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Abstract
In this paper, we present a Markov chain Monte Carlo (MCMC) simulation algorithm for

estimating parameters in the kernel density estimation of bivariate insurance claim data via

transformations. Our data set consists of two types of auto insurance claim costs and exhibits a

high-level of skewness in the marginal empirical distributions. Therefore, the kernel density

estimator based on original data does not perform well. However, the density of the original data

can be estimated through estimating the density of the transformed data using kernels. It is well

known that the performance of a kernel density estimator is mainly determined by the bandwidth,

and only in a minor way by the kernel. In the current literature, there have been some developments

in the area of estimating densities based on transformed data, where bandwidth selection usually

depends on pre-determined transformation parameters. Moreover, in the bivariate situation, the

transformation parameters were estimated for each dimension individually. We use a Bayesian

sampling algorithm and present a Metropolis-Hastings sampling procedure to sample the

bandwidth and transformation parameters from their posterior density. Our contribution is to

estimate the bandwidths and transformation parameters simultaneously within a Metropolis-

Hastings sampling procedure. Moreover, we demonstrate that the correlation between the two

dimensions is better captured through the bivariate density estimator based on transformed data.

Keywords
Bandwidth Parameter; Kernel Density Estimator; Markov Chain Monte Carlo; Metropolis-

Hastings Algorithm; Power Transformation; Transformation Parameter

Contact address
Qing Liu, Centre for Actuarial Studies, Faculty of Business and Economics, The University of

Melbourne, VIC 3010, Australia. E-mail: q.liu5@pgrad.unimelb.edu.au

David Pitt, Department of Applied Finance and Actuarial Studies, Faculty of Business and

Economics, Macquarie University, NSW 2109, Australia. E-mail: david.pitt@mq.edu.au.

Xibin Zhang, Department of Econometrics and Business Statistics, Monash University, VIC

3145, Australia. E-mail: xibin.zhang@monash.edu

Xueyuan Wu, Centre for Actuarial Studies, Faculty of Business and Economics, The University of

Melbourne, VIC 3010, Australia. E-mail: xueyuanw@unimelb.edu.au.

1. Introduction

Kernel density estimation is one of the widely used non-parametric estimation techniques for

estimating the probability density function of a random variable. For a univariate random variable X
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with unknown density f(x), if we draw a sample of n independent and identically distributed

observations x1, x2,y, xn, the kernel density estimator is given by (Wand & Jones, 1995)

f̂ ðxÞ ¼
1

n

Xn

i¼1

1

h
K

x� xi

h

� �
;

where h is the bandwidth that controls the amount of smoothness, and K( � ) is the kernel function

which is usually chosen to be a symmetric density function. Wand et al. (1991) argued that the

classical kernel density estimator does not perform well when the underlying density is asymmetric

because such an estimation requires different amounts of smoothing at different locations.

Therefore, they proposed to transform the data with the intention that the use of a global

bandwidth is appropriate for the kernel density estimator after transformation. The power

transformation is one such transformation for this purpose.

There are a number of alternative transformation methods that have been studied in the

literature. For example, Hjort & Glad (1995) advocated a semi-parametric estimator with a

parametric start. Clements et al. (2003) introduced the Mobius-like transformation. Buch-Larsen

et al. (2005) proposed an estimator obtained by transforming the data with a modification of

the Champernowne cumulative density function and then estimating the density of the transformed

data through the kernel density estimator. These transformation methods are particularly useful

with insurance data because the distributions of insurance claim data are often skewed and

present heavy-tailed features. However, these transformations often involve some parameters,

which have to be determined before the kernel density estimation is conducted. In this paper, we

aim to present a sampling algorithm to estimate the bandwidth and transformation parameters

simultaneously.

It is well established in the literature that the performance of a kernel density estimator is largely

determined by the choice of bandwidth and only in a minor way, by kernel choice (see for example,

Izenman, 1991; Scott, 1992; Simonoff, 1996). Many data-driven methods for bandwidth selection

have been proposed and studied in the literature (see for example, Marron, 1988; Sheather & Jones,

1991; Scott, 1992; Bowman & Azzalini, 1997). However, Zhang et al. (2006) indicated that kernel

density estimation for multivariate data has received significantly less attention than its univariate

counterpart due to the increased difficulty in deriving an optimal data-driven bandwidth as the

dimension of the data increases. They proposed MCMC algorithms to estimate bandwidth

parameters for multivariate kernel density estimation.

