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We report joint Lagrangian velocity and temperature measurements in turbulent
thermal convection. Measurements are performed using an improved version
(extended autonomy) of the neutrally buoyant instrumented particle (Shew et al.,
Rev. Sci. Instrum., vol. 78, 2007, 065105) that was used by Gasteuil et al. (Phys.
Rev. Lett., vol. 99, 2007, 234302) to performed experiments in a parallelepipedic
Rayleigh–Bénard cell. The temperature signal is obtained from a radiofrequency
transmitter. Simultaneously, we determine a particle’s position and velocity with
one camera, which grants access to the Lagrangian heat flux. Due to the extended
autonomy of the present particle, we obtain well-converged temperature and velocity
statistics, as well as pseudo-Eulerian maps of velocity and heat flux. Present
experimental results have also been compared with the results obtained by a
corresponding campaign of direct numerical simulations and Lagrangian tracking
of massless tracers. The comparison between experimental and numerical results
shows the accuracy and reliability of our experimental measurements and points
also out the finite-size effects of the particle. Finally, the analysis of Lagrangian
velocity and temperature frequency spectra is shown and discussed. In particular, we
observe that temperature spectra exhibit an anomalous f−2.5 frequency scaling, likely
representing the ubiquitous passive and active scalar behaviour of temperature.

Key words: convection, plumes/thermals, turbulent convection

1. Introduction
Thermal convection occurs in many industrial and geophysical applications, ranging

from heat exchangers or nuclear/chemical reactors to atmospheric circulation. In most

† Email address for correspondence: francesca.chilla@ens-lyon.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:francesca.chilla@ens-lyon.fr
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.190&domain=pdf
https://doi.org/10.1017/jfm.2016.190


656 O. Liot and others

of these cases, the flow is highly turbulent and transports heat very efficiently.
Nevertheless, understanding and modelling the local and global properties of the
temperature, velocity and heat-flux fields in these situations is still a challenge. To
analyse turbulent thermal convection in a laboratory, we choose the Rayleigh–Bénard
configuration: a horizontal layer of fluid confined between a cooling plate above and
a heating plate below. In this flow configuration, the temperature gradient is confined
in the thermal boundary layers close to the heating and cooling plates. Due to the
strong mixing, a nearly homogeneous temperature distribution is observed in the bulk.
The driving force of the flow is measured by the Rayleigh number:

Ra= gα1TH3

νκ
, (1.1)

where H is the height of the cell, g is the gravitational acceleration, α is the constant
pressure thermal expansion coefficient, 1T = Th − Tc is the difference of temperature
between the heating and the cooling plate, ν is the kinematic viscosity of the fluid and
κ is its thermal diffusivity. The Prandtl number expresses the ratio between viscous
and thermal dissipation:

Pr= ν
κ
. (1.2)

A further input parameter is the aspect ratio Γ , i.e. the ratio between the horizontal
and the vertical size of the cell. The response of the system is represented by the
Nusselt number, which compares convective and conductive heat flux:

Nu= QH
λ1T

, (1.3)

where Q is the global heat flux and λ is the thermal conductivity of the fluid.
Assuming locally homogeneous and isotropic turbulence, for sufficiently high

Reynolds and Péclet numbers, passive scalars and velocity spectra follow the
well-known Kolmogorov–Obukhov laws (Kolmogorov 1941; Monin & Yaglom
2007). However, in thermally driven flow, temperature is not a passive scalar
and the similarity theory requires a further generalization. It has been argued that
for small scales a thermally stratified fluid can be considered locally stationary
and homogeneous, but not isotropic and axially symmetric relative to the vertical
direction (Bolgiano 1959; Obukhov 1959). Within this framework, the scalings
become dependent on the Bolgiano–Obukhov (BO59) lengthscale measuring the
importance of the thermal stratification,

LBO ≡ ε5/4ε
−3/4
θ (αg)−3/2, (1.4)

where εT and εu are the temperature and kinetic energy dissipation rate, respectively.
Here LB characterizes the minimum length scale of inhomogeneities beyond which
stratification should be taken into account. The ordinary Kolmogorov spectrum
scalings (k−5/3) are expected to be recovered at scales smaller than the Bolgiano
length. On the other hand, if LB becomes much larger than the external turbulence
length scale L0, the effect of the mean flow becomes important and the similarity
theory does not apply. Yet, all of the theoretical predictions and scalings are assessed
for regions of space far enough from solid boundaries. In general, stratification affects
a certain range of scales, which cannot be considered locally isotropic. Corrections
to the velocity and temperature correlations and spectra may be universal and
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Lagrangian temperature and velocity in turbulent convection 657

may be in principle determined empirically. For stable stratified flows, Bolgiano
(1959) established a theoretical framework to determine the asymptotic form of these
functions for scales much greater than LB. These Bolgiano–Obukhov (BO59) scalings
predict spectra that are steeper for the velocity and milder for the temperature
compared with those given by Kolmogorov–Obukhov scalings. Nevertheless, the
ultimate picture on velocity and temperature scalings in thermal convection is far
from being obtained (Lohse & Xia 2010). Experimental measurements at Ra ≈ 1010

and Pr = 4.4 exhibit a K41 behaviour for velocity (Zhou, Sun & Xia 2008) and
for velocity and temperature (Sun, Zhou & Xia 2006) structure functions. However,
direct numerical simulations (DNS) of thermal convection on a cylindrical domain
(Kunnen et al. 2008) show a BO59 scaling for temperature structure functions in
the radial direction and for vertical velocity structure functions in the longitudinal
direction (Ra= 108, Pr= 1).

