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ABSTRACT

Ratemaking is one of the most important tasks of non-life actuaries. Usually,
the ratemaking process is done in two steps. In the first step, a priori ratemaking,
an a priori premium is computed based on the characteristics of the insureds. In
the second step, called the a posteriori ratemaking, the past claims experience
of each insured is considered to the a priori premium and set the final net pre-
mium. In practice, for automobile insurance, this correction is usually done with
bonus-malus systems, or variations on them, which offer many advantages. In
recent years, insurers have accumulated longitudinal information on their pol-
icyholders, and actuaries can now use many years of informations for a single
insured. For this kind of data, called panel or longitudinal data, we propose an
alternative to the two-step ratemaking approach and argue this old approach
should no longer be used. As opposed to a posteriori models of cross-section
data, the models proposed in this paper generate premiums based on empirical
results rather than inductive probability. We propose a new way to deal with
bonus-malus systems when panel data are available. Using car insurance data,
a numerical illustration using at-fault and non-at-fault claims of a Canadian
insurance company is included to support this discussion. Even if we apply the
model for car insurance, as long as another line of business uses past claim ex-
perience to set the premiums, we maintain that a similar approach to the model
proposed should be used.
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1. INTRODUCTION

Modeling the number of claims and the cost of claims is an essential task for
actuaries. Parametric modeling of these random variables in insurance allows
identification of the claims process, helps in understanding the behavior of the
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insureds, and can be useful for solvency purposes. Parametric modeling also
allows computing of premiums for ratemaking.

Traditionally in actuarial sciences, ratemaking was separated into two steps
called a priori ratemaking and a posteriori ratemaking. By defining homoge-
neous classes of risk with exogenous information about each policyholder, the
first part of the ratemaking process uses classificationmodels (such as regression
techniques) to compute a priori premiums that depend on the characteristics of
the insureds. In a posteriori ratemaking, the insurers consider the past claim
experience of each insured to update the a priori premiums. In doing this, in-
surers suppose that the number of claims reported in the past can be used to
improve the estimation of the conditional expectation of the insurance cost for
the following year.

This dual approach to ratemaking has a long history in actuarial sciences
and is related to old techniques such as the minimum bias technique or the
credibility theory. For practical reasons, an approach called bonus-malus system
(BMS) theory was developed for a posteriori ratemaking in automobile insur-
ance. The BMS has been used to estimate the premiums of each insured condi-
tionally on the BMS level occupied.While the two-step approach to ratemaking
is logical and coherent when working with cross-section data, we believe that
the BMS may be subject to philosophical criticisms regarding the induction
problem.

Nevertheless, when a panel or longitudinal data structure is available for ac-
tuaries, we think that the two-step approach to ratemaking should no longer be
used. In this paper, we will show that a complete ratemaking structure should
be used with a single step in the modeling. We will show that classic a priori
ratemaking and a posteriori ratemaking are no longer coherent in a panel data
setting. In the following sections, we will no longer estimate a priori premiums
and a posteriori or BMS premiums separately, but instead estimate premiums
that depend on risk characteristics and on claim experience simultaneously. The
purpose of the model is to propose a technique for ratemaking. Consequently,
the proposed models are not the best models for adjusting the data. More so-
phisticatedmodels would certainly fit the data better. However, because of prac-
tical reasons (see Section 2.2), many of these models would not generate premi-
ums that could be used directly in the industry, unlike the proposed models.

Because the premiums will be estimated with classic statistical techniques,
the fitting of the data does not need a wide range of special methods to select
the best a posteriori system, but only needs the use of standard statistical tests.
As opposed to the BMS of cross-section data, the models proposed in this pa-
per generate premiums based on empirical considerations and not on inductive
probabilities.

Although the first sections of the paper seem to only reviewwell-known theo-
ries, we believe that such a review is needed to highlight the conceptual problems
in old techniques. In Section 2, the ratemaking process with cross-section data
is reviewed. A priori and a posteriori ratemaking is clearly defined in the con-
text where only independent insurance contracts are available for modeling. To

https://doi.org/10.1017/asb.2014.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.11


A POSTERIORI RATEMAKING WITH PANEL DATA 589

solve practical problems in the computation of predictive premiums, actuaries
have created BMSs that will also be explained in this section. Section 3 contains
a short survey of models that can fit the panel data structure. We will show why
the BMSmethods developed for cross-section data can no longer be used in the
panel data framework. In Section 4, we will propose a coherent way to compute
the premiums by using what we called the bonus-malus system for panel data
model (BMS-panel model). An empirical illustration with real insurance data
illustrating how the BMS-panel model can be used will be presented in Section
5. The interpretation of BMS-panel models compared with other distributions
will be discussed in Section 6. The induction problem of the credibility theory
models will also be discussed in this section, where we will show that BMS-panel
models partly avoid this problem. Section 7 concludes this paper.

