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Abstract

In this paper we propose a model for biological neural nets where the activity of the
network is described by Hawkes processes having a variable length memory. The
particularity in this paper is that we deal with an infinite number of components. We
propose a graphical construction of the process and build, by means of a perfect simulation
algorithm, a stationary version of the process. To implement this algorithm, we make use
of a Kalikow-type decomposition technique. Two models are described in this paper. In
the first model, we associate to each edge of the interaction graph a saturation threshold
that controls the influence of a neuron on another. In the second model, we impose a
structure on the interaction graph leading to a cascade of spike trains. Such structures,
where neurons are divided into layers, can be found in the retina.
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1. Introduction and main results

1.1. Motivation

The aim of this paper is to present a model in continuous time for an infinite system of
interacting neurons. Each neuron is represented by its spike train, i.e. the series of events of
spiking over time. Since neural activity is continuously recorded in time, a time continuous
description is natural. The model considered in this paper is an extension to the continuous-
time framework of a model which was recently introduced by Galves and Löcherbach [10] in
discrete time.

We consider a countable set of neurons I . The activity of each neuron i ∈ I is described
by a counting process Zi where, for any −∞ < s < t < ∞, Zi((s, t]) records the number
of spikes of neuron i during the interval (s, t]. Under suitable assumptions, the sequence of
counting processes (Zi, i ∈ I ) is characterized by its intensity process (λit , i ∈ I ) which is
defined through the relation

P(Zi has a jump in (t, t + dt] | Ft ) = λit dt, i ∈ I.
Here, Ft is the sigma-field generated by Zi((s, u]), s ≤ u ≤ t, i ∈ I .
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Our main motivation is to model neural nets. This naturally leads to the following choice of
intensity processes:

λit = ψi
(∑
j∈I

hj→i
(∫
[Lit ,t)

gj (t − s) dZjs

))
, (1)

where ψi : R → R+ is the spiking rate function, {hj→i : R+ → R, i, j ∈ I } a family of
synaptic weight functions modeling the influence of neuron j on neuron i, gj : R+ → R+ a
nonincreasing decay function, and

Lit = sup{s < t : Zi([s]) > 0} (2)

the last spiking time before time t of neuron i (with the convention [s] := [s, s]).
The form (1) of our intensity process is close to the typical form of the intensity of a

multivariate nonlinear Hawkes process. The original papers of Hawkes [12] and Hawkes
and Oakes [13], introducing the model, dealt with linear intensity functions. Extensions to
the nonlinear case were considered by Brémaud and Massoulié [1]; see also Massoulié [16],
who proposed a study of the stability properties of multivariate nonlinear Hawkes processes.
Hawkes processes have shown to be important in various fields of applications. To name
just a few, Hansen et al. [11] and Chevallier [2] are excellent references proving the use of
Hawkes processes as models of spike trains in neuroscience. Reynaud-Bouret and Schbath
[18] dealt with an application to genome analysis. In a completely different context, Jaisson
and Rosenbaum [14] obtained limit theorems for nearly unstable Hawkes processes in view of
applications in financial price modeling. For a general introduction to Hawkes processes and
their basic properties we refer the reader to Daley and Vere-Jones [4].

Our form of the intensity (1) differs from the classical Hawkes setting by its variable memory
structure introduced through the termLit . Hence, the spiking intensity of a neuron only depends
on its history up to its last spike time, which is a biologically very plausible assumption on the
memory structure of the process. Therefore, our model can be seen as a nonlinear multivariate
Hawkes process where the number of components is infinite with a variable memory structure.
The interactions between neurons are encoded through the synaptic weight functions hj→i that
we are going to specify below.

1.2. The setting

We work on a filtered measurable space (�,A,F) which we define as follows. We write M

for the canonical path space of simple point processes given by

M :=
{
m = (tn)n∈Z : t0 ≤ 0 < t1, tn ≤ tn+1, tn < tn+1 if tn < +∞ or tn+1 > −∞;

lim
n→+∞ tn = +∞, lim

n→−∞ tn = −∞
}
.

For any m ∈ M, any n ∈ Z, let Tn(m) = tn. We identify m ∈ M with the associated point
measure μ = ∑

n δTn(m) and set Mt := σ {μ(A) : A ∈ B(R), A ⊂ (−∞, t]}, M = M∞.
We will also systematically identify m with the associated counting process α(m), defined by
α0(m) = 0,

αt (m) =
{
μ((0, t]) if t ≥ 0,

−μ((t, 0]) if t ≤ 0.

Finally, we set (�,A,F) := (M,M, (Mt )t∈R)I . We write (Zi, i ∈ I ) for the canonical
multivariate point measure defined on �.
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We specify the following parameters: a family of firing rate functions ψ = {ψi : R →
R+, i ∈ I }, a family of synaptic weight functions h = {hj→i : R→ R, i, j ∈ I }, a family of
functions g = {gj : R+ → R+, j ∈ I }, which are nonincreasing. Recall the definition of the
last spiking time of neuron i before time t , given in (2).

Definition 1. A Hawkes process with variable length memory and an infinite number of in-
teracting components with parameters (ψ, h, g) is a probability measure P on (�,A,F) such
that

• P-almost surely, for all i 	= j, Zi and Zj never jump simultaneously,

• for all i ∈ I , the compensator of Zi is given by νi(dt) = λit dt , where

λit = ψi
(∑
j∈I

hj→i
(∫
[Lit ,t)

gj (t − s) dZjs

))
.

2. Main results

In the case where I is a finite set, under suitable assumptions on the parameters of the
process, the existence and construction of (Zi, i ∈ I ) is standard (see [1] and [5]). In our
case, however, the number of interacting components defining the process is infinite. In such
a framework, Delattre et al. [5] proved pathwise existence and uniqueness of the processes,
however without giving an explicit construction of the process. In this paper we show that –
under suitable assumptions – a graphical construction is possible. This graphical construction
does not only imply the existence but also the possibility of a perfect simulation of a stationary
version of the process (i.e. a probability measure P on (�,A,F), such that under P, for all
u ∈ R and all i ∈ I , the processes Zi(]u, u + t]), t ∈ R are stationary). These results are
achieved via a Kalikow-type decomposition in two types of models. The first model is a system
containing a saturation threshold for any directed edge i → j in the interaction graph defined
by the synaptic weights. The second model deals with a cascade of spike trains.

Kalikow-type decompositions are now largely used in the literature for perfect simulation
issues and similar scopes. They were considered first by Ferrari et al. [8] and Comets et al. [3].
This type of technique was then studied in a series of papers for perfect simulation issues.
See Galves and Löcherbach [10] for an application in the context of neural biological nets in
discrete time. The decomposition that we use in this paper is a nontrivial extension of the
previous considerations to the framework of continuous-time neural nets. In the case of our
first model, it has to be achieved in a random environment.

To the best of the authors’ knowledge, the perfect simulation algorithm constructed in this
paper is the first result in this direction obtained for Hawkes processes with nonlinear intensity
functions. The well known work of Møller and Rasmussen [17] on perfect simulation of
Hawkes processes dealt with linear intensity functions and exploited very heavily the underling
branching structure. The precise form of our perfect simulation algorithm is given in Section 6.2.

2.1. Assumptions and notation

Throughout this paper we suppose that the firing rate functions ψi : R → R+ are nonde-
creasing and bounded by a real number 	i . Introducing

φi = ψi

	i
, (3)

we make the following assumption.
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Assumption 1. The family of functions {φi}i∈I , is equicontinuous, i.e. there exists a modulus
of continuity ω : R+ → R+, satisfying ω(0) = 0 and limx→0 ω(x) = 0, such that for all
x, x′ ∈ R, i ∈ I ,

|φi(x)− φi(x′)| ≤ ω(|x − x′|). (4)

Note that we can always choose the function ω to be subadditive.

The interactions between neurons are coded via the synaptic weight functions hj→i . For
each neuron i, we define

Vi→· = {j ∈ I, j 	= i : hi→j 	= 0},
where 0 denotes the constant function 0. As a consequence, Vi→· is the set of all neurons that
are directly influenced by neuron i. In the same spirit, we set

V·→i = {j ∈ I, j 	= i : hj→i 	= 0}, (5)

which is the set of neurons that have a direct influence on i. These sets may be finite or infinite.
In the following we introduce the two main types of models that we consider, firstly models

with saturation thresholds and secondly models with a cascade of spike trains.

