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We introduce a finite element model for neutrally buoyant particle suspensions
of cylinders at zero Reynolds number and infinite Péclet number in the purely
hydrodynamic limit, which allows us to access a high-accuracy fluid velocity field
at any time during the simulation. We use the diffusive strip method to characterize
the development of the concentration field in the fluid phase of sheared suspensions
from initial thin filaments, and characterize the structures that form with their fractal
dimension. We find that the growth of the fractal dimension of the filaments scales
with the increase of mean square displacement in the fluid phase. Further, we measure
the concentration distribution of tracers in the fluid phase, as well as the shear-induced
self-diffusion coefficient in both the solid phase and the fluid phase. We demonstrate
that the shear-induced self-diffusion coefficient is slightly larger in the fluid phase
at infinite Péclet number. Finally, we investigate enhanced mass diffusivity in the
fluid phase by systematic measurements of the shear-induced self-diffusion coefficient
in the fluid phase for a wide range of fluid tracer Péclet numbers. We find that
the functional dependence Ds/D = 1 + βφαPeζ (where Ds is the shear-induced
self-diffusion coefficient, D is the molecular diffusivity and φ is the particle volume
fraction) fits the observations fairly well. We measure the constants β = 2.98± 0.39,
α = 1.61± 0.26 and ζ = 0.900± 0.031.
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1. Introduction
Particulate flows are central in a wide variety of fields, including geology (Yamato

et al. 2012; Glazner 2014), geophysics (Shen, Hibler & Leppäranta 1987), biology
(Freund 2014), industry (Meakin et al. 2013) and technology (Stroock et al. 2002;
Whitesides 2006). Particle suspensions in simple shear have been extensively studied
in the last decades. One topic of great interest is shear-induced self-diffusion. For
Brownian suspensions (finite particle Péclet number), one can expect net displacement
perpendicular to the direction of shear even for single particles. In non-Brownian
creeping flows (Reynolds number → 0), however, single particles follow streamlines
and do not translate perpendicular to the shear direction, and two smooth circular
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particles follow completely deterministic trajectories with no net displacement
perpendicular to the shear direction over long times. Despite this symmetry for
smooth circular particle pairs, the hydrodynamic interaction between several particles
leads to translation of particles normal to the direction of shear (Leighton & Acrivos
1987a). This translation takes the form of random walks for individual particles, but
they are in principle reversible.

In practice, strongly sheared suspensions lose this reversibility due to irreversible
non-hydrodynamic interactions such as particle contacts (Da Cunha & Hinch 1996;
Arp & Mason 1977) and friction (Seto et al. 2013). Arp & Mason (1977) suggested
that irreversible trajectories originate from particle contacts. Da Cunha & Hinch (1996)
further demonstrated that irreversible trajectories occur even for pairs of particles –
if they are rough. More recently, Pham, Butler & Metzger (2016) showed that, in
periodically sheared suspensions, there is a critical strain amplitude for the onset of
irreversible trajectories that correlates with particle roughness.

In this paper, we study the purely hydrodynamic limit, where there are no particle
contacts in the system by definition. Even in the absence of particle contacts, where
the system is in principle deterministic and reversible, it is chaotic (Pine et al.
2005; Corte et al. 2008) and shear-induced self-diffusion occurs (Drazer et al. 2002;
Gaspard 2005).

The first experimental constraints on shear-induced self-diffusivity were reported
by Eckstein, Bailey & Shapiro (1977), and was followed by an improved study by
Leighton & Acrivos (1987a). They used a single radioactively marked particle in a
particle suspension in a Couette device to measure self-diffusion in the velocity
gradient direction, and found a concentration dependence of the shear-induced
self-diffusion coefficient Ds. They also argued that Ds scales with the particle radius
r and the shear rate γ̇ as Ds/γ̇ r2.

Since the development of Stokesian dynamics (Brady & Bossis 1988) as well as
accelerated Stokesian dynamics (Sierou & Brady 2001), a large number of numerical
studies have been performed to quantify the self-diffusion coefficient of sheared
suspensions (e.g. Marchioro & Acrivos 2001; Sierou & Brady 2004; Leshansky &
Brady 2005), and good agreement between numerical and experimental data has been
demonstrated. The effects of walls have also been studied, and it has been found that
the shear-induced diffusion near the boundaries is anomalous (Yeo and Maxey 2010).

While studies in the past decades have set constraints on shear-induced self-
diffusion of particles in the velocity gradient direction, in the direction of shear and
in the vorticity direction (Breedveld et al. 2002; Sierou & Brady 2004) for bidisperse
suspensions (Chang & Powell 1994) and for non-spherical particles (Rusconi & Stone
2008), as well as permeable particles (Abade et al. 2011), few studies have measured
the shear-induced self-diffusivity of the fluid phase surrounding the particles. One
such study is the experiments carried out by Breedveld et al. (1998). They used
two different particle sizes with a diameter ratio of approximately 10 (tracers and
particles) and measured both the tracer and the particle diffusivity, and found that
the tracer diffusivity was around 0.7 times the particle diffusivity. A very recent
experiment of fluid dispersion in periodically sheared suspensions by Souzy, Pham &
Metzger (2016) reports the opposite; that the dispersion coefficient in the fluid phase
is slightly larger than in the solid phase.

Several studies have been performed on enhanced heat and mass transport across
sheared suspensions (e.g. Wang & Keller 1985; Metzger, Rahli & Yin 2013b; Souzy
et al. 2015). Wang & Keller (1985) measured the enhanced mass diffusion and
found Ds/D ∼ Pe0.89, where Ds is the measured diffusivity and D is the molecular
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diffusivity, for φ ∼ 0.4 at large Pe. Metzger et al. (2013b) performed experiments on
neutrally buoyant particle suspensions in a Couette device where they measured the
heat transfer enhancement as the suspension was sheared at low Reynolds numbers.
They found a linear relationship between the increased thermal diffusivity and the
particle volume fraction, and related it to the self-diffusivity of the particles. Souzy
et al. (2015) developed the experiment further, and investigated the dispersion of a
thin layer of dye (rhodamine) initially placed close to the boundary. Interestingly,
they observed that the fluid phase is superdiffusive close to the boundary, and they
also observed chaotic mixing patterns as the dye was transported into the bulk by
rotating particles.

Several theoretical approaches to enhanced diffusivity exist (e.g. Leal 1973; Nir &
Acrivos 1976; Goldshmit & Nir 1989). Leal (1973) studied the effective conductivity
of a dilute suspension of spherical drops at low particle Péclet numbers, and in the
case of rigid particles they found enhanced mass diffusion Ds/D∼φPe3/2 in the dilute
limit for small Péclet numbers (Pe� 1). Nir & Acrivos (1976) studied the limit of
large Péclet numbers (Pe� 1), and found Ds/D∼ φPe1/11. Nir & Acrivos also found
the expression Ds/D ∼ φ log(Pe)2 for cylinders in simple shear. Wang et al. (2009)
proposed a different theoretical model, which in the bulk is Ds/D = 1 + PeDH/D,
where DH is the hydrodynamic diffusivity, which is an increasing function of φ.

The role of particle rotation rates in enhanced transport properties in sheared
suspensions has been explored by several authors (e.g. Keller 1971; Nadim, Cox &
Brenner 1986; Deslouis, Ezzidi & Tribollet 1991; Souzy et al. 2015, 2016). The idea
was first introduced by Keller (1971). An explicit calculation for cylinders was done
by Nadim et al. (1986). They found that, for a periodic suspension of fixed rotating
cylinders, the transverse diffusivity of fluid tracers in the suspension is functionally
dependent on the rotation rate of the cylinders.