1.1. Basis of ratemaking

Before the theoretical advances in statistical sciences and their application in ac-
tuarial sciences, a method called the minimum bias techniquewas used to find the
premiums that should be offered to insureds with different risk characteristics.
The idea behind these techniques was to find the parameters of the premiums
that minimize the bias of the premium by iterative algorithms.

With the development of the generalized linear models (GLM; McCullagh
and Nelder, 1989), actuaries now use statistical techniques to estimate the re-
gression parameters for ratemaking. It has been shown that the results obtained
from this theory are very close to the ones obtained by the minimum bias tech-
nique (see Brown, 1988, for example).

Using specific probability distributions for claim counts and the amounts
of claims, the premium is typically calculated by obtaining the conditional ex-
pectation of the number of claims given the risk characteristics (even if other
premium principles are possible), combined with the expected claim amount. In
other words, the premium is calculated bymultiplying the expected frequency of
claims with the expected amount of the claim. In this paper, we will focus on the
number of claims because merit rating plans are better suited to the frequency
part of the premium, but the severity of claims can easily be added to the model
(Lemaire, 1995).

2. CROSS-SECTION DATA

Historically, insurance companies began compiling their data in a cross-section
form. This means that the database used for ratemaking analysis consisted of a
list of insurance contracts. Each observation of the database contained informa-
tion about each contract, such as the sex of the driver, the age of the driver, the
type of car used, etc. This data structure was intended to ensure that each con-
tract was supposed to be independent. An example of a cross-section database
is provided in Table 1.
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TABLE 1

CROSS-SECTION DATASET EXAMPLE.

Observations (i) Sex Civil Status No. of Claims

1 W S 1
2 W S 0
3 W M 2
4 M M 3
5 M M 1
6 W M 0
... ... ... ...

To parametrically model the number of claims, conditionally on the covari-
ates, the actuary has to select a count distribution. Commonly, the starting point
for the modeling of count data is the Poisson distribution. The Poisson has the
following probability function:

Pr[Ni = ni |Xi ] = λ
ni
i e

−λi

ni !
.

The characteristics of the insured that should influence their premium are
included as regressors in the mean parameter of the count distribution. This
exogenous information can be coded with binary variables. In insurance, an ex-
ponential function is commonly used to have λi = ti exp(x′

iβ), where ti repre-
sents the risk exposure of insured i . Because E[Ni |Xi ] = λi , by knowing the
characteristics of the insured, the actuary is then able to compute the premium
for an insured.

In this framework, it is important to note that the actuary does not con-
sider the past claim experience of the insureds in the modeling. Covariates that
use past claim experience and merit-rating systems cannot be considered in this
framework. Those models are discussed in Section 3. Because the premiums are
calculated without using any merit rating, this form of ratemaking is usually
called a priori ratemaking.

2.1. A posteriori ratemaking

Except for new drivers who have no driving experience, the insurance company
is not only interested in the a priori premium, but rather in a premium that
also considers driving experience. Formally, the actuary is interested in find-
ing the predictive mean E[Ni,T|ni,1, ..., ni,T−1, Xi,T], where the vector Xi,T =
{Xi,1, ..., Xi,T} corresponds to all characteristics of the insured from time t = 1
to t = T.

As mentioned earlier, because the cross-section database does not con-
tain information about past claims experience, the actuary cannot compute
the premium directly. To obtain the premium, the actuary must make some
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assumptions. A classic approach is the linear credibility framework (e.g.,
Bühlmann, 1967), where the actuary supposes that each insured has his own
random heterogeneity component �i that will affect all his future insurance
contracts.