The data set we use in this paper has two dimensions, and therefore we could use the sampling

algorithm presented by Zhang et al. (2006) to estimate bandwidth parameters. However,

their algorithm has so far only been used to estimate a density for directly observed data.

As our data are highly positively skewed and have to be transformed for the purpose of density

estimation, we extend their MCMC algorithm so that it estimates not only the bandwidth

parameters but also the transformation parameters for the bivariate insurance claim data.

Bolancé et al. (2008) analysed this data set using the kernel density estimation via transformations.

This approach captures a certain degree of correlation between the two dimensions by using the

product kernel. However, the parameters involved in the transformed kernel density estimator

were estimated by dealing with each dimension individually, and this is likely to underestimate

the correlation between the two dimensions. In this paper, we present MCMC algorithms for

estimating the bandwidth and transformation parameters for not only univariate data but also
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bivariate data. We investigate the differences in estimated correlations calculated through both

sampling algorithms.

The rest of the paper is organised as follows. In Section 2, we provide a brief summary of the

data and demonstrate the motivation for the paper. Section 3 presents MCMC algorithms for

estimating bandwidth parameters and transformation parameters for kernel density estimation via

transformations for univariate and bivariate data. In Section 4, we examine the performance of our

MCMC algorithms in choosing bandwidths and estimating transformation parameters for the

bivariate insurance claim data. Section 5 concludes the paper.

2. Data and motivation

Our data set is the one analysed by Bolancé et al. (2008), whose data were collected from a major

automobile insurance company in Spain. The data contain 518 paired claims. Each claim contains

two types of losses, which are respectively, property damage X1 and medical expenses X2. It is

intuitive that a serious car accident might cause serious damage to the cars, and the passengers

involved in the accident might also be seriously injured. Therefore, we expect that the two types of

claims are positively correlated.

Figure 1 presents a scatter plot of claims of bodily injury costs against property damage costs, as

well as a scatter plot of the logarithms of such claim costs. The two graphs suggest that there exists

an obvious positive correlation between the two types of costs.

Bolancé et al. (2008) investigated modelling the data using both the classical kernel density

estimation method and the transformed kernel density estimation method. They found that the

transformed kernel estimation approach obviously performs better than the classical kernel

estimation method in terms of calculating the conditional tail expectation (CTE). They firstly

estimated the transformation parameters by looking at each dimension of the bivariate costs, and

then used the product kernel for the kernel density estimator for the bivariate transformed data. The

use of the product kernel can capture a certain degree of correlation between the two dimensions.

We wish to see whether there is an improvement in the correlation captured if we take both

dimensions into account during the parameter estimation process. In this paper, we propose to

estimate the bandwidths and transformation parameters for the bivariate data through our new

Bayesian sampling algorithm.

3. Bayesian sampling algorithms

3.1. Kernel density estimation for transformed data

The kernel density estimation technique is often of great interest in estimating the density for a set

of data. However, when the underlying true density has heavy tails, the kernel density estimator

(with a global bandwidth being used) can perform quite poorly. Wand et al. (1991) suggested

transforming the data and obtaining the kernel density estimator for the transformed data.

The density estimator for the untransformed data is the derived kernel density estimator for the

transformed data multiplied by the Jacobian of such a transformation. Wand et al. (1991) found

that compared to working with kernel density estimation for untransformed data, significant

gains can be achieved by working with density estimation for transformed data.
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The shifted power transformation is one such transformation that is effective in changing the degree

of positive skewness in data (see for example, Wand et al., 1991). Such a transformation is given by

~y ¼ ~Tl1 ; l2
ðxÞ ¼

ðxþ l1Þ
l2 signðl2Þ if l2 6¼ 0

lnðxþ l1Þ if l2 ¼ 0
;

(
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Figure 1. (1) Scatter plot of bodily injury claims versus third party liability claims; and (2) Scatter
plot of logarithmic bodily injury claims versus logarithmic third party liability claims.
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where l1 . 2min {x1, x2,y , xn}, and l2 , 1. To ensure that this transformation is scale preserving,

~y is further transformed as

y ¼ Tl1 ; l2
ðxÞ ¼

sx

s~y

� �
~y;

where s2
x and s2

~y are the variances of x and ~y, respectively. Let yi ¼ Tl1 ; l2
ðxiÞ, for i 5 1, 2, y , n.