The aim of this paper is to study the structures that form in the fluid phase, as
well as the enhanced mass transport in sheared suspensions. In order to study this,
we introduce a finite element model for rigid particles in Stokes flow. This provides
us with the full solution of the highly accurate fluid velocity and pressure fields, as
well as particle velocities at every time step, which makes it a viable method for
studies of structures in the fluid phase as well as enhanced transport properties. The
particle Péclet number is assumed to be infinite, but we introduce a finite fluid tracer
Péclet number Pe= γ̇ r2/D (non-zero molecular diffusivity D). First, we investigate the
patterns of mixing in the fluid phase at finite Péclet numbers using the diffusive strip
method, which allows us to investigate the developing concentration field originating
from initially thin filaments of fluid tracer particles. We characterize the structures
forming using the fractal dimension found from box counting, and show that it scales
with the mean square displacement of fluid tracer particles in the fluid phase. We
further quantify mixing by measurements of the self-diffusion coefficient for both the
solid and the fluid phase using fluid tracer particles. At infinite Péclet numbers, we
find that the self-diffusion coefficient of the fluid phase is larger than in the solid
phase, which is probably related to the rotational degree of freedom of the particles.
For finite Péclet numbers, this difference is further amplified, and we measure the
mass transport enhancement Ds/D, which we find to fit the functional form Ds/D=
1+ βφαPeζ , with β = 2.98± 0.39, α = 1.61± 0.26 and ζ = 0.900± 0.031.

The paper is structured as follows. In § 2 we introduce an adaptive unstructured
finite element method for modelling two-dimensional suspensions at zero Reynolds
number, and we discuss the discretization and system set-up in § 3. We then quantify
the structures of mixing in the fluid phase in § 4, before we quantify mixing through
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concentration distributions in § 5, and through the shear-induced self-diffusion
coefficient for both phases and at finite Péclet numbers in § 6. We sum up and
conclude in § 7.

2. Model description
Numerous numerical techniques have been used to study particle suspensions.

Among them we find dissipative particle dynamics (Hoogerbrugge & Koelman 1992),
the lattice Boltzmann method (Ladd & Verberg 2001) as well as the Lagrange
multiplier fictitious domain method (Glowinski et al. 1999) and the finite element
method (Maury 1999). The most widely used technique for suspensions at zero
Reynolds number is Stokesian dynamics (Brady & Bossis 1988; Sierou & Brady
2001). In this paper, we use a two-dimensional finite element method for rigid
non-Brownian fully lubricated particles in Stokes flow (i.e. zero Reynolds number
and infinite Péclet number). The implementation is based on MILAMIN (Dabrowski,
Krotkiewski & Schmid 2008), which is an efficient open-source implementation of a
finite element model Stokes solver in MATLAB; we have used this model previously
to investigate the transient nature of suspensions and the statistics of close particle
encounters (Thøgersen, Dabrowski & Malthe-Sørenssen 2016).

We solve the incompressible Stokes equations. Conservation of mass yields

∇ · v = 0, (2.1)

where v is the velocity field. Conservation of momentum yields

∇ · σ = 0, (2.2)

where 0 ensures a neutrally buoyant suspension. Here σ is the stress tensor,

σ =−pI + T , (2.3)

where p is the pressure, I is the identity matrix and

T =µ(∇v + (∇v)T) (2.4)

is the deviatoric stress tensor.
We introduce an approximation space through a set of basis functions for velocity

and pressure, which are usually called shape functions. We use a mixed formulation
finite element method and the seven-node Crouzeix–Raviart triangular element
(Crouzeix & Raviart 1973). We use Ni to denote continuous shape functions for
velocity, and Πi for linear discontinuous shape functions for pressure. Approximations
of velocities and pressure marked with ˜ are then

ṽx(x, y)=
nnod∑
i=1

Ni(x, y)vx,i, (2.5)

ṽy(x, y)=
nnod∑
i=1

Ni(x, y)vy,i, (2.6)

and

p̃(x, y)=
np∑

i=1

Πi(x, y)pi, (2.7)
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where nnod and np are the number of velocity and pressure degrees of freedom,
respectively. In Voigt notation, we define the following quantities at the element level:

Bel =



∂N1

∂x
0 · · ·

0
∂N1

∂y
· · ·

∂N1

∂y
∂N1

∂x
· · ·

 , (2.8)

Del =µ


4
3 − 2

3 0

− 2
3

4
3 0

0 0 1

 , (2.9)

Πel =
(
Π1 Π2 Π3 · · ·

)
, (2.10)

Cel =
(
∂N1

∂x
∂N1

∂y
· · ·
)
. (2.11)

The weak formulation of Stokes equations can then be written through the following
matrices:

Ael =
∫∫

Ω

BT
elDelBel dx dy, (2.12)

Qel =
∫∫

Ω

ΠelC
T
el dx dy, (2.13)

and
Mel =

∫∫
Ω

ΠelΠ
T
el dx dy, (2.14)

where the integrals over the domain Ω are carried out at an element level. Using
isoparametric elements, the elements are mapped onto a fixed reference frame in the
local coordinates [χ, ζ ]. The derivatives of the shape functions of global coordinates
x and y are found from the derivatives of the shape functions with respect to the local
coordinates: {

∂Ni

∂x
,
∂Ni

∂y

}
=
{
∂Ni

∂χ
,
∂Ni

∂ζ

}
J−1, (2.15)

where J is the Jacobian,

J =


∂x
∂χ

∂x
∂ζ

∂y
∂χ

∂y
∂ζ

 . (2.16)

The volume integrals over Ω are carried out using elementwise quadrature, which
yields sums over nip integration points located at [χk, ζk]:

Ael =
nip∑
k=1

Wk
(
BT

elDelBel|J|
)
[χk,ζk] , (2.17)
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Qel =
nip∑
k=1

Wk
(
ΠT

elCel|J|
)
[χk,ζk] , (2.18)

Mel =
nip∑
k=1

Wk
(
ΠT

elΠel|J|
)
[χk,ζk] , (2.19)

where |J| is the Jacobian determinant, and Wk are integration point specific weights.
Using a weighted residual Galerkin method yields a symmetric, albeit indefinite,
matrix equation. The full matrix assembly yields the global matrix equation, where
we use the augmented Lagrangian method and solve(

A+ λQM−1QT Q

QT 0

)(
v

p

)
=
(

g
h

)
. (2.20)

Here, we have introduced the general term [g,h] for the right-hand side after boundary
conditions have been applied. In practice,

QT(A+ λQM−1QT)−1Qp=QT(A+ λQM−1QT)−1g− h (2.21)

is solved iteratively for p using a preconditioned conjugate gradient method, with M
as the preconditioner. Since the pressures shape functions are discontinuous, M−1 can
be obtained at the element level, which improves performance significantly. For the
augmented matrix A+ λQM−1QT, we use Cholesky decomposition, which only has to
be carried out once, so that the incremental steps can be calculated efficiently using
the method of backward–forward substitution. The resulting incompressible velocity
field can be recovered from

v = (A+ λQM−1QT)−1(g−Qp). (2.22)

For a more detailed discussion about implementation and optimization procedures, we
refer to Dabrowski et al. (2008).

