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Shear flow past two-dimensional droplets
pinned or moving on an adhering channel
wall at moderate Reynolds numbers:

a numerical study

By PETER D. M. SPELT
Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK

(Received 4 August 2005 and in revised form 25 January 2006)

Numerical simulations are presented of shear flow past two-dimensional droplets
adhering to a wall, at moderate Reynolds numbers. The results were obtained using
a level-set method to track the interface, with measures to eliminate any errors in the
conservation of mass of droplets. First, the case of droplets whose contact lines are
pinned is considered. Data are presented for the critical value of the dimensionless
shear rate (Weber number, We), beyond which no steady state is found, as a function
of Reynolds number, Re. We and Re are based on the initial height of the droplet and
shear rate; the range of Reynolds numbers simulated is Re � 25. It is shown that,
as Re is increased, the critical value Wec changes from Wec ∝ Re to Wec ≈ const.,
and that the deformation of droplets at We just above Wec changes fundamentally
from a gradual to a sudden dislodgement. In the second part of the paper, drops
are considered whose contact lines are allowed to move. The contact-line singularity
is removed by using a Navier-slip boundary condition. It is shown that macroscale
contact angles can be defined that are primarily functions of the capillary number
based on the contact-line speed, instead of the value of We of the shear flow. It is
shown that a Cox–Voinov-type expression can be used to describe the motion of the
downstream contact line. A qualitatively different relation is tested for the motion
of the upstream contact line. In a third part of this paper, results are presented
for droplets moving on a wall with position-dependent sliplength or contact-angle
hysteresis window, in an effort to stabilize or destabilize the drop.

1. Introduction
Shear flow past droplets or bubbles adhering to a solid surface is relevant in a

range of applications. These include oil or grease removal in detergency (Chatterjee
2001), the entrainment of leukaemic cells from a blood vessel wall by blood flow
(Cao et al. 1998), bubble detachment from a heated pipe wall in boilers (Hewitt 1978;
Duhar & Colin 2004), and, for the curious train passenger, the motion of rain drops
on window panes (Minnaert 1974). A study in shear flow past droplets adhering to
a wall also provides a first step towards understanding membrane emulsification. In
such emulsification processes, liquid is pumped through a membrane into a crossflow
of another liquid, which shears off droplets to form an emulsion (see Charcosset,
Limayern & Fessi 2004).

Previous work on this problem has been primarily on creeping flows past pinned
drops and bubbles. Wakiya (1975) provides an analytical solution of shear flow past
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440 P. D. M. Spelt

a solid cylinder on a wall, elucidating the occurrence of Moffatt eddies in corners.
This may serve in the present context as a limiting case, for highly viscous drops.
Li & Pozrikidis (1996), Yon & Pozrikidis (1999) and Dimitrakopoulos & Higdon
(1997, 1998, 1999, 2001) studied in detail the steady-state creeping flow past a droplet
or bubble whose contact line is pinned. These studies focused primarily on the
determination of critical values of parameters for given values of the contact angles,
beyond which no steady state can be found. The relevant parameters for creeping
flows are a capillary number, the window of contact angles within which the contact
line does not move owing to hysteresis (Dussan V. 1979), and the viscosity ratio of
the two fluids.

Present understanding of these flows is therefore limited to steady-state creeping
flows past pinned droplets, with some exceptions discussed below. In this paper,
the effects of inertia will be studied. In order to provide the strong basis needed to
understand the corresponding three-dimensional flows, we study here in detail the two-
dimensional problem. One of the main features in creeping flow past three-dimensional
pinned droplets is that the drops exhibit strong fore-and-aft asymmetry. The contact
angle on either side is approximately constant, as shown by Dimitrakopoulos &
Higdon (1998). Therefore, a study of the two-dimensional problem is expected to
reveal the most significant inertial effects on (for example) the stability of droplets.
Some of the trends observed for the three-dimensional creeping-flow problem (e.g.
the role of the viscosity ratio) were explained by Dimitrakopoulos & Higdon (1998)
using arguments similar to those in their study of the two-dimensional problem.
Furthermore, as explained in some detail by Dimitrakopoulos & Higdon (1999), it
is expected that droplets can be made to spread in the cross-flow direction (such
that the two-dimensional system is approached) by choosing the appropriate initial
configuration. Such droplets are more stable than others, as an increased width of
the droplet would result in a larger resistance to the interfacial stresses acting on the
drop. A secondary motivation for the present two-dimensional study is that, even
for the two-dimensional creeping-flow problem, the velocity of the contact lines has
not yet been related to a macroscopic contact angle, with the exception of work by
Hodges & Jensen (2002). The latter authors used lubrication theory to determine the
relation between contact-line speed, macroscopic contact angles and the applied shear
rate for a two-dimensional cell rolling over a substrate.

A first aim of the present paper is to investigate the role of inertia, in particular,
on the conditions beyond which no steady state is observed. Feng & Basaran (1994)
studied steady-state shear flow with inertia past a pinned (two-dimensional) bubble,
showing that the critical shear rate beyond which no steady solution is found and flow
fields are determined primarily by a Weber number, the results being not sensitive
to the Reynolds number. It is difficult to generalize results for bubbles to droplets,
however. The deformation of a bubble is due to normal stresses, because of the zero
tangential stress at the interface, whereas droplet deformation results from tangential
stress components as well. Dimitrakopoulos & Higdon (1997) used lubrication theory
to show that the yield criteria are very different for thin drops and bubbles. A study
of shear flow with inertia past a pinned droplet will be presented in § 3. It is valuable
in some applications to know how droplets deform if no steady solution exists (e.g. in
emulsification). Therefore, § 3 also includes results for cases in which no steady state
occurs.

In the second part of this paper, cases are studied in which droplets start to slide
along the wall. Whether a simple approximate description can be obtained of the mo-
tion of the contact lines will be investigated. Early work on this problem was reported
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Figure 1. Sketch of the problem. Spatial coordinates and lengths are made dimensionless
with the channel height, velocity components by the velocity of the upper wall.

by Dussan V. (1987), who used lubrication theory to derive a yield criterion for flat
three-dimensional droplets. Following the work cited above on pinned drops that are
not thin, Schleizer & Bonnecaze (1999) presented boundary element simulations for
two-dimensional droplets in which the contact lines were allowed to move. Those au-
thors used a constant contact angle in their simulations of sliding drops. They conduc-
ted some preliminary experiments, which appeared to show that the contact angle did
not change significantly during the sliding motion. In order to alleviate the stress sin-
gularity at moving contact lines (Huh & Scriven 1971), Schleizer & Bonnecaze (1999)
used an approximate integrated form of the Navier slip condition (see also figure 1)

u1 = λ
∂u1

∂x2

, (1.1)

where u1 is the dimensionless fluid velocity component along the wall, x2 is the
dimensionless coordinate normal to the wall, and λ is the dimensionless sliplength.
Throughout this paper, spatial coordinates and other length scales have been made di-
mensionless with the height of the channel, and velocity components with the velocity
of the upper channel wall shown in figure 1). Simulating flows for a small value of λ re-
quires excessive computational efforts. Schleizer & Bonnecaze (1999) presented results
for a fixed (inferred) slip length, of λ≈ 0.005. (In the present notation, the dimension-
less channel height is unity, which introduces a factor of 2 when comparing results with
theirs, also in the capillary number.) They showed that allowing the contact line to
move leads to a significant reduction in the critical values of dimensionless parameters
for creeping flows. They argued that this is a consequence of the reduced relative
velocity between the two fluids, the time-independence of the contact angles, and an
observed reduction in height at relatively low contact angle values. However, no
relation between a macroscopic and microscopic contact angle was proposed by these
authors.