The kernel density estimator for the univariate transformed data is

~f h;l1 ;l2
ðyÞ ¼

1

n

Xn

i¼1

1

h
K

y�yi

h

� �
;

and the kernel density estimator for the untransformed data is

f̂ h;l1 ;l2
ðxÞ ¼

1

n

Xn

i¼1

1

h
K

Tl1 ;l2
ðxÞ�Tl1 ;l2

ðxiÞ

h

� �
T
0

l1 ;l2
ðxÞ:

Wand et al. (1991) investigated data-driven selection methods for the choice of transformation

parameters and bandwidth or smoothing parameter for univariate data. However, the transformation

parameters have to be pre-determined for chosen bandwidths. Moreover, when the dimension of data

increases, the estimation of these parameters becomes increasingly difficult. In this paper, we aim to

estimate the transformation parameters and bandwidth parameters simultaneously.

3.2. Bivariate kernel density estimation via transformation

Let X 5 (X1, X2)? denote a bivariate random vector with density f(x), and let xi5(xi1, xi2)?, for

i 5 1, 2,y , n, be an independent random sample drawn from f(x). The transformed data are

denoted as yi ¼ ðyi1; yi2Þ
T
¼ ðTl11 ;l21

ðxi1Þ;Tl12 ;l22
ðxi2ÞÞ

T, for i 5 1, 2,y , n. The kernel density

estimator for the bivariate transformed data is given by

f̂ ðyÞ ¼
1

n

Xn

i¼1

1

h1h2
K y1�yi1

h1
;
y2�yi2

h2

� �
; ð1Þ

where h1 and h2 are bandwidths for the two dimensions, and K( � , � ) is a bivariate kernel function

which is usually the product of two univariate kernels. Therefore, this bivariate kernel estimator can

be re-written as

f̂ ðyÞ ¼
1

n

Xn

i¼1

1

h1
K

y1�yi1

h1

� �
1

h2
K

y2�yi2

h2

� �
: ð2Þ

The bivariate kernel density estimator for the original data is

f̂ h;k1 ;k2
ðxÞ ¼

1

n

Xn

i¼1

Y2

k¼1

1

hk
K

Tl1k ; l2k
ðxkÞ�Tl1k ; l2k

ðxikÞ

hk

� �
T 0l1k ; l2k

ðxkÞ

( )
; ð3Þ

where x 5 (x1, x2)
?, h 5 (h1, h2)

? is a vector of bandwidths, k1 5 (l11,l21)
? is a vector of

transformation parameters for x1, and k2 5 (l12,l22)
? is a vector of transformation parameters for x2.

In the current literature, there are two limitations in using the kernel density estimation via

transformations. First, the transformation parameters have to be pre-determined so that bandwidth

parameters can be chosen through some currently available method. Second, when estimating the density

of the insurance claim data, Bolancé et al. (2008) obtained the marginal kernel density estimator for each

dimension via transformations. They derived the CTE through the estimated marginal densities. Their

approach does capture a certain degree of correlation between the two dimensions by using the product
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kernel, while their parameter estimations was conducted for each dimension individually. In this paper,

we aim to derive the posterior density of the transformation parameters and bandwidths and present a

Metropolis-Hastings sampling algorithm to sample both types of parameters from their posterior density.