3. Models with saturation threshold

3.1. Models with saturation thresholds

We suppose that to each directed edge j → i is associated a saturation thresholdKj→i > 0
representing the maximal number of spikes that the synapse j → i is able to support. We
suppose that

hj→i (x) = Wj→i (x ∧Kj→i ), (6)

where Wj→i ∈ R is called the synaptic weight of neuron j on i. Moreover, we suppose that
gj ≡ 1 for all j ∈ I and write for short g = 1. Hence, we can write

λit = ψi
(∑
j∈I

Wj→i (Zj ((Lit , t)) ∧Kj→i )
)
.

Introduce, for any i ∈ I , a nondecreasing sequence (Vi(k))k≥0 of finite subsets of I such
that Vi(0) = ∅, Vi(1) = {i}, Vi(k) ⊂ Vi(k+ 1), Vi(k) 	= Vi(k+ 1) if Vi(k) 	= V·→i ∪ {i}, and⋃
k Vi(k) = V·→i ∪ {i} (recall (5)).
We define, for all k ≥ 0, ∂Vi(k) := Vi(k + 1) \ Vi(k), the border of the set Vi(k) and make

the following assumption.

Assumption 2. For all i ∈ I,Wi→i = 0, and

sup
i∈I

∑
j

|Wj→i |Kj→i < +∞. (7)

The following theorem states that if any neuron has a sufficiently high spontaneous firing
activity, then a unique stationary version of the Hawkes process with saturation threshold exists.

Theorem 1. Grant Assumptions 1 and 2 and suppose that, for all i ∈ I ,

ψi ≥ δi for some δi > 0. (8)
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Suppose, moreover, that

sup
i∈I

(∑
k≥1

[( ∑
j∈Vi(k)

	j − δj
δi

)
μ̄i(k)

])
< 1, (9)

where

μ̄i(k) := ω
( ∑
j∈∂Vi(k−1)

|Wj→i |Kj→i 1{Wj→i<0}
)
+ ω

( ∑
j∈∂Vi(k−1)

|Wj→i |Kj→i 1{Wj→i>0}
)
,

(10)
with the indicator denoted by 1{·}. Then there exists a unique probability measure P on (�,A)
such that under P, the canonical process (Zi, i ∈ I ) on � is a stationary nonlinear Hawkes
process with variable length memory and an infinite number of interacting components, with
parameters (ψ, h, g), where h is given by (6) and g = 1.

Remark 1. (i) By subadditivity of ω, the condition

sup
i∈I

(∑
k≥1

[( ∑
j∈Vi(k)

	j − δj
δi

)( ∑
j∈∂Vi(k−1)

ω(|Wj→i |Kj→i )
)])

< 1

implies condition (9).

(ii) The following additional assumptions on the parameters allow us to work with a condition
simpler than (9). Suppose that δi = δ > 0 for all i ∈ I and that a stronger summability than (7)
holds, i.e.

sup
i

	i
∑
k≥1

|Vi(k)|
∑

j∈∂Vi(k−1)

ω(|Wj→i |Kj→i ) <∞. (11)

By the subadditivity of ω, condition (11) implies (9) for sufficiently large δ.

(iii) In the above model, there is a saturation threshold for each directed edge between two
neurons. A different model would be a system where the saturation threshold concerns only
the global input received by each neuron. This would amount to considering the following
intensity:

λit = ψi
(
K−i ∨

((∑
j∈I

Wj→iZj ((Lit , t))
)
∧K+i

))
,

whereK−i andK+i are global saturation thresholds, respectively, for inhibition and stimulation.
Under obvious changes of condition (9), Theorem 1 continues to hold in this framework.

(iv) In [16], the author obtained similar results in a slightly different context dealing with truly
infinite memory models. The fact that we consider variable length memory Hawkes processes
constitutes, of course, the main difference with respect to [16]. As a matter of fact, due to this
difference, instead of (8) and (9), [16] required that

∑
i∈I

∑
j∈I Wj→iKj→i <∞, which is a

stronger assumption than (7). Finally, we stress that using our approach we obtain more than
the existence of a stationary solution alone. It actually gives a graphical construction of the
stationary measure, which is not the case in [16].
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3.2. A Markovian description in terms of a coupled ‘house of cards’ process

As in the case of classical Hawkes processes with exponential loss functions, under suitable
assumptions, an alternative description of (Zi, i ∈ I ) via its intensity processes yields a
Markovian description of the process. Throughout this subsection, we impose the summability
assumption (7). Moreover, we suppose that

sup
i

	i |V|i→· <∞, inf
i
δi = δ > 0 (12)

and that
Vi := V·→i ∪ Vi→· are finite sets for all i ∈ I. (13)

Denote by Vi the set of neurons that directly influence neuron i or that are directly influenced
by it, i.e. the set of neurons j such that Wj→i 	= 0 or Wi→j 	= 0.

It is convenient to adopt a description of a process living on the set of directed edges
E = {j → i, j ∈ V·→i , i ∈ I }. We write e = j → i ∈ E for a directed edge and introduce,
for any such e, the process Ut(e) defined by

Ut(e) = Zj ((Lit , t)), t ∈ R.

With this point of view, the neural network is described by the process (Ut (e), e ∈ E)t∈R,
taking values in S := N

E . Its dynamic is described by its generator defined by

Gf (η) =
∑
i∈I

ψi

(∑
j

Wj→i (η(j → i) ∧Kj→i )
)
[f (η +�iη)− f (η)],

where

(�iη)(k→ l) =

⎧⎪⎨⎪⎩
−η(k→ l) if l = i, k ∈ V·→i ,
1 if k = i, l ∈ Vi→·,
0 otherwise,

and where f ∈ D(G) = {f : |||f ||| := ∑
e∈E �f (e) < ∞} with �f (e) = sup{|f (η) −

f (ζ )| : η, ζ ∈ S, η(e′) = ζ(e′) for all e′ 	= e}.
Remark 2. (i) Note that a spike of neuron i does not only affect all neurons j ∈ Vi→·, which
receive an additional potential, but also all neurons j ∈ V·→i , since all η(j → i) are reset to 0
when a spike of neuron i occurs. It is for this reason that we call the above process a coupled
‘house of cards’ process.

(ii) We could also work with S̃ := {η ∈ S : η(j → i) ≤ Kj→i for all e = (j → i) ∈ E},
which is the state space of relevant configurations of the process. This would imply us redefining
Ut(j → i) := Zj ((Lit , t)) ∧Kj→i .

We introduce Ti := {e = j1 → j2 ∈ E : j1 = i or j2 = i}.
By Theorem 3.9 of Liggett [15, Chapter 1], (11), together with (12) and (13), implies that G

is the generator of a Feller process (Ut (e), e ∈ E)t∈R on S.

Proof. Under the above conditions, the generator G can be written as

Gf (η) =
∑
i

cTi (η, dζ )[f (ηζi )− f (η)],
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where

η
ζ
i (e) =

{
η(e) if e /∈ Ti,
ζ(e) if e ∈ Ti,

and where

cTi (η, dζ ) = ψi
(∑

j

Wj→i (η(j → i) ∧Kj→i )
)
δη+�iη(dζ ).

A straightforward calculation shows that the quantity cTi = supη cTi (η, S) defined by Equa-
tion (3.3) in Liggett [15, Chapter 1] can be upper bounded by cTi ≤ 	i and that

cTi (e) := sup{‖cTi (η, ·)− cTi (ζ, ·)‖TV : η(e′) = ζ(e′) for all e′ 	= e},

where ‖ · ‖TV denotes the total variation distance, can be controlled by

cTi (e) ≤

⎧⎪⎨⎪⎩
	iω(|We|Ke) if e = k→ i,

	i if e = i → l,

0 otherwise.