Even though remarkable progress has been made towards a deeper understanding
of scaling laws between control and response parameters (Grossmann & Lohse
2000; Chavanne et al. 2001; Stevens et al. 2013), new investigations are required
to clarify some of the open issues (Lohse & Xia 2010; Chillà & Schumacher
2012). Most literature studies on Rayleigh–Bénard turbulence have been focused on
Eulerian measurements of velocity and temperature distribution (Tilgner, Belmonte
& Libchaber 1993; Xia, Sun & Zhou 2003), with the aim of characterizing the
behaviour of the local heat flux, Nu, as a function of the Rayleigh number, Ra
(Shang et al. 2004). Although the mean velocity in the central region of the
convection cell is homogeneous and close to zero, the velocity root-mean-square is
neither homogeneous nor isotropic (Qiu, Yao & Tong 2000; Xia et al. 2003). These
flow inhomogeneities prevent from using the frozen-flow hypothesis (Taylor 1938):
this makes the connection between time-domain measurements and space-domain
predictions difficult.

More recently, improvements in computing power and storage capacities have
allowed the appearance of Lagrangian studies of turbulence, which naturally provide
useful information on transport mechanisms. The Lagrangian description of turbulence
has significantly contributed to our current comprehension of transfer processes
(Toschi & Bodenschatz 2009). In particular, a number of experimental (La Porta
et al. 2001; Mordant et al. 2001; Voth et al. 2002), numerical (Yeung 2002; Biferale
et al. 2004) and theoretical (Chevillard et al. 2003) studies focused on velocity and
acceleration statistics in homogeneous and isotropic turbulence. The first numerical
Lagrangian studies of thermal convection were those of Schumacher (2008, 2009),
which were specifically focused on pair dispersion and on acceleration statistics.
Although the tracer motion was largely anisotropic due to the vertical buoyancy,
pair dispersion was close to the homogeneous and isotropic turbulence. Acceleration
and temperature statistics showed a non-Gaussian behaviour characterized by a large
intermittency (higher in the horizontal directions). Relevant to the present work was
also the finding of the non-symmetric behaviour of the heat transport probability
density function (PDF). From an experimental point of view, measurements of
turbulent thermal convection in a Lagrangian framework are relatively scarce. Only
recently, Ni, Huang & Xia (2012) used three-dimensional particle tracking velocimetry
to analyse velocity and acceleration statistics in turbulent Rayleigh–Bénard convection.
In particular, they observed a Gaussian and a stretched exponential distribution for
the PDF of velocity and acceleration in the centre of the cell.

From the above review, phenomenological and statistical analyses of turbulent
Rayleigh–Bénard convection in a Lagrangian frame of reference appear not yet
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658 O. Liot and others

complete and require further investigation. This is exactly the purpose of the present
study. In this work, we present both experimental and numerical measurements of
temperature and velocity in a Lagrangian frame. For the experiments, we improved the
neutrally buoyant instrumented particle presented in Shew et al. (2007) and already
used and tested by Gasteuil et al. (2007). This smart particle explores a rectangular
Rayleigh–Bénard cell filled with water. We compare Eulerian maps obtained from our
Lagrangian data with particle-image velocimetry (PIV) measurements, to show that
the particle samples correctly the entire flow (and to deduce pseudo-Eulerian maps
of temperature and thermal flux). At the same time, we perform DNS of Lagrangian
particle tracking of massless tracers in turbulent Rayleigh–Bénard convection. These
numerical simulations correspond to the ideal case of a particle of zero diameter and,
therefore, they can be viewed as a ‘thought experiment’ built to highlight possible
finite-size effect of the smart particle in the experiments. Velocity, temperature and
heat flux statistics obtained from experiments and numerical simulations are compared
and discussed.

2. Smart particle, experimental set-up and numerical simulation method
2.1. Smart particle

The mobile sensor consists of a 2.1 cm in diameter capsule containing temperature
instrumentation, a radiofrequency emitter and two batteries. The mobile cover is
polyvinyl chloride (PVC) with a thermal conductivity λp = 0.19 W m−1 K−1 at
ambient temperature. Four cylindrical thermistors (0.8 mm in length, 0.4 mm in
diameter, 230 k�, response time 0.6 s in water) are mounted on the capsule wall
protruding 0.5 mm into the surrounding flow (see sketch in zoom of figure 1(a) and
photograph figure 1(b)). A resistance controlled oscillator is used to create a square
wave whose frequency depends on the average of the four measured temperatures.
This square wave is used directly to modulate the frequency of a radio wave generated
by the radiofrequency emitter. The temperature signal is recovered on the fly by a
stationary receiver. The capsule has been redesigned (compared with that described by
Shew et al. (2007)) in order to have the four thermistors at the equator and a simpler
handling. A new shell has been conceived to contain two batteries and to extend
the emission time which can now reach up to 1000 turnover times. The position of
the batteries fixes one rotation axis. As a consequence, the four thermistors lay on a
horizontal plane during the particle displacement. At the same time the trajectory of
the particle is recorded with a digital camera placed in front of the large face of the
cell (due to cell dimensions, we assume that the mean flow is quasi-bidimensional).