This component accounts for dependence among all the contracts of the
same insured. One common interpretation of this random heterogeneity com-
ponent is that it comes from the lack of some important classification variables
(swiftness of reflexes, aggressiveness behind the wheel, consumption of drugs,
etc.). In the credibility framework, these hidden features are supposed to be cap-
tured by this individual’s random heterogeneity term. With cross-section data,
to compute predictive premiums, the idea is to find the distribution of the ran-
dom variable �i and to use it to predict the future number of claims.

One way to obtain this distribution is to work with conditional probability
distribution and add the randomheterogeneity term�i to the conditional distri-
bution. The classic countmodel for the number of claims supposes a conditional
Poisson distribution such as:

Ni,t|�i = θ ∼ Poisson(λi,tθ). (2.1)

The actuary then has to suppose a distribution for �i . Many parametric
distributions can be chosen for this distribution. The most popular distribution
to use with a conditional Poisson distribution is the gamma (α, α) distribution
(see Boucher et al., 2007, for example) that leads to a negative binomial type 2
(negative binomial 2 or simply NB2) distribution with the following form:

Pr[Ni,t = n] = �(α + n)
�(α)n!

(
λi

α + λi

)n (
α

α + λi

)α

. (2.2)

It can be shown that the NB2 distribution has the following moments:

E[Ni,1|Xi,1] = λi,1, (2.3)

E[Ni,T|ni,1, ..., ni,T−1, Xi,T] = λi,T
α + ∑T−1

t ni,t

α + ∑T−1
t λi,t

. (2.4)

Using the notations introduced earlier, the first expectation represents the
a priori premium (for time t = 1), while the second expectation is called the
predictive premium (for time t ≥ 2). For the NB2 distribution, the predictive
premium can be seen as the a priori premium times a correction for the past
number of claims. This a posteriori ratemaking procedure penalizes insureds
with claims and rewards insureds without claims.

In this modeling, we are not directly observing the predictive expectation.
For cross-section data, the insurer only observes ni,t, Xi,t for t = 1. To calculate
predictive premiums, we must use inference techniques (such as maximum like-
lihood estimators) with a count distribution (such as the NB2) to find α̂ and β̂.
We replace α and β by their estimators and compute the premiums expressed
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in (2.3) and (2.4). In other words, the value of α̂ is the key for time-dependent
modeling.

For illustration purposes, the gamma distribution has been chosen for �i .
However, other distributions can be used with a conditional Poisson distribu-
tion, such as the inverse-Gaussian, the lognormal, or other mixed distributions
(see Boucher et al., 2007, for example). Note, however, that in these cases, the
predictive premium obtained will not be necessarily equal to (2.4). Similarly,
other conditional count distributions can also be chosen instead of the Poisson
distribution (Boucher et al., 2007).

Predictive premiums are strongly related to the linear credibility theory
(see, for example, Bühlmann, 1967; Bühlmann and Straub, 1970; Hachemeister,
1975; Jewell, 1975). The objective of the linear premium of Bühlmann (1967) is
to approximate the predictive premium. It has the following form:

PLinCred
i,T = νi Ni + πi Pi,0, (2.5)

where PLinCred
i,T is the approximation of the predictive premium at time T, Ni

is the average claim number, and Pi,0 is the a priori premium. By estimating
the parameters in minimizing the quadratic error, Bühlmann (1967) was able to
obtain closed form values of ν̂i and π̂i .

2.2. Practical application and bonus-malus systems

By working with cross-section data, even if the actuary cannot observe
E[Ni,T|ni,1, ..., ni,T−1, Xi,T], they are able to construct a ratemaking procedure
at the cost of making some assumptions.

In practice, however, by looking at the form of the predictive premium in
(2.4), we can see that the insurer can encounter serious problems if he wants
to use this equation. Indeed, it is not clear how the insurer would obtain some
of the information needed to compute the premium. For example, how can the
insurer obtain

∑T−1
t ni,t? Moreover, how could an insurer calculate

∑T−1
t λi,t,

which needs all Xi,t from time t = 1 to t = T − 1? For an insured who is 50
years old, the insurer would need to know the insured’s past 30 years of driving
experience, as well as all his past risk characteristics (such as the kind of car
he had, the places he lived, etc.) to compute all his last a priori premiums λi,t.
Moreover, the form of the predictive premium supposed in the NB2 model does
not put any time weight for past claims, meaning that an old claim increases
the premium as much as a newer claim does. This is certainly not something the
insurer would want.