Condition (11) together with (12) and (13) thus imply that M defined in Equation (3.8) of
Liggett [15, Chapter 1] can be controlled as

M = sup
e

∑
i : e∈Ti

∑
u	=e

cTi (u) ≤ 2 sup
i

	i

(∑
k

ω(|Wk→i |Kk→i )+ |V|i→·
)
<∞,

and then Theorem 3.9 of Liggett [15, Chapter 1] allows us to conclude. �

As a consequence, we can reformulate Theorem 1 in the following way.

Theorem 2. Grant the assumptions of Theorem 1 and suppose, moreover, that (7) together with
(11), (12) and (13) are satisfied. Then the process (Uet , e ∈ E)t∈R is ergodic.

Proof. The proof follows immediately from Theorem 1. �

Remark 3. We compare the above result to the M < ε-criterion of Theorem 4.1 of Liggett
[15, Chapter 1]. The quantityM has already been introduced above. Moreover, ε is defined by

ε := inf
e∈E inf
{η1,η2∈S : η1(e′)=η2(e′) for all e′ 	=e}

∑
{k : e∈Tk}

[cTk (η1, {ζ : ζ(e) = η2(e)})

+ cTk (η2, {ζ : ζ(e) = η1(e)})].

The sufficient condition for ergodicity in Theorem 4.1 of Liggett [15] is M < ε. Note that
in our particular case we have ε = 0 which can easily be seen by considering η1 and η2 with
η1(e) = 1 and η2(e) = 3 for some e ∈ E . Consequently, the sufficient condition M < ε is
not satisfied. However, Theorem 2 implies the ergodicity of the process without the condition
M < ε.
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4. A cascade of spike trains

We now describe the second model that we consider in this paper, a cascade of spike trains.
We suppose that for each j ∈ I , the function gj : R+ → R+ is measurable and nonincreasing
such that

∫ +∞
0 gj (x) dx < +∞. The function gj models a leak phenomenon. We suppose,

moreover, that
hj→i (x) = Wj→i · x (14)

for a family of synaptic weights {Wj→i ∈ R} satisfying the summability condition

sup
i∈I

∑
j

|Wj→i | <∞. (15)

Neurons j such that Wj→i > 0 are called excitatory for i, if Wj→i < 0, then j is called
inhibitory for i. Finally, we impose the following condition on the structure of interactions.

Assumption 3. The set I of the neurons is divided into layers (In)n∈Z such that we have the
partition I =⊔

n∈Z In. For each n ∈ Z and for each i ∈ In, we suppose that

V·→i ⊂ In−1. (16)

Therefore, a neuron only receives information from neurons in the layer just above itself.
This assumption does not apply to the brain’s structure, which is far too complicated. But such
a structure can be found in simpler nervous tissues such as the retina. The nonlinear Hawkes
process that we consider in this section is defined by its intensity given by

λit = ψi
(∑
j∈I

Wj→i
∫
[Lit ,t)

gj (t − s) dZjs

)
, (17)

together with the assumption (16) on the structure of the interactions.
In order to state our result for this model, we need to strengthen Assumption 1.

Assumption 4. The family (φi)i∈I is uniformly Lipschitz continuous, i.e. there exists γ > 0
such that, for all x, x′ ∈ R, i ∈ I ,

|φi(x)− φi(x′)| ≤ γ |x − x′|. (18)

Theorem 3. Grant Assumptions 3 and 4 and suppose, moreover, that condition (15) is satisfied.
If

sup
i∈I

(∑
k≥1

[(
k

( ∑
j∈Vi(k)

	j

)
+ 1

)

×
( ∑
j∈Vi(k−1)

|Wj→i |	j
∫ k

k−1
gj (s) ds +

∑
j∈∂Vi(k−1)

|Wj→i |	j
∫ k

0
gj (s) ds

)])

<
1

γ
, (19)

where γ is given in Assumption 4, then there exists a unique probability measure P on (�,A)
such that under P, the canonical process (Zi, i ∈ I ) on � is a stationary nonlinear Hawkes
process with variable length memory and an infinite number of interacting components, with
parameters (ψ, h, g), where h is given by (14).
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Remark 4. (i) A similar result still holds imposing only the weaker Assumption 1 instead of
Assumption 4. However, in this case, the summability condition (19) has to be restated in terms
of the modulus of continuity of the φi and turns out to be much more complicated than (19)
above. In particular, it cannot be expressed directly in terms of the parameters of the model.
See Remark 8 following the proof of Theorem 3 for more details.

(ii) We once more compare this result with Theorem 3 of [16]. Instead of our conditions (19)
and Assumption 3 on the structure of interactions, [16] requires that∑

i∈I

∑
j∈I

Wj→i
∫ +∞

0
tgj (t) dt <∞.

A direct comparison with (19) is difficult, but (19) seems to be slightly less restrictive.

(iii) We can restate our result in the framework of one-dimensional Hawkes processes with
the following assumptions: I = {i},Wi→i 	= 0,	i = 	 ∈ R+ and allowing for a time
dependence where Lit is replaced by −∞ for all t ∈ R. In this framework our condition (19)
can be expressed as ∑

k≥1

[
(k	+ 1)

∫ k

k−1
g(s) ds

]
<

1

	γ
.

This assumption is stronger than the following condition of Equation (4) in [1]:∫ ∞
0

sg(s) ds < +∞,

since Equation (4) of [1] does not impose a condition on the value of the L1-norm of g and on
the Lipschitz constant γ . However, our method gives a graphical construction of the stationary
measure by the mean of a perfect simulation algorithm. To the best of the authors’ knowledge
this has been obtained in the literature only for linear Hawkes processes as in [17], whereas our
process has a nonlinear intensity.

We give an example in which condition (19) is satisfied in order to illustrate our result. For
the sake of simplicity, we will assume that, for all j ,	j = 	 and gj = g. We will also choose
a simple structure for the network; each layer of neurons is identical and indexed by Z so that
we can take I = Z

2 with indexes i = (i1, i2) ∈ Z
2, where i1 denotes the ‘site’ of the neuron

and i2 the ‘height’ of its layer.

Example 1. Suppose that g(s) = e−as for some a > 0. We assume that each neuron is
influenced by an infinite number of neurons and that

W(j1,j2)→(i1,i2) =
W

|j1 − i1|β 1{j2=i2−1} 1{j1 	=i1}

for some β > 0 andW > 0, where 1{·} is the indicator. Putting V(i1,i2)(k) := {(j1, i2− 1); 1 ≤
|j1 − i1| ≤ k}, we have, for all neurons j ∈ ∂Vi(k − 1), Wj→i = 1/kβ . Condition (19) can
now be written as∑

k≥2

[
(k	(2k + 1)+ 1)

(k−1∑
l=1

	

lβ
e−ak(ea − 1)+ 	

kβ
(1− e−ak)

)]
<

a

2Wγ
.

This sum is finite if and only if β > 3. In particular, for fixed a,	, γ , and β > 3 there existsW ∗
such that W < W ∗ implies (19).
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Remark 5. In the model of Section 3 the presence of spontaneous spikes guarantees that the
neural network is always active. In the frame of cascades of spike trains, we do not impose the
presence of spontaneous spikes. Thus, we have to study the nonextinction of the process. Two
cases have to be considered. Firstly, if for all i ∈ I, ψi(0) = 0, then Zi ≡ 0 for all i ∈ I is
a possible stationary version of the Hawkes process with intensity (17). Since we are dealing
with the uniqueness regime here, Theorem 3 implies that this is the unique stationary solution
in this case. This situation is of course not of interest for us.

The second case to be considered is that of ψi(0) > 0 for at least one i. In this situation,
the process does not go extinct as we show in the following lemma. As a consequence, in this
case, the only invariant measure of the process is not the trivial one.

Lemma 1. If there exists i ∈ I such that ψi(0) > 0, then, for all t ∈ R, we have almost surely,∑
j∈{i}∪V·→i

Zj ([t,+∞)) > 0.