The rigidity of particles is enforced directly on the matrix level through a matrix
transformation. Using an operator P, we replace A, Q and g in (2.20) with

Ap = PTAP, (2.23)

Qp =QP (2.24)

and
gp = PT g, (2.25)

respectively. The resulting matrix equation is still symmetric and positive definite, and
ensures that the net forces and torques on the particles vanish. The particle motion is
fully coupled to the velocity field of the fluid phase, as we solve for all velocities
simultaneously. Note that there are no constraints on the particle shape, as long as
the particle centre of mass is given. The operator P can be found in appendix A.
Validation of the implementation can be found in appendix B.
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3. Discretization and system set-up
Direct modelling of particle suspensions is numerically challenging. In particular,

in finite element models with unstructured body-fitting meshes, particle overlaps is
a problem if we wish to run systems to very large strains. Increasing the resolution
between particles is crucial for accuracy, but, since particles can be arbitrarily close,
this may lead to unconstrained computational costs, and ill-conditioned systems of
equations due to numerous small elements in between close particle pairs. Still, mesh
refinement in particle apertures as well as a small enough time step make it possible
to run the system to large enough strains to address shear-induced self-diffusion for
particle volume fractions up to φ = 0.4, without introducing any artificial repulsive
forces between the particles.

In this paper we study the purely hydrodynamic limit without repulsive forces
between the particles. In order to achieve this, special care has to be taken over
spatial discretization as well as over time integration. We generate an unstructured
triangular mesh at every time step using ‘Triangle’ (Shewchuk 1996), and use
adaptive mesh refinement to ensure that there are at least two mesh elements between
all particle pairs at any time during the simulation. In this way we ensure that
the velocity field is accurately computed between close particles (quadratic velocity
profiles can be represented within a single triangular element). For time integration
we use the second-order Runge–Kutta method with time step γ̇ dt = 0.02. If particle
overlap is detected, the simulation is terminated, which for dense suspensions sets
limits on the maximum strains that we can reach. For statistical measures, it would
be beneficial to have one very long run rather than ensemble averaging over multiple
shorter ones, but due to computational challenges the latter is used throughout the
paper.

A strength of the finite element method is that it allows access to the velocity field
in the fluid at all time steps. This means that, in addition to measuring the shear-
induced self-diffusion of the solid phase, we can also measure the shear-induced self-
diffusivity of the fluid phase using the fluid velocity field. While we acknowledge that
particle shape can play a role in migration of particles (Rusconi & Stone 2008), we
limit this study to monodisperse discs.

The system set-up is demonstrated in figure 1. We use a simulation box with
dimensions L× L. The left and right boundaries are periodic (the rows and columns
of the corresponding periodic degrees of freedom are replaced by their sums in the
system of equations (2.20)), and we set up a shear rate γ̇ in the x-direction by
applying Dirichlet boundary conditions at the top and bottom boundaries: constant vx
and zero vy. The strain γ = γ̇ dt is then the dimensionless time in the system. We
initialize the system of particles using random sequential adsorption (Widom 1966),
with a small initial particle radius. We then increase the radius of the particles and
iterate until no overlaps are present using a steepest descent algorithm.

Figure 2 shows a snapshot of a simulation of N= 4096 particles at volume fraction
φ = 0.3 in simple shear. The presence of particles perturbs the velocity field and sets
up a non-zero velocity field in the y-direction, both for the particles and for the fluid.
In figure 2(c) one can see a low-velocity layer (y-component) close to the boundary
that is approximately two particle diameters thick. In bounded domains, one can also
find swapping trajectories (Zurita-Gotor, Bławzdziewicz & Wajnryb 2007) as well
as layered hexagonal structures close to the boundaries (Gallier et al. 2016). Layers
of low velocity close to the boundary introduce boundary effects on measurements
of mean square displacement as well as shear-induced self-diffusion that scale with
1/
√

N. Throughout this paper we will use the scaling with 1/
√

N when we look at
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x

y

FIGURE 1. (Colour online) Sketch of the system set-up. The left and right boundaries are
periodic, while the top and bottom boundaries have velocities in opposite directions to give
a background shear rate γ̇ . The particle configuration is a snapshot from a simulation of
N = 1024 particles at volume fraction φ = 0.4 at γ = 30.

measurements towards infinite system sizes. An alternative approach that was taken
by Gallier et al. (2014) is to perform measurements in the core region (mid 50 %) in
order to remove boundary effects. Figure 3 shows the probability density of the fluid
velocity field for systems of N = 1024 and φ ∈ [0.1, 0.4] equilibrated for γ̇ t = 20
from simulations of 4 × 104 fluid tracer particles integrated forward in time with
a second-order Adams–Bashforth method with time step γ̇ dt = 0.02. The boundary
effects have been removed by removing tracers in a band of width 4r near the top
and bottom boundaries.

4. Structure of mixing in the fluid phase

While we assume that the particle Péclet number is infinite, we assume that
diffusion of mass is present in the fluid phase. Recent experiments by Souzy et al.
(2015) have shown complex structures in the fluid phase when a strip of dye is
placed near the boundary in a sheared suspension. Here, we introduce finite fluid
tracer Péclet numbers Pe = γ̇ r2/D, where D is the fluid tracer diffusivity, r is the
particle radius and γ̇ is the shear rate. We take advantage of the velocity fields that
we calculate using finite elements, and use the diffusive strip method developed by
Meunier & Villermaux (2010), which allows us to study filaments of fluid tracer
particles at finite Péclet numbers with strain.

4.1. Diffusive strip
To capture the structures, we initialize high-resolution lines of markers and advect
them passively with the fluid velocity field set up by the particles. As the line of
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(a) (c)

(b) (d )

FIGURE 2. (Colour online) Snapshot of simulation at γ = 30 of 4096 particles at volume
fraction φ = 0.3 in simple shear. The top and bottom boundaries have fixed velocities in
the x-direction, while the left and right boundaries are periodic. (a) The x-component of
the velocity field. (b) Close-up of the x-component of the velocity field with subtracted
background shear rate. (c) Close-up of the y-component of the velocity field. The presence
of particles sets up a non-zero y-component of the velocity field, leading to shear-induced
self-diffusion of particles as well as of the surrounding fluid. (d) Close-up of the curl field
ez · ∇× v, where ez is the unit vector out of the plane.

markers is stretched, we use linear interpolation to add points to it, with a resolution
of dx = 5× 10−4 L. As the lengths of the lines grow fairly fast, it sets limits to the
strains we can reach with this method. In the following, we present results up to
γ = 15. Compared to a more complex refinement procedure, this could cause some
errors at points where the curvature is high (Meunier & Villermaux 2010). However,
the resolution used here is fairly high, so we expect these errors to be minor
for γ 6 15.
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FIGURE 3. (Colour online) Probability density of the fluid velocity field for N= 1024 and
φ ∈ [0.1, 0.4]. (a) The y-component of the velocity field scaled with the shear rate γ̇ and
the particle radius r. (b) The x-component of the velocity field scaled with the shear rate γ̇
and the system size L. (c) The x-component of the velocity, where the background velocity
field γ̇ y has been subtracted, scaled with the shear rate γ̇ and the particle radius r. (The
breaking of symmetry in panel (c) is a system size effect, which becomes evident when
the particle concentration is not perfectly constant in the y-direction. Since shear-induced
self-diffusion is slow, the average shear rate is not always identical to γ̇ y for finite strains.)