3.3. Bayesian sampling algorithms

Zhang et al. (2006) presented an MCMC sampling algorithm for estimating bandwidth parameters

for kernel density estimation based on untransformed data. Treating bandwidths as parameters,

they derived the posterior density of the bandwidths through the likelihood cross-validation

criterion. This criterion involves choosing an optimal bandwidth that minimises the Kullback-

Leibler information, which is a measure of the discrepancy between the true underlying density f(y)

and the density estimator f̂ hðyÞ and is defined as

dKLðf ; f̂ hÞ ¼

Z
R

log
f ðyÞ

f̂ hðyÞ

( )
f ðyÞdy:

Zhang et al. (2006) showed that minimising Kullback-Leibler information is approximately

equivalent to maximising

Ê log f̂ hðyÞ
n o

¼
1

n

Xn

i¼1

log f̂ hðyiÞ ¼
1

n

Xn

i¼1

log
1

n

Xn

j¼1

1

h
K

yi�yj

h

� �( )
; ð4Þ

with respect to h. However, if we directly maximise (4) with respect to h, the resulting bandwidth

would be zero. One way of dealing with this problem is to estimate fh(yi) based on the observations

without yi, and to approximate Ê log ff̂ hðyÞg by (Härdle, 1991)

Lðy1; y2; � � � ; ynjhÞ ¼
1

n

Xn

i¼1

log f̂ ðiÞ;hðyiÞ; ð5Þ

where f̂ h; iðyiÞ is the leave-one-out estimator given by

f̂ ðiÞ;hðyiÞ ¼
1

n�1

Xn

j¼1; j6¼i

1

h
K

yi�yj

h

� �
:

The log-likelihood of {y1, y2,y , yn} for given h could be approximated by nL(y1, y2,y , yn|h).

Therefore, the posterior density of h is proportional to the product of the prior density of h and this

likelihood function.

The Bayesian sampling algorithm proposed by Zhang et al. (2006) is mainly used for estimating

bandwidths in kernel density estimation for untransformed data. As our data are highly positively

skewed, the original data should be transformed for the purpose of density estimation. We extend

the sampling algorithm of Zhang et al. (2006) by deriving the posterior density of the bandwidth

parameters and transformation parameters. Thus, we can estimate not only the bandwidth

parameters but also the transformation parameters simultaneously for our kernel density estimator

of the transformed data. When data are transformed through some transformation parameters, the

kernel-form density estimator of the original data is given by (3), which is a function of bandwidth

parameters and transformation parameters. We find that the sampling algorithm of Zhang et al.

(2006) can be extended by including additional transformation parameters to sample both types of

parameters from their posterior density constructed through (3).
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3.3.1. Univariate kernel density estimation
We now investigate the issue of using Bayesian sampling techniques to estimate the transformation

parameters, l1k and l2k, and the bandwidth, hk, based on univariate data, (x1k,y , xnk)?, for k 5 1

and 2, respectively. As the parameters are estimated for each of the two dimensions respectively, any

possible correlation between the two dimensions can only be captured through the use of the

product kernel. For each dimension, we have three unknown parameters, namely hk (the

bandwidth), l1k and l2k (the transformation parameters for shifted power transformation family).

The posterior density of these three parameters can be obtained through the likelihood cross-

validation criterion in the same way as in Zhang et al. (2006). We assume the prior density of Hk,

whose realised value is hk, is a normal density given by

p0ðhkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
hk

q exp �
ðhk�mhk

Þ
2

2s2
hk

( )
;

which is truncated at 0 so as to maintain the domain of positive bandwidths, for k 5 1 and 2. The

prior density of L1k is assumed to be the normal density given by

p1ðl1kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
l1k

q exp �
ðl1k�ml1k

Þ
2

2s2
l1k

( )
;

which is left truncated at -min {x1k, x2k,y , xnk}, for k 5 1 and 2. The prior density of L2k is

assumed to be the uniform density on (2ak,1) given by

p2ðl2kÞ ¼
1

1þ ak
;

for k 5 1 and 2. Therefore, the joint prior density of (Hk, L1k, L2k) is

pðhk; l1k; l2kÞ ¼ p0ðhkÞ � p1ðl1kÞ � p2ðl2kÞ;

where the hyperparameters are mhk
; shk

; ml1k
; sl1k

and ak, for k 5 1 and 2. The likelihood is

approximated as

‘kðx1k; x2k; . . . ; xnkjhk; l1k; l2kÞ ¼
Yn

i¼1

f̂ ðiÞ;hk ; l1k ; l2k
ðxikÞ;

where f̂ ðiÞ;hk ; l1k ; l2k
ðxikÞ denotes the leave-one-out estimator of the density of xik (see for example,

Zhang et al., 2006) given by

f̂ ðiÞ;hk ; l1k ; l2k
ðxikÞ ¼

1

n�1

Xn

j¼1;j6¼i

1

hk
K

Tl1k ; l2k
ðxikÞ�Tl1k ; l2k

ðxjkÞ

hk

� �
T 0l1k ; l2k

ðxikÞ;

for k 5 1 and 2.