Proof. Here ψi(0) > 0 means that if the neuron i receives no information from the other
neurons, it has a positive rate of fire. In other words, the only way for the neuron i to stay
silent is to be regularly inhibited. In both situations we will have an activity in the network,
either of neuron i itself or of its inhibitors. The idea of the proof is then to suppose that for all
j ∈ V·→i , Zj ([t,+∞)) = 0, and to prove that in this case, almost surely Zi([t,+∞)) > 0
using the hypothesis ψi(0) > 0 together with the continuity of ψi . �

Remark 6. (Some remarks on the extinction problem.) We continue the discussion of Remark 5
concerning the extinction probability of the system in the ψi(0) = 0 case for all i ∈ I . As
pointed out above, in this case, the only invariant measure of the system is the trivial one δ0.

This situation might be different when considering the process from a macroscopic point
of view, reminiscent of what is called ‘hydrodynamical limit behavior’ in statistical physics.
To be more precise, suppose that we observe a set of N neurons, I = IN = {1, . . . , N}, that
Wj→i = 1/N for all i 	= j , gj (t) = e−αt for some α > 0, and that ψi(x) = ψ(x) for all i. We
suppose, moreover, that ψ(0) = 0 and that ψ ′(0) = β. In this case, for fixed N , the process
goes extinct almost surely, as has been shown in Theorem 2.3 of [7]. We now consider the
macroscopic behavior as N →∞. It has been proven (see, e.g. [9]) that the system possesses
the so-called ‘propagation of chaos’ property. This means that in the large population limit, the
neurons converge in law to independent and identically distributed (i.i.d.) copies of the same
limit law. In this macroscopic limit, the longtime behavior of a typical neuron can be different
from the one of a typical neuron in a finite-size system. In particular, in Theorem 12 of [6] it
was shown that under the assumption that β > α, the macroscopic system does not go extinct
almost surely in the long run, although ψ(0) = 0. In other words, the trivial invariant measure
is unstable in this case.

However, the point of view adopted in this paper is a different one. We are looking at infinite
systems of neurons, but at a microscopic level at which each neuron is observed at scale 1. In
this situation, the only way of preventing the system from going extinct is summarized in the
above Lemma 1.

5. A dominating Poisson random measure

Recall that the firing rate functionsψi considered in this paper are bounded by a constant	i
for each i ∈ I . We will use this assumption to introduce a Poisson random measure (PRM)
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N(dt, di, dz) on R× I × [0, 1] with intensity dt (
∑
i∈I 	iδi) dz on R× I × [0, 1] dominating

the process (Zi, i ∈ I ). This allows us to select the jump times of Zi among those of Ni

according to probabilities driven by the function φi (recall (3)). This leads to the following
definition.

Definition 2. A family (Zi, i ∈ I ) of random point measures defined on (�,A,F) is said
to be a Hawkes process with variable length memory and an infinite number of interacting
components with parameters (ψ, h, g) if almost surely, for all i ∈ I and C ∈ B(R),

Zi(C) =
∫
C

∫
{i}

∫
[0,1]

1{z≤(1/	i)ψi(∑j hj→i (
∫
[Lit ,t)

gj (t−s) dZjs ))}N(dt, di, dz). (20)

According to Brémaud and Massoulié [1] (see also Proposition 3 of Delattre et al. [5]), a
Hawkes process according to Definition 2 is a Hawkes process according to Definition 1 and
vice versa.

Equation (20) implies that we can construct the process (Zi, i ∈ I ) by a thinning procedure
applied to the a priori family of dominating PRMsNi(dt) = N(dt, {i}, [0, 1]) having intensity
	i dt each. Since Zi is a simple point measure, it is enough to define it through the jump times
of its atoms. Each atom of Zi must also be an atom of Ni since Zi � Ni . In other words, the
associated counting process α(Zi) can only jump when the counting process α(Ni) jumps. We
write T in, n ∈ Z, for the jump times ofNi . Fix a given jump t = T in ofNi . Then, conditionally
on N , the probability that this time is also a jump time of Zi is given by

P(Zi({t}) = 1 | Ft ) = φi
(∑

j

Wj→i
(∫
[Lit ,t)

gj (t − s) dZjs

))
=: p(i,t)(1 | Ft ). (21)

In other words, given that t is a jump time of Ni , p(i,t)(1 | Ft ) is the probability that this jump
is also a jump of Zi . This probability depends on the past before time t of the process. In
what follows we propose a decomposition of p(i,t)(1 | Ft ) according to growing time-space
neighborhoods that explore the relevant past needed in order to determine p(i,t)(1 | Ft ). This
decomposition is a Kalikow-type decomposition as considered first by Ferrari et al. [8] and
in Comets et al. [3]. This type of technique was then considered in a series of papers for
perfect simulation issues. See Galves and Löcherbach [10] for an application in the context of
neural biological nets in discrete time. The decomposition that we consider here is a nontrivial
extension of the previous considerations to the framework of continuous-time neural nets. In
the case of Theorem 3, this decomposition has to be achieved in a random environment, where
the environment is given by the a priori realization of the PRM N . We start with the proof of
Theorem 1, which is conceptually simpler.

6. Proof of Theorem 1

6.1. Kalikow-type decomposition

The condition (9) of Theorem 1 allows us to decompose the law of the conditional probability
(21) according to space neighborhoods Vi(k). This decomposition will be independent of the
realization of the a priori PRM N . This will be crucial in the perfect simulation procedure
described in the next subsection. We will work with S̃, the state space of relevant configurations
of the process defined in Remark 6. For the convenience of the reader, we recall its definition
here:

S̃ := {η ∈ S : η(j → i) ≤ Kj→i for all e = (j → i) ∈ E}
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and introduce the following notation. First,

r
[0]
i (1) = inf

η∈S̃
φi

(∑
j

Wj→iη(j → i)

)
,

which is the minimal probability that neuron i spikes uniformly with respect to all possible
configurations. Then we define

r
[0]
i (1) = inf

η∈S̃

(
1− φi

(∑
j

Wj→iη(j → i)

))
,

which is the minimal probability that neuron i does not spike. Next, for each k ≥ 1 and each
ζ ∈ S̃, we define the set Dki (ζ ) by

Dki (ζ ) := {η ∈ S̃ : for all j ∈ Vi(k), η(j → i) = ζ(j → i)}
and set

r
[k]
i (1 | ζ ) = inf

η∈Dki (ζ )
φi

(∑
j

Wj→iη(j → i)

)
,

r
[k]
i (0 | ζ ) = inf

η∈Dki (ζ )

(
1− φi

(∑
j

Wj→iη(j → i)

))
.

Finally, we define

αi(0) = r [0]i (1)+ r [0]i (0), αi(k) = inf
ζ∈S̃
(r
[k]
i (1 | ζ )+ r [k]i (0 | ζ )) for all k ≥ 1,

and let
μi(0) = αi(0), μi(k) = αi(k)− αi(k − 1) for all k ≥ 1.

Lemma 2. It holds that (μi(k))k≥0 defines a probability on N.

Proof. Indeed, since Dki (ζ ) ⊂ Dk−1
i (ζ ), we have μi(k) ≥ 0 for all k ≥ 0. Therefore, all

we have to show is that ∑
k≥0

μi(k) = 1. (22)

Note that
∑
k≥0 μi(k) = limk→+∞[inf

ζ∈S̃ (r
[k]
i (1 | ζ )+ r [k]i (0 | ζ ))]. Hence, it is sufficient

to show that, for all ζ ∈ S̃,

lim
k→+∞(r

[k]
i (1 | ζ )+ r [k]i (0 | ζ )) = 1.

For all k ≥ 0, we have

r
[k]
i (1 | ζ )+ r [k]i (0 | ζ )
= 1−

[
sup

η∈Dki (ζ )
φi

(∑
j

Wj→iη(j → i)

)
− inf
η∈Dki (ζ )

φi

(∑
j

Wj→iη(j → i)

)]
.
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Using the fact that φi is increasing and uniformly continuous with modulus ω, we deduce that

sup
η∈Dki (ζ )

φi

(∑
j

Wj→iη(j → i)

)
− inf
η∈Dki (ζ )

φi

(∑
j

Wj→iη(j → i)

)

≤ ω
(

sup
η∈Dki (ζ )

(∑
j

Wj→iη(j → i)

)
− inf
η∈Dki (ζ )

(∑
j

Wj→iη(j → i)

))

≤ ω
( ∑
j /∈Vi(k)

|Wj→i |Kj→i
)
.