We insert horizontal filaments with initial concentration c0 and thickness s0 =
1 × 10−4 L in the fluid phase, and integrate their position forward in time. The
concentration field c(x) can then be reconstructed from

c(x)=
∑

i

c0/1.7726√
1+ 4τi(t)

exp
[
−((x− ci) · σi)

2

1l2
− ((x− ci) · ni)

2

s2
i (1+ 4τi(t))

]
, (4.1)

where n and σ are unit vectors normal and tangential to the strip,

si = s0
1x0

i

1xi
(4.2)

is the local elongation of the strip, and the dimensionless time τi is found through

dτi

dt
= D

si(t)2
(4.3)

with the initial condition τi= 0. In the above, 1l is the distance between the points on
the strip, which is reinterpolated to the mean thickness of the strip 1l= 〈si

√
1+ 4τi

〉
.

The diffusive strip method requires an approximation at the particle rims. Here,
we let the line of markers pass through the particles, and then set c0 = 0 inside
the particles. This allows us to keep the one-dimensional approximation to diffusion
at the particle rim. Particle overlaps pose a challenge when modelling the purely
hydrodynamic limit. However, for γ < 15, we did not encounter problems with lines
overlapping, which could be attributed to the high accuracy of the velocity field
from the finite element model. For larger strains, we would expect this to become
increasingly problematic.

Figure 4 shows the evolution of the fluid mixing as a function of strain for N= 512
and φ= 0.3 at Pe= 104 (note that the colour bar for c/c0 ranges from 0 to 0.1, which
is chosen to better visualize the structures). Starting from straight lines in the velocity
gradient direction, the lines develop complex structures quite quickly through a series
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0 0.1

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 4. (Colour online) Fluid mixing in a system with N = 512, φ = 0.3 at Pe= 104.
The concentration profile is estimated using the diffusive strip method. The dimensions of
the window are (0.2× 0.2)L in the central part of the simulation box.

of stretching–folding events, as well as developing filaments that become thinner and
increase in length as γ increases. Interestingly, the patterns we observe show very
close resemblance to the patterns observed in a recent study by Souzy et al. (2015)
at Re = 5 × 10−3, where they placed a thin layer of dye at one of the walls in a
Couette device.

The effect of the Péclet number is demonstrated in figure 5, which shows snapshots
at γ = 10 for a simulation of N = 512 particles at φ = 0.3 for Pe = 103, 104, 105

and 106. Figure 5 demonstrates that the thickness of the filaments is governed by the
Péclet number, but that the structure that is forming is in this case well captured also
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(a)

(b)

(c)

(d)

0 0.1

FIGURE 5. (Colour online) Fluid tracer concentration field calculated using the diffusive
strip method. The concentration profiles are snapshots of a simulation at γ = 10 for N =
512, φ = 0.3 for Pe= 103, 104, 105 and 106. The dimensions of the window are (0.6×
0.2)L in the central part of the simulation box.

for Pe = 103. We will come back to the effects of the Péclet number on enhanced
transport properties in § 6.2
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0 0.1

(a)

(b)

(c)

(d)

FIGURE 6. (Colour online) Fluid tracer concentration field calculated using the diffusive
strip method. The concentration profiles are snapshots of a simulation at γ = 10 for N =
512, Pe=104 for φ=0.1, 0.2, 0.3 and 0.4. The dimensions of the window are (0.6×0.2)L
in the central part of the simulation box.

To investigate the effect of particle volume fraction on the structures that form,
we perform diffusive strip simulations for φ = 0.1, 0.2, 0.3 and 0.4. Figure 6 shows
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(a)

(b)

FIGURE 7. Sketch of the box counting approach to determine the fractal dimension. The
interface structure is covered with boxes of size (l × l), and the number of boxes Nb
needed to cover the structure is counted. The box size is then reduced and the process
repeated. In the end, we end up with the number of boxes as a function of box size, Nb(l).
The box counting dimension is then determined through (4.4).

snapshots at γ = 10 for these different particle volume fractions for a system of N =
512 particles. From figure 6 it is clear that mixing is more efficient at higher particle
volume fractions, which we will also quantify through the shear-induced self-diffusion
coefficient in § 6. From figures 4 and 6, it is clear that the structures increase in
complexity, not only with increasing strain, but also with increasing particle volume
fraction. Using these observations, we will now measure the evolution of the fractal
dimension of these structures, and introduce a scaling relation that relates the fractal
dimension to the mean square displacement of passive tracers in the fluid phase.

4.2. Structure characterization
To quantify these patterns we perform systematic simulations consisting of lines of
markers for simulations with N ∈ [256, 1024] and φ ∈ [0.1, 0.4] up to strains of
γ = 15, and measure the fractal dimension using box counting (Meakin 1998). For
these measurements, we use the line of passive tracers at infinite Péclet number with
infinitesimal thickness. The strategy of box counting to measure the fractal dimension
is outlined in figure 7; we cover the domain by boxes of size (l× l), and then count
the number of boxes Nb that are needed to cover the structure. This step is performed
for l ∈ [L/103, L/10], and the fractal dimension F is measured as the power-law
exponent of Nb as a function of l:

F=−
〈

d log Nb(l)
d log l

〉
l∈[L/103,L/10]

. (4.4)

To avoid system size effects in our measurements of F, we use five strips of
passive tracers in the central part of the domain and average over these. The strips
are separated by a distance 1y/L = 1/32. Then F is measured as a function of
time for a number of N and φ, and is plotted in figure 8. In line with the observed
increase in complexity of the mixing pattern as a function of γ (figure 4), the fractal
dimension increases with γ . In addition, we observe that the fractal dimension grows
faster for larger values of φ, consistent with the increasing complexity we observed
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FIGURE 8. (Colour online) Fractal dimension F measured using the box counting
approach in (4.4) as a function of strain for a number of particle numbers N and particle
volume fractions φ. We obtain a good data collapse by scaling the x-axis with the mean
square displacement of the fluid phase (inset).

in figure 6. The fractal dimension of a line is 1, and for a space-filling structure in
two dimensions it is 2, i.e. the fractal dimension is a measure of how well a structure
fills space. From this picture, we can derive a simple scaling relation to collapse the
data in figure 8.

Consider two fluid markers with infinitesimal spacing initially. As a strain rate is
applied, this introduces an average relative displacement of the two according to the
mean square displacement of the fluid. Now consider the rectangle that has the two
fluid markers as two of its corners. Its area A is proportional to the square root of
mean square displacement in the x and y directions:

A∼
√
〈1x(t)2〉〈1y(t)2〉. (4.5)

Since 〈1x2〉 is largely dominated by the background shear rate, we can simplify this
to

〈1x(t)2〉 ' (γ̇ t)2〈1y(t)2〉, (4.6)
so that

A∼ γ̇ t〈1y(t)2〉. (4.7)
The scaling of the y-axis is found by scaling 1y(t) with r. The 〈1y(t)2〉 value is
measured from simulations of 4 × 104 passive tracers uniformly distributed in the
domain, integrated forward in time with a second-order Adams–Bashforth scheme with
γ̇ dt = 0.02. Comparison of different system sizes introduces the additional scaling
with
√

N. Note that this is due not to boundary effects in F, but to boundary effects in
the measurement of the mean square displacement. The strips where we measure the
fractal dimension are far from the boundary where boundary effects are negligible. An
alternative approach to the introduction of

√
N would be to measure the mean square

displacement only in the central part of the domain. The final scaling for the evolution
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of the fractal dimension is then

F∼ γ̇ t〈1y(t)2〉
r2
√

N
. (4.8)

The fractal dimension of the mixing structure lies between 1 and 2. In our
measurements we approximate the interface that passes through particles as lines.
Since the interface cannot fill the solid phase, this means that in our case F ∈
[1, 2− φ] by definition. This is due to the straight segments of the interface drawn
through the particles, which have fractal dimension F = 1. Note that this scaling
originates from our definition, and that the scaling will be different with a different
definition of how we represent the interface in the particles. Combining these simple
scaling arguments, we scale the x-axis as (4.8) and the y-axis as (F − 1)/(1− φ) in
order to rescale the fractal dimension to [0, 1]. The data collapse is shown in the
inset of figure 8. Given the simplicity of the scaling argument, the collapse is very
good, and provides a simple relation between the fractal dimension of the interface
and the shear-induced self-diffusivity of the fluid phase.