2.2. Experimental set-up
Our convection cell is a 10.5 cm thick 41.5 cm × 41.5 cm rectangular cell with
2.5 cm thick PMMA walls (see sketch figure 1(a)). Both plates consist of 4 cm thick
copper plates coated with a thin layer of nickel. The bottom plate is Joule-heated
while the top plate is cooled with a temperature regulated water circulation. Plate
temperatures are controlled by PT 100 temperature sensors. We work with deionized
water. The bulk temperature is fixed between 37.05 and 38.35 ◦C in different
experiments. The corresponding Prandtl number are in the range 4.62–4.49. Main
parameters are grouped in table 1.

We can estimate the thermal boundary layer thickness by

δθ = H
2 Nu

. (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.190


Lagrangian temperature and velocity in turbulent convection 659

ThermistorDepth

Smart particle

41 cm

2.5 cm
1.

3 
cm

10 cm

(a)

(b)

FIGURE 1. (Colour online) (a) Sketch of the convection cell and of the mobile sensor.
The six dark dots in the plates show the location of the PT100 temperature sensors.
(b) Photograph of the instrumented particle (open). We see the batteries in place.

1T ( ◦C) Ra (×1010) Nu

13.15 3.5 230
18.60 5.0 244
22.90 6.2 264

TABLE 1. Parameters used for acquisitions in the experiments.

In our case, δθ is in the range 0.8–0.9 mm. This is consistent with measurements
of Salort et al. (2014), who used the same cell, though with a rough bottom plate,
and found δθ ≈ 0.8 mm close to the top-smooth plate (assuming plates independence
(Tisserand et al. 2011)). The corresponding kinetic boundary layer thickness, in the
Prandtl–Blasius theory for Pr> 1, can be estimated by

δv ≈ Pr1/3δθ , (2.2)

which leads to a kinetic boundary layer thickness in the range 1.3–1.5 mm.
Consequently the smart particle, with its diameter of 21 mm, cannot be influenced
by the thermal and the kinetic boundary layers.

2.3. Numerical simulations
DNS are performed to complement our experimental results. We consider an
incompressible and Newtonian turbulent flow of water confined between two rigid
boundaries. Horizontal and wall-normal coordinates are indicated by x, y and z,
respectively.

The bottom wall is kept at uniform high temperature (Th), whereas the top wall
is kept at uniform low temperature (Tc). The size of the computational domain is
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x

y

z

FIGURE 2. (Colour online) Sketch of the numerical simulation domain. Temperature
contours for Ra= 109 are also shown (red indicates regions of high temperature whereas
blue indicates regions of low temperature).

Lx × Ly × Lz = 2πH × 2πH × 2H (in x, y and z, respectively), where H is the half-
channel height. Periodic boundary conditions are imposed on velocity and temperature
along the horizontal x and y directions; at the walls, no slip conditions are enforced
for the momentum equations while constant temperature conditions are adopted for the
energy equation. A sketch of the computational domain/flow conditions is presented
in figure 2.

The imposed temperature difference 1T = (Th − Tc) between the bottom and the
top wall induces an unstable buoyancy effect within the flow field (the acceleration
due to gravity g acts downward along z). Mass, momentum and energy equations in
dimensionless form and under the Boussinesq approximation are

∇ · u= 0, (2.3)
∂u
∂t
+ (u · ∇)u=−∇p+ 4

√
Pr
Ra
∇2u+ δi,zθ, (2.4)

∂θ

∂t
+ (u · ∇)θ =+ 4√

PrRa
∇2θ, (2.5)

where u is the velocity vector, θ is the dimensionless temperature θ = (T − Tref )/1T ,
p is pressure, whereas δi,zθ is the buoyancy force (acting in the vertical direction only)
that drives the flow. Equations (2.3)–(2.5) have been obtained using H as the reference
length, uref =√Hgα1T/2 as the reference velocity, Tref = (Th+ Tc)/2 as the reference
temperature and p = ρgαH1T/2 as the reference pressure. Density ρ, kinematic
viscosity ν, thermal diffusivity κ and thermal expansion coefficient α are evaluated
at a mean fluid temperature of '30 ◦C. The Prandtl and the Rayleigh numbers in
(2.3)–(2.5) are defined as Pr= ν/κ and Ra= (gα1T(2H)3)/(νκ), respectively. In the
present study, we keep the Prandtl number Pr= 4 and we vary the Rayleigh number
between Ra = 107 and 109. The resulting set of equations are discretized using a
pseudo-spectral method based on transforming the field variables into wavenumber
space, through Fourier representations for the periodic (homogeneous) directions x
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and y, and Chebychev representation for the wall-normal (non-homogeneous) direction
z (see Zonta, Onorato & Soldati 2012; Zonta & Soldati 2014 for details). We used up
to 512 × 512 × 513 grid points to discretize the computational domain. We injected
Np = 1.28× 105 Lagrangian tracers and we computed their dynamics as

ẋp = u(x p(t), t) θp = θ(x p(t), t), (2.6a,b)

with x p the tracers position and θp their temperature. Velocity and temperature at
particle position are obtained by sixth-order Lagrange polynomials. Time advancement
for the Lagrangian tracers is achieved using a fourth-order Runge–Kutta scheme.