To solve this practical problem, actuaries have created BMSs (Norberg,
1976). BMSs are class systems where the insured’s level increases or decreases
depending on the number of reported accidents. Table 2 illustrates an example
of a BMS, where PBMS

i,t is the BMS premium, λi,t can be considered as the a
priori seen in (2.3). Level 1 (respectively s) offers the lowest (highest) premium.
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TABLE 2

ILLUSTRATION OF A BONUS-MALUS SYSTEM.

Level L PBMS
i,t Relativities

s λi,trs rs
... ... ...
... ... ...
... ... ...
l λi,trl rl
... ... ...
... ... ...
... ... ...
1 λi,tr1 r1

A specific entry level is determined for new insureds. Each year, the level of
each insured is adjusted depending on that person’s claim experience. As already
mentioned, only the number of claims is considered in determining the level of
the BMS, but the amount of the claim could also be considered.

As for predictive premiums, the parameters first need to be estimated using
the marginal count distribution, such as the NB2 distribution of (2.2). With
the estimated parameters, there are many techniques to calculate the values of
the relativities r	 for each level 	 = 1, ..., s. We follow Denuit et al. (2007) to
introduce the notations needed to calibrate a BMS:

• We note p	t−1	t (ψ) the one-year probability of the random variable L to go
from BMS level 	t−1 to BMS level 	t (for an insured with a claim frequency
of ψ), where 	t represents the level at time t. Consequently, we have:

p	t−1	t (ψ) = Pr[L(t; ψ) = 	t|L(t − 1; ψ) = 	t−1],

• With all possible p	t−1	t (ψ), we construct a transition probability matrix. For-
mally, we have:

P(ψ) =

⎛⎜⎝ p11(ψ) p12(ψ) ... p1s(ψ)

p21(ψ) p22(ψ) ... p2s(ψ)

... ... ... ...

ps1(ψ) ps2(ψ) ... pss(ψ)

⎞⎟⎠ . (2.6)

• We can show that for all K = 0, 1, ..., we have:

P(K)(ψ) = PK(ψ),

meaning that the transition probability matrix over K time periods is simply
the Kth power of the annual transition probability matrix P(ψ).
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• We also introduce the probability vector

p(K)(ψ) =

⎛⎜⎝Pr[L(K; ψ) = 1]
Pr[L(K; ψ) = 2]

...

Pr[L(K; ψ) = s]

⎞⎟⎠
T

that can be used to express the entry level condition. Indeed, the probabil-
ity vector at time t = 1, i.e., p(1)(ψ), is filled with zero except for the line
corresponding to the entry level, which is filled with value of one.

• We then have the following relation:

p(K)(ψ) = p(1)(ψ)PK(ψ),

meaning that the probability vector at time K is the product of the probability
vector at time 1 and the K-step transition probability matrix.

• Finally, we have the limit theorem limK→∞ P(K)(ψ) = �(ψ), which expresses
the stationary distribution of the BMS.

To compute the values of the relativities, the system of Norberg (1976; see
Denuit et al., 2007 for details) that considers the a priori classification proposes
the following equation:

r	 =
∑J

j=1 w j
∫

θπ 	(λ jθ)g(θ)dθ∑J
j=1 w j

∫
π 	(λ jθ)g(θ)dθ

, 	 = 1, . . . , s, (2.7)

where w j is the proportion of insureds having λ j as a priori premium, J is the
number of profiles in the portfolio, g(θ) is the heterogeneity distribution, and
π 	(.) is the line component of �(.). The probability matrix �(.) can be consid-
ered as the stationary distribution of the BMS for the model of Norberg (1976).
However, as proposed by Borgan et al. (1981), the probability matrix can also
depend on the age of the policy because the distribution of insureds over all
BMS levels is often far from the stationary distribution.

To calculate the relativities, the actuary first needs to select the form of the
BMS. More precisely, before computing the relativities, the actuary must select
the characteristics of the BMS and should select:

1. the number of levels s of the BMS;
2. the value of the penalty for each claim, i.e., the penalty structure of the

BMS;
3. the entry level for new insureds.

Depending on the chosen form of the BMS, the values of r	, 	 = 1, ..., s
will not be the same. The actuary must then choose the best BMS available,
i.e., the BMS that will offer the best prediction of the future costs of claims. To
select the best BMS, a variety of methods has been proposed in the literature:
the coefficient of variation, the mean-square error of prediction, the elasticity of
the BMS, the speed of convergence, etc. (see Lemaire, 1995 orDenuit et al., 2007

https://doi.org/10.1017/asb.2014.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.11


A POSTERIORI RATEMAKING WITH PANEL DATA 595

TABLE 3

LONGITUDINAL (OR PANEL) DATASET EXAMPLE.