In the simulations of flows with moving contact lines reported here, the slip condi-
tion (1.1) is implemented directly; and this allows us to assess directly the effect of
surface properties. Also, inertial effects are accounted for. There are several other
ways of eliminating the stress singularity. These include: (a) assuming a diffuse
instead of a sharp interface (resulting in a flux through the interface near the contact
line, representing site changes between the two fluids (Jacqmin 2000; Briant &
Yeomans 2004)); (b) condensation or evaporation (Briant, Wagner & Yeomans 2004)
(when appropriate); (c) the introduction of a precursor layer (such that the entire
wall is wetted, e.g. de Gennes 1985); and (d) accounting for surface tension relaxation
(Shikhmurzaev 1997). A slip condition is a pragmatic way to alleviate the stress sin-
gularity for non-smooth walls, which are relevant in practical applications. There
appears to be little rigorous justification for clean smooth walls, however. A thermo-
dynamic justification for a diffuse interface (which does not require slip) is available,
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but the underlying assumption that interfaces are sufficiently thick so that composition
gradients through them can be differentiated, is highly questionable (Jacqmin 2000).
Nevertheless, evidence indicates that both schemes give virtually identical quantitative
results for the flow outside the very small contact-line region (Jacqmin 2004). A slip
condition is still widely used (e.g. Hocking & Davis 2002).

In order to account for inertial effects whilst attempting to simulate moving contact
lines accurately, a numerical technique recently developed by the author (Spelt 2005) is
used here. This is a level-set approach for the simulation of flows at moderate Reynolds
numbers with moving contact lines. Evidence of convergence, and a comparison with
well-established relations for spreading droplets have been published in the previous
work (Spelt 2005). The problem formulation and a summary of the numerical method
are given in § 2. Evidence that the present method conserves the mass of an entire
droplet is presented in the Appendix.

In § 4, the range of simulations presented by Schleizer & Bonnecaze (1999) for
moving drops in creeping flow is extended by including inertial effects. Following
Schleizer & Bonnecaze (1999), the contact angles are kept constant in the simulations.
Since the contact-line speed decreases when λ is decreased, a specific point of interest
is the sensitivity of yield criteria to the sliplength. It is shown that, as in droplet
spreading, macroscale angles can be defined that are functions of the instantaneous
value of Cacl = µUcl/σ only (for a given contact angle, and the viscosity and density
ratios set to unity), as in Cox–Voinov-type relations (Cox 1986). Here, µ is the fluid
viscosity, σ the coefficient of surface tension, and Ucl is the contact-line speed. These
macroscale contact angles appear to be independent of Re and We for the cases
simulated. For example, for the downstream contact line, it is shown that we can
write

θm = F (Cacl, θ2, λ, β, ξ ), (1.2)

where θm is the maximum angle between the interface (in the neighbourhood of the
contact line) and the x1-axis; β and ξ are the viscosity and density ratio (see figure 1).
For the upstream contact line, although a different macroscale angle must be used, a
similar relation is obtained. Since the value of λ in practical applications is extremely
small (well beyond the capabilities of most numerical methods), such relations can be
used to simulate the macroscale only (Spelt 2005). This is discussed further in the § 6.

The final part of this paper investigates the sensitivity of the results to the surface
properties, and examines whether crawling drops can be stabilized or destabilized by
exposing them to a locally altered surface. This problem is also of interest for applica-
tions in which the wall does not have perfectly homogeneous wetting properties. In
these simulations, either the sliplength is different in two parts of the wall or the win-
dow of contact-angle hysteresis. The resulting unsteady behaviour is also considered
as a test for relations such as (1.2).

2. Formulation and method
2.1. Problem formulation

The flow sketched in figure 1 starts from rest at time t = 0, when the upper plate is
set in motion impulsively. Spatial variables are made dimensionless with the channel
height, velocities with the velocity of the top wall V , and time with the ratio of channel
height H and top wall velocity. The flow is governed by the Navier–Stokes equations,
subject to the following boundary conditions: at the entrance, the unidirectional
start-up shear flow is imposed (Leal 1992, p. 102); at the exit, ∂u1/∂x1 = 0 and u2 = 0,
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where uj denotes the velocity component in the xj -direction (see figure 1). At the top
wall, (u1, u2) = (1, 0). The boundary condition at x2 = 0 is also a no-slip for pinned
drops and bubbles; for moving contact lines, u2(x2 = 0) = 0 and (1.1) at x2 = 0, such
that the stress singularity at moving contact lines is alleviated. We note here that (1.1)
is imposed along the entire wall. If λ is taken to be sufficiently small, slip will only be
significant in regions of large wall shear stress (i.e. the moving contact lines).

The slip condition (1.1) must be supplemented by a contact-line law (Davis 2000).
We use here the approximate law

θi = θA if Ucl
i > 0,

θi = θR if Ucl
i < 0,

θR � θi � θA if Ucl
i = 0,

⎫⎬
⎭ (2.1)

where θi , θA and θR are the dynamic, advancing and receding contact angle, respec-
tively, i = (1, 2) and Ucl

i is the contact-line velocity of contact line i (which is positive
here for a spreading droplet). Typical experimentally observed trends in relations
between contact angle and contact-line speed are discussed by Dussan V. (1979).

2.2. Dimensionless parameters

The following independent dimensionless numbers will be used, adopting the notation
of figure 1. The Reynolds and Weber numbers of the external fluid are Re= ρa2γ /µ

and We= ρa3γ 2/σ , where γ = V/H is the shear rate and a is the initial drop
radius. The capillary number is Ca = µaγ/σ = We/Re. The viscosity and density
ratio are denoted by β and ξ , respectively; the dimensional values θA,R will be used.
Unless indicated otherwise, ξ =1. To keep the number of dimensionless parameters
manageable, gravitational effects are not taken into account in this paper. The initial
shape of the droplet is circular. The geometry of the problem involves the aspect ratio
of the channel, the initial contact angle values, the dimensionless cross-sectional area
of the drop or bubble (denoted by A), and the distance between the entrance and the
droplet centre. In most calculations for pinned drops, the channel aspect ratio is 4,
unless indicated otherwise. The distance between the droplet centre to the entrance is
1.4 and 0.7 in these cases, respectively.

