 (1), 47–59.
GIUNI, M. 2013 Formation and early development of wingtip vortices. PhD thesis, University of

Glasgow.
GOTO, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence.

J. Fluid Mech. 605, 355–366.
HÉLIE, J. 2001 Numerical simulation and modelling of premixed flame propagation in a richness-

stratified medium (in French). PhD thesis, Institut National Polytechnique de Toulouse.
IUNGO, G. V., SKINNER, P. & BURESTI, G. 2009 Correction of wandering smoothing effects on

static measurements of a wing-tip vortex. Exp. Fluids 46, 435–452.
VAN JAARSVELD, J. P. J., HOLTEN, A. P. C., ELSENAAR, A., TRIELING, R. R. & VAN HEIJST,

G. J. F. 2011 An experimental study of the effect of external turbulence on the decay of a
single vortex and a vortex pair. J. Fluid Mech. 670, 214–239.

KROO, I. 2001 Drag due to lift: concepts for prediction and reduction. Annu. Rev. Fluid Mech. 33,
587–617.

KURIHARA, Y., BENDER, M. A. & ROSS, R. J. 1993 An initialization scheme of hurricane models
by vortex specification. Mon. Weath. Rev. 121 (7), 2030–2045.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

16
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cerfacs.fr/~ntmix/qpf.html
https://doi.org/10.1017/jfm.2014.169


368 S. P. Jammy, N. Hills and D. M. Birch

LAIZET, S. & LAMBALLAIS, E. 2009 High-order compact schemes for incompressible flows: a simple
and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 5989–6015.

LELE, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
103 (1), 16–42.

MCCORMICK, B., TANGLER, J. & SHERRIEB, H. 1968 Structure of trailing vortices. J. Aircraft 5
(3), 260–267.

MELANDER, M. & HUSSAIN, F. 1993 Coupling between a coherent structure and fine-scale turbulence.
Phys. Rev. E 48 (4), 2669–2688.

PRADEEP, D. S. & HUSSAIN, F. 2004 Effects of boundary condition in numerical simulations of
vortex dynamics. J. Fluid Mech. 516, 115–124.

QIN, J. H. 1998 Numerical simulations of a turbulent axial vortex. PhD thesis, Purdue University.
RAMAPRIAN, B. R. & ZHENG, Y. 1998 Near field of the tip vortex behind an oscillating rectangular

wing. AIAA J. 36, 1263–1269.
SPALART, P. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107–138.
TOWNSEND, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97–120.
WANG, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183–210.
ZHANG, W. & SARKAR, P. P. 2012 Near-ground tornado-like vortex structure resolved by particle

image velocimetry. Exp. Fluids 52, 479–493.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

16
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.169

	Boundary conditions and vortex wandering
	Introduction
	Numerical method
	Vortex model
	Background turbulence
	Post-processing

	Results
	Validation
	Time-evolution of a Batchelor vortex
	Mean velocity components
	Reynolds stresses

	Discussion
	Conclusion
	Acknowledgement
	References