5. Mixing at small strains – concentration distributions from the diffusive strip
method
For the strains reached using the diffusive strip method, the shear-induced

self-diffusive regime has not been established (see e.g. the velocity autocorrelation
function in figure 11). In order to quantify mixing at these strains, we measure the
distribution of tracer concentration fields from the previous section as a function of
γ̇ t for various φ and Pe.

Figure 9 shows the concentration distribution c0/c in the fluid phase for γ̇ t ∈
[0.02, 5], φ ∈ [0.1, 0.4] and Pe ∈ [103, 106]. Figure 9(a) shows the concentration
distribution for φ = 0.3 at Pe = 104 as γ̇ t increases. The initial distribution is
U-shaped, with a peak at c/c0 = 1 (as was also described by Meunier & Villermaux
(2010)), which quickly shifts to lower concentrations, and the distribution becomes
dominated by the low concentrations between the strips. To highlight instead the
changes close to the strip, we also give the probability density of the inverse of
the concentration c0/c− 1 (figure 9b). Then one can clearly see the decay and shift
of the peak concentration as a function of γ̇ t. Figure 9(c,d) shows the dependence
on the concentration probability density at γ̇ t on φ and Pe, respectively. Increasing
the particle volume fraction shifts the peak concentration and widens the inverse
concentration distribution. The same applies on decreasing the Péclet number, which
demonstrates a strong dependence on the concentration distribution of fluid tracers
even at large Pe. This is also clearly visible in figure 5. Interestingly, increasing
strain, increasing particle volume fraction and decreasing Péclet number all result in
very similar changes to the inverse fluid tracer concentration distribution.

We also measure the average concentration averaged over the x-direction 〈c/c0〉x as
a function of γ̇ t. The shape of the distribution for Pe = 104, φ = 0.3 and N = 512
is shown in figure 10(a). This distribution widens as the strain increases. In order to
investigate the effect of φ and Pe, we measure the width of the average concentration
as a function of γ̇ t, which we define as the standard deviation of the normalized
concentration distribution,

∆y ≡ std

 〈c/c0〉x∫ L/2

−L/2
〈c/c0〉x

 , (5.1)
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FIGURE 9. (Colour online) Probability density of concentration in the fluid phase in the
central region (1×0.2)L from diffusive strip simulations of systems of N=512 for various
γ̇ t, φ and Pe. (a) Probability density as a function of c/c0 for φ = 0.3, Pe= 104 and γ̇ t
corresponding to figure 4. (b) Probability density as a function of the inverse concentration
c0/c− 1 for φ= 0.3, Pe= 104 and γ̇ t corresponding to figure 4. (c) Probability density as
a function of the inverse concentration c0/c− 1 for φ ∈ [0.1, 0.4] at γ̇ t= 10 at Pe= 104.
(d) Probability density as a function of the inverse concentration c0/c− 1 for φ = 0.3 at
γ̇ t= 10 for Pe ∈ [103, 104].

where ∆y increases with γ̇ t and with increasing φ. However, it is more or less
independent of Pe for Pe > 103. This demonstrates that, although the probability
density of concentration has a clear dependence on Pe for Pe ∈ [103, 106], the spatial
distribution of concentration measured through 1y is largely dominated by advection
for Pe > 103.
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FIGURE 10. (Colour online) (a) Concentration averaged over x as a function of y/r
averaged over nine diffusive strips shifted to y/r = 0 at γ̇ t = 0, for Pe = 104, φ = 0.3
and N = 512. (b) Width of the average concentration ∆y as a function of γ̇ t. The width
is taken to be the standard deviation of the normalized average concentration distribution.

6. Mixing at large strains – shear-induced self-diffusion
At large strains, the mixing of particles in a suspension close to equilibrium

is described by the self-diffusion coefficient. In this section, we measure the
self-diffusion coefficient for both the fluid and the solid phase. Before we measure the
diffusion coefficient, we equilibrate the system for γ̇ t= 20, which is chosen because
of the decay of the velocity autocorrelation function in the y-direction (figure 11b).
This resulting mixing of the particles can be described using the self-diffusion
coefficient Ds. Note that the self-diffusion coefficient is actually a tensor of rank 2
in two-dimensional systems that are not isotropic (see e.g. Breedveld et al. 2002). In
this work we focus on the translation of particles normal to the direction of shear,
and in the following, Ds will denote this component of the self-diffusion tensor (often
denoted Ds,〈yy〉 in the literature). Also note that self-diffusion and collective diffusion
are in general two separate quantities. In this paper we discuss self-diffusion normal
to the direction of shear only. The interested reader is referred to Leighton & Acrivos
(1987b), Phillips et al. (1992), Marchioro & Acrivos (2001), Mauri (2003), Leshansky
& Brady (2005) and Leshansky, Morris & Brady (2008), for example, for discussions
on the collective shear-induced diffusivity.

Three different ways of measuring self-diffusivity are reported in the literature. The
simplest one is to determine self-diffusion from the mean square displacement using
the Einstein–Smoluchowski relation in one dimension,

Ds = 1
2

lim
t→∞

d
dt
〈1y(t)2〉, (6.1)

where the brackets 〈 〉 denote an ensemble average over available time intervals of
length t. Equivalently, self-diffusivity can be probed through the integral over the
velocity autocorrelation function VACF= (1/N)∑N

i=1〈vy
i (t′), v

y
i (0)〉:

Ds = 1
N

∫ ∞
0

N∑
i=1

〈vy
i (t
′), vy

i (0)〉 dt′. (6.2)
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Ds/γ̇ r2

Study Method d Phase Pe φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4

This work FEM 2 Solid — 0.031± 0.008 0.070± 0.022 0.149± 0.026 0.186± 0.062
Sierou et al. ASD 3 Solid — 0.0017± 0.0003 0.0084± 0.0010 0.0310± 0.0040 0.0620± 0.0060
This work FEM 2 Fluid ∞ 0.031± 0.008 0.095± 0.030 0.186± 0.034 0.267± 0.064
This work FEM 2 Fluid 104 0.034± 0.006 0.097± 0.022 0.214± 0.020 0.390± 0.082
This work FEM 2 Fluid 103 0.035± 0.004 0.100± 0.020 0.220± 0.025 0.387± 0.077
This work FEM 2 Fluid 102 0.050± 0.004 0.124± 0.016 0.254± 0.021 0.424± 0.028
This work FEM 2 Fluid 10 0.167± 0.003 0.261± 0.017 0.407± 0.024 0.653± 0.055
This work FEM 2 Fluid 5 0.278± 0.004 0.377± 0.013 0.528± 0.037 0.808± 0.123

TABLE 1. Shear-induced self-diffusivity compared to three-dimensional simulations from
Sierou & Brady (2004) where they used accelerated Stokesian dynamics (ASD). The
results from Sierou & Brady match experimental measurements fairly well, although
there are large variations of self-diffusivities measured from experiments. Our measured
finite element method (FEM) results are systematically higher, which is expected for a
two-dimensional system.