Year 2003 Year 2004 ... Year 2008
...

Observations Civil No. of No. of No. of
(i) Sex Status ... Claims ... Claims ... ... Claims

1 W S ... 0 ... 1 ... 0
2 M S ... 1 ... 2 ... 1
3 W S ... 0 ... 0 ... .
4 M M ... 0 ... 0 ... 0
5 W S ... 0 ... 0 ... 1
6 W M ... 0 ... 0 ... 0
... ... ... ... ... ... ... ... ... ...

for an overview of these techniques). Each of these methods has its advantages
and their disadvantages. However, even more important is that these methods
are clearly not similar and consequently do not necessarily select the same BMS
as ideal for predicting the number of claims, or the total costs of the claims.

3. LONGITUDINAL INFORMATION

In recent years, insurers have decided to accumulate longitudinal information
on their policyholders. Sometimes, this additional information comes from a
central authority. In this case, the insurers are able to ask the central author-
ity for the past claim experience of new insureds entering the database. In an
intuitive approach, the insured’s past experience is used as a covariate (Gerber
and Jones, 1975; Sundt, 1988). This model interprets past claims as a factor that
changes the mean of the distribution. It would result in Poisson or Negative Bi-
nomial distributions with amean equal to exp (Xi,tβ+c1ni,t−1+...+ct−wni,t−w).
However, as stated in Gourieroux and Jasiak (2004), the stationarity properties
of this model cannot be established, and premiums for new insureds or for in-
sureds with less than w years of experience then cannot be computed.

More generally, insurers now compile their own information about their in-
sured. Consequently, actuaries can track a single insured over many years. In-
stead of working with cross-section data, the actuaries now work with what is
called panel data or longitudinal data. Table 3 presents an example of a panel
dataset.

In this data setting, an insured i is observed over Ti consecutive years
(for simplicity, T will be used instead of Ti ). The vector of random variables
(Ni,1, . . . , Ni,T) is the random counts to be modeled. Therefore, in contrast with
cross-section data, dependence between all the contracts of the same insured can
be concretely incorporated in the modeling.

There are many ways to model count data in a panel data setting. For non-
Gaussian random variables, and particularly for discrete data, following the
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categories of Molenberghs and Verbeke (2005), we can classify three kinds of
models for panel data:

• conditional models;
• marginal models;
• subject-specific models (e.g., using random effects).

Conditional models are models where the values of past realizations of the
random variables to be modeled can be used directly. Generalizations for time
series of count can be considered as members of this family of panel count data
models. For example, the integer autoregressive model (INAR) and all related
generalizations can also be used tomodel panel count data. Boucher et al. (2008)
adjusted these models and expressed the form for the predictive premiums. The
authors showed that for some specific models of this family, the fitting of insur-
ance claim count data is poor, but it does not mean that no other conditional
model can generate a good fitting.

The objective of marginal models for panel data count is to find a multivari-
ate distribution that will fit all the contracts of a single insured. We can include
the common shock model in this category (Boucher et al., 2008, who shows that
this model is not well suited for insurance panel data) or the generalized estimat-
ing equations (GEE) models. Purcaru et al. (2004) proposed a linear credibility
approach to compute the predictive premium for this model.

The subject-specific models approach can be seen as a generalization of the
heterogeneity approach seen in Section 2.1. Indeed, conceptually, the approach
is similar. In a panel data setting, the dependence between all the contracts of
the same insured still comes from a common random effect term �i , such as

Pr[ni,1, ..., ni,T|Xi,T] =
∫

Pr[ni,1, ..., ni,T|θi , Xi,T]g(θi )dθi

=
∫ ⎛⎝ T∏

t=1

Pr[ni,t|θi , Xi,t]︸ ︷︷ ︸
conditional distribution

⎞⎠ g(θi )︸︷︷︸
random effects distribution

dθi .

The same combination as in Section 2.1, i.e., a conditional Poisson (λi,tθ)

with a gamma(α, α) for random effects distribution, can be chosen. In this
case, we obtain a distribution that can be seen as a generalization of the NB2
distribution:

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T|Xi,T] =(
T∏
t=1

(λi,t)
ni,t

ni,t!