According to Bayes theorem, the posterior density of (Hk, L2k, L2k) is (up to a normalising constant)

pðhk; l1k; l2kjx1k; x2k; � � � ;xnkÞ / pðhk; l1k; l2kÞ � ‘kðx1k; x2k; . . . ; xnkjhk; l1k; l2kÞ; ð6Þ

for k 5 1 and 2. Using the random-walk Metropolis-Hastings algorithm, we are able to sample

(h1, l11, l21) and (h2, l12, l22) from (6) with k 5 1 and 2, respectively. The ergodic average
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(or the posterior mean) of each parameter acts as an estimate of that parameter. In terms of

univariate kernel density estimation discussed here, our contribution is to present a sampling

algorithm that aims to estimate the bandwidth and transformation parameters within a Bayesian

sampling procedure for univariate data. Hereafter, we call this sampling algorithm the univariate

sampling algorithm.

3.3.2. Bivariate kernel density estimation
Given bivariate observations denoted as xi, for i 5 1, 2,y , n, and the parameter vector denoted as

(h,k1,k2), which were defined immediately after (3), the likelihood function is approximated as

(Härdle, 1991)

‘ðx1; x2; � � � ; xnjh; k1; k2Þ ¼
Yn

i¼1

f̂ ðiÞ;h;k1 ;k2
ðxiÞ; ð7Þ

where

f̂ ðiÞ;h;k1 ;k2
ðxiÞ ¼

1

n�1

Xn

j¼1;j6¼i

Y2

k¼1

1

hk
K

Tl1k ; l2k
ðxikÞ�Tl1k ; l2k

ðxjkÞ

hk

� �
T 0l1k ;l2k

ðxikÞ

( )
; ð8Þ

the leave-one-out estimator of the density of X computed at xi, for i 5 1, 2,y , n.

Let the joint prior density of (H, L1, L2) be denoted as p(h, k1, k2), which is the product of marginal

priors defined in Section 3.3.1. Then the posterior density of (H, L1, L2) is (up to a normalising

constant)

pðh; k1; k2jx1; x2; � � � ; xnÞ / pðh; k1; k2Þ � ‘ðx1; x2; � � � ; xnjh; k1; k2Þ; ð9Þ

from which we can sample (h,k1,k2) through an appropriate Bayesian sampling algorithm such as

the Metropolis-Hastings sampling algorithm described as follows.

i) Conditional on (k1, k2), we sample h from (9) using the Metropolis-Hastings algorithm.

ii) Conditional on h, we sample (k1, k2) from (9) using the Metropolis-Hastings algorithm.

The sampling algorithm in the first step is the same as the one presented by Zhang et al. (2006) for

directly observed data. Alternatively, we can sample (h, k1, k2) directly from its posterior density

given by (9) using the Metropolis-Hastings algorithm. Hereafter, we call this sampling algorithm the

bivariate sampling algorithm.

3.4. An application to bivariate insurance claim data

In order to explore the benefits that could be gained by estimating the parameters using bivariate

data instead of separately estimating density for each dimension of data, we apply the MCMC

algorithms proposed in Section 3.3 in two ways and compare the two sets of results.

First, we estimated (hk, l1k, l2k) for the kernel density estimator of each variable based on univariate

data {x1k, x2k,y , xnk}, for k 5 1 and 2, using the sampling algorithm presented in Section 3.3.1.

The hyperparameters were chosen to be mhk
¼ 40 and shk

¼ 5, for k 5 1 and 2, and

ml11
¼ 1500; sl11

¼ 333; ml12
¼ 90; sl12

¼ 30 and ak 5 6, for k 5 1 and 2. In terms of the normal

prior densities, the standard deviation values were deliberately chosen as large values, such that the

normal prior densities are very flat. As we did not know the central locations of these normal prior
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densities, we tried a few values for these central locations by initially running the sampling

algorithm several times. In terms of the uniform prior, we actually put a constraint through a

reference to Bolancé et al. (2008). No matter what values were chosen for these hyperparameters,

a resulting sampler should produce the best mixing performance.