2.3. Numerical method and comparison with previous work

The level-set approach of Spelt (2005) is used here, as an extension of the single-
grid two-dimensional version of the method of Sussman et al. (1999), to account for
moving contact lines. A finite-difference method is used, with a partially staggered
grid: velocity components are defined at cell centres, the pressure at cell vertices.
The equations of motion for each fluid are combined into one set of continuity and
momentum equations, with variable density and viscosity and a momentum source
term due to surface tension. These equations are solved numerically using a projection
method. The interface is tracked through the so-called level-set function φ(x, t), which
is defined as a signed distance function (at cell centres), such that |φ(x, t)| is the
distance of x at time t from the nearest interface. The sign is different on either side
of the interface, and the interface location corresponds to φ = 0. Because the interface
is advected by the fluid, φ is determined from the solution of an advection equation.
The advection equation only holds at φ = 0, however, and, after each time step a
‘redistance’ step is performed, to ensure that φ at points away from the interface
is again approximately the signed distance function. The local density and viscosity
values follow directly from φ, as does the curvature (which occurs in the momentum
source term arising from surface tension forces). Details of the method have been
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Figure 2. Comparison with creeping-flow results of Schleizer & Bonnecaze (1999) (filled
symbols) for critical capillary number. Open symbols represent present results. �, β = 1,
A =0.03125; �, β = 8, A = 0.125.

published by Sussman et al. (1999). The derivation of the stress term and the related
momentum source due to surface tension has been presented by Chang et al. (1996).

Tests showed that the method of Sussman et al. (1999) results in a significant
drop size reduction during simulations. In the Appendix, we verify that a recent
modification of the redistance step algorithm (Russo & Smereka 2000; Spelt 2005)
eliminates this problem for a case representative for the fluid flows considered in this
paper, without affecting the dynamics of the simulations significantly.

The position of contact lines for pinned drops, and the contact-line law (2.1) for
moving drops are enforced by prescribing the value of φ at ghostcells. The contact
lines could be pinned throughout a simulation by prescribing zero contact-line speed,
with θR = 0 and θA =180◦. The numerical procedure for the prescription of φ at
ghostcells is given in detail in Spelt (2005).

Results of various test cases using the code were presented by Spelt (2005), including
a comparison against lubrication theory for spreading of flat droplets. The lubrication
theory results in a matching condition, which relates a macroscopic contact angle to
the microscopic contact angle. The macroscopic angle was approximated by the
maximum value of the angle that the interface makes with the horizontal. This
angle was plotted as a function of the capillary number based on the contact-line
speed. It was shown that the result approaches that of the lubrication theory at
low-capillary-number values, as the numerical grid is refined. A reasonably accurate
result was obtained when the grid spacing is approximately equal to the slip length.
It is also clear from the results presented by Spelt (2005) that a coarser mesh leads
to an overprediction of the contact-line speed. This is consistent with the notion that
discretization errors lead to some numerical slip. At several key points in § 4, results
are shown for two different values of the grid spacing.

Results were also compared with those of Schleizer & Bonnecaze (1999) for the
present problem in the creeping-flow limit (a comparison was made of the steady-state
shape of the drops). To supplement these data, we compare in figure 2 the critical
value of Ca beyond which no steady state is found with the corresponding result
of Schleizer & Bonnecaze (1999), for pinned drops. As Re is decreased, the BEM
results for Re → 0 are approached. The equations of motion become very stiff in
the limit Re → 0, explaining the absence of results for very low values of Re in this
figure. At the lowest values of Re simulated, it was found that a steady state can be
reached even for a very strongly deformed droplet. Although large deformations can
be simulated with the present method, such a steady state is achieved only after a
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Shear flow past two-dimensional droplets 445

very long integration time, and a minimum value of Re = 0.5 was typically used in
the simulations reported here.

In this work, the jump in viscosity across the interface is treated numerically
as in Chang et al. (1996) and Sussman et al. (1999): the local viscosity value is
µ(H (φ) + β(1 − H (φ)), where H (φ) is a smoothed step function. The smoothing of
the step function occurs over a distance that is proportional to the grid spacing,
such that the real step function is approached when a fine numerical grid is used.
The work of Magnaudet, Bonometti & Benkenida (2006) indicates that the use of
such conventional smoothing of the viscosity jump across the interface may lead to
significant errors for simulations of flows at very small or large values of β . We can
infer from the results in figure 2 for β =8 that the range of values of β studied here
(0.1 � β � 10) is tolerable. An accurate comparison with the simulations of Feng &
Basaran (1994) would have been desirable, because it would test the accuracy of the
predicted inertial effects. However, this would require an approach to the limit β =0
(and ξ =0), as well as a very small value of A, and has therefore not been pursued. The
density is obtained from the level-set function, such that Dρ/Dt =(dρ/dφ)Dφ/Dt . If
no redistance step is performed in the level-set method, Dφ/Dt = 0. The redistance
step results in Dφ/Dt �=0 for points away from the interface (at the interface itself,
the redistance step has no effect). This will result in finite compressibility, but only
in the narrow region around the interface (1.5 times the grid spacing on either side
of the interface). Any effect of compressibility should vanish as the grid spacing is
decreased. Results of different mesh sizes will be shown to indicate the magnitude of
discretization errors involved.

The numerical method was used to integrate the equations of motion starting from
rest. A square mesh is used, and the channel height was divided into 2N grid cells.
Where applicable, the value of N used in the simulations is stated in the figure
captions. The upper wall was set in motion impulsively at t = 0 (figure 1). The critical
value of Wec (or Cac) was obtained by increasing We until no steady solution was
found. A case was declared steady when the drop perimeter had changed less than
1% over a time interval of 0.2T , but such that at least t = T had elapsed, where
T =max{H 2ρ/µ, H 2ρξ/(βµ)}. If a case was found not to be steady after t = 2T it
was declared unsteady. In certain cases (especially those for large β shown in figure 2),
a larger integration time was required.

3. Results for pinned contact lines
A typical flow pattern for a pinned-contact-line case in which a steady state is

reached is shown in figure 3 for Re =10. This is for viscosity- and density-matched
fluids. A stationary wake has been formed in this case. Because the fluid in the wake
rotates in the same sense as the vortex initiated inside the drop, it is separated from
the droplet. A streamline very close to the drop surface is seen to make a U-turn
between drop and wake. The wake is very weak (the streamfunction is less than
10−4 for the case shown), and was found to be absent for relatively large drops as
well as for low values of Re. It should be noted that the streamfunction shown in
figure 3 was obtained from the velocity field by solving ∇2ψ = −ω, by using a finite-
difference approximation for the Laplacian and the vorticity ω. Therefore, errors in
the streamfunction contours of figure 3 are not necessarily representative of those of
the velocity field.

Figure 2 shows the significance of inertial effects for pinned contact lines. Cac

decreases rapidly when Re is increased, and Re will have to be significantly less than
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Figure 3. Streamfunction contours just below Wec for β = 1, A = 0.25, Re= 10, We= 0.58,
N = 6 (detail). Initial contact angles are 90◦. The streamfunction ψ was obtained from the
velocity field using a finite-difference approximation for the vorticity. The spacing between
contours corresponds to a difference in streamfunction value of 0.0125; ψ = ±4 × 10−4 are
also shown. The dashed line (which is virtually unobservable as it coincides with ψ =0)
corresponds to the drop surface, φ =0. A wake is not observed for A = 0.5 at Re= 10.