)
�(ni,• + ν)

�(ν)

(
ν∑T

i=1 λi,t + ν

)ν (
T∑
i=1

λi,t + ν

)−ni,•
, (3.1)
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where ni,• = ∑T
t=1 ni,t. This distribution is called multivariate negative binomial

(MVNB). With this distribution, we can show that

E[Ni,1|Xi,1] = λi,1

E[Ni,T|ni,1, ..., ni,T−1, Xi,T] = λi,T
α + ∑T−1

t ni,t

α + ∑T−1
t λi,t

.

Consequently, we obtain the same form of premiums as with the cross-
section data (see (2.3) and (2.4)).

4. BONUS-MALUS SYSTEM MODEL

For the same practical reasons as the ones described in Section 2.2, i.e., the diffi-
culty of compiling all past information for all insureds, actuaries can be tempted
to use BMS. Indeed, with the parameters estimated using a joint distribution,
such as theMVNBof (3.1), we have the values of α̂ and β̂. Consequently, λk,wk,
g(θ), and π 	(λkθ) can be computed, and it seems easy to estimate the relativities
of a BMS, for example using (2.7).

We think that doing this would be a conceptual error. Indeed, we cannot
go from the maximum likelihood estimates (MLE) of the joint distribution of
(Ni,1, . . . , Ni,T) to the BMS (panel data) as we did with cross-section data. By
using panel data, we are fitting all our parameters using the joint distribution
(3.1), which can be decomposed into

Pr(Ni,1, Ni,2, ..., Ni,T|Xi,T) =
Pr(Ni,1|Xi,1) × Pr(Ni,2|ni,1, Xi,2) × ... × Pr(Ni,T|ni,1, ..., ni,T, Xi,T).

Consequently, for t = 2, ...,T, a predictive distribution is already used in
the modeling, and E[Ni,t|ni,1, ..., ni,t−1, Xi,t] is then directly supposed in the
joint distribution. In other words, if for practical reasons we do not want to
use the predictive expected value as premium but instead use the BMS pre-
mium PBMS

i,t or the linear credibility premium PLinCred
i,t , the joint distribution

of (Ni,1, . . . , Ni,T) should include this premium form for the estimation of all
parameters.

Another way to justify this use would be to approximate a random effects
count model by BMS. However, this means that we would be dealing with two
consecutive approximations: from the data to the count model and from the
count model to the BMS. It seems more logical and precise to fit a BMS from
the data directly.

To do this with a BMS, the joint distribution that should be maximized
to find the parameters will be expressed as (covariates Xi,1, ..., Xi,T have been
removed for simplicity)

Pr(Ni,1, Ni,2, ..., Ni,T) =
s∑

	=1

Pr(Ni,1, Ni,2, ..., Ni,T|L(1) = 	1)Pr(L(1) = 	1). (4.1)
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We can evaluate the joint probability Pr(Ni,1, Ni,2, ..., Ni,T|L(1) = 	1) by
using the following result:

Pr(Ni,1, Ni,2|L(1) = 	1)

= Pr(Ni,1|L(1) = 	1)Pr(Ni,2|ni,1, L(1) = 	1)

= Pr(Ni,1|L(1) = 	1)

×
⎛⎝ s∑

y=1

Pr(Ni,2|ni,1, L(1) = 	1, L(2) = y)Pr(L(2) = y|ni,1, L(1) = 	1)

⎞⎠
= Pr(Ni,1|L(1) = 	1)

⎛⎝ s∑
y=1

Pr(Ni,2|L(2) = y)Pr(L(2) = y|ni,1, L(1) = 	1)

⎞⎠
= Pr(Ni,1|L(1) = 	1)Pr(Ni,2|L(2) = 	2),

where Pr(L(2) = y|ni,1, L(1) = 	1) = 0 for all y, except for y = 	2. We note
	2, the BMS level obtained at time t = 2, by applying the transition rule of the
BMS with ni,1 claims, and L(1) = 	1. Consequently, Pr(L(2) = 	2|ni,1, L(1) =
	1) = 1. It can then be easily shown that

Pr(Ni,1, Ni,2, ..., Ni,T|L(1) = 	1) =
T∏
t=1

Pr(Ni