As discussed above, numerical simulations are carried out in a laterally opened
(along x and y) domain configuration, which is similar to that considered in the theory
(where the vertical direction is not homogeneous, because of the buoyancy, while
the other two are homogeneous and isotropic). Experiments must be performed in
a closed cell and effects due to anisotropy may appear also in the other directions.
Moreover, passive tracers in numerical computations are free to explore the entire
domain, whereas the smart particle, due to its dimensions, cannot directly access the
tiny boundary layer region. The comparison between experiments and simulations is
precisely aimed at highlighting these differences, which might have some influence on
the flow statistics, as will be discussed in the following.

3. Lagrangian measurements
To follow accurately the flow, the capsule and fluid density are carefully matched

within 0.005 %. This is the main difficulty of the experiment. In figure 3 we plot the
skewness of the distributions of the horizontal and vertical positions while varying
the mean temperature of the cell. Due to the flow symmetry, we assume that the
particle ideally matches the fluid density when both horizontal and vertical skewness
are close to zero, which happens for a temperature of 37.5 ◦C. If the mean temperature
is shifted by a few tenths of degrees Centigrade, symmetry is broken while the particle
becomes less neutrally buoyant. The effect is more dramatic on the horizontal position.
To explain it, we assume a particle denser than the fluid. When travelling along the
top plate, it is easily advected by cold plumes: the particle goes downwards earlier
during the travel. When travelling along the bottom plate, it is more difficult for a
plume to advect the particle: it goes upwards only when reaching the corner of the
cell. As a consequence, the average horizontal particle trajectory is shifted close to the
plate region where hot plumes rise. This reasoning holds also for a less-dense particle
and explain the large skewness of the distribution of the horizontal position.

We performed measurements from 6 to 20.3 h. The cell is kept as horizontal
as possible to minimize the influence of additional flow parameters on the final
results. Although flow reversals may occur in horizontal cells, in the present
experiments we have never observed such events. Figure 4(a) shows an example of
a temperature measurement along the particle trajectory. In this case, Ra= 5.0× 1010

while the acquisition time is 6 h. Globally, the particle describes a loop in the
counterclockwise direction (the rotation direction can change for other acquisitions).
Its mean speed is 1 cm s−1. Close to walls and plates, its speed is typically
2–3 cm s−1.

As stated previously, the thermal boundary layer thickness can be computed as

δθ = H
2Nu

, (3.1)
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FIGURE 3. (Colour online) Skewness of the distribution of the vertical and horizontal
positions of the smart particle versus the temperature of the cell centre.
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FIGURE 4. (Colour online) (a) Flow temperature along the particle trajectory at Ra =
5.0×1010, 6-h acquisition. (b) Corresponding Lagrangian vertical Nusselt NuL

z . Trajectories
are undersampled for visibility purposes.

which corresponds to a thickness of less than 1 mm for the considered Rayleigh
numbers, which is not directly accessible to our particle. This is why we do not
observe large temperature gradients close to the top and bottom plates. However, we
clearly detect hot and cold jets near the right and left walls, respectively. Temperature
fluctuations in the cell (outside the boundary layers) are typically 1 ◦C and are likely
due to advection by plumes. Nevertheless, joint measurements of temperature and
trajectory give indications that the particle movement is more influenced by the mean
wind than by plumes, except close to the vertical walls, inside hot and cold jets.
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The reason for this observation could be the size of the smart particle being larger
than the typical size of the thermal plumes, which in turn scales with the thermal
and boundary layer thickness (≈1 mm). Note that a smaller particle could be more
influenced by plumes than by the mean wind.

From the knowledge of the velocity and temperature of the particle, we can compute
the Lagrangian thermal flux. We use a normalized vertical Nusselt number (Ching
et al. 2004; Grossmann & Lohse 2004):

NuL
z = 1+ H

κ1T
(T(t)− 〈T(t)〉t)vz(t), (3.2)

where T(t) is the instantaneous temperature measured by the particle, 〈T(t)〉t is its
mean along the trajectory and vz(t) is its vertical velocity. Figure 4(b) shows the NuL

z
along the trajectory. Most of the vertical thermal transfer is symmetrically concentrated
in the hot and cold jets, corresponding to plumes where T(t)−〈T(t)〉t and vz(t) have
the same sign. The average vertical heat flux along the trajectory reaches 〈NuL

z 〉t= 138.
We observe very intense positive events in the jets (up to 30 times larger than the
average) but only few, small negative events. This point will be detailed in § 5.1.

4. Pseudo-Eulerian maps
4.1. Methodology and PIV measurements

The velocity distribution in the central region of the convection cell is close to that
of a solid body rotation, a situation that hinders the particle from exploring this
region easily. To obtain a correct resolution of the central region we performed very
long experiments. With more than 20-h measurement, we have enough data in the
whole cell (including the central zone) to compute pseudo-Eulerian maps of several
quantities. To do this, we divide our cell in 1.04 cm × 1.04 cm squares and we
compute the average of the considered quantity in each cell. The accuracy of the
method has been evaluated through a comparison of the pseudo-Eulerian velocity
field (figure 5(a)) with the results obtained by PIV measurements in the same cell
(figure 5(b)) at similar Rayleigh numbers. We performed PIV measurements with
a 1.2 W, Nd : YVO4 laser. Flow was seeded with Spherical 110P8 glass beads of
1.10 ± 0.05 in denseness and of 12 µm average diameter. Twelve-hour acquisitions
with one picture pair (frequency acquisition 20 Hz) every 10 s were used to compute
mean velocity fields. We used CIVx (Fincham & Delerce 2000) free software for
analysis. Several passes are applied to picture pairs. For the first one, we cut out
pictures in 30 × 30 pixels2 elementary boxes with 50 % overlap. Search zones was
one and a half larger.