Now, taking the limit as k tends to +∞ and taking into account condition (7), we obtain (22)
as desired. �

We return to the conditional probability p(i,t)(1 | Ft ) introduced in (21). The history is
realized only through the effected choices of acceptance or rejection of jumps of the a priori
PRM N . Therefore, we introduce the time grid G = {(i, T in), i ∈ I }. Any realization of the
Hawkes process, conditionally with respect to the PRM N , can be identified with an element
of X := {0, 1}G. We write x = (xi)i∈I for elements of X, where xi = (xi(T in))n∈Z. Elements
x ∈ X can be interpreted as point measures. The object of our study is

p(i,t)(1 | x) = φi
(∑

j

Wj→i (xj ([Lit (x), t)) ∧Kj→i )
)
.

In the following proposition we establish a Kalikow-type decomposition for p(i,t)(· | x) with
respect to growing neighborhoods of V·→i .

Proposition 1. Grant Assumption 1 and assume that (7) is satisfied. Fix t = T in for some n ∈ Z

and i ∈ I . Then there exists a family of conditional probabilities (p[k](i,t)(· | x))k≥0 on {0, 1}
satisfying the following properties.

• For all a ∈ {0, 1}, p[0](i,t)(a | x) := r [0]i (a)/μi(0) does not depend on the configuration x.

• For all a ∈ {0, 1}, k ≥ 1, X � x �→ p
[k]
(i,t)(a | x) depends only on the variables

xj : j ∈ Vi(k).
• For all x ∈ X, k ≥ 1, p[k](i,t)(1 | x) ≥ 0 and p[k](i,t)(1 | x)+ p[k](i,t)(0 | x) = 1.

• For all x ∈ X, we have the following convex decomposition:

p(i,t)(a | x) =
∑
k≥0

μi(k)p
[k]
(i,t)(a | x).

Proof. We identify a configuration x ∈ X with an element xt of S̃ for any t ∈ R by
introducing

xt (j → i) = xj ([Lit , t)) ∧Kj→i ,
where xj is interpreted as a point measure. Note that p(i,t)(a | x) only depends on xt . We have

p(i,t)(a | x) = p(i,t)(a | xt )

= r [0]i (a)+
N∑
k=1

�
[k]
i (a | xt )+ (p(i,t)(a | xt )− r [N ]i (a | xt )), (23)
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where �[k]i (a | xt ) := r [k]i (a | xt )− r [k−1]
i (a | xt ). We start by showing that the last term in

(23) tends to 0 as N →∞. Indeed, rewriting the definitions, we have

|p(i,t)(a | xt )− r [N ]i (a | xt )| = sup
z∈DNi (xt )

∣∣∣∣φi(∑
j

Wj→ixt (j → i)

)
− φi

(∑
j

Wj→izj→i
)∣∣∣∣.

Using the uniform continuity of φi and the definition of DNi (xt ), we obtain

|p(i,t)(a | xt )− r [N ]i (a | xt )| ≤ sup
z∈DNi (xt )

[
ω

(∑
j

|Wj→i ||xt (j → i)− zj→i |
)]

≤ sup
z∈S̃

[
ω

( ∑
j /∈Vi(N)

|Wj→i ||xt (j → i)− zj→i |
)]

≤ ω
( ∑
j /∈Vi(N)

|Wj→i |Kj→i
)
→ 0 as N →+∞.

Taking the limit when N tends to +∞ in (23), we obtain

p(i,t)(a | xt ) = r [0]i (a)+
(∑
k≥1

�
[k]
i (a | xt )

)
.

Now we set, for k ≥ 1,

μ̃i(k, xt ) :=
∑
a

�
[k]
i (a | xt ) and p̃

[k]
(i,t)(a | x) =

�
[k]
i (a | xt )
μ̃i(k, xt )

,

where we define p̃[k](i,t)(a | xt ) in an arbitrary way if μ̃i(k, xt ) = 0. In this way we can write
�
[k]
i (a | xt ) = μ̃i(k, xt )p̃[k](i,t)(a | xt ) and, therefore,

p(i,t)(a | xt ) = μi(0)p[0](i,t)(a)+
∞∑
k=1

μ̃i(k, xt )p̃
[k]
(i,t)(a | xt ).

This decomposition is not yet the one announced in the proposition since the μ̃i(k, xt ) depend
on the configuration xt . The weights μ(i,t)(k) are already defined and they do not depend on
the configuration. So we have to define new probabilities p[k](i,t), based on the previously defined
p̃
[k]
(i,t).

To define the new probabilities p[k](i,t), we introduce αi(k, xt ) := ∑k
l=1 μ̃i(l, xt ). For each

k ≥ 0 let l′ and l be indexes such that

αi(l
′ − 1, xt ) < αi(k − 1) ≤ αi(l′, xt ) < · · · < αi(l, xt ) < αi(k) ≤ αi(l + 1, xt ).

We then decompose the interval (αi(k − 1), αi(k)] in the following way:

(αi(k − 1), αi(k)]

= (αi(k − 1), αi(l
′, xt )] ∪

( l⋃
m=l′+1

(αi(m− 1, xt ), αi(m, xt )]
)
∪ (αi(l, xt ), αi(k)].
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We definep[k]i on each of the intervals of this partition. On the first interval (αi(k−1), αi(l′, xt )],
we use p̃[l

′]
i , on each interval (αi(m− 1, xt ), αi(m, xt )], we use p̃[m]i , and on (αi(l, xt ), αi(k)],

we use p̃[l+1]
i . This leads, for each k ≥ 0, to the following definition:

p
[k]
(i,t)(a | xt ) =

k−1∑
−1=l′≤l

1{αi(l′−1,xt )<αi(k−1)≤αi(l′,xt )} 1{αi(l,xt )<αi(k)≤αi(l+1,xt )}

×
[
αi(l
′, xt )− αi(k − 1)

μi(k)
p̃
[l′]
(i,t)(a | x)+

l∑
m=l′+1

μ̃i(m, xt )

μi(k)
p̃
[m]
(i,t)(a | x)

+ αi(k)− αi(l, xt )
μi(k)

p̃
[l+1]
(i,t) (a | xt )

]
.

It can easily be verified that, with this definition, we obtain the announced decomposition. �
6.2. Perfect simulation

In this section we show how to construct the stationary nonlinear Hawkes process with
saturation threshold by a perfect simulation procedure, based on an a priori realization of
the processes (Ni, i ∈ I ). Condition (8) allows us to decompose the Poisson process Ni of
intensity 	i as

Ni = N̂ i + Ñ i ,

where N̂ i and Ñ i are independent Poisson processes with respective intensities δi and	i − δi .
Conditionally on these processes, we can characterize the process Zi by the element x ∈ X =
{0, 1}G recording the times and the indices of the neuron for which we have accepted a jump.
All jumps of N̂ i are also jumps of Zi ; we call them the spontaneous spikes. They appear at a
jump time T in ofNi with probability di := δi/	i . Moreover, any jump T̃ in of Ñ i will be a jump
of Zi with probability

1

1− di
[
φi

(∑
j

Wj→i (Zj ([Lit , t)) ∧Kj→i )
)
− di

]
,

and we have to decide, for each i ∈ I and each time T̃ in , whether this jump is accepted
or not. This acceptance/rejection procedure will be achieved by means of the Kalikow-type
decomposition and gives rise to a perfect simulation algorithm that we now introduce.

Fix i ∈ I and t = T̃ in . In this algorithm we describe the random space-time subset of neurons
and their associated spiking times that can possibly have an influence on the acceptance or
rejection of a spike of neuron i at time t .

(0) In the following steps we will simulate N̂j and Ñj for some sites j ∈ I on bounded
intervals of time. We introduce, for each j ∈ I , the sets Ŝj and S̃j that will contain
the intervals of time where the processes N̂j and Ñj have already been simulated at the
current step of the algorithm. We initialize these sets so that, for all j ∈ I , Ŝj = S̃j = ∅.

(i) We simulate a random variable K(i,t) ∈ N such that

P(K(i,t) = k) = μj (k) for all k ≥ 0.