Second, we estimated the bandwidth vector h 5 (h1, h2)?, the transformation parameter vectors

k1 and k2 in the bivariate density estimator for the bivariate data using the sampling algorithm

presented in Section 3.3.2. The hyperparameters were chosen to be mhk
¼ 40; shk

¼ 5 for k 5 1 and

2, ml11
¼ 2300; sl11

¼ 1000; ml12
¼ 40; sl12

¼ 20, a1 5 5 and a2 5 2. We actually followed the same

rule as the above-mentioned in choosing values for these hyperparameters.

We are particularly interested in the correlation coefficient captured through both sampling algorithms.

We wish to know whether the correlation between the two dimensions can be better captured using the

bivariate sampling algorithm than with the univariate sampling algorithm.

We calculate the Pearson’s correlation coefficient between X1 and X2 using the estimated densities with

the formula

r ¼ Corr ðX1;X2Þ ¼
EðX1X2Þ�EðX1ÞEðX2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðX2
1Þ�E2

ðX1Þ
� �

EðX2
2Þ�E2

ðX2Þ
� �q ; ð10Þ

where EðXiÞ ¼
R1

0 xf i ðxÞdx, EðX2
i Þ ¼

R1
0 x2f iðxÞdx, for i 5 1 and 2, and

EðX1X2Þ ¼
R1

0

R1
0 x1x2f ðx1;x2Þdx1dx2. Using the rectangle method, we wrote R functions to

numerically approximate the integrals and the double integral in the above expression. Our programs

allow for controlling the accuracy of the integrals. We tested our numerical computation on bivariate

normal distributions with known densities and found that the error is less than 0.01%.

4. Results and discussion

4.1. MCMC results

As previously discussed in Section 3.2, we executed both the the univariate and bivariate sampling

algorithms. Table 1 presents the results obtained by running the univariate sampling algorithm for

each of the two dimensions, respectively. Any possible correlation between the two dimensions is

only captured through the use of product kernel, while the parameter estimation procedure did not

take the correlation into account. Table 2 provides the results derived by running the bivariate

sampling algorithm for the bivariate data.

To prevent false impressions of convergence, we chose the tuning parameter in the random-walk

Metropolis-Hastings algorithm so that the acceptance rate was between 0.2 and 0.3 (see for

example, Tse et al., 2004). The burn-in period was chosen to contain 5,000 iterations, and the number

of total recorded iterations was 10,000. The simulation inefficiency factor (SIF) was used to check the

Table 1. MCMC results obtained through the univariate sampling algorithm.

X1 Estimate SIF Acceptance rate X2 Estimate SIF Acceptance rate

h1 71.031 8.76 0.203 h2 54.467 19.91 0.256

l11 1760.887 24.97 0.188 l12 43.055 54.92 0.270

l21 22.302 22.58 0.238 l22 21.466 54.51 0.210
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mixing performance of the sampling algorithm (see for example, Roberts, 1996). The SIF can be

approximated as the number of consecutive draws needed so as to derive independent draws. For

example, if the SIF value is 20, we should retain one draw for every 20 draws so that the retained draws

are independent (see for example, Kim et al., 1998; Meyer & Yu, 2000; Zhang et al., 2009).

Figure 2 provides graphs for simulated chains based on univariate data, and Figure 3 presents

graphs for simulated chains based on bivariate data. In each graph, we plotted the simulated

Table 2. MCMC results obtained through the bivariate sampling algorithm.