The velocity magnitude obtained from PIV is in good agreement with observations
from Xia et al. (2003) for a similar cell. The small differences of the flow structure
between PIV and pseudo-Eulerian map are linked to the imperfect sampling of
space by the smart particle. Moving inside the cell, the smart particle samples more
frequently specific regions of the flow rather than others, with possible effects on the
Lagrangian statistics compared with Eulerian ones. This is the case of the bottom-left
corner (z ≈ 100 mm and x ≈ 10 mm) and of the top-right corner (z ≈ 320 mm
and x ≈ 400 mm). The velocity measured with the smart particle is slightly lower
than that obtained with the PIV technique, probably due to at least two effects: a
small difference in the Rayleigh number and particle size. For particles with the
same density of the surrounding fluid and moving in a turbulent flow, experimental

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.190


664 O. Liot and others

100

200

300

0

100

200

300

2.5400(a) 400(b)

z 
(m

m
)

z 
(m

m
)

0 100 200 300 400

x (mm)
0 100 200 300 400

x (mm)

0.5

0

1.0

1.5

2.0

FIGURE 5. (Colour online) (a) Pseudo-Eulerian field of the velocity magnitude from
Lagrangian data, Ra = 5.0 × 1010. (b) Field of the velocity magnitude obtained by PIV,
Ra= 5.6× 1010.

(Qureshi et al. 2007a, 2008) and numerical (Lucci, Ferrante & Elghobashi 2011)
studies show that the size of the particles has a slight effect on the velocity dynamics
but a strong effect on the acceleration variance (not shown here). This is consistent
with our observations on the mean velocity field. Moreover, and contrary to the PIV
measurement, we observe a minimum of the magnitude of the velocity near the
corners, where a vertical velocity becomes a horizontal velocity. This could be due
to the particle size and stiffness (small deformability). In the corners, streamlines are
deflected and the smart particle filters the flow at a characteristic spatial and temporal
scale. As a consequence, the change of direction is much more complex for the smart
particle than for the fluid, which can lead to a deceleration of the particle in these
regions.

A further explanation for the lower velocity measured by the smart particle
compared with PIV could be the time response of the particle to temperature
fluctuations. We can estimate the time response of the particle by

tr ∼ d2

κ
, (4.1)

where d2 is a characteristic length. The response time of the 1 mm thick PVC
mobile cover is tp

r ∼ 13 s. If we assume that the smart particle is filled with air, the
corresponding response-time is ti

r ∼ 19 s. These values of the response time are close
to the time the smart particle spends to travel from the top to the bottom plate and
vice versa. Consequently, in some regions of the flow, the smart particle could have a
slightly different denseness from the fluid which could have a small influence on the
velocity measured by the smart particle. Nevertheless, as we can observe in figure 5,
the particle motion is very similar to the fluid one.

We can also estimate the Stokes number of the smart particle. For the case of
neutrally buoyant particles with a size larger than the Kolmogorov length scale η,
we can estimate the Stokes number by Qureshi et al. (2008) and Xu & Bodenschatz
(2008):

St= d4/3
p

12η4/3
, (4.2)
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FIGURE 6. (Colour online) Pseudo-Eulerian (a) temperature field and (b) root mean square
of the difference between the temperature and the temperature average along the trajectory.
Measurements at Ra= 5.0× 1010.

where dp is the particle diameter. The Stokes number turns out to be about 12. Some
experimental (Qureshi et al. 2007b, 2008) and numerical (Lucci et al. 2011) works
show that for neutrally buoyant particles, the Stokes number does not have a strong
effect on the velocity dynamics. However we will observe some finite-size effects,
especially on spectra.

4.2. Temperature and thermal flux maps
Our Lagrangian method can be efficiently used to obtain pseudo-Eulerian map of
temperature in the whole cell. To the best of the authors’ knowledge, this is the first
Lagrangian experiment giving the whole temperature map for this range of Rayleigh
and Prandtl numbers. The pseudo-Eulerian temperature field is plotted in figure 6(a).
We observe that the flow is homogeneous in the bulk, whereas hot and cold jets
dominate the regions close to the walls. Deviations of temperature from the bulk value
are in particular seen in the top-left and bottom-right corners and are likely due to
the effect of buoyant plumes driving the smart particle along the vertical walls. As
suggested by Scagliarini, Gylfason & Toschi (2014), the mean wind acts stabilizing
the boundary layers and reducing the plume emission activity. Moreover, the intense
mixing makes the plume temperature close to the bulk temperature along the plates but
in the top-left and bottom-right corners (where the mean wind is blocked and mixing
cannot be observed).

This situation is well represented in figure 6(b), where we observe large fluctuations
in the corners but fewer fluctuations in the vertical jets and close to the plates.
The observed slight asymmetry can be explained by a non-perfect particle-to-fluid
density matching. With velocity and temperature joint measurements, this is the only
Lagrangian experimental technique that gives a pseudo-Eulerian thermal flux map
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FIGURE 7. (Colour online) Vertical Nusselt NuL
z pseudo-Eulerian map at Ra= 5.0× 1010.

which is presented in figure 7. We observed that NuL
z is large inside both cold and

hot jets, where vertical velocity vz is large, and indicates that the spatial distribution
of NuL

z is chiefly influenced by plumes.