Re

Wec

5 10 15 200 5 10 15 200

0.2

0.4

0.6

0.8

1.0 (a) (b)

Re

0.1

0.2

0.3

0.4

Figure 4. Critical Weber number as a function of Reynolds number, showing the effect
of channel dimensions (a), viscosity ratio β and density ratio ξ (b). (a) ξ = 1; β = 1, (�);
A =0.03125, N = 6, (�); A = 0.125, N = 5; (�); A =0.5, N = 5 (open symbols) and N = 6
(filled symbols). The dashed lines represent (3.2), using a curve fit for the parameters, as
indicated in the main text. (b) A = 0.5, ξ = 1 (open symbols), ξ =10 (filled symbols), N = 5
unless indicated otherwise. �, β = 1; �, β = 0.1; �, β = 10. The filled diamonds are for N = 6,
ξ = 10, β = 1 (Re � 10 only). Contact angles at t = 0 are 90◦ in all cases.

unity for Cac(Re) to be approximated well by Cac(Re = 0). At values of Re significantly
above unity, it is anticipated that the critical shear rate is a constant. Noting that
Cac =Wec/Re, the expectation is therefore that Cac decreases when Re is increased.
In figure 4(a), Wec is plotted against Re for different values of A. Qualitatively, the
same trend is seen for any value of A. A transition occurs from the creeping-flow
limit (in which Wec ∼ Re) to a moderate-Re regime in which Wec is independent of
Re. The latter regime has been identified previously by Feng & Basaran (1994) for
pinned bubbles.

In figure 4(b), results are presented for different values of the viscosity ratio β and
density ratio ξ . Since the density ratio drops out of the analysis for creeping flows,
We would be expected to be independent of ξ at low Re. In fact, the dependence on ξ

is seen to be minimal at all values of Re simulated. Also, at sufficiently large Re, Wec

appears to be virtually independent of β . At relatively low values of Re, the slope of
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(a) (b)

Figure 5. Different transient behaviour at low and moderate Re. Interface shapes are shown at
constant time intervals for We> Wec: (a) Re =5, We= 0.262; (b) Re =15, We = 0.362. The time
interval between successive frames is 0.4H 2ρ/µ and 0.16H 2ρ/µ, respectively; β = 1, A = 0.5,
N =6. The droplets rupture in the simulations at a time just after the final shape shown.

Wec (i.e. Cac) decreases significantly when λ is increased. This is consistent with the
findings of Dimitrakopoulos & Higdon (1997) for creeping flows (note, however, that
they also showed that Cac is independent of β for thin drops), and Schleizer &
Bonnecaze (1999). The total drag on droplets is due to normal and tangential stresses.
For bubbles (β =0, ξ = 0), the tangential stress component vanishes at the interface,
so it is expected that more viscous drops experience a larger drag owing to the
additional tangential stresses. This can be quantified for the case that Ca 	 1, A 	 1
and the contact angles are 90◦. Integration of the analytical solution derived by
Feng & Basaran (1994) shows that the drag force on such a bubble is 4µγa. The
corresponding drag on a solid no-slip cylindrical projection is 4µγa/(1 − 4/π2)
(Wakiya 1975). The drag force is therefore written as αvµγ a, where αv is expected to
vary gradually between these limiting values.

Dimitrakopoulos & Higdon (1997) used a force balance to estimate Cac for creeping
flows past a pinned slender drop. We shall describe here the dependence of Wec on
Re using similar arguments for flows with inertia. As a simple scaling argument,
the drag force per unit width of the drop consists of a viscous component (αvµaγ ),
resulting from tangential and normal stresses, and a form drag, which is tentatively
written as αF ρa2γ 2. At steady state, this drag, together with the integrated wall shear
stress (written here as αwµaγ ), are balanced by the force applied at the contact line
(∼ σ (cos θ1 − cos θ2)). This results in

cos θ1 − cos θ2 ≈ (αv + αw)We/Re + αF We. (3.1)

Tests indicated that the wall stress contributes only a fraction to the total drag force.
Assuming for the time being that all constants are only weak functions of We and

Re, and that at all values of Re, We= Wec coincides with the point at which θ1 = 0,
θ2 = 180◦ (this is tested below), it follows that

Wec ≈ 2 ((αv + αw)/Re + αF )−1. (3.2)

This approximation is compared with numerical simulations in figure 4(a). Since
αv+αw and αF are unknown, these were obtained from a curve-fit, and the comparison
can only be qualitative. The fitted values are: (αv + αw, αF ) = (24, 2.6), (9.4, 1.3) and
(8.8, 1.1) for A= 0.5, 0.125 and 0.03125, respectively. (The value for αv + αw does
compare reasonably well with the expected range of values for αv cited above.) It is
seen that (3.2) can represent the data well for values of Re � 5; but if the same values
of the fitted coefficients are used at larger Re, Wec is overpredicted. We shall discuss
this discrepancy again later in this section. Despite the discrepancy at higher Re, (3.2)
serves to capture the first deviation from the creeping-flow results for Wec, if Re is
increased from zero. Also, to complete the case made above that αv is an increasing
function of β , we would expect from (3.2) that Wec decreases with increasing β at
low Re, in agreement with figure 4(b).

It was observed that the flow conditions at the onset of entrainment are
fundamentally different at low and moderate values of Re. In figure 5, snapshots
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Re = 5

1025(a) (b)15

Figure 6. Steady-state droplet shape for We just below Wec at β = 1, for various values of
Re (a) and the initial contact angles (b). (a) (Re,We) = (5, 0.254), (10, 0.328), (15, 0.36) and
(25, 0.39); initial contact angles, 90◦; A = 0.5. (b) Initial contact angles of 45◦ (short dashes),
90◦ (long dashes) and 150◦ (solid line). Re= 10 and We= 0.3, 0.58, 0.9, respectively. A = 0.25,
N = 6.

5

10
Re = 20

Figure 7. Steady-state droplet shape for We just below Wec at β = 10, for various values of
Re as indicated. Initial contact angles are 90◦; N =6 (Re= 10 and 20), N = 5 (Re=5), A = 0.5.
(Re,We) = (5, 0.25), (10, 0.33) and (20, 0.41).

of the drop shape are shown for successive time intervals at We just above its critical
value, for Re = 5 and Re = 15. At Re= 5, the droplet is seen to deform gradually
in this figure, with θ1 and θ2 approaching 0◦ and 180◦, respectively. At Re= 15, the
drop appears to approach a steady state but, as the fluid continues to accelerate, the
droplet is suddenly deformed drastically.

A fundamental difference in conditions at the onset of instability was also shown
by Feng & Basaran (1994) for pinned bubbles: at low Re, bubbles are extended
along the direction of principal extension (the so-called ‘skewing mode’), whereas
at large Re, bubbles are stretched upward (the ‘erecting mode’). As pointed out by
Dimitrakopoulos & Higdon (1997), however, it is difficult to extrapolate results of
bubbles to drops, owing to the absence of shear stress on the interface in the former.

The droplet interface at We just below Wec is presented for several values of Re
(with θ1(t = 0) = θ2(t = 0) = 90◦, β = ξ = 1) in figure 6(a). It is seen that the droplet
hardly deforms at all for We< Wec at Re= 25, in sharp contrast to the low-Re shape.
Unlike the ‘erecting mode’ of Feng & Basaran (1994), the interface on the upstream
side is virtually straight, and no clear upper tip develops in the interface. In figure 6(b),
it is seen that an initially slender droplet at these moderate values of Re will tend
to become unstable because θ1 approaches zero. A droplet with large initial contact
angles results in a large value of θ2, close to φ =180◦ at the onset of instability.