(ii) We determine L̂it = T̂ iN̂ it− in the following way. We simulate a random variable τ

following an exponential law of parameter δi and introduce Ŝ(i,t)max := sup{s ∈ Ŝi∩] −
∞, t]} with the convention sup(∅) = −∞.
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• If τ ≤ t − Ŝ(i,t)max we set L̂it = t − τ .

• If τ > t − Ŝ(i,t)max we choose for L̂it the biggest jump time of N̂ i in Ŝi ∩ (−∞, t].
In both cases, we update Ŝi , which in an algorithmic way can be written Ŝi ← Ŝi∪[L̂it , t).

(iii) For each j ∈ Vi(K(i,t)), we simulate Ñj on the time interval [L̂it , t) \ S̃j and update S̃j

such that S̃j ← S̃j ∪ [L̂it , t).
(iv) We introduce the set

C
(i,t)
1 := {(j, T̃ jl ) ∈ I×] −∞, t) : j ∈ Vi(K(i,t)), T̃

j
l ∈ [L̂it , t)},

which we call ‘first generation of the clan of ancestors’ of element (i, t). Here, by
convention, C(i,t)1 = ∅ if K(i,t) = 0.

(v) If C(i,t)1 	= ∅ then we iterate the above procedure and simulate for each element of C(i,t)1
a new clan of ancestors with steps (i) to (iv). So we set, for any n ≥ 2,

C(i,t)n =
( ⋃
(j,s)∈C(i,t)n−1

C
(j,s)
1

)
\ (C(i,t)1 ∪ · · · ∪ C(i,t)n−1), (24)

which is the ‘nth generation of the clan of ancestors’ of (i, t).

Note that ifK(i,t) = 0 in step (i) then the algorithm stops immediately. Also if, for all j ∈ Vi(k),
for k = K(i,t), we have Ñj ([L̂it , t)) = 0, then C(i,t)1 = ∅, and the algorithm stops after one
step. Otherwise, we introduce

N stop := min{n : C(i,t)n = ∅}
the number of steps of the algorithm, where min ∅ := ∞. The set C(i,t) :=⋃N stop

n=1 C
(i,t)
n

contains all nonspontaneous spikes which have to be accepted or not and whose possible
presence has an influence on the acceptance/rejection decision of (i, t) itself. We will show
below that, under the conditions of Theorem 1, N stop <∞ almost surely (a.s.).

Once the clans of ancestors are determined, we can realize the acceptance/rejection procedure
of the elements in these clans in a second algorithm which is a forward procedure going from
the past to the present. We start with the sites for which this decision can be made independently
from anything else. During the algorithm the set of all sites for which a decision has already
been achieved will then progressively be updated.

(0) At the initial stage of the algorithm, the set of sites for which the acceptance/rejection
decision can be achieved is initialized by

D(i,t) := {(j, s) ∈ C(i,t), C
(j,s)
1 = ∅}.

The sites within this set are precisely those for which the decision can be made indepen-
dently from anything else.

(i) For each (j, s) ∈ D(i,t), we simulate, according to the probabilities

1

1− dj (p
[0]
(j,s)(a)− dj ),

the state of this site.
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(ii) For any (j, s) ∈ C(i,t) withC(j,s)1 ⊂ D(i,t), we then decide, according to the probabilities
(1/(1 − dj ))(p[k](j,s)(a | x) − dj ) with k = K(j,s), to accept or to reject the presence
of a spike of neuron j at time s. This is possible since p[k](j,s)(a | x) depends on the
configuration x only through the sites inC(j,s)1 whose states have already been determined
since C(j,s)1 ⊂ D(i,t). Then we update D(i,t) in the following way:

D(i,t)←− D(i,t) ∪ {(j, s) ∈ C(i,t), C
(j,s)
1 ⊂ D(i,t)}.

(iii) The update of D(i,t) allows us to repeat the previous step until (i, t) ∈ D(i,t).
Once we have assigned a decision to the element (i, t) itself, our perfect simulation algorithm
stops. Of course, the whole procedure makes sense only if N stop < +∞ a.s., which we will
prove now. For that sake, we define C(i,t)1 (k) to be the clan of ancestors of element (i, t) of size
k, i.e.

C
(i,t)
1 (k) := {(j, s) ∈ I × R : j ∈ Vi(k), there exists n ∈ Z such that s = T̃ in , s ∈ [L̂it ; t)},

with the convention C(i,t)1 (0) := ∅ and put M(i,t) :=∑
k≥1 |C(i,t)1 (k)|μi(k), which is the con-

ditional expectation, conditionally on the realization of the PRM N , of |C(i,t)1 |. In order to
prove that N stop < +∞ a.s., we compare the process |C(i,t)n | with a branching process of
reproduction meanM defined byM := supi∈I, t∈R E(M(i,t)).We will prove that the parameters
of this branching process are such thatM < 1, i.e. it goes extinct a.s. implying thatN stop <∞
a.s.

Writing E
N for the conditional expectation with respect to N , we obtain the following

recurrence:

E
N(|C(i,t)n ||C(i,t)n−1) ≤

∑
(j,s)∈C(i,t)n−1

+∞∑
k=1

#(C(j,s)(k) \ C(i,t)n−1)μi(k).

Here we use
∑+∞
k=1 #(C(j,s)(k)\C(i,t)n−1)μi(k) instead ofM(j,s) in order to use the independence

of 1{(j,s)∈C(i,t)n−1} and
∑+∞
k=1 #(C(j,s)(k) \ C(i,t)n−1)μi(k).This independence is due to the properties

of the PRM associated with N and the fact that C(i,t)n−1 and C(j,s)(k) \ C(i,t)n−1 are disjoint. It will
allow us to claim that

E

(∑
(j,s)

1{(j,s)∈C(i,t)n−1}
+∞∑
k=1

#(C(j,s)(k) \ C(i,t)n−1

)
μi(k)) ≤

∑
(j,s)

E(1{(j,s)∈C(i,t)n−1})E(M
(j,s)). (25)

In order to prove the above inequality in a rigorous way, we study the transition operator
governing the evolution (24). This leads to the definition of the following operator. We fix a
neuron i ∈ I , a time t = T̃ in and set

Q((i, t), ·)
=

∑
k≥0

μi(k)

∫ +∞
0

dt1(δie
−δi t1)

×
[ ∑
j∈Vi(k)

(∑
nj≥0

e−(	j−δj )t1
(	j − δj )nj

nj !
∫
[t−t1,t]nj

dsj1 · · · dsjnj δ{(j,sjl ) : l=1,...,nj }

)]
,
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where Q((i, t), dC1) is the law of C(i,t)1 . In the above definition, k is the ‘size’ of the neigh-
borhood Vi(k) which is simulated according to the probabilities (μi(k))k∈N; t1 is the time
between t and L̂it which is an exponential random variable of parameter δi ; nj is the Poisson
random variable Ñj ([L̂it , t]) of parameter (	j − δj )t1; and (sjl )l∈{1,...,nj } is the family of
jump times in [L̂it , t] of Ñj , which, conditionally on the event {Ñj ([L̂it , t]) = nj }, are uniform
random variables on [L̂it , t] = [t − t1, t].

The definition of the transition kernelQ(C1, dC2) defining the law ofC(i,t)2 knowingC(i,t)1 is
more complicated since C2 is not the result of independent simulations for each element of C1.
(Indeed, the jump times of a process Ñj simulated for the clan of ancestors of an element
(i1, t1) of C1 have to be simulated once and for all, and reused for the determination of the clan
of ancestors of an element (i2, t2) with j ∈ Vi1(k1) ∩ Vi2(k2). Similarly, the jump times of
N̂ i have to be simulated once and for all in order to determine all the last spontaneous spiking
times for all (i, t) ∈ C1.) But Q(C1, dC2) can be upper bounded (in the sense of inclusion of
the simulated sets) by ∏

(j,s)∈C1

Q((j, s), dC(j,s))δ(
⋃
(j,s)∈C1

C(j,s))(dC2).