4.3. Velocity fluctuations
Now we discuss velocity root-mean-square (RMS) maps obtained by our smart
particle in connection with the results obtained by PIV measurements. From the
velocity pseudo-Eulerian maps, we can compute smooth velocity mean fields by
interpolation. This velocity value at each point (x, z) is indicated as vE

i (x, z) where
i = x, z is the horizontal or vertical velocity, respectively. Thus, in each square s
described above, for all (xs, ys) Lagrangian coordinates of the particle trajectory
included in the square we have

vRMS
i,s =

√
〈(vL

i (xs, zs)− vE
i (xs, zs))2〉s, (4.3)

where vL
i (xs, zs) represents the Lagrangian velocity events inside the considered square

and 〈.〉s is the average of these events. This is similar to the velocity RMS computed
from PIV measurements for all (x, y) in the cell:

vRMS
i (x, z)=

√
〈(vi(x, z, t)− 〈vi(x, z, t)〉t)2〉t. (4.4)

In these two definitions, both vE
i (x, z) and 〈vi(x, z, t)〉t represent the mean flow.

Figure 8 compares vertical (a,c) and horizontal (b,d) velocity fluctuations from the
smart particle (a,b) and from PIV (c,d). First, we note that RMS values recorded by
the particle are slightly smaller compared with those evaluated by PIV (excepted in
the top-right and bottom-left corners). This is mainly due to the filtering effect played
by the particle on small-scale fluctuations. This is consistent with an experimental
study in a Von-Kármán flow (Machicoane et al. 2015). The velocity RMS of large
particles decreases slightly when their diameter increases relatively to the integral
scale. There is also a secondary effect due to a small difference in the value of Ra
(Ra= 5× 1010 for the Lagrangian particle and Ra= 5.6× 1010 for PIV measurements).
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FIGURE 8. (Colour online) (a) Vertical velocity RMS pseudo-Eulerian map; (b) horizontal
velocity RMS pseudo-Eulerian map; (c) vertical velocity RMS obtained by PIV;
(d) horizontal velocity RMS obtained by PIV. Here Ra= 5.0× 1010 for pseudo-Eulerian
maps and Ra= 5.6× 1010 for PIV fields.

The two regions characterized by the largest fluctuations (where Lagrangian velocity
fluctuations can be up to 50 % more intense than those measured by PIV) are those
where vertical plumes impinge on the horizontal walls and induce large turbulence
patches. In our Lagrangian measurements, we also observe significant fluctuations
along the horizontal plates: these fluctuations, which are not visible in the PIV
measurements, are due to particle rebounds on the horizontal walls. To estimate their
influence on the pseudo-Eulerian velocity RMS map we propose a simple model. A
fluid particle impinging on a wall follows faithfully the flow streamlines and converts
instantaneously its vertical velocity into a horizontal one. By contrast, the smart
particle is characterized by a finite size and by a large stiffness. When it approaches
the wall, its trajectory will not adapt immediately to the flow streamlines and the
particle will hit the wall. If we assume an elastic rebound with the wall, a positive
vertical velocity will become a negative one and vice versa. Due to this rebound, the
RMS of the velocity measured by the smart particle will be twice the size of that
characterizing the fluid. Since we observe one particle rebound at the wall every two
large-scale turnovers, the increase of the velocity RMS is of the order of 50 %. This is
exactly the increase of vertical velocity RMS observed between pseudo-Eulerian and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.190


668 O. Liot and others

1–1 0

2 h
16 h

20.5 h
4 h

8 h

0–10 –5 5 10

10–1

10–2

10–3

10–4

10–5

10–6

10–1

100

10–2

10–3

10–4

10–5

10–6

(a) (b)

FIGURE 9. (Colour online) (a) PDF of the temperature fluctuations T − 〈T(t)〉t at Ra=
5.0 × 1010 for different measurement times. (b) Comparison between experimental and
numerical results of the PDF of temperature fluctuations, T − 〈T(t)〉t, normalized by the
corresponding standard deviation. Solid line represents experimental data whereas dashed
lines correspond to DNS data at different Ra.

Eulerian maps. Although these rebounds have an influence on the vertical-velocity
statistics in the corners, the effect on the vertical Lagrangian Nusselt number is
negligible. These corners are indeed characterized by a local temperature that is close
to the mean one (see figure 6(b)). Consequently, seeing the NuL

z definition (3.2), this
will weakly affect the vertical heat flux.

5. Flow statistics
5.1. PDFs

In figure 9(a) we show the PDF of the temperature fluctuations recorded by our
instrumented particle at Ra = 5 × 1010 for different measurement time (t = 2, 4,
8, 16, 20.5 h). We note that the shape of the PDF becomes increasingly smooth
for increasing measurement times. Present results based on 20.5 h measurements
substantially improve previous results of Gasteuil et al. (2007) obtained with a 2-h
acquisition. Nevertheless, the global shape is conserved, and confirms the overall
quality of the results by Gasteuil et al. (2007). The nearly symmetric shape of the
PDF is a further signature of the quality of the results (good buoyancy neutrality).
However, there is a small asymmetry of the shape of the temperature PDF, whose
skewness is −0.5. This effect is due to a very small buoyancy of the smart particle.
The skewness of the distribution of the horizontal and the vertical position are
respectively 0.06 and 0.03. By looking at figure 3, it corresponds to an error of about
0.05 ◦C above the isodensity temperature (equivalent to an error of 0.002 %). Since
we have a buoyancy-driven flow, the smart particle can be very sensitive to small
density differences. In the present case, the particle stays a little longer in the top-left
corner, where it likely measures cold temperatures rather than hot ones.