In figure 7, it can be seen that some of these trends carry over to droplets with a
density larger than that of the surrounding fluid (ξ = 10). As Re is increased from
5 to 10, the droplet is seen to be less deformed at the onset of instability. At the
largest value of Re simulated (Re = 20), however, the droplet is deformed strongly
at the onset of instability. (The slow rate of convergence of the numerical results in
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Figure 8. Surface length L (a) and angle of maximum deformation θF (b) for A = 0.5, β = 1
at fixed Reynolds number, as a function of We. �, Re= 5; �, Re= 10, �, Re= 15, �, Re= 25.
N =6. The dashed lines indicate the lowest value of We for which no steady state was found
for each case. Contact angles at t = 0 are 90◦ in all cases.
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Figure 9. Steady-state contact angles (a) θ1 and (b) θ2 for A = 0.5, β = 1 at fixed Reynolds
number, as a function of We. �, Re= 5; �, Re= 10; �, Re= 15; �, Re =25. N = 6. The
dashed lines indicate the lowest value of We for which no steady state was found for each
case. Contact angles at t = 0 are 90◦ in all cases.

this case (see figure 4b) can possibly be attributed to the approach of θ1 to zero, and
θ2 to 180◦.) Inspection of the results has shown that the vortical structure inside the
drop (see figure 3) is only present in the upper part of the drop when ξ = 10, with the
lower part being almost stationary; this is not observed when ξ = 1. These different
regions inside the drop explain the peculiar wobbly shape of the upstream part of the
interface seen in figure 7.

Quantitative information on these trends for β = ξ = 1, θ1(t = 0) = θ2(t = 0) = 90◦ is
presented in figures 8 and 9. In figure 8(a), the ratio of the droplet perimeter at
steady state with its value at t = 0 is plotted against We, for various values of Re.
The vertical dashed lines indicate the lowest value of We at which no steady state
was found. Whereas the perimeter ratio L appears to increase almost indefinitely as
We → Wec at low Re, this is not so at Re > 10.
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Figure 10. Left-hand side of (3.1) multiplied by Re as a function of We for A =0.5, β = 1.
�, Re= 5; �, Re= 10; �, Re= 15; �, Re= 25. N =6.

The orientation of the droplet is investigated in figure 8(b). In the simulations,
the point was determined that is furthest removed from the halfway point between
the contact lines. The angle that the line between these two points makes with the
x1-axis, denoted by θF , is shown in figure 8(b) versus We at various values of Re. At
low Re and sufficiently low We, θF approaches the angle of maximum extension, 45◦

(Feng & Basaran 1994). At larger values of Re, θF remains virtually constant, at a
higher value.

The circumstances under which at least one of the contact lines will start to move
can be inferred from the data presented in figure 9. In figure 9, the values of the
steady-state contact angles are shown as a function of We, for several Re. At low Re,
the upstream (downstream) contact line can be made to move for a given value of
θR (θA) by choosing We large enough for θ1 (θ2) to be <θR (> θA). This is possible to
a lesser degree at larger Re: only a narrow interval [θR, θA] will result in a moving
drop. Although the upstream contact angle is seen still to depend significantly on We
at the largest value of Re for pinned drops, the downstream contact angle is virtually
independent of We. If, for example, 90◦ − θR = θA − 90◦, it is normally the upstream
contact line that will start to move.

Returning to the force balance (3.1), figure 10 shows the left-hand side multiplied
by Re as a function of We. At low We ( � 0.12), the results can be approximated by
using αv + αw =26.7, αF =0.33 in (3.1). The form drag is seen to have some effect on
the slope of the results in figure 10 only at the largest value of Re simulated.

The discrepancy observed in figure 4(a) between the numerical results and (3.2) can
now be understood to result from the fact that, at the onset of instability at sufficiently
large Reynolds number, θ1 and θ2 are not equal to 0◦, and 180◦, respectively. The
fitted value for αF in (3.1) obtained from figure 10 is different from that obtained
from Wec in figure 4(a) almost by an order of magnitude. On the other hand, the
fitted value for αv + αw in (3.1) obtained from figure 10 is very close to that obtained
from Wec in figure 4(a), confirming the finding that We= Wec coincides with θ1 and
θ2 being equal to 0◦ and 180◦ (respectively) at low Re ( � 5).

For larger values of We in figure 10, the low-We approximation is seen to
underestimate the left-hand side of (3.1). The droplet interfacial area L increases
strongly, so that the drag force is expected to increase. The results are rather insensitive
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(a)

(b)

(c)

(d)

Figure 11. Effect of slip length λ on the stability of moving drops. Simultaneous interface
shapes are shown at constant time intervals for We> Wec for moving drops for λ= 0.05, 0.025,
0.0125 and 0.00625 (from top to bottom). The drops for λ= 0.025 and 0.05 are moving at
constant speed and shape. The time interval between successive frames is 0.08H 2ρ/µ in all
cases; θA = θR = 90◦; Re =10, We =3, β = 1, A = 0.125 and N = 7. The dashed shapes in (d)
are the corresponding results when using a grid that is twice as coarse (i.e. N = 6).

to the value of Re; the main parameter appears to be We (for the drop size, and
initial contact angles studied here).

4. Results for moving contact lines
A quasi-steady state can be achieved at We much larger than Wec reported in

the previous section, by allowing the contact lines to move. Schleizer & Bonnecaze
(1999) showed that, under creeping-flow conditions, Cac can be increased by about
50%. Our simulations show an increase in Wec that is even larger, if the sliplength
is chosen sufficiently large (Schleizer & Bonnecaze (1999) fixed the value of their
effective sliplength).

An example of the effect of the value of the sliplength on the flow is given in
figure 11. Successive snapshots of the drop shape and location are shown for different
values of λ, at Re =10 and We= 3. It is seen that, at the largest values of λ
( = 0.025, 0.05), the velocity of the external fluid relative to the droplet speed is low
and the droplet is deformed only moderately. Figure 11(d) also shows the sensitivity
to the grid spacing. Most of the results presented in this section were obtained using
N = 7, such that the grid spacing is 1/128 = 0.00782. The dashed lines in figure 11(d)
represent the corresponding results obtained with N = 6, i.e. with twice the grid
spacing. Only a small error in the position of the upstream contact line for the final
snapshot is observed; the other shapes are almost indistinguishable.

Even although the range of λ that can be realistically simulated is very limited,
fortunately, the results are sensitive to the value of λ. At λ= 0.0125, a quasi-steady
state is no longer reached. At λ= 0.00625, the droplet speed is reduced by a factor
of about 1.8 compared to λ= 0.05. This is seen to be sufficient for the droplet to be
deformed rapidly. The deformation process is reminiscent of the low-Re behaviour
shown in figure 5(a).

The Reynolds and Weber number based on the fluid velocity relative to the contact-
line speed, γ a − Ucl are Re∗ ≡ Re(1 − Ucl/(γ a))2 and We∗ ≡ We(1 − Ucl/(γ a))3.
For λ= 0.025, these are approximately equal to 3.7 and 0.7, respectively; for
λ= 0.0125, Re∗ ≈ 4.9, We∗ ≈ 1. Referring to figure 4(a), the transition to unsteady
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Figure 12. Instantaneous streamlines in a frame of reference moving with the contact lines
to visualize the local velocity field, corresponding to the final snapshot of figure 11(d) (detail).
The thick line represents the interface. The streamlines were obtained from the velocity field
by using Tecplot.

flow would correspond to a point somewhat above the critical value of We. Therefore,
although the reduction in relative fluid velocity explains most of the observed trends,
Wec(Re) for pinned drops can therefore only be ‘translated’ into a very crude
approximation for We∗

c for moving drops. Other arguments for a larger value of
Wec (i.e. Cac for creeping flows) are a possibly increased height of pinned drops, and
the fixed values of the contact angles of moving droplets (Schleizer & Bonnecaze
1999).

