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Positive definite functions and cut-off for
discrete groups

Amaury Freslon

Abstract. We consider the sequence of powers of a positive definite function on a discrete group.

Taking inspiration from random walks on compact quantum groups, we give several examples of

situations where a cut-off phenomenon occurs for this sequence, including free groups and infinite

Coxeter groups. We also give examples of absence of cut-off using free groups again.

1 Introduction

Positive definite functions have been at the heart of the development of harmonic
analysis on locally compact groups since its beginning (see for instance [13] and
[10]) and are still central in many works on this topic. �ey are connected to the
fundamental notions of amenability, Property (T) and more generally to represen-
tation theory and the cohomology of affine isometric actions. In the present paper,
we will consider an elementary problem involving these functions. Let Ŵ be a discrete
group and let φ ∶ Ŵ→ C be a normalized positive definite function (see Definition
2.1). Under mild hypothesis (see Proposition 3.1), the sequence (φk)k∈N converges
pointwise to a normalized positive definite function andwewant to knowhow fast the
convergence is.

If Ŵ is abelian, normalized positive definite functions φ correspond to probability
measures µφ on the Pontryagin dual Ŵ̂ and under this identification, φk corresponds
to the kth convolution power of µφ : µ∗kφ = µφk . In other words, the problem is
equivalent to the study of a random walk on the dual of Ŵ. It is well known since
the founding works of P. Diaconis and his coauthors (see for instance the survey [7])
that such random walks can exhibit a so-called cut-off phenomenon: for a number of
steps, µ∗kφ stays at distance almost one from the limitingmeasure, and then it suddenly
converges exponentially fast to it. If Ŵ is not assumed to be abelian anymore, we can
still think of our problem as a random walk on the dual compact quantum group Ŵ̂

and ask whether a cut-off phenomenon occurs.
Before explaining the results of this work, let us give a rigorous definition of what

we will call a “cut-off phenomenon” in the present article (see below for the definition
of the norm ∥ ⋅ ∥):
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Positive definite functions and cut-off for discrete groups 307

Definition 1.1 Let (ŴN , φN)be a family of discrete groupswith a normalized positive
definite function φN on each of them. We say that the sequence (φk

N)k∈N has a pre-
cut-off in the window [k′(N), k(N)] if there exist constants B, B′ , λ and λ′ such that
for any c > 0 and N large enough,

∥φk
N − δe∥ ⩾ 1 − B′e−λ′c

for any integer k ⩽ k′(N) − c and
∥φk

N − δe∥ ⩽ Be−λc
for any integer k ⩾ k(N) + c. �e pre-cut-off is moreover said to be a cut-off if
k′(N) = k(N).

�e previous definition may seem technical and this is due to the fact that it
is stronger than what is o�en called a cut-off phenomenon. Here is another, more
appealing version: for any ε > 0,

lim
N→+∞

∥φ⌊(1−ε)k′(N)⌋N − δe∥ = 1 and lim
N→+∞

∥φ⌈(1+ε)k(N)⌉N − δe∥ = 0
One crucial point in the previous definition is that the cut-off phenomenon

involves an infinite family of groups.�is means that we will have to build families of
discrete groupswith positive definite functions on them in as natural away as possible.

Let us now outline the contents of this work. A�er shortly recalling some pre-
liminary facts in Section 2, we give in Section 3 several general results concerning
our problem. In particular, we give conditions for convergence to the canonical trace
and absolute continuity. We also gather several computations which will be used to
produce examples of cut-off. �ese examples are detailed in Section 4. �ey mainly
rely on constructions of 1-cocycles and include free products (Proposition 4.4) and
infinite Coxeter groups (�eorem 4.2). We end in Section 5 with an example where
there is no cut-off phenomenon, in the sense that the exponential convergence occurs
from the first step on for N large enough.

2 Preliminaries

Even though ourmotivation comes from randomwalks on compact quantum groups,
we focus in the present work on the case of duals of discrete groups, for which
everything can be written in a classical way through operator algebras. Here is a list
of the notions needed (the reader may refer for instance to [2, Sec F.4] for basics
concerning operator algebras associated to discrete groups):

● �e Hopf- ∗-algebra associated to Ŵ̂ is the group algebra C[Ŵ] together with the
coproduct given by ∆(g) = g ⊗ g for all g ∈ Ŵ;
● �e corresponding maximal C∗-algebra C(Ŵ̂) is the full C∗-algebra C∗(Ŵ) of Ŵ;
● �eHaar state is the canonical trace δe , the Dirac mass at the neutral element.
● �eGNS construction (see for instance [2,�mC.1.4]) with respect to δe (which is
faithful) yields the le� regular representation ofŴ on ℓ2(Ŵ), which in turn provides
an embedding of C[Ŵ] into the group von Neumann algebra L(Ŵ).
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308 A. Freslon

A probability measure on Ŵ̂ is simply understood as a state on C[Ŵ] and it is well
known that these admit a group-theoretic description thanks to the notion of positive
definite function.

Definition 2.1 A function φ ∶ Ŵ→ C is said to be positive definite if for any integer
n, any family (c i)1⩽i⩽n of complex numbers and any g1 ,⋯, gn ∈ Ŵ,

n∑
i , j=1

c i c jφ(g i g−1j ) ⩾ 0.
If moreover φ(e) = 1, then φ is said to be normalized.

Given such a positive definite function φ, it extends by linearity to a map (again
denoted by φ) on C[Ŵ] which is positive in the sense that φ(x∗x) ⩾ 0 for any x ∈
C[Ŵ]. If moreover φ is normalized, then this map is a state. Moreover, all states arise
in that way. Cut-off phenomena only make sense once a notion of convergence for
positive definite functions is fixed. Classically, it is convergence in total variation
distance which is mostly used. A natural choice could therefore be the norm ∥.∥L(Ŵ)∗
as linear maps on the von Neumann algebra L(Ŵ), which coincides up to a factor one
half with the classical notion in the abelian case. However, this requires the state to
be defined on L(Ŵ), and this is not automatic (see Proposition 3.4). Even worse, we
will see in our examples that φk o�en becomes bounded precisely when the cut-off
phenomenon occurs.

A better choice is to consider the norm ∥ ⋅ ∥C∗(Ŵ)∗ as linear forms in the full C∗-
algebra ofŴ. Indeed, the universal property ofC∗(Ŵ) ensures that any positive definite
function on Ŵ has a unique bounded extension to C∗(Ŵ), so that this is always well-
defined. Note nevertheless that as soon as a state φ onC[Ŵ] is bounded on L(Ŵ), then∥φ∥L(Ŵ)∗ = ∥φ∥C∗(Ŵ)∗ . Because, as alreadymentioned, the total variation distance on a
vonNeumann algebra is one half of the norm, we will from now one lighten notations
by setting

∥ ⋅ ∥ = 1

2
∥ ⋅ ∥C∗(Ŵ)∗ .

�emain tool for proving upper bounds is then the followingUpper BoundLemma,
the proof of which uses the notion of an L1-density with respect to δe that we now
explain.�e formula ∥x∥1 = δe(∣x∣), where ∣x∣ is defined through functional calculus,
defines a norm on L(Ŵ), and the corresponding completion is denoted by L1(Ŵ̂). A
state φ is said to have an L1-density with respect to δe if there exists aφ ∈ L1(Ŵ̂) such
that for all x ∈ L(Ŵ),

φ(x) = δe(aφx).
�is is the analogue of the probabilitymeasure on Ŵ̂ having an L1-density with respect
to the Haar measure. If the same property holds instead for aφ ∈ L2(Ŵ̂) = ℓ2(Ŵ), then
φ is said to have an L2-density with respect to δe .
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Lemma 2.1 Let Ŵ be a discrete group and let φ be a positive definite function on Ŵ.
�en,

∥φ − δe∥2 ⩽ 1

4
∑
g≠e

∣φ(g)∣2 .
Proof If the sum on the right-hand side diverges, then the statement is true. If it
converges, then the sum

aφ =∑
g∈Ŵ

φ(g−1)g
converges in ℓ

2(Ŵ) and satisfies, for any g ∈ Ŵ,

φ(g) = δe(aφ g).
Taking linear combinations then shows that the equality holds for any element in
C[Ŵ] and observing that ∥x∥1 ⩽ ∥x∥2 for any x ∈ C[Ŵ], we see that the sum defining
aφ also converges in L1(Ŵ̂). Summing up, we have proved that φ has an L1-density aφ
with respect to δe .

In particular, φ is bounded on L(Ŵ) and using the fact that the norm of a state on
L(Ŵ) is twice the L1-norm of the density, we eventually have

∥φ − δe∥2 = 1

4
∥aφ − 1∥21 ⩽ 1

4
∥aφ − 1∥22 = 1

4
∑
g≠e

∣φ(g)∣2 . ∎

In the sequel we will restrict to discrete groups which are finitely generated and
growth considerations will come into the picture so that we recall some elementary
facts. If S denotes a symmetric generating set not containing the neutral element e,
the corresponding word length is defined by

∣g∣S =min{k ∈ N ∣ g ∈ Sk}.
Denoting by B(i) the corresponding ball of radius i, it follows from submultiplicativ-
ity that the sequence ∣B(i)∣1/i converges to a limit denoted by ω(S). If this number is
1, then the group has subexponential growthwhile it is said to have exponential growth
otherwise. If we denote by S(i) the sphere of radius i for this metric and by s i its

cardinality, it is easy to see that the sequence s1/ii also converges to ω(S). Moreover,

s i ⩽ ∣S∣(∣S∣ − 1)i−1 .
Note that equality for all i holds if and only if the group Ŵ is free on S.

3 General Results

In this section we give some general results concerning the powers of a fixed positive
definite function on a discrete group Ŵ. We discuss in particular simple convergence
as well as estimates which will be needed to prove cut-off phenomena in the examples
of Section 4.
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310 A. Freslon

3.1 Simple convergence

Before considering issues related to norm convergence, let us note that it implies
simple convergence. We should therefore first understand under which condition
the sequence φk converges simply to δe . For compact groups, it is known that a
random walk converges to the Haar state if and only if its support is not contained
in a closed subgroup or in a coset with respect to a normal subgroup (see for instance
[19,�m 3.2.4]). For general compact (and even finite) quantum groups, generalizing
this equivalence is still an open problem. In our case however, we can settle it. Let us
first give a definition for convenience:

Definition 3.1 A normalized positive definite function φ on a discrete group Ŵ is
said to be strict if ∣φ(g)∣ < 1 for all g ≠ e.

It is clear that simple convergence to δe is equivalent to the initial function
being strict. A typical example of a nonstrict positive definite function is the counit
ε ∶ Ŵ→ C sending each g to 1. More generally, any character (i.e. one-dimensional
representation) of Ŵ is not strict. �e next result says that this is basically the only
obstruction.

Proposition 3.1 Let Ŵ be a discrete group and let φ ∶ Ŵ→ C be a normalized positive
definite function. �e following are equivalent:

(1) φ is not strict;
(2) φ coincides with a character on a nontrivial subgroup Λ ⊂ Ŵ;
(3) φ is bimodular with respect to a nontrivial subgroup Λ ⊂ Ŵ in the sense that for

any h ∈ Λ and g ∈ Ŵ,

φ(gh) = φ(g)φ(h) = φ(hg).
Proof (1)⇒ (2) : Assume that φ is not strict and set

Λ = {h ∈ Ŵ ∣ ∣φ(h)∣ = 1}.
�e GNS construction provides a unitary representation π ∶ Ŵ→ B(H) on a Hilbert
space H and a unit vector ξ ∈ H such that for all g ∈ Ŵ, φ(g) = ⟨π(g)ξ, ξ⟩. For h ∈
Λ, the Cauchy–Schwarz inequality being an equality, π(h)ξ is colinear to ξ, hence
π(h)ξ = φ(h)ξ. �us, for any g ∈ Ŵ,

∣φ(gh)∣ = ∣⟨π(gh)ξ, ξ⟩∣ = ∣φ(h)⟨π(g)ξ, ξ⟩∣ = ∣φ(g)∣.
As a first consequence, Λ is stable under multiplication. Since moreover φ(g−1) =
φ(g) for any g ∈ Ŵ, we conclude that Λ is a subgroup. Moreover, φ ∶ Λ → C is a
character and for any h ∈ Λ and g ∈ Ŵ, φ(gh) = φ(g)φ(h) = φ(hg).(2)⇒ (3) : Considering again the GNS representation of φ, the assertion is
equivalent to the fact that Cξ is globally invariant under the action of Λ, from which
the bimodularity follows.(3)⇒ (1) : If φ is Λ-bimodular, then for any h ∈ Λ we have

∣φ(h)∣2 = φ(h)φ(h) = φ(h−1)φ(h) = φ(e) = 1
so that φ is not strict. ∎
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Remark 3.2 If Ŵ is abelian, then there exists a probability measure µφ on the dual

compact abelian group Ŵ̂ such that for all g ∈ Ŵ,

φ(g) = ∫
Ŵ̂

χ(g)dµφ(χ).
�e second condition in Proposition 3.1 yields a character η ∈ Λ̂ such that φ∣Λ = η; hence
for any h ∈ Λ,

∫
Ŵ̂

(η−1 χ)(h)dµφ(χ) = 1.
�is implies that the support of µ is contained in ηΛ⊥, where

Λ⊥ = {χ ∈ Ŵ̂ ∣ Λ ⊂ ker(χ)}
is the annihilator of Λ. Since any subgroup is normal in the abelian case, we recover the
classical criterion.

3.2 Absolute continuity

As we have seen in the proof, Lemma 2.1 is useful only when φ has an L1-density with
respect to δe , which by [20, �m V.2.18] is equivalent to the fact that φ extends to a
normal linear map on L(Ŵ). Moreover, as the proof of Lemma 2.1 shows, it is more
practical to consider L2-densities, since this reduces the problem to the convergence
of series in ℓ

2(Ŵ). �e latter problem naturally involves the rate of decay of φ and to
make this more precise we introduce the following quantities:

φ+(i) = − inf
g∈S(i)

ln(∣φ(g)∣) and φ−(i) = − sup
g∈S(i)

ln(∣φ(g)∣).
�e definition may seem unnatural but is designed to fit with growth conditions for
cocycles, which will be our main source of examples in Section 4.

Proposition 3.3 Let Ŵ be a discrete group and let S be a finite symmetric generating
set. �en,

● If lim inf i
φ−(i)

i
> ln(ω(S))

2k
, then φk has an L2-density, hence also an L1-density, with

respect to δe ;

● If lim inf i
φ+(i)

i
< ln(ω(S))

2k
, then φk has no L2-density with respect to δe .

Proof We start from the straightforward inequalities

+∞

∑
i=0

s i e
−2kφ+(i) ⩽ ∑

g∈Ŵ

∣φ(g)∣2k ⩽ +∞∑
i=0

s i e
−2kφ−(i) .

For the right-hand side, the Cauchy radical test gives a sufficient condition for
convergence, namely

lim sup
i

s
1/i
i e−2kφ

−(i)/i < 1.
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312 A. Freslon

Because s1/ii converges to ω(S), this gives the first part of the statement. On the other
hand, if the series in the middle converges, then so does the one on the le�-hand side
and using the Cauchy radical test again yields the second part of the statement. ∎

Proposition 3.3 settles the problem of the existence of L2-densities, which is what
weneed in order to apply Lemma2.1.However, it can be that a stateφ has an L1-density
without having an L2-density. We will now give a criterion for absolute continuity for
some particular class of groups. �e idea will be to show that φk is not bounded on
L(Ŵ) if k is too small by evaluating it on suitable test functions. If a length function
on Ŵ is fixed, the natural candidates are the elements

χ i = ∑
g∈S(i)

g .

Doing this requires a control on the norm of these elements in L(Ŵ) in terms of the
sizes of the spheres and such a control is given by the Property of Rapid Decay [16].
We, however, need an extra positivity assumption on φ.

Proposition 3.4 Let Ŵ be a discrete group of exponential growth with the Property of
Rapid Decay and let φ be a positive definite function on Ŵ taking only positive values.
�en, φk extends to a bounded normal functional on L(Ŵ) only if

lim inf
i

φ+(i)
i
⩾ ln(ω(S))

2k
.

Proof �e Property of Rapid Decay provides a polynomial P such that for any
element x ∈ S(i), ∥x∥∞ ⩽ P(i)∥x∥2. �us, since ∥χ i∥2 =√s i ,

∣φk(χ i)∣∥χ i∥∞ ⩾ 1

P(i) e
ln(s i )

2
−kφ+(i) .

If the le�-hand side is bounded, then there exists C > 0 such that for i large enough
ln(s i)

2
− kφ+i ⩽ C. �en,

k
φ+(i)

i
⩾ ln(s i)

2i
−

C

i
.

and because Ŵ is assumed to have exponential growth, the result follows. ∎

Recall that an amenable group has the Property of Rapid Decay if and only if it
has polynomial growth by [16, Cor 3.1.8].�e previous proposition is therefore useful
only for nonamenable groups.

3.3 Estimates

In view of the results of the previous section, in order to be able to use Lemma 2.1 we
need to make an assumption on the rate of decay of φ. Proposition 3.3 suggests the
condition lim inf i φ+(i)/i > 0 but we will need a stronger one:

Definition 3.2 Let Ŵ be a discrete group and let φ be a positive definite function
on Ŵ. It is said to have exponential decay if there exists α > 0 and a finite symmetric
generating set S such that for all g ∈ Ŵ,
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∣φ(g)∣ ⩽ e−α∣g∣S .
Having exponential decay is independent from the choice of a finite symmetric
generating set S.

Remark 3.5 Onemay expect a bound of the formC0e
−α∣g∣S in the above definition, but

if we moreover assume that φ is strict then this is equivalent to our definition. Indeed,

there exist n0 and α
′ > 0 such that for ∣g∣S > n0, C0e

−α∣g∣S ⩽ e−α′∣g∣S . Moreover, because
φ is strict,

α′′ = inf
g∈B(n0)∖{e}

− ln(∣φ(g)∣)
∣g∣S > 0

and setting α =min(α′ , α′′) yields the result.We are therefore including strictness in the
definition of exponential decay.

By definition, α is less than lim inf i φ−(i)/i so that the latter is the best potential
decay rate, and since it depends on S, we will denote it by α(S). With this in hand,
we can give a general upper bound statement. �e condition for the existence of
an L2-density suggests that the threshold for exponential convergence should be
ln(ω(S))/2α(S). However, because ω(S) is an infimum we cannot use it to bound
the series appearing in Lemma 2.1. We will therefore have to take some room and use
ln(∣S∣ − 1)/2α(S) instead.
Proposition 3.6 Let Ŵ be a discrete group with finite symmetric generating set S and
let φ ∶ Ŵ→ C be a positive definite function with exponential decay. �en, for any c > 0
and k ⩾ ln(∣S∣ − 1)/2α(S) + c,

∥φk
− δe∥ ⩽ e−α(S)c√

2 − 2e−α(S)c
.

Proof Lemma 2.1 yields

∥φk
− δe∥2 ⩽ 1

4
∑
g≠e

∣φ(g)∣2k ⩽ 1

4

+∞

∑
i=1

s i e
−2kα(S)i

⩽
+∞

∑
i=1

∣S∣
4
(∣S∣ − 1)i−1e−2kα(S)i

= ∣S∣
4
e−2kα(S)

1

1 − (∣S∣ − 1)e−2kα(S) .
For k = ln(∣S∣)/2α(S) + c we therefore get

∥φk
− δe∥2 ⩽ 1

4

∣S∣
(∣S∣ − 1)

e−2α(S)c

1 − e−2α(S)c
⩽ e−2α(S)c

2 − 2e−2α(S)c

and the result follows. ∎

To establish a cut-off phenomenon, it is necessary to have both an upper and a
lower bound. Usually, the hard work concerns the upper bound but in our setting we
will see that one needs specific arguments involving the particular form of the positive
definite functions to prove lower bounds. For the moment we will nevertheless give a
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314 A. Freslon

general lower bound which only requires φ to take positive values (which will always
be the case in our examples), but which uses the norm on the von Neumann algebra
L(Ŵ) (see below for comments concerning this).

Recall that any finite generating set S of cardinality n gives rise to a quotient map
p ∶ Fn → Ŵ. Let r i be the number of reduced words in ker(p) of length i. By [5, Prop

1], r1/ii converges (once vanishing terms are removed) to a number γ(S) called the
cogrowth rate of S.

Proposition 3.7 Let Ŵ be a discrete group with a finite generating set S and let φ be a
positive definite function on Ŵ such that φ(g) ⩾ 0 for all g ∈ S. �en, for any c > 0 and
k ⩽ ln(∣S∣ − 1)/2φ+(1) − c such that φk has a bounded extension to L(Ŵ),

∥φk
− δe∥ ⩾ 1 − 4(3 + γ(S)2

∣S∣ ) e−2φ
+(1)c .

Proof It is easy to prove (see for instance [12, Lem 2.6]) that the norm ∥φk
−

δe∥L(Ŵ)∗ is equal to the supremum of ∣φk(p) − δe(p)∣ over all projections p ∈ L(Ŵ).
�us, the lower bound will be obtained by evaluating at a suitably chosen spectral
projection p of χ1. Choosing the projection first requires some estimates.

According to [5,�m 3], ∥χ1∥∞ = γ(S) + (∣S∣ − 1)/γ(S).�is only makes sense for
groups which are not free on S, but the formula can be extended to the latter case by
setting γ(S) =√∣S∣ − 1 instead of 1. Since χ1 is self-adjoint, it follows from this that

varφ(χ1) ⩽ (γ(S) + ∣S∣
γ(S))

2

,

where varφ(χ1) denote the variance of χ1 under φ; that is to say
varφ(χ1) = φ(χ21 ) − φ(χ1)2 .

On the other hand, with our assumption we have the estimate

φ(χ1) = ∑
g∈S

φ(g) ⩾ ∣S∣e−kφ+(1) .
�e lower bound can be obtained from this using the same arguments as in [12, Prop
3.15]. Namely, set η = ∣S∣e−kφ+(1) and let us view χ1 as a classical random variable in
the algebra L∞(Sp(χ1))which it generates inside L(Ŵ). On the one hand, if ∣χ1∣ ⩽ η/2
then ∣χ1 − φ(χ1)∣ ⩾ η/2 and the probability, with respect to φ, of this event can be
bounded by theChebyshev inequality. On the other hand, the probability, with respect
to δe , that ∣χ1∣ ⩽ η/2 is oneminus the probability that ∣χ1∣ > η/2 and the latter can also
be bounded using the Chebyshev inequality. Putting things together yields

∥φ∗k − δe∥ ⩾ 1 − 4

∣S∣2 (γ(S) +
∣S∣
γ(S))

2

e2kφ
+(1)
−

4

∣S∣ e2kφ
+(1)

⩾ 1 − 4⎛⎝
γ(S)√∣S∣ +

√∣S∣
γ(S)

⎞
⎠
2

e−2φ
+(1)c
− 4e−2φ

+(1)c

and the result follows from the fact that γ(S) ⩾√∣S∣ (see [5, �m 1]). ∎
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�at statement has two practical issues. �e first one is that there is no reason in
general that φk will have a bounded extension to L(Ŵ) for such k. At least, Proposition
3.3 ensures that this will work for

c ⩽ ln(∣S∣ − 1)
2 lim inf φ−(i)/i −

ln(ω(S))
2φ+(1) .

However, when considering a sequence of groups, that quantity may go to 0.
�e second issue is that the lower bound involves a term depending on the

size of S. In order to convert this into a cut-off statement, we would need to find
families of groups ŴN with generating sets SN such that we have a uniform bound on
γ(SN)2/∣SN ∣. In a sense, this means that they are close to free groups. Note, however,
that it is shown in [17] that for any ε > 0, groups with a finite generating set S such
that γ(S) ⩽√∣S∣ + ε are generic in the sense of random groups.

Because of these two reasons, we will proceed differently to prove the lower bound
in concrete examples, taking advantage of the peculiarities of the positive definite
functions under consideration.

4 Examples

In this sectionwewill give explicit examples of cut-off phenomena using states coming
from 1-cocycles. An elementary calculation (see for instance [2, Ex C.2.2.ii]) shows

that for any group Ŵ, the map g ↦ e−∥b(g)∥
2

is positive definite as soon as b is a 1-
cocycle in the following sense:

Definition 4.1 Let Ŵ be a discrete group and let π ∶ Ŵ→ B(H) be a unitary repre-
sentation. A 1-cocycle associated to π is a map b ∶ Ŵ→ H such that for any g , h ∈ Ŵ,

b(gh) = π(g)b(h) + b(g).
�e set of 1-cocycles associated to π is a vector space denoted by Z 1(Ŵ, π).

Let us denote by φb the state on C[Ŵ] associated to b, i.e.

φb ∶ g ↦ e−∥b(g)∥
2

.

�e exponential decay property translates in this setting into a growth condition for
b, namely

Definition 4.2 Let Ŵ be a discrete group with a finite symmetric generating set S. A
cocycle b ∶ Ŵ→ H is said to have radical growth if there exists α > 0 such that for all g
in Ŵ,

∥b(g)∥ ⩾ α√∣g∣S .
Having radical growth is a property which does not depend on the choice of a
generating set S.

Remark 4.1 �e existence of a cocycle with radical growth implies that Ŵ has the
Haagerup property and that the equivariant Hilbert space compression of Ŵ is at least
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1/2. Moreover, if it is strictly greater than 1/2, then by [14, �m 5.3] the group Ŵ is
amenable. �is means that in order to get nonamenable examples, we will need groups
with equivariant Hilbert space compression exactly 1/2.

4.1 Cut-off

We can now give some examples of positive definite functions yielding a sharp cut-
off. For this, we need a family (ŴN)N∈N of discrete groups together with 1-cocycles bN
and symmetric generating sets SN such that

● bN has radical growth;
● φ+bN (1) = α(SN);
● γ(SN)/√∣SN ∣ is uniformly bounded.

�e simplest instance when the first two conditions are met is when ∥b(g)∥2 = ∣g∣S ,
which is possible if and only if (see for instance [2, �m C.2.3]) the word length ∣ ⋅ ∣S
is conditionally negative definite [2, Sec 2.10]. But even in that case, there is no reason
why the third condition should be met. Even if it were, Proposition 3.7 may prove
useless, since for instance if follows from [1, Prop 3.8] that φs

bN
cannot be bounded

on L(Ŵ) for s arbitrarily close to 0, so that the values of c for which the lower bound
applies are bounded below.

It turns out, however, that we can go round this problem. Note that if quantities are
to depend on the size of SN , then we should assume that the generating set is minimal
to get optimal constants.

�eorem 4.2 Let (ŴN , SN) be a family of discrete groups with minimal symmetric
generating sets SN such that the corresponding length function is conditionally negative
definite and let bN be a cocycle such that ∥bN(⋅)∥2 = ∣ ⋅ ∣SN .�en, the sequence (φk

bN
)k∈N

has a cut-off at ln(∣SN ∣ − 1)/2 steps.
Proof �e upper bound comes directly from Proposition 3.6 with α(S) = 1. As for
the lower bound, we will prove that for any c > 0 and k ⩽ ln(∣SN ∣ − 1)/2 − c,

∥φk
bN
− δe∥ ⩾ 1 − 8e−2c .

We will proceed in a similar way as in Proposition 3.7, using χ1, except that we cannot
reason in L(Ŵ). Let us start by computing the expectation

φk
bN
(χ1) = ∣SN ∣e−k .

For the variance, note that because a product of two elements of SN has length two
unless the elements are inverse to one another (by minimality of SN ), we have

χ21 = ∣SN ∣e + (∣SN ∣2 − ∣SN ∣)χ2 .
�us,

varφk
bN

(χ1) ⩽ ∣SN ∣ + (∣SN ∣2 − ∣SN ∣)e−2k − ∣SN ∣2e−2k
= ∣SN ∣(1 − e−2k).
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Let us now consider the C∗-algebra generated by χ1 in C∗(ŴN). It is commutative
because χ1 is self-adjoint, hence by Gelfand duality it is isomorphic to C(K), where
the compact space K ⊂ R is the spectrum of χ1. Let us set η = ∣SN ∣e−k and consider
the spectral projection of χ1 in L∞(K) corresponding to the interval [0, η/2]. Borel
functional calculus asserts that there exists a Borel subset B ⊂ K such that p is the
indicator function of B. Moreover, φk and δe both induce by the Riesz representation
theorem Borel probability measures, say µ and ν, on K whose total variation distance
equals their distance as states on C(K). �e Chebyshev inequality applied to µ yields

µ(B) = P (∣χ1∣ ⩽ η/2)
⩽ P (∣Eµ(χ1) − χ1∣ ⩾ η/2)
⩽ 4 varφ(χ1)

η2

= 4 ∣SN ∣(1 − e−2k)∣SN ∣2e−2k
⩽ 4e−2c .

Furthermore, using δe(χ1) = 0 and δe(χ21 ) = ∣SN ∣, we have
ν(B) = 1 − ν(K ∖ B)

⩾ 1 − 4 ∣SN ∣
η2

⩾ 1 − 4e−2c .
We can now conclude that

∥φk
− δe∥ ⩾ ∥φk

∣C(K) − δe∣C(K)∥ = ∥µ − ν∥TV ⩾ ν(B) − µ(B) ⩾ 1 − 8e−2c . ∎

Remark 4.3 �e argument above is in fact more general: for any group Ŵ with a
minimal symmetric generating set S and a positive definite function φ, if φ−(2) ⩾ 2φ+(1)
then for any c > 0 and k ⩽ ln(∣S∣ − 1)/2φ+(1) − c,

∥φk
− h∥ ⩾ 1 − 8e−2φ+(1)c .

Here are two families of examples one can build from this:

● For N ∈ N, let ŴN = FN be the free group on N generators and take for SN the
canonical generators and their inverses. By [15, Lem 1.2], the associatedword length
is conditionally negative definite so that for the corresponding state, �eorem 4.2
yields a cut-off at ln (√2N − 1) steps. Note that in that case, the cut-off parameter
is indeed equal to the exponential growth rate ω(SN). Moreover, free groups have
the Property of Rapid Decay by [15, Lem 1.4] so that by Proposition 3.4, the cut-off
happens exactly when the state extends to a bounded normal functional on the von
Neumann algebra.
● Let SN be a set with N elements and let WN be a Coxeter matrix of size N × N . If
the corresponding Coxeter group ŴN is infinite, it follows from [3] that the word
length associated to SN is conditionally negative definite. �en, by �eorem 4.2
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there is a cut-off at ln(√N − 1) steps. Moreover, φ⌊ln(∣S∣−1)−c⌋bN
extends to L(ŴN) at

least for c < ln((∣S∣ − 1)/ω(S))/2. Note also that infinite Coxeter groups satisfy the
Property of Rapid Decay by [11, Cor 1].

4.2 Free products

�e examples of FN = Z∗N and Z
∗N
2 (this is a Coxeter group) suggest considering

more general free products to build sequences of groups exhibiting a cut-off phe-
nomenon. Indeed, there is a natural way to build a free product of two positive definite
functions and the growth of the result is easily controlled. Given positive definite
functions φ1 and φ2 on groups Λ1 and Λ2, any element g ∈ Λ1 ∗ Λ2 can be uniquely
written as an alternating product g = h1k1h2k2⋯hnkn with h i ∈ Λ1 and k i ∈ Λ2 not
being the neutral elements. �en, setting

φ(g) = φ1(h1)φ2(k1)⋯φ1(hn)φ2(kn)
defines a positive definite function (see for instance [4, Prop 6.2.3]). We will denote
that function by φ1 ∗ φ2. Let us gather all the sufficient conditions to produce a cut-off
phenomenon in this context into a single proposition:

Proposition 4.4 Let (Λ i , Ti ,ψ i)i∈N be a sequence of discrete groups with a finite
symmetric generating set Ti and a positive definite function ψ i with exponential decay.
Assume, moreover, that there exist constants α, β, δ > 0 such that
● �e decay exponent of ψ i with respect to Ti is bounded below by α for all i;

● varψ i
(χ(i)1 ) ⩽ δ∣Ti ∣ for all i, where χ(i)1 is the sum of the generators of Λ i ;

● β ⩾ ψ+i (1) for all i.
�en, setting ŴN = Λ1 ∗⋯ ∗ ΛN , SN = T1 ⊔⋯⊔ TN and φN = ψ1 ∗⋯ ∗ ψN , the

sequence (φk
N)k∈N has a pre-cut-off in the window [ln(√∣SN ∣)/β, [ln(√∣SN ∣)/α].

Proof Consider an element g = g1⋯gn ∈ ŴN where g j ∈ Λ i j and i j ≠ i j+1. By con-
struction,

φN(g) = n

∏
j=1

ψ i j(g j) ⩽ n

∏
j=1

e
−α i j

∣g j ∣Si j ⩽ exp⎛⎝−α
n

∑
j=1

∣g j ∣S i j⎞⎠ = e−α∣g∣

so that we have a uniform control on the exponential growth rate. Moreover, because
elements of length one are exactly generators of the initial groups,

φ+N(1) = sup
1⩽i⩽N

ψ+i (1) ⩽ β.
To be able to conclude we now need a lower bound which can be obtained by a

free probability argument. More precisely, we can consider the elements χ
(i)
1

as noncommutative random variables in the noncommutative probability space(C∗(ŴN), φN). Because φN is a free product state, the aforementioned variables
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are freely independent with respect to it. �us, the variance of their sum is the sum
of their variances and

varφN
(χ1) = N

∑
i=1

varψ i
(χ(i)1 ) ⩽ δ N

∑
i=1

∣Ti ∣ = δ∣SN ∣.
It now follows, as in the proof of �eorem 4.2, that for k ⩽ ln(∣SN ∣ − 1)/2β − c,

∥φk
N − δe∥ ⩾ 1 − 4(δ + 1)e−2βc . ∎

�e simplest instance where the hypothesis of this proposition is satisfied is when
the sequence is constant, i.e. we consider φ∗N on Ŵ

∗N with generating set S⊔N . All
we need is then a positive definite function with exponential decay, or a cocycle with
radical growth. Examples of such cocycles will be given in the next subsection.

4.3 Geometric cocycles

We will now give examples of 1-cocycles with radical growth on discrete groups
obtained by geometric means. To this purpose, let us say that a metric space (X , d)
has an equivariant Hilbert embedding with radical growth if there exists

● A Hilbert space H together with an affine isometric action of the isometry group
of X;
● An equivariant map f ∶ X → H such that

C−1
√
d(x , y) − C′ ⩽ ∥ f (x) − f (y)∥ ⩽ Cd(x , y) + C′

for some constants C > 0 and C′ ⩾ 0.
Recall that a group Ŵ is said to act geometrically on a metric space (X , d) if it acts
properly and cocompactly by isometries. Here is a well-known recipe to produce 1-
cocycles with radical growth:

Proposition 4.5 Let Ŵ be a finitely generated discrete torsion-free group acting geo-
metrically on a geodesic metric space (X , d) having an equivariant Hilbert embedding
with radical growth. �en, Ŵ has a 1-cocycle with radical growth.

Proof By the Švarc–Milnor Lemma (see for instance [6, �m 23]), Ŵ is quasi-
isometric to (X , d) so that composing with the equivariant embedding of X we get a
1-cocycle b on Ŵ satisfying

∥b(g)∥2 ⩾ C0∣g∣S − C1(4.1)

for all g ∈ Ŵ, with constants C0 > 0 and C1 ⩾ 0. Set φb(g) = e−∥b(g)∥2 and
Λ = {g ∈ Ŵ ∣ b(g) = 0} = {g ∈ Ŵ ∣ ∣φb(g)∣ = 1}.

It follows from the proof of Proposition 3.1 that Λ is a subgroup. Moreover, because
of (4.1), Λ is finite, hence by torsion-freeness it is the trivial subgroup. �us, we can
conclude by Remark 3.5 that φb is strict, i.e.b has radical growth. ∎

�ere are many examples of groups and metric spaces satisfying the hypothesis
above. �is includes trees (see [2, Sec 2.3]) or even wall spaces (see for instance the
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comments a�er [18, Def 5.1]), and real or complex hyperbolic spacesHn
R
,Hn

C
(see [2,

Sec 2.6]). One can also consider product actions on direct products of those spaces. As
an illustration, it is shown in [8, Subsec 6.4] that Baumslag–Solitar groups BS(p, q)
with p, q > 1 act geometrically on the product of the corresponding Bass–Serre
tree and the real hyperbolic plane. Moreover, we have the following “permanence
properties” for the existence of a 1-cocycle with radical growth:

● If Ŵ1 and Ŵ2 have a 1-cocycle with radical growth and Λ is a common finite
subgroup, then the proof of [9, �m 4.7] shows that the amalgamated free product
Ŵ1 ∗Λ Ŵ2 has a 1-cocycle with radical growth;
● IfŴ is a finitely generated group together with a subgroup Λ and amonomorphism
θ ∶ Λ → Ŵ such that Λ ∪ θ(Λ) generates a finite subgroup of Ŵ, then any 1-cocycle
with radical growth on Ŵ yields a 1-cocycle with radical growth on HNN(Ŵ, Λ, θ)
by the proof of [9, �m 4.9].

�is gives a wealth of examples, including for instance any group built from
Baumslag–Solitar groups, free groups, surface groups and infinite Coxeter groups
that one can iterate.

5 Absence of Cut-Off

In this final section we will give a family of examples where there is no cut-off
phenomenon, in the sense that for N large enough, exponential convergence occurs
from the first step on. �is involves states not coming from cocycles as before. �e
general form of a state φ on a C∗-algebra A is given by the GNS construction (see
[2, �m C.1.4]), which yields a Hilbert space H, a unitary representation π ∶ A→
B(H) and a unit vector ξ ∈ H such that φ(x) = ⟨π(x)ξ, ξ⟩. If A = C∗(Ŵ), unitary
representations are in one-to-one correspondence with unitary representations of Ŵ.
From now on we will denote by φπ ,ξ the state φπ ,ξ ∶ g ↦ ⟨π(g)ξ, ξ⟩.

It is difficult to give a general criterion to know whether φπ ,ξ will have exponential
decay since this heavily depends on the representation π and therefore on the struc-
ture of the groupŴ.�e simplest case is certainly when π is the regular representation
on ℓ

2(Ŵ). In that case, we write φξ for φreg,ξ . As a case study, we will focus on free
groups and restrict our attention to a particular class of vectors:

Definition 5.1 A vector ξ ∈ ℓ2(Ŵ) is said to be radial if it is of the form

ξ =
+∞

∑
i=0

λ i χ i .

We will prove that such a state never exhibits a cut-off phenomenon. For conve-
nience, let us set η i = (∣S∣ − 1)i/2λ i , so that the assumption that ξ ∈ ℓ2(Ŵ) is equivalent
to (η i)i∈N ∈ ℓ2(N). Note, moreover, that ∥(η i)i∈N∥2 ⩽ ∥ξ∥2 = 1.
�eorem 5.1 Let ŴN be the free group on N generators with its canonical generating
set SN . If ξ is a radial vector, then the state φξ has exponential decay for N ⩾ 3 but the
sequence (φk

ξ)k∈N has no cut-off.
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Proof We have

φξ(g) = ⟨π(g)ξ, ξ⟩ = +∞∑
i , j=0

λ iλ j⟨g .χ i , χ j⟩ = +∞∑
i , j=0

λ iλ j ∣ (g .S(i)) ∩ S( j)∣.
�e set appearing above is empty unless j ⩽ i + ∣g∣. Because we are considering free
groups, an element h ∈ S(i) such that gh ∈ S( j) must be of the form g−1p ⋯g

−1
p−t+1w

where t = (∣g∣ + i − j)/2, g = g1⋯gp andw ∈ S(i − t) does not start with g−1p−t+1.�us,

there are exactly (∣SN ∣ − 1)i−t such elements and

φξ(g) = +∞∑
i=0

min(i ,∣g∣)

∑
t=0

λ iλ i+∣g∣−2t(∣SN ∣ − 1)i−t

= (∣SN ∣ − 1)−∣g∣/2 +∞∑
i=0

η i

⎛
⎝
min(i ,∣g∣)

∑
t=0

η i+∣g∣−2t

⎞
⎠ .

For t ∈ Z, let Tt be the shi� operator on ℓ
2(N) sending δn to δn−t if t ⩽ n and 0

otherwise. �en,

⎛
⎝
min(i ,∣g∣)

∑
t=0

η i+∣g∣−2t

⎞
⎠
i∈N

=
∣g∣

∑
t=0

T∣g∣−2t ((η i)i∈N)
and since the shi�s have norm one, this vector has ℓ

2-norm at most (∣g∣ +
1)∥(η i)i∈N∥2 ⩽ ∣g∣ + 1 so that by the Cauchy–Schwarz inequality,

∣φξ(g)∣ ⩽ (∣g∣ + 1)(∣S∣ − 1)−∣g∣/2 ⩽ e(1−ln(∣SN ∣−1))∣g∣/2 .
It follows that for N ⩾ 3, the state φξ has exponential decay with rate (ln(∣SN ∣ − 1) −
1)/2. But then,

ln(∣SN ∣ − 1)
2α

= ln(2N − 1)
ln(2N − 1) − 1 → 1

so that for N large enough the convergence is exponential from the first step on and
there is no cut-off phenomenon. ∎

�e functions in the statement are precisely those which are radial and associated
with the regular representation. We cannot exclude that for some representation π
which is not contained in the regular one, and a vector η, there exists k such that
φk
π ,η = φξ , in which case φπ ,η would exhibit a cut-off phenomenon. In that case our

result shows that exponential convergence occurs right when the function becomes
associated with the regular representation.
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