The PDF has sharp exponential tails, in agreement with previous Eulerian
measurements (Belmonte, Tilgner & Libchaber 1994) performed far from the boundary
layers and using air at Ra = 4.8 × 107. However, tails are wider due to the passage
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of the particle in hot and cold jets. This suggests that Eulerian measurements in
Rayleigh–Bénard convection are delicate: since the flow is largely inhomogeneous,
the position at which the measurement is taken is fundamental. The generalization of
the behaviour of the entire cell based on a local measurement requires a lot of care. In
figure 9(b), we compare experimental results of the PDF of temperature fluctuations
obtained in the 20.5-h measurement with our results from numerical simulations at
different Rayleigh numbers. Results are normalized by the corresponding temperature
standard deviation, std(T). Even though numerical experiments are carried out at
smaller Rayleigh number, the agreement between experiments and simulations is
satisfactory when Ra > 108. Deviations between experimental and numerical results
are observed only for (T − 〈T(t)〉t)/(T − 〈T(t)〉t)RMS > 3, hence highlighting the
accuracy of the present experiments. Indeed, our numerical simulations can be seen
as an ideal experiment, since we sample the flow field with massless (pointwise)
fluid tracers (no size/inertia effect of the Lagrangian probes). Within this framework,
the difference between experiments and simulations can give indications on the effect
of the size of our smart particle: due to the finite size, our smart particle acts as a
filter for small/short space/time scale events, and numerical experiments show larger
tails. It is worth noting that the particle does not visit all the regions of the cell,
notably close to walls, and that might be in principle one of the reason of such
difference. However, at sufficient high Ra (>109) boundary layer is very thin and
figure 9 together with similar comparisons for the velocity (not presented here) show
that the difference is always confined to the tails of distributions.

As mentioned previously, with our instrumented particle we are able to record
simultaneously velocity and temperature, hence we can compute the local value of
the vertical Nusselt number NuL

z . Figure 10(a) shows the histogram of the vertical
Nusselt for three different Rayleigh numbers. The most probable value is NuL

z = 0,
corresponding to the time during which the particle has a horizontal trajectory or is
advected by the mean wind far from the walls (hence, far from plumes), where no
significant vertical heat flux is observed. Interestingly, there is a larger positive tail,
which is the signature of near-wall intense events (Gasteuil et al. 2007). When Ra
increases, the shape of the histogram does not change, but we observe more intense
events at higher Ra. In figure 10(b) we compare our experimental and numerical
results of PDF(NuL

z ). Results are normalized by their corresponding standard deviation,
std(NuL

z ). We observe a very good agreement between experiments and simulations
over the entire range of measured NuL

z /std(NuL
z ), for Ra > 108. Deviations are seen

only for extreme and rare events, NuL
z /std(NuL

z ) > 7, due to the filtering effect of the
smart particle size on velocity/temperature fluctuations.

5.2. Spectral analysis
We conclude our discussion with a spectral analysis of velocity and temperature
Lagrangian time series recorded at different Rayleigh numbers. Let us recall some
scalings in stratified flows based on Kolmogorov similarity theory (Monin & Yaglom
2007). In the inertial range, dimensional considerations suggest

Eu(k)= ε2/3k−5/3Ψu(k/LBO), Eθ(k)= εθε−1/3k−5/3Ψθ(k/LBO), (5.1a,b)

where εθ = κ〈∇θ 2〉 is the temperature dissipation, and Ψi are appropriate universal
functions. For isotropic turbulence Ψi ∼ 1 and the scalings reduce to Eu(k) ∼ k−5/3,
Eθ(k)∼ k−5/3. It is worth emphasizing that these scalings are local, and thus typically
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FIGURE 10. (Colour online) (a) PDF of the vertical thermal flux NuL
z for different

Rayleigh numbers, 6-h measurements. (b) Comparison of the vertical Nusselt PDF NuL
z

normalized by the standard deviation. Solid line represents experimental data whereas
dashed lines correspond to DNS ones.

apply to Eulerian measurements. Assuming a Lagrangian perspective, these scalings
are influenced by sweeping and become Eu( f )∼ f−2, Eθ( f )∼ f−2, in a local moving
frame of reference, as it can be found by dimensional arguments (Monin & Yaglom
2007). In non-homogeneous flows the situation is even more complex, since multiple
scales can play a role and different scalings can be observed. Possible scalings above
the Bolgiano–Obukhov length are

Eu(k)∼ ε2/5
θ (gα)4/5k−11/5, Eθ(k)∼ ε4/5

θ (gα)−2/5k−7/5. (5.2a,b)

These scalings have been recently observed in Rayleigh–Taylor turbulence (Boffetta
et al. 2009), upon assumption of a correspondence between the box length in the
horizontal direction and the Bolgiano length (which is otherwise a priori unknown).