X1 Estimate SIF Acceptance rate X2 Estimate SIF Acceptance rate

h1 124.138 6.78 0.299 h2 128.536 8.91 0.279

l11 2234.750 67.93 0.225 l12 51.741 30.96 0.291

l21 23.030 66.12 0.235 l22 20.814 28.57 0.257
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Figure 2. Plots of simulated chains based on univariate data series. The left column contains the
simulated chains of (h, l1, l2) based on the first series, and the right column contains the simulated
chains of the same set of parameters based on the second series. In each of the six graphs, the
horizontal axis represents the serial number of draws which retained one draw for every five draws;
and the vertical axis represents parameters values.
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chains for the bandwidth and transformation parameters. According to the SIF values presented in

Table 1 and the graphs of the simulated chains presented in Figure 2, we found that the simulated

chains of parameters for both variables have achieved very good mixing performance.

Table 2 and the graphs of the simulated chains presented in Figure 3 show that the simulated chains

of parameters for the bivariate density estimator have achieved reasonable mixing performance.

Even though the SIF values of l11 and l21 are larger than those of the other parameters, they are well

below 100, which is usually considered as a benchmark for a reasonable mixing performance.

Therefore we could conclude that the inefficiency of the simulated Markov chains is tolerable in

view of the number of iterations.

4.2. Accuracy of results obtained through the MCMC algorithms

Let M1 denote the univariate sampling algorithm proposed in Section 3.3.1 and M2 denote

the bivariate sampling algorithm proposed in Section 3.3.2. In order to examine the performance

of the two algorithms for the estimation of bandwidth parameters and transformation parameters,
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Figure 3. Plots of simulated chains based on bivariate data series. The left column contains the
simulated chains of (h, l11, l12), and the right column contains the simulated chains of (h, l21, l22).
In each of the six graphs, the horizontal axis represents the serial number of draws which retained
one draw for every five draws; and the vertical axis represents parameters values.

A Bayesian Approach to Parameter Estimation for Kernel Density Estimation via Transformations

191

https://doi.org/10.1017/S1748499511000030 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000030


we computed the value of the correlation coefficient given by (10) and the value of log-likelihood

function given by (7) based on parameter estimates obtained through M1 and M2, respectively.

The log-likelihood value calculated through parameter estimates given in Table 1 is -9501.00, and

log-likelihood calculated through parameter values given in Table 2 is -7636.26. This indicates a

dramatic increase of the log-likelihood value obtained through M2 against M1.

The correlation coefficients approximated through the density estimator given by (3) with

parameters estimated through M1 and M2 are 0.2 and 0.26, respectively. This indicates that the

bivariate sampling algorithm can better capture the correlation between X1 and X2 than the

univariate sampling algorithm. As the sample measures of Pearson’s correlation coefficient and

Spearman’s rank correlation coefficient are respectively, 0.73 and 0.58, we have to say that both M1

and M2 tend to underestimate the correlation between the two dimensions. The reason for this

outcome is likely to be the use of the product kernel, or equivalently, the use of a diagonal

bandwidth matrix for the bivariate Gaussian kernel. A possible remedy to this problem is to use a

full bandwidth matrix at the expense of increased complexity of the resulting bivariate density

estimator. We leave this for future research.

5. Conclusions

This paper presents Bayesian sampling algorithms for estimating bandwidths and transformation

parameters in the kernel density estimation via transformations for bivariate data. The proposed

sampling algorithms can estimate not only the bandwidth parameters but also the transformation

parameters through a Metropolis-Hastings sampling procedure. Our sampling algorithms have

achieved very good mixing performance. When estimating the density of bivariate insurance claim

data, we have found that our bivariate sampling algorithm has an improvement over what Bolancé

et al. (2008) did, where the transformation parameters were estimated by dealing with each variable

separately. We calculate the correlation coefficient through our bivariate sampling algorithm in

comparison with that calculated through the univariate sampling algorithm. We have found that the

correlation between the two dimensions is better captured via the bivariate sampling algorithm than

the univariate sampling algorithm.

We have also computed the conditional tail expectation as in Bolancé et al. (2008). However, our

results tend to underestimate the empirical conditional tail expectations. This is not surprising

because our sampling algorithms were developed based on the Kullback-Leibler information, under

which our results are optimal in terms of the entire density rather than the tails of the density.

Further research could focus on finding the optimal bandwidth and transformation parameters for

bivariate kernel density estimation via transformations, which give a more accurate estimate of the

tail of the joint density. The third author acknowledges financial support from the Australian

Research Council under the discovery project DP1095838.
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