A third approach that has been used for measuring shear-induced diffusion in
suspensions involves the self-dynamic structure factor (Leshansky & Brady 2005;
Leshansky et al. 2008).

Figure 11 demonstrates the various ways of measuring the self-diffusivity for a
system consisting of 512 particles at volume fraction φ = 0.1. In order to remove
system size effects, we measure the self-diffusivity using the integral over the velocity
autocorrelation function for particle numbers N from 64 to 1024 for fractions from
φ= 0.1, 0.2 and 0.4, and up to 4096 for φ= 0.3. Assuming that there is a thin layer
at the boundary that has a thickness proportional to the particle radius, and that does
not contribute to the self-diffusion coefficient because the y-component of velocity
is small, we expect that the system size effect in the diffusion coefficient will scale
as N−1/2. This allows us to extrapolate towards a large particle number as shown
in figure 11(d). Figure 12 shows Ds(φ) extrapolated towards infinite resolution for
volume fractions up to φ= 0.4. The best fit for a power law yields Ds(φ)∼ φ1.38±0.50.
We do not expect this relation to hold for volume fractions that approach the jamming
threshold where previous studies suggested that Ds will flatten out at high volume
fractions (Breedveld et al. 2002; Metzger et al. 2013b), and, as the system jams,
vertical motion is inhibited. However, simulating large volume fractions using finite
elements for strains large enough to assess self-diffusion remains a very challenging
task numerically. In addition we expect that particle interactions such as friction
become increasingly important as the volume fraction increases (Boyer, Guazzelli &
Pouliquen 2011; Seto et al. 2013).

In table 1, Ds obtained from our simulations are shown along with one example
from Sierou & Brady (2004) in three dimensions using accelerated Stokesian
dynamics simulations. Qualitatively, our results show similar φ dependence as their
results, although the self-diffusion coefficients from two-dimensional simulations are
significantly larger than those obtained from three-dimensional simulations. While
the self-diffusivity is larger in two dimensions than it is in three dimensions, the
underlying mechanisms are the same.
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FIGURE 11. (Colour online) (a) Mean square displacement in the vertical direction of
N = 512 particles in simple shear at volume fraction φ = 0.1. Initially, the displacement
is ballistic and goes as (γ̇ t)2, before it becomes diffusive at γ̇ t ∼ 20 and goes as
γ̇ t. The self-diffusivity is determined from the slopes of either of the two curves.
(b) Velocity autocorrelation function (vy) for 512 particles at volume fraction φ= 0.1: grey
lines, different simulations; blue (darker) line, ensemble average. (c) Integral of velocity
autocorrelation function (vy) for N = 512 particles at volume fraction φ = 0.1: grey lines,
different simulations; blue (darker) line, ensemble average. (d) Extrapolation N→∞ to
remove system size effects measured with the integral over the velocity autocorrelation
function. For N→∞, Ds/γ̇ r2 is 0.031± 0.008. All data in this figure are for the solid
phase, and are scaled upon the radius r and the shear rate γ̇ for dimensionless quantities.

6.1. Mixing in the fluid phase at infinite Péclet number

To quantify the mixing of the fluid phase, we take the same approach as for the solid
phase. For a set of simulations we use the solution of the velocity field and place 4×
104 passive markers uniformly in the fluid phase and advect them using a second-order
Adams–Bashforth method with time step γ̇ dt= 0.02. For each simulation we integrate
the velocity autocorrelation function and extrapolate towards infinite resolution as in
figure 11. For error estimates we use the fluctuations in the integrated autocorrelation
function when convergence is reached. Figure 12 and table 1 show the results for the
shear-induced self-diffusivity. We see that the shear-induced self-diffusivity of the fluid
phase is systematically larger than for the solid phase. Assuming that the scaling of
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FIGURE 12. (Colour online) The self-diffusion coefficient Ds scaled with the shear rate γ̇
and the particle radius r as a function of particle volume fraction φ extrapolated towards
N→∞. The black broken lines show best fits with Ds scaling as φα. Error bars show
95 % confidence bounds

Ds with φ follows Ds ∼ φα, we measure α = 1.38 ± 0.50 for the solid phase, and
α = 1.61± 0.26 for the fluid phase.

6.1.1. Origin of different behaviour of the two phases
Our observation of larger Ds in the fluid phase than in the solid phase contradicts

the experimental findings of tracer diffusivities or suspensions of spherical particles by
Breedveld et al. (1998), who found that tracer diffusivities were approximately 70 %
of the particle diffusivities. Apart from the differences between cylinders and spheres,
there are several possible explanations for this discrepancy. In the experiments, they
use finite-sized particles as an approximation of fluid tracers with a diameter ratio of
approximately 10, while our tracers are truly infinitesimal. Both experiments (Zarraga
& Leighton 2002) and simulations (Chang & Powell 1994) have demonstrated
that the self-diffusion coefficient is influenced by the particle size ratio in bimodal
suspensions. In addition, the experiments were limited to fairly small strains (γ < 1).
In our simulations, we study the fully hydrodynamic limit, and have no additional
interactions between the particles, such as, for example, frictional contacts, which
could be present in a major contributor to particle dispersion in experiments (Pham,
Metzger & Butler 2015). Interestingly, a recent experiment by Souzy et al. (2016)
of dispersion in the fluid phase of a periodically sheared suspension supports our
results; they also report that the dispersion in the fluid phase is slightly larger than in
the solid phase for strains larger than the critical strain amplitude where irreversible
particle motion occurs.

Several authors have related enhanced transport properties in suspensions to particle
rotations (e.g. Keller 1971; Nadim et al. 1986; Deslouis et al. 1991; Souzy et al.
2015, 2016). The close relation between the self-diffusivity of the two phases that
we report here implies that the governing factor of enhanced transport properties in
the fluid is the translational diffusivity. However, we find it likely that the differences
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FIGURE 13. (Colour online) Mean angular velocity 〈ω〉 (@) and standard deviation of the
angular velocity std(ω) (E) as a function of particle volume fraction φ averaged over time.
While 〈ω〉 is constant with φ at 〈ω〉 = γ̇ /2, std(ω) increases with φ.

between the two phases is related to particle rotations, which was also reported
by Souzy et al. (2016). We find that these differences increase with increasing φ.
Figure 13 shows the mean and standard deviation of the particle angular velocity ω
as a function of particle volume fraction φ. The mean angular particle velocity 〈ω〉
is independent of the volume fraction, and is given by the simple relation ω = γ̇ /2,
which is expected for an isotropic distribution of particles in the fully hydrodynamic
limit. This means that 〈ω〉 does not explain our observations (as also pointed out by
Metzger et al. (2013b)).

Nadim et al. (1986) found that the transverse conductivity of fluid tracers in the
suspension is functionally dependent on ω in a periodic suspension of fixed rotating
cylinders. If the same applies locally in a freely moving suspension, it would imply a
functional dependence between the variance of ω and the mean square displacement
of fluid tracer particles. Figure 13 shows that the standard deviation of ω increases
with φ. Although this is no stringent proof, it offers a possible explanation of the
differences between the self-diffusion coefficients of the two phases.