The velocity field is illustrated for the final frame of figure 11(d) in figure 12. The
instantaneous velocities of the two contact lines are very similar at this point, so it
is helpful to subtract this velocity from the velocity field. In figure 12, instantaneous
streamlines are shown corresponding to this velocity field in a frame moving with the
contact lines. The instantaneous streamlines are seen to approach both contact lines
from the left, approximately with a vertical tangent. The fluid departing from the left
contact line inside the drop, approaches the right contact line from the left, in what
appears to be a ‘rolling’ motion.

We now attempt to understand the transient behaviour of the speed at which the
contact lines move. It is seen from figure 11 that the contact line speed is similar for
both contact lines, inspection of the data shows that the upstream contact line moves
only slightly faster. From figures 14(b) and 16(b) discussed further below, we can
infer that the contact-line speed increases approximately linearly with Ca = We/Re,
in agreement with Schleizer & Bonnecaze (1999). For creeping flow, Schleizer &
Bonnecaze (1999) found that contact lines with contact angles of 90◦ also move at
almost the same speed, but with the downstream contact line moving slightly faster
in that case. As an aside, it should be mentioned here that Schleizer & Bonnecaze
(1999) showed that this is markedly different at other contact angle values; the area
wetted by drops with small (large) contact angles increases (decreases) markedly. This
suggests the possibility of merging of contact lines. The wetted area is therefore shown
for a droplet with 120◦ contact angles here in figure 13(a). S is defined as Xcl

(2) − Xcl
(1),

where Xcl
(i) is the x1−position of the ith contact line. It is seen that the contact lines

approach each other until they are very close, similar to (but to a stronger degree
than) the results of Schleizer & Bonnecaze (1999). Figure 13 suggests that the contact
lines merge at a finite time. The contact lines appear to approach each other at almost
constant speed, but the relative velocity decreases at low values of S (it is noteworthy
that this occurs at values of S of the order of the slip length). The calculations have
been terminated at the time when S =3�x, corresponding to the point of contact
between the regions around each part of the interface wherein the viscosity jump is
smoothed. It was found that results for later times (corresponding to even smaller
values of S) are strongly grid-space dependent. Also, below a very small value of
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Figure 13. (a) The area S wetted by a droplet as a function of time, for contact angle 120◦;
Re =10, We =3, A = 0.125, λ= 0.025, N =6 (short-dashed line), N = 7 (long-dashed line) and
N =8 (solid line). The upstream contact line is seen to overtake the downstream contact line.
The drop shape just before the point of rupture is shown in (b) for N = 8.
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Figure 14. (a) Angle between the interface and the horizontal as a function of the distance
to the downstream contact line for Re= 10, We = 3, β = 1, λ= 0.00625, A = 0.125, N = 7. The
time interval between successive data is 0.04H 2ρ/µ. A dashed line represents the analytical
result for a circular interface that coincides with the drop shape at t = 0, but this is not
distinguishable from the numerical result for t = 0. (b) Maximum tangent θm as a function
of Cacl of the downstream contact line for the sliplengths indicated. �, We= 3; �, We= 1.5;
�, We= 0.9. N = 7. The spacing between markers indicate constant time intervals. Contact
angles are 90◦ in all cases, and Re= 10. The solid lines connect the data points for clarity of
presentation.

S, van der Waals or other interfacial forces should be accounted for in the rupture
process, but this is beyond the scope of the study.

In figure 14(a), the interface shape near the downstream contact line is shown at
several times, for the case shown in figure 11(d). In figure 14(a), the angle that the
interface makes with the horizontal is plotted versus the distance to the contact line, s.
At t =0, the interface is a circular cap, and this gives tan[θ(s)] = s−1(a − s2/(2a))/(1−
s2/(4a2))1/2, which is approximately a straight line that matches the lower curve in
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Figure 15. The data of figure 14(b) for We = 3, rescaled according to (4.1). �, λ= 0.00625;
�, λ= 0.0125; �, λ= 0.025.

figure 14(a) closely (plotted as a dashed line in the figure). Some wiggles in the
tangent of the interface are observed. The tangent was obtained from a piecewise
linear interpolation of the interface from the level-set function. The discretization
errors resulting from this interpolation procedure may have some effect on the results
presented here.

As time progresses, θ(s) increases rapidly at short distances from the contact line,
before reaching a local maximum. This maximum angle will be denoted here by θm.
In several studies (Tuck & Schwartz 1990; Mazouchi, Gramlich & Homsy 2004; Spelt
2005), the maximum angle is associated with the apparent contact angle in lubrication
analysis for spreading droplets. The lubrication analysis of spreading of thin drops
typically yields a matching condition of the form (Davis 2000)

θ3
d = θ3

A + αCacl ln(h0/λ), (4.1)

where θd is the dynamic contact angle, α is a constant, and h0 is a length scale that
depends on the instantaneous drop geometry. A comparison for spreading droplets
using the present method, assuming θd = θm, has been provided in Spelt (2005). We
shall assume that θd can be set equal to θm; the justification for this is discussed further
below. Then (4.1) would suggest that plotting θm versus Cacl should give an almost
universal curve. ‘Almost’, because h0 typically depends on the value of s beyond which
θ ≈ θm; see also Eggers & Stone (2004). This hypothesis is tested in figure 14(b) for
the downstream contact line, by plotting θm against Cacl for various values of We at
Re= 10, A= 0.125, for the slip length values indicated. The results for different values
of We, but with the same value of λ, are seen to be very similar, as hypothesized.
It should be reiterated that for the largest value of We, the droplets do not reach
a steady state. Yet good agreement is observed with the drops moving at constant
speed, at all times. In fact, the results appear to be governed by (4.1), with h0 = a (the
initial drop radius), as can be seen in figure 15. The data in figure 14(b) exhibit some
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Figure 16. (a) Angle between the interface and the horizontal as a function of the distance to
the upstream contact line for Re =10, We= 3, β =1, λ= 0.00625, A =0.125, N = 7. The time
interval between successive data is 0.08H 2ρ/µ. (b) Rescaled extrapolated angle to the wall as
a function of Cacl of the downstream contact line for the sliplengths indicated. �, We= 3; �,
We = 1.5; �, We =0.9. N = 7. Contact angles are 90◦ in all cases, and Re= 10. The solid lines
connect the data points for clarity of presentation.

scatter during a short initial period. This is due to small errors in the determination of
the maximum tangent, which are amplified when plotting the difference (θ3

m − θ3
A)1/3,

instead of θm.
Despite the good agreement in figure 14(b), the underlying assumption of θd = θm

deserves further comment. In figure 14(a), θ(s) = θm is seen to be satisfied only at one
point, that moves away from the wall as the interface becomes more deformed. As
argued by Mazouchi et al. (2004), this should in fact occur over a range of values
of s. We will return to this issue after discussing the corresponding results for the
upstream contact line.