This upper bound simulates more random variables than necessary leading to bigger clans of
ancestors. Since we are only interested in obtaining upper bounds on the number of elements
in the clans of ancestors, we will therefore work with this upper bound and obtain

E

(∑
(j,s)

1
(j,l)∈C(i,t)n−1

+∞∑
k=1

#(C(j,s)(k) \ C(i,t)n−1

)
μi(k))

≤
∫
(i,t)c

Q((i, t), dC1)

∫
Cc1

Q(C1, dC2) · · ·
∫
(
⋃n−2
κ=1 Cκ)

c

Q(Cn−2, dCn−1)

×
[ ∑
(j,s)∈Cn−1

∫
(
⋃n−1
κ=1 Cκ)

c

Q((j, s), dC)|C|
]
.

Observe that∫
(
⋃n−1
κ=1 Cκ)

c

Q((j, s), dC)|C| ≤
∑
k≥0

μj (k)

∫ +∞
0

dt1

[
(δj e−δj t1)

∑
a∈Vj (k)

((	a − δa)t1)
]
.

The right-hand term of the above inequality being exactly E(M(j,s)) allows us to claim (25).
As a consequence, we can compare the process |C(i,m)n |with a branching process. It remains

to verify that this branching process becomes extinct a.s. in finite time. We will prove that
actually

M = sup
i∈I, t∈R

E(M(i,t)) < 1.

Proposition 2. For all i ∈ I and all k ≥ 1, we have

μi(k) ≤ μ̄i(k). (26)

We recall here the definition of μ̄i(k) in (10), i.e.

μ̄i(k) := ω
( ∑
j∈∂Vi(k−1)

|Wj→i |Kj→i 1{Wj→i<0}
)
+ ω

( ∑
j∈∂Vi(k−1)

|Wj→i |Kj→i 1{Wj→i>0}
)
.
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Proof. The proof follows directly from the fact thatφi is increasing and uniformly continuous
with modulus of continuityω. For more details, we refer the reader to the proof of Proposition 4
below, which is similar (yet more difficult due to the fact that the decomposition considered
there takes place in a random environment). �

We are now able to complete the proof of Theorem 3. We have the following first upper
bound for M(i,t) thanks to the inequality (26): M(i,t) ≤∑

k≥1 |C(i,t)(k)|μ̄i(k). Consequently,
by the definition of C(i,t)(k),

E(M(i,t)) ≤
∑
k≥1

E

( ∑
j∈Vi(k)

Ñj ([L̂it , t])
)
μ̄i(k) ≤

∑
k≥1

[( ∑
j∈Vi(k)

	j − δj
δi

)
μ̄i(k)

]
.

Assumption (9) of Theorem 1 implies that M = supi E(M(i,t)) < 1. Consequently,

E(|C(i,t)n |) ≤ Mn→ 0 when n→∞,
implying that the process (C(i,t)n )n∈N goes extinct a.s. in finite time. As a consequence,N stop <

∞ a.s. and the perfect simulation algorithm stops after a finite number of steps. This achieves
the proof of the construction of the process. �

7. Proof of Theorem 3

7.1. Some comments

We now give the proof of Theorem 3. As in the proof of Theorem 1 we use a Kalikow-type
decomposition of the transition probabilities (21). We will use the same notation for objects
with slightly different definitions but playing the same role in the proof, in order to simplify
the notation.

The main difference between the two models is that in the first one, no leakage term is
present, whereas the second model contains a leakage term through the functions gj . Moreover,
in the first model, the presence of thresholds allows us to obtain a Kalikow-type decomposition
according to space (and not to time) with probabilities μi(k) that are deterministic and do not
depend on the realization of the PRM N . This is crucial because it gives us an independence
argument in order to obtain statement (25). However, the statement of Theorem 1 is at the cost
of two assumptions. The first one is the presence of spontaneous spikes due to condition (8).
The second assumption is the existence of the thresholds Kj→i .

In the second model, we will introduce a space-time decomposition in random environment
with probabilities μ(i,t)(k) that are σ(N)-measurable random variables. The independence
argument leading to (25) will here be ensured by the condition (16) that we impose on the
structure of the neural network.

7.2. Kalikow-type decomposition

In this section, the Kalikow-type decomposition will take place in a random environment
depending on the realization of the PRM N . We will consider space-time neighborhoods
V
i
t (k) := Vi(k)× [t − k, t).
We work with the state paceX = {0, 1}G, where G is the time grid {(i, T in), (i, n) ∈ I ×Z}.

Note that each element x of X can be interpreted as a discrete measure dominated by dN . We
fix a time t = T in and we introduce the following notation:

r
[0]
(i,t)(1) = inf

x∈X φi
(∑

j

Wj→i
∫ t

Lit (x)

gj (t − s) dxj (s)

)
,
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where dxj =∑
m∈Z x(j, T

j
m) dδ

T
j
m

, Lit (x) = sup{T im < t : x(i, T im) = 1}, and

r
[0]
(i,t)(0) = inf

x∈S

(
1− φi

(∑
j

Wj→i
∫ t

Lit (x)

gj (t − s) dxj (s)

))
.

Now fix x ∈ X and define, for each k ≥ 1, the setDk(i,t)(x) byDk(i,t)(x) := {z ∈ S : z(Vit (k)) =
x(Vit (k))} and set

r
[k]
(i,t)(1 | x) = inf

z∈Dk
(i,t)

(x)

φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)
,

r
[k]
(i,t)(0 | x) = inf

z∈Dk
(i,t)

(x)

(
1− φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

))
.

We define α(i,t)(0) := μ(i,t)(0) := r [0](i,t)(1)+ r [0](i,t)(0), and, for all k ≥ 1,

α
[k]
(i,t) := inf

x∈S(r
[k]
(i,t)(1 | x)+ r [k](i,t)(0 | x)), μ(i,t)(k) := α[k](i,t) − α[k−1]

(i,t) .

These definitions are similar to those of Section 4.1 and play the same role in the proof. Note
that in this section we have a dependence on time denoted by the index t .

Lemma 3. It holds that (μ(i,t)(k))k≥0 defines a probability on N.

Proof. The proof is similar to the proof of Lemma 2. �
Remark 7. Instead of condition (19), we can work with the following condition:

lim
k→+∞

∑
j∈Vi(k)

|Wj→i |	j
∫ +∞
k

|gj (s)| ds +
∑

j /∈Vi(k)
|Wj→i |	j

∫ +∞
0
|gj (s)| ds = 0, (27)

which is a necessary but not sufficient condition for (19).

Using these probabilities (μ(i,t)(k))k≥0, we obtain a Kalikow-type decomposition for

p(i,t)(1 | x) = φi
(∑

j

Wj→i
∫ t

Lit (x)

gj (t − s) dxj (s)

)
.

Recall that Ft is the sigma-field generated by Zi((s, u]), s ≤ u ≤ t, i ∈ I , and that we work
on the probability space (�,A,F) defined in Section 1.2.

Proposition 3. Assume that conditions (18) and (27) are satisfied. Then there exists a family
of conditional probabilities (p[k](i,t)(a | x))k≥0 satisfying the following properties.

• For all a ∈ {0, 1},p[0](i,t)(a | x) := r [0](i,t)(a)/μ(i,t)(0) does not depend on the configuration
x.

• For all a ∈ {0, 1}, k ≥ 1, S � x �→ p
[k]
(i,t)(a | x) depends only on the variables

(x(j, T
j
n ) : (j, T jn ) ∈ V

i
t (k)).

• For all x ∈ S, k ≥ 1, p[k](i,t)(1 | x) ∈ [0, 1], p[k](i,t)(1 | x)+ p[k](i,t)(0 | x) = 1.

• For all a ∈ {0, 1}, x ∈ S, p[k](i,t)(a | x) andμ(i,t)(k) are Ft -measurable random variables.
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• For all x ∈ S, we have the following convex decomposition:

p(i,t)(a | x) =
∑
k≥0

μ(i,t)(k)p
[k]
(i,t)(a | x).