6.2. Enhanced diffusivity – finite Péclet numbers
To investigate the shear-induced self-diffusion in the fluid phase for finite Péclet
numbers, we use the discretized advection diffusion equation that was developed by
Wang et al. (2009), and has also been used by Metzger et al. (2013b). The step
length 1x of the fluid tracers is found from a forward Euler integration using the
velocity from the finite element simulations, and a random step that depends on the
fluid tracer diffusivity D. In two dimensions, we have

1x= v dt+ χ
√

4D dt, (6.3)

where χ is a random unit vector, and γ̇ dt= 0.02. We are interested in the diffusion of
mass, so we use specular reflection of the tracers if they overlap with the boundaries
or the particles. Simulations are then carried out for Pe∈ [5, 1× 104], N ∈ [64, 1024]
and φ ∈[0.1,0.4], and the resulting shear-induced self-diffusion coefficient is measured
using (6.1). The results are then extrapolated towards N →∞ as described in the
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FIGURE 14. (Colour online) Enhanced mass diffusivity Ds/D as a function of φαPe, where
we have used α= 1.61 found from simulations at infinite Péclet number in figure 12. We
find that the data fit the functional form Ds/D = 1 + βφαPeζ fairly well for the entire
range of Pe ∈ [5, 104] and φ ∈ [0.1, 0.4] with β = 2.98± 0.39 and ζ = 0.900± 0.031.

previous section. The resulting Ds values as a function of Pe and φ are shown in
table 1. As the Péclet number decreases, Ds is more and more affected by D, but
there are measurable effects even for Péclet numbers as high as 104.

In line with the theoretical model by Wang et al. (2009), as well as the observation
of a scaling Ds/D ∼ Pe0.89 (Wang & Keller 1985), and recent results for enhanced
thermal transport by Metzger et al. (2013b), we attempt to fit our data to the
functional form

Ds/D= 1+ βφαPeζ . (6.4)

Figure 14 shows the enhancement of the diffusivity Ds/D as a function of Peφα,
where α=1.61 comes from the dependence Ds∼φα that was measured at Pe=∞. We
find that (6.4) provides a decent approximation across the entire range of Pe and φ,
and measure β= 2.98± 0.39 and ζ = 0.900± 0.031. The dependence Ds/D∼Peζ with
ζ <1 that we measure for a suspension of cylinders is consistent with the experimental
results for spheres by Wang & Keller (1985) (similar exponent at large Pe), as well
as recent results on enhanced thermal transport in suspensions of spheres by Metzger
et al. (2013b) (similar functional dependence), who also argued that ζ < 1 implies that
there are memory effects of the molecular diffusion even at large Péclet numbers.

7. Discussion and conclusion
In this paper we introduced a two-dimensional adaptive unstructured finite element

method for linear incompressible flow of suspensions at zero Reynolds number, and
used it to study mixing in sheared suspensions. Direct numerical modelling of particle
suspensions using the finite element model is challenging, and, in particular, close
particle pairs are a fundamental problem for several reasons. First, particles can get
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arbitrarily close without touching, which poses issues about the resolution between the
particles. Second, large gradients in both velocities and stresses are often associated
with close particle pairs, so that it is important to obtain a decent resolution in these
strategic areas. Particle overlaps pose a big challenge when modelling dense systems.
And even though mesh refinement in strategic areas helps, it does not solve the
problem, since infinitesimal distances between particles are not inhibited by Stokes
equations. Still, mesh refinement allows us to run fairly dense systems to large enough
strains to perform statistical analyses when combined with ensemble averaging.

If a dye is introduced into a sheared suspension, complex structures form in the
fluid phase. Starting from thin filaments placed in the fluid phase, we characterized
these structures using the diffusive strip method, and the structures show close
resemblance to recent structures observed in experiments (Souzy et al. 2015). As
demonstrated in figures 4 and 8, from our simulations, we observe complicated
structures developing with increased strain. The fractal dimension of these structures
quickly increase towards (F − 1)/(1 − φ) = 1, and is governed by the mean square
displacement in the fluid phase as well as the particle volume fraction.

At infinite Péclet number, we found that the shear-induced self-diffusion coefficient
of the fluid phase is larger than for the solid phase. This observation has recently been
observed in experiments (Souzy et al. 2016), and we hypothesize that this difference
is related to the rotational degree of freedom of the particles. One possible way to
investigate further the relation between particle rotations and enhanced diffusivity in
the fluid phase would be through simulations with full slip boundary conditions at
the particle rims, which should remove effects of particle rotation in the motion of
the fluid phase.

In reality, the shear-induced self-diffusion is a form of forced convection and has
to be combined with the thermal or mass diffusion in order to assess the transport
properties of the sheared suspension. At finite Péclet number, the differences between
the fluid and the solid phase are further amplified. The differences in shear-induced
self-diffusivity of the solid and the fluid phases has consequences for the way we
interpret the relation between enhanced heat and mass transport of sheared suspensions
and shear-induced self-diffusion as was done by Metzger et al. (2013b). Although the
shear-induced self-diffusion coefficients of the solid and the fluid phases are strongly
coupled, our results suggest that the velocity field in the fluid phase needs to be
determined in order to accurately correlate shear-induced self-diffusion with enhanced
thermal and mass diffusivity. While particle trajectories are more readily available in
experiments, particle image velocimetry measurements giving the fluid velocity field as
was done by Souzy et al. (2015) to characterize fluid transport close to the boundary
look promising.

To compare this to the self-diffusion coefficients of the fluid phase from figure 12,
we need some constraint for γ̇ and r. Typical numbers reported for slowly
sheared systems in the literature are γ̇ ≈ 1 s−1 (Metzger et al. 2013b), while
particle sizes can be in the range r ∈ [1 µm, 1 mm]. While we do expect the
self-diffusivity to be lower in three dimensions, these assumptions would result
in Ds ∈ [10−13 m2 s−1, 10−7 m2 s−1], which for millimetre-sized particles is
approximately of the same order as the thermal diffusivity of water (the thermal
diffusivity of water at room temperature is DH2O ' 1.5× 10−7 m2 s−1 (James 1968)).
For enhanced mass transport, we can compare the shear-induced self-diffusivity to the
diffusion coefficients of, for example, methane and carbon dioxide in water, which are
DCH4 ' 1.5 × 10−9 m2 s−1 and DCO2 ' 2 × 10−9 m2 s−1, respectively (Cussler 2009).
For rhodamine dye in water, the diffusion coefficient is Drhodamine'4.14×10−10 m2 s−1
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(Culbertson, Jacobson & Ramsey 2002), and for rhodamine dye in the mixture used
by Souzy et al. (2015), the diffusion coefficient is as low as D' 10−13 m2 s−1. This
means that, to enhance mass transport in sheared suspensions, one can use even lower
shear rates or smaller particles than one would need in order to significantly enhance
thermal transport.

Here, we have found that the enhanced transport fits the functional form Ds/D=1+
βφαPeζ with β = 2.98± 0.39, α= 1.61± 0.26 and ζ = 0.900± 0.031 for φ ∈ [0.1, 0.4]
and Pe ∈ [5, 104]. The functional dependence that we find is similar to recent results
for enhanced heat transport in suspensions of spheres (Metzger et al. 2013b), as well
as experimental results for enhanced mass diffusivity in suspensions of spheres for
large Pe that have reported Ds/D∼ Pe0.89 (Wang & Keller 1985).