Figures 11(a,b) and 12(a) show the frequency spectra (for 6-h acquisitions) of
horizontal velocity, vertical velocity and temperature, respectively. We observe three
distinctive characteristics. First, a peak appears at a frequency f ' 1.25 × 10−2 Hz
(80 s), which is consistent with the typical large-scale turnover time for each Rayleigh
number. Yet, when Ra increases, the spectrum shifts upwards, indicating a more
intense dynamics. Finally, a cut-off occurs at f ' 0.15 Hz for vertical velocity and
at f ' 0.5 Hz for temperature, whereas the cut-off is less visible for the horizontal
velocity. These cut-offs are probably due to finite-size effect. We could estimate
the cut-off frequency as the turbulence timescale (obtained dimensionally) at the
particle size tc−o ∼ d2/3

p ε−1/3. It leads to a cut-off frequency of about 0.2 Hz which
is consistent with the observed one. For the temperature, the cut-off appears for a
higher frequency because of the lower size of the sensors.

From the proposed scaling laws (lines in figures 11 and 12) we note some
interesting features. A f−2 power law characterizes the vertical velocity, whereas
a f−2.5 power law characterizes the horizontal velocity. Compensated spectra (by f−2

and by f−2.5) are also shown to indicate the scaling properties in a more convincing
way, in figure 13. In particular, the plateau and the cut-off become well visible
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FIGURE 11. (Colour online) (a) Horizontal and (b) vertical velocity spectra at different
Rayleigh numbers.
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FIGURE 12. (Colour online) (a) Temperature spectra at different Rayleigh numbers.
(b) Same temperature spectra compensated by f−2.5.

and define clearly the inertial range for both components. It is important to note
here that, even though compensated spectra appear rather convincing, the scaling
exponents should not be considered as exact because of statistical errors and possible
lack of resolution. A similar flow anisotropy has been also observed by Ouellette
et al. (2006) in a Von-Kármán flow. From the above observations, we can infer the
following physical interpretation. The particle has a large vertical velocity when it
enters hot and cold jets along the lateral walls, whereas it has a large horizontal
velocity when it is driven by the mean wind along the top and bottom walls. Since
the hot and cold jets are characterized by more intense fluctuations, the corresponding
spectra have a weaker slope. Upon substitution of k = f /u in (5.2), we obtain the
Bolgiano scaling Eu( f ) ∼ f−11/5, in which the frequency f describes the global
dynamics observed from a fixed frame. Note that this scaling is different from that
obtained in a frame moving with the fluid. In this case, from dimensional arguments,
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FIGURE 13. (Colour online) (a) Horizontal and (b) vertical velocity spectra compensated
by f−2.5 and f−2, respectively, for different Rayleigh numbers.

we find Eu( f )∼ f−4. This indicates that the velocity scalings ( f−2 and f−2.5) observed
at large scale are reasonably consistent with the Bolgiano global scaling. After the
cut-off, a f−4 power law appears for both spectra, which is consistent to the stochastic
model of Sawford (1991). Concerning the temperature spectra, we observe a f−2.5

power law with very visible plateaus on the compensated spectra figure 12(b). Note
that due to the anisotropic and inhomogeneous flow condition we do not find a f−2

slope, as expected for a passive scalar in local isotropy conditions. Yet, temperature
cannot be considered as a pure passive scalar, in particular inside hot and cold jets.
Unfortunately, at present we do not have a quantitative explanation for this power
law. It probably stems from the mixing of different scalings due to the Lagrangian
measurements. Results from numerical simulations (not shown here) differ from the
present experimental results due to the different flow configuration: our simulations
are run in a domain with top and bottom walls but no side walls, whereas experiments
are run in a square enclosure. The absence of a characteristic confinement length in
the simulations hinders the possibility of observing a clear scaling at large scales.

6. Conclusion
In this work, we have used an improved version of our smart particle to perform

new experimental measurements in Rayleigh–Bénard convection at different Rayleigh
numbers (up to Ra= 6.2× 1010). To corroborate the experiments and isolate possible
finite-size effects, we have also carried out DNS of Rayleigh–Bénard turbulence with
Lagrangian tracking of massless tracers.

In the experiments, due to the extended autonomy of the particle, we are able to
sample velocity and temperature at the particle position for long periods of time, up to
20 h. This long data recording allows not only to acquire long time series describing
the temporal evolution of a turbulent flow, but also to build pseudo-Eulerian maps of
the flow field and to compute converged PDF and spectra. The particle trajectory is
driven by the interaction between the mean large-scale circulation (along the horizontal
walls) and the thermal plumes generating vertical hot and cold jets. Velocity and
temperature fluctuations are essentially concentrated in the bottom-right and top-left
corners, and denotes strong turbulence events in these regions.
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Upon comparison between experimental and numerical results, we are able
to demonstrate the accuracy of our experimental technique in recovering all of
the fundamental statistical features of the flow. The same comparison allows a
quantification of the finite-size effect of the smart particle, which acts filtering out
the smallest turbulent scales. This can be appreciated by comparing the tails of the
pdf of velocity/temperature fluctuations. Yet, simulations and experiments agree on
the description of the large scales of the flow.

We finally computed velocity and temperature frequency spectra. Interestingly,
horizontal and vertical velocity spectra exhibit different scaling ( f−2.5 and f−2,
respectively), as a consequence of the strong flow anisotropy in the vertical and
horizontal directions. For temperature, we observe a steep f−2.5 scaling, likely
representing the hybrid passive and active scalar behaviour of temperature.

A further study of these observations will be the subject of a future paper. As the
flow is dominated by a mean vortical structure, we can remove it from the recorded
signal to study the behaviour of turbulence fluctuations and the interactions between
fluctuations and mean structure along the line proposed by Machicoane & Volk (2016)
for Von-Kármán flows.
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