In figure 16(a), the angle that the interface makes with the horizontal is plotted as
a function of the distance to the upstream contact line (so s is from here onwards the
distance to the upstream contact line). Starting off with the same straight line as in
figure 14(a), the subsequent curves θ(s) merely show a stronger monotonic decrease
as s is increased. Obviously, θ does not reach a maximum value near the contact line
other than the imposed angle at the wall – conceptually similar to dewetting problems
(Eggers 2004), in which θ varies approximately linearly far away from the contact
line. As shown by Eggers (2004), not the slope but the curvature is matched between
a small region around a dewetting contact line and the corresponding large-scale flow.
The macroscopic contact angle in dewetting is identified as the intercept of this linear
regime on the wall, which is denoted here by θ0. Although we do not argue here
that there is a one-to-one correspondence between droplet dewetting and the present
problems, we do note that the results in figure 16(a) show a range of s (s � 0.2)
in which θ(s) is approximately linear; the suggested extrapolation is shown as the
dashed lines in the figure. In figure 16(b), θ0 is plotted as a function of Cacl for various
values of We at Re = 10, A= 0.125, and the sliplengths indicated. The results for a
given value of λ are seen to agree very well. To summarize, the data in figures 14–16
can be represented by:

θ3
m ≈ θ3

A +
(
0.12 + 5.2Cacl

(2)

)
ln(a/λ), θ0 ≈ θR − 3.5Cacl

(1) ln(a/λ). (4.2a, b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

09
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000954


456 P. D. M. Spelt

1 2 3 4

Figure 17. Tripping of a droplet by alteration of surface properties: the sliplength λ= 0.025
for x1 < 2.5, and λ= 0.00625 elsewhere. Re= 10, We= 3, A =0.125, N = 7. Dimensionless
channel length =6. Successive snapshots are shown at time intervals of 0.04H 2ρ/µ (the first
two are indistinguishable).

It should be noted that (4.2a) holds only for sufficiently large capillary number.
Because of the extent of the required computational effort, a full parametric study has
not been performed to investigate the dependence of the results shown in figures 14(b)
and 16(b) on other parameters, but a test case at Re = 25, We= 3, A= 0.125, λ=0.0125
was found to be very close to the corresponding results at Re = 10, and the results
for λ= 0.025 at A= 0.5 virtually coincide with the results for λ=0.125, A= 0.125 in
figure 14(b) (not shown); the sliplength therefore primarily enters the relationships
(4.2) through its ratio with an initial effective drop radius. We shall return to the
applicability under other circumstances in the next section.

We return briefly to the results for the downstream contact line, and the use of
θm in figure 14(b). The extrapolation procedure used in figure 16 for the upstream
contact line suggests that a similar approach can be used for the downstream contact
line. Although no particular curve fit to the data in figure 14(a) is obvious, we may
speculate that θm would be an appropriate value extrapolated onto the wall from the
range of s beyond the point where θ(s) = θm.

5. Tripping or stabilizing drops by surface property alteration
In this section, we investigate the sensitivity of the results presented above to

local changes in the surface properties of the wall. In particular, we shall attempt to
stabilize and destabilize moving droplets by prescribing a jump in wetting properties
of the surface. In order to relate the results to those of the previous sections, the effect
of changes in the slip length and the window of contact-line hysteresis are studied
here seperately. The reference state used here is that of the previous section, Re= 10,
We= 3, A=0.125.

We first trip the droplet of figure 11(b) (λ= 0.025), which moves in a quasi-steady
state, by changing the sliplength to λ=0.00625 downstream, x1 > 2.5. Successive
snapshots are shown in figure 17. Note the reduction of drop surface area in contact
with the wall, when compared to the corresponding cases with λ= 0.025 or 0.00625
throughout, shown in figure 11. After the downstream contact line has passed through
x2 = 2.5, the droplet area in contact with the wall is much reduced. Inspection of the
results shows that fluid on the right of the upstream contact line is displaced to the
upper part of the droplet, and the drop is seen to be deformed rapidly. Of course,
it is no surprise that the droplet is deformed indefinitely; even if λ= 0.00625 along
the entire wall, this is the case (figure 11d). However, the significant reduction in
wetted area compared to figure 11(d) does provide scope for tripping drops by using
a value of λ downstream for which the drop would otherwise exhibit a quasi-steady
state. Because of the limitations of the computational method (it would require a
large range of values of λ), such simulations are beyond the scope of the present
paper.
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Figure 18. Stabilizing a droplet by alteration of surface properties: the sliplength λ= 0.00625
for x1 < 2, and λ= 0.025 elsewhere. Re= 10, We = 3, A =0.125, N = 7. Dimensionless channel
length =6. The solid and dashed line are the normalized drop surface area L(t)/L(0) and the
normalized wetted area, S(t)/S(0). The arrows indicate when the downstream and upstream
contact lines reach x1 = 2. The long dashes show the corresponding results for a value
λ= 0.00625 throughout (which does not reach a quasi-steady state).

Results for the reverse process are shown in figure 18. Here, the droplet of
figure 11(d) (λ= 0.00625) is stabilized by setting λ=0.025 at x1 > 2. Once the down-
stream contact line has moved through x1 = 2, the lower value of λ allows it to
accelerate. As seen in figure 18, a strong increase results in the wetted area from
this point. As a result, the drop interfacial area L decreases. Unexpectedly, once the
upstream contact line has reached x1 = 2, L(t) continues to decrease, before increasing
towards a quasi-steady state. This continuous decrease in L occurs despite the decrease
in wetted area that has set in at this point.

Also shown in figure 18 are the corresponding results for λ=0.00625 throughout.
It is seen that the use of the slip condition along the entire wall does affect the
contact line motion somewhat. These curves are terminated just after t =40, owing
to excessive deformation of the interface.

The sudden change in the local value of λ experienced by the contact lines begs
the question of how well the scaling observed in figures 14(b) and 16(b) applies
under these unsteady conditions. In figure 19, figure 14(b) is reproduced with the
corresponding data for the θm for the tripped and stabilized drops, as a function of
Cacl . In the case of the tripped drop of figure 17, θm is seen to depart suddenly from
the result for a uniform value of λ=0.025, just before this contact line reaches the
tripping point x1 = 2.5. This happens in a very short time interval. In part, this early
departure can be attributed to the use of the slip condition along the entire wall, and
the modest value of λ used in these simulations. Beyond this stage, θm has approached
the result for λ=0.00625 throughout, but not quite. For the stabilized droplet, after the
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Figure 19. Maximum tangent as a function of Cacl of the downstream contact line for tripped
(long dashes) and stabilized (solid line) drops of figures 17 and 18, respectively. The short
dashes correspond to the results of figure 14(b).
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Figure 20. Successive snapshots of the drop shape for a droplet stabilized by alteration of
surface properties, in a frame moving with the upstream contact line: θA = θR = 90◦ (x2 < 2),
θR = 60◦ and θA = 100◦ (x2 > 2). The numbers indicate time intervals in units of 0.04H 2ρ/µ.
Re= 10, We= 3, A = 0.125, λ= 0.025, N = 7.

downstream contact line has reached x1 = 2, θm rapidly approaches the result for
λ=0.025 throughout (initially, Cacl decreases, until the upstream contact line has
reached x1 = 2, after which an increase follows). Not shown here are the results for
the upstream contact line, corresponding to figures 16(b). A straightforward jump from
the corresponding curves in figure 16(b) was observed when tripping or stabilizing
drops.