Proof. The proof follows the lines of the proof of Proposition 1. �
7.3. Perfect simulation

The idea for the perfect simulation algorithm is the same as in Section 6.2, but here we use
a decomposition in space and time. We work conditionally on the realization of the PRM N

and consider, for each k ≥ 1, the space time neighborhood V
i
t (k). Define the clan of ancestors

of element (i, t) of size k by
C
(i,t)
1 (k) := G ∩ V

i
t (k),

where G is the time grid {(i, T in), (i, n) ∈ I ×Z} and where, by convention, C(i,t)1 (0) := ∅.We
choose as before i.i.d. random variables K(i,t) ∈ N which are attached to each site (i, t) ∈ G,
chosen according to

P(K(i,t) = k) = μ(i,t)(k) for all k ≥ 0.

These random variables allow us to define the clans of ancestors (C(i,t)n )n ⊂ I × (−∞, t) as
follows. We set C(i,t)1 := C(i,t)1 (K(i,t)) and

C(i,t)n :=
( ⋃
(j,s)∈C(i,t)n−1

C
(j,s)
1

)
\ (C(i,t)1 ∪ · · · ∪ C(i,t)n−1).

As before, we have to prove that the process |C(i,t)n | converges a.s. to 0 as n tends to +∞.
For this sake, we compare the process |C(i,t)n | with a branching process of reproduction mean
(depending on space and time)

M(i,t) :=
∑
k≥1

|C(i,t)1 (k)|μ(i,t)(k).

Recall that E
N denotes the conditional expectation with respect to N ; clearly,

E
N(|C(i,t)n ||C(i,t)n−1) ≤

∑
(j,s)∈C(i,t)n−1

M(j,s).

Now, the structure that we imposed on the neural network in (16) implies that, for neurons
i ∈ Il and j ∈ Im, the event {(j, s) ∈ C(i,t)n } is empty if l 	= m + n. Moreover, this event
depends only on realizations for neurons in layers Ip withm ≤ p < l, whereasM(j,s) depends
on realizations for neurons in the layer Im−1. Consequently, 1{(j,s)∈C(i,t)n } is independent of
M(j,s), which allows us to write

E

(∑
(j,s)

1{(j,s)∈C(i,t)n }M
(j,s)

)
=

∑
(j,s)

E(1{(j,s)∈C(i,t)n })E(M
(j,s)).

The next step in the proof is to show that

sup
i∈I

E
N(M(i,t)) < 1.

As in Section 6.2, we start with a proposition that gives an upper bound for the probabilities
(μ(i,t)(k))k≥1.
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Proposition 4. We have

μ(i,t)(k) ≤ γ
( ∑
j∈Vi(k−1)

|Wj→i |
∫ t−k+1

t−k
gj (t − s) dNj

s

+
∑

j∈∂Vi(k−1)

|Wj→i |
∫ t

t−k
gj (t − s) dNj

s

)
. (28)

Proof. Using the definition of μ(i,t)(k),

μ(i,t)(k) = inf
x∈S(r

[k]
(i,t)(1 | x)+ r [k](i,t)(0 | x))− inf

x∈S(r
[k−1]
(i,t) (1 | x)+ r [k−1]

(i,t) (0 | x)).
Fix ε > 0 and let u ∈ S be such that

r
[k−1]
(i,t) (1 | u)+ r [k−1]

(i,t) (0 | u) ≤ inf
x∈S(r

[k−1]
(i,t) (1 | x)+ r [k−1]

(i,t) (0 | x))+ ε.
Then

μ(i,t)(k) ≤ (r [k](i,t)(1 | u)+ r [k](i,t)(0 | u))− (r [k−1]
(i,t) (1 | u)+ r [k−1]

(i,t) (0 | u))+ ε.
Here we can assume, without loss of generality, that Lit (u) = −∞. Indeed, if Lit (u) > −∞,
let u′ be such that Lit (u

′) = −∞, u′((−∞;Lit (u)]) = 0 and u′((Lit (u); t]) = u((Lit (u); t]),
then u′ and u are two equivalent configurations in terms of acceptance/rejection decision of the
site (i, t). Then

μ(i,t)(k)− ε ≤ inf
z∈Dk

(i,t)
(u)

φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)

− inf
z∈Dk−1

(i,t)
(u)

φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)

+ sup
z∈Dk−1

(i,t)
(u)

φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)

− sup
z∈Dk

(i,t)
(u)

φi

(∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)
.

Using condition (4) and the fact that φi is nondecreasing, we obtain

μ(i,t)(k)− ε ≤ γ
(

inf
z∈Dk

(i,t)
(u)

∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

− inf
z∈Dk−1

(i,t)
(u)

∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)

+ γ
(

sup
z∈Dk−1

(i,t)
(u)

∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

− sup
z∈Dk

(i,t)
(u)

∑
j

Wj→i
∫ t

Lit (z)

gj (t − s) dzj (s)

)
.

Now we will simplify this expression detailing the configurations that realize the extrema.
In order to reach a lower bound, we have to fix z such that Lit (z) = −∞ (we can do this
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since Lit (u) = −∞) and whenever we have the choice for z we also have to fix z = 1 if the
correspondingWj→i is negative, otherwise we have to fix z = 0. We do the opposite choice in
order to reach an upper bound. After factorization, we obtain the announced upper bound (28),
i.e.

μ(i,t)(k) ≤ γ
( ∑
j∈Vi(k−1)

|Wj→i |
∫ t−k+1

t−k
gj (t − s) dNj

s

+
∑

j∈∂Vi(k−1)

|Wj→i |
∫ t

t−k
gj (t̄ − s) dNj

s

)
,

thanks to the simplification
∑
j Wj→i 1{Wj→i>0} −∑

j Wj→i 1{Wj→i<0} =∑
j |Wj→i |.

Now, we will use the stationarity of the PRM; this will allow us to omit the dependence in
time (by fixing t = 0) since we are only interested in the expectation. We have the following
first upper bound for M(i,t) thanks to (28):

M(i,t)

γ
≤

∑
k≥1

|C(i,t)(k)|
( ∑
j∈Vi(k−1)

|Wj→i |
∫ k

k−1
gj (s) dNj(s)

+
∑

j∈∂Vi(k−1)

|Wj→i |
∫ k

0
gj (s) dNj(s)

)
. (29)

The difficulty in calculating the expectation of this upper bound is thatNj
s is present in each

term of the product so that these terms are not independent. However, we have independence
whenever the indexes denoting the neurons are different or when the intervals of time that we
consider are disjoint. We will therefore decompose the sums in the previous expression in order
to isolate the products of nonindependent terms. Then we calculate separately the expectations
of these terms. For example, we have

E

[(∫ k

0
dNj

s

)(∫ k

0
gj (s) dNj

s

)]
= 	j(k	j + 1)

(∫ k

0
gj (s) ds

)
. (30)

This result allows us to decompose the above expectation as the sum of the covariance and the
product of expectations. We can make such a decomposition for each product of nonindependent
terms in (29). Consequently, the expectation of the upper bound in (29) can be written as the
sum of the covariances of the nonindependent terms and the products of expectations of all the
terms. After factorization, we finally obtain

E(M(i,t))

γ
≤

∑
k≥1

[(
k

( ∑
j∈Vi(k)

	j

)
+ 1

)( ∑
j∈Vi(k−1)

|Wj→i |	j
∫ k

k−1
gj (s) ds

+
∑

j∈∂Vi(k−1)

|Wj→i |	j
∫ k

0
gj (s) ds

)]
.

Now we can use the assumption (19) of Theorem 3 to deduce that M := supi E(M
(i,t)) < 1.

Consequently, we have

E(|C(i,t)n |) ≤ Mn→ 0 when n→∞.
This ensures that the process (C(i,t)n )n∈N goes extinct a.s., or in other words that N stop < ∞
a.s. Consequently the perfect simulation algorithm ends in a finite time and this achieves the
proof of the construction of the process. �
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Remark 8. As already mentioned in Remark 4(i), Theorem 3 holds under the weaker Assump-
tion 1 imposing only equicontinuity instead of Lipschitz continuity imposed in Assumption 4.
It is easy to adapt the proofs of Lemma 3 and Propositions 3 and 4 working with Assumption 1.
However, the form of the upper bound in Proposition 4, under Assumption 4, allows us to
compute an upper bound for E(M(i,t)) explicitly in terms of the parameters, as explained
in (30). This is not possible imposing only Assumption 1.

This completes the proof of Theorem 3. �
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