In microfluidic experiments, the Reynolds number is usually very small, and mixing
can be difficult (Stroock et al. 2002; Lee et al. 2011). Using particles as mixers is
therefore a possible option to enhance mass and thermal transport in microfluidic
devices. Workamp, Saggiomo & Dijksman (2015) used the concept of enhanced
transport properties in sheared suspensions to create a simple microfluidic mixer
where the pressure drop across the mixer is low. This microfluidic mixer consists
of a cylindrical chamber filled with particles, and a shear motion is set up using a
moving magnet. As demonstrated in this paper, the enhancement of mass transport in
such systems can be huge.

An additional aspect has to be taken into account if the mixing occurs in a system
with a non-homogeneous γ̇ , as in Poiseuille flow, for example. In systems with a
non-zero shear-induced collective diffusion coefficient, which scales with γ̇ , particles
would migrate from regions of high shear stress towards regions of lower shear
stress (Leighton & Acrivos 1987b). In the case of Poiseuille flow, this would result
in migration towards the centre of the channel for a suspension initially distributed
uniformly in space (Boschan, Aguirre & Gauthier 2015). This change of particle
density could potentially lower the shear-induced self-diffusion coefficient close to
the boundary because the particle concentration decreases there.

In this paper we have studied the fully hydrodynamic limit. This means that
the Reynolds number is zero, the particle Péclet number is infinite and there are
no additional interactions between the particles such as normal contact, friction or
repulsive forces. While we have simulated the purely hydrodynamic limit, several
works have demonstrated the importance of particle contacts (e.g. Blanc, Peters &
Lemaire 2011; Seto et al. 2013; Gallier et al. 2014; Pham et al. 2015, 2016). Not
only do particle contacts alter the suspension microstructure (Blanc et al. 2011), for
periodically sheared suspensions there is an onset of irreversible particle trajectories
that occurs at a critical strain amplitude which correlates strongly with particle
roughness Pham et al. (2016). In periodically sheared suspensions, neither lubrication
interactions Metzger & Butler (2010) nor long-range hydrodynamic interactions
Metzger, Pham & Butler (2013a) are the source of irreversibility. The irreversible
behaviour is dominated by particle contact. It is worth noting that, while there is
no direct source of irreversibility in our model, since the system is chaotic and all
numerical models are subject to numerical errors, numerical error is bound to be a
source of irreversibility at large strains.

Frictional interactions, repulsive forces, finite particle Péclet numbers and non-zero
Reynolds numbers can all break the fore–aft symmetry that is present in the purely
hydrodynamic limit (Bossis & Brady 1984; Brady & Morris 1997; Metzger et al.
2013a; Haddadi & Morris 2014; Pham et al. 2015). Breaking of fore–aft symmetry
will probably affect the motion of the particles, increasingly so as the particle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

15
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.159


832 K. Thøgersen and M. Dabrowski

volume fraction increases and the frequency of particle collisions increases. We also
find it likely that any of these additional particle interactions could influence the
shear-induced self-diffusion coefficient that we measure, both in the solid and in the
fluid phase. We leave the investigation of the effect of additional particle interactions
on shear-induced self-diffusion for future studies.

Acknowledgements
We acknowledge support from the Norwegian High Performance Computing

(NOTUR) network through the grant of machine access. K.T. acknowledges support
from VISTA – a basic research programme funded by Statoil, conducted in
close collaboration with The Norwegian Academy of Science and Letters. M.D.
acknowledges support from a PGI-NRI research grant (61.9015.1601.00.0).

Appendix A. The P operator

Consider a point at the rim of a rigid particle with three degrees of freedom, vparticle
x ,

vparticle
y and ωparticle (two translational and one rotational). The transformation from the

three degrees of freedom of the circle to two translational degrees of freedom in a
point at the rim can be carried out by a matrix operation:

(
vx
vy

)
=
(

1 0 1y
0 1 −1x

)v
particle
x

vparticle
y

ωparticle

 , (A 1)

where (1x, 1y) is the distance to the centre of mass of the particle. For a system
with N particles and n degrees of freedom, we replace the degrees of freedom along
all particle rims with 3N degrees of freedom: two velocity components and the angular
velocity. Rigid particles are introduced in the system as a hole in the mesh, and we
introduce the operator P that sets rigid constraints on the nodes associated with the
particle boundaries. The operator P replaces the degrees of freedom at the rims by
three new degrees of freedom by performing the transformation in (A 1) on all particle
rims. If we denote the velocity nodes at the rim by i, j, k, . . . , and assume that
the matrix equation is set up with vx corresponding to even numbers and vy to odd
numbers, we can set up the full operator

P = 

ip,x ip,y ip,ω jp,x jp,y jp,ω
1

.
.
.

1
2i 0 · · · 1 0 1yi,ip

2i+1 0 · · · 0 1 −1xi,ip
1

.
.
.

1
2j 0 · · · 1 0 1yj,jp · · ·

2j+1 0 · · · 0 1 −1xj,jp
1

.
.
.

1
2k 0 · · · 1 0 1yk,ip

2k+1 0 · · · 0 1 −1xk,ip
1

.
.
.



,

(A 2)
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FIGURE 15. (Colour online) (a) Pressure field around an isolated inclusion in an infinite
shear flow. (b) Error estimated from (B 1) and (B 2) as a function of mesh resolution dr/r.

where the subscript p denotes the new particle indices. The left side of the matrix is
close to the identity matrix, but the columns corresponding to the nodes at the particle
rims are removed. The transformation from (A 1) is set up at the corresponding
particle indices on the right side of the matrix. With this set-up, the velocity degrees
of freedom associated with the particles will be at the end of the velocity part of the
solution vector, which makes it straightforward to extract the particle velocities.

Appendix B. Validation
We validate the code against the analytical solution of single inclusions in simple

shear, which is given by Schmid & Podladchikov (2003). The root mean squared
error term of the velocity, erms,v, and the pressure, erms,p, in the domain can then be
calculated through the integrals

erms,v = 1
γ̇ rV

∫
V

√
(v − van)2 dV (B 1)

and
erms,p = 1

γ̇ µV

∫
V

√
(p− pan)2 dV, (B 2)

where van and pan are the analytical solutions. To evaluate the error term, we use
a domain size 4r × 4r, where the boundary conditions are given by the analytical
solution at those specific coordinates. Figure 15 shows the calculated velocity field
as well as the integrated error. The unstructured mesh is close to uniform, with an
average side length of the triangles dr, and the error in the velocity field decreases as
(dr/r)−2.

In the full simulations, we force the number of elements between close particles,
Nel, to be at least two, and we use a time step γ̇ dt = 0.02. To test the sensitivity
of our results to the discretization, we performed simulations of a system of
N = 512 particles at φ = 0.3 for Nel ∈ [2, 10] and γ̇ dt ∈ [0.0125, 0.05]. We find
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FIGURE 16. (Colour online) (a) Velocity autocorrelation function for a system of N= 512
and φ = 0.3 for various spatial and temporal resolutions. (b) Integral over the velocity
autocorrelation function that is used to determine the self-diffusion coefficient.

that the measured velocity autocorrelation function is not particularly sensitive to
the discretization in this range (figure 16), and that the measured particle diffusion
coefficients are within what we find when using ensemble averaging (see figure 11).
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