A second way of tripping or stabilizing drops is by changing the hysteresis properties
along the wall. The evolution of the drop shape is shown in figure 20. In figure 21(a),
the interfacial area L is shown as a function of time for droplets moving on a wall
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Figure 21. Dimensionless drop interfacial area L and wetted area S as a function of time for
a wall with θA = θR = 90◦ (x2 < 2), θR = 60◦ and θA equal to the numbers indicated in the graph
(x2 > 2). The dashed lines represent θA = θR = 90◦ throughout. Re= 10, We =3, A = 0.125,
λ= 0.025.

with θR = θA =90◦ for x1 < 2, θR = 60◦ at x1 > 2 and θA as indicated in the figure.
For comparison, the corresponding result for θR = θA =90◦ for all x1 is shown as the
dashed line. The corresponding dependence of the area wetted by the droplet is shown
in figure 21(b). At time t = 26.81, the downstream contact line reaches x1 = 2, where
it halts because of hysteresis. The wetted area decreases as the upstream contact line
catches up, whereas L increases. At time t ≈ 32.6, the upstream contact line reaches
x1 = 2, while the downstream contact line continues to move (hence S increases). For
θA � 90◦ at x1 > 2, S increases to almost the same equilibrium value, or to no steady
state at all (owing to rupture); a similar trend is observed for L. In particular, at
θA = 120◦, the wetted area is seen not to recover from the decrease caused by the wait
for θ2 to reach 120◦ at x1 = 2. For θA just below the value for which the transition to
rupture occurs (between 100◦ and 105◦), S(t) exhibits an overshoot before reaching
the equilibrium value. It is seen in figure 20 that the initial stage of instability has
just been halted in time by the change in surface properties.

6. Conclusions
Results from numerical simulations have been presented for shear flow past a two-

dimensional droplet pinned or rolling on a channel wall. Because of the relatively large
number of dimensionless parameters, and the large computational costs involved, we
have investigated the effect of drop size (compared to the channel height), viscosity
ratio, contact angle, Reynolds and Weber numbers, and dimensionless slip length
for a limited number of cases. Specific issues addressed are the critical value of We
beyond which no steady state can be found, and the evolution of the droplet shape in
those cases. It was shown (figure 5) that, for We>Wec, the transient behaviour is very
different at moderate values of Re, when compared to low-Re results. At moderate Re,
droplets become unstable even at a moderate value of the downstream contact angle
θ2 (in the creeping-flow limit, θ2 approaches 180◦ before the drop becomes unstable).
An approximate value of Wec as a function of Re is generally of the form (3.2).

Wec is much increased by letting contact lines move. It was found in § 4 that, even
for the limited range of slip lengths that could be simulated (λ, the smallest ratio of
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slip length to channel width simulated was 0.00625), the sliplength has a significant
effect on the contact-line speed. Keeping all other parameters constant, λ could be
chosen such that a droplet either becomes unstable or moves at a constant speed
(figure 11). Also, the simulations suggest a finite time in which two contact lines
can merge in two dimensions (figure 13a). It is of potential benefit to know that
surface properties can be chosen such that a droplet is completely sheared off from
the adhering wall.

Under experimental conditions, however, the slip length is expected to be smaller
than can realistically be simulated by some orders of magnitude. Nevertheless, the
results presented here show that approaches in which the flow is resolved on the
macroscale only may be feasible. In figures 14–16, it is seen that specific choices for
macroscale contact angles scale according to (4.2) (where θm and θ0 are defined as
indicated in figures 14–16), i.e. independent of We or Re, for the cases simulated.
The results can be represented with reasonable accuracy by the Cox–Voinov-type
relations (4.2). In principle, these relations can be used in a macroscale approach, as
a prescription of the contact-line speed. In Spelt (2005), such an approach was found
to give converged results for spreading droplets.

The results for moving contact lines were shown in § 5 to be sensitive to local
changes in the slip length or contact-angle hysteresis. It was shown that drops could
be tripped or stabilized in this way. The results indicate that the relations (4.2) can
be used when the sliplength varies along the wall.

The author would like to acknowledge that some of the simulations were performed
at the School of Mathematical Sciences of the University of Nottingham.

Appendix. Mass conservation
The conservation of droplet size during the simulations is crucial. A loss in drop

size during a simulation would stabilize the flow and require a lower surface tension
for rupture of a droplet to occur. In figure 22, the total mass of a droplet is plotted as
a function of time for a representative calculation, Re= 10, We= 0.2, A= 0.125. The
dashed lines represent results in which, after each time step, the redistance step of
Sussman et al. (1999) is used. Although sufficient mesh refinement leads to a strong
decrease in mass errors, integrating the equations of motion sufficiently long will
result in significant mass errors. Russo & Smereka (2000) showed that significant
mass losses occur when using the redistance step algorithm of Sussman et al. (1994).
They demonstrated that these are caused by a displacement of the interface during
the redistance step, which in turn is due to the discretization of the redistance step.
The interface should not move during the redistance step (which serves only to update
φ away from the interface). Russo & Smereka (2000) proposed a fix of the redistance
step discretization of Sussman et al. (1994). Their fix was implemented in a fluid
flow solver by Spelt (2005). Following discussions on the present work at Euromech
465 and other conferences, it is desirable to supplement the previous work here with
data on the conservation of mass. It is seen in figure 22 that the fix proposed by
Russo & Smereka (2000) eliminates the monotonous decrease in drop size observed
when using the earlier method, although small oscillations remain (their origin is
discussed in Spelt (2005)).

In order to eliminate the remaining small errors, we redistribute after each time
step the error in the total mass over the entire interface at the end of each time step
(Sussman & Uto 1998; Spelt 2005). In figure 22, the line marked ‘present’ represents

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

09
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000954


Shear flow past two-dimensional droplets 461

Time

D
ro

p 
vo

lu
m

e

0 20 40 60
0.8

0.9

1.0

(a) (b)

6
5

6
N = 5

Present

7

7

Figure 22. (a) Total drop volume normalized by the exact volume, as a function of time, for
various mesh sizes. Solid and dashed lines represent results with and without the subcell fix of
Russo & Smereka (2000), as implemented by Spelt (2005). The line marked ‘present’ represents
the result with the fix, as well as with redistribution of mass errors, for N = 6. (b) Snapshots
showing the effect of the redistribution of mass errors on the dynamics of the problem. The
dashed and dashed-dotted lines are for N = 6 and 7, respectively, without using mass error
redistribution. The solid lines are for the case with mass error redistribution, and N = 6. The
time interval between successive snapshots is 0.2H 2ρ/µ. Pinned drop with Re = 5, We = 0.5,
A = 0.125, ξ = 1, β = 1, N =6.

the mass of the droplet when this final correction is used (together with the fix of
Russo & Smereka 2000), at each time step just before the correction is made. It is
seen that the corrections made at each time step are very small.

Although this procedure eliminates mass errors exactly, it is of some concern, as
it may introduce non-physical dynamics in the results of simulations. A test case
showing the effect of redistributing mass errors on the evolution of the interface is
shown in figure 22(b). It is seen that if mass errors are not redistributed, the results
appear to converge to the results obtained when mass errors are redistributed. Further
evidence in support of the numerical method is presented in Spelt (2005), wherein
mass errors are also redistributed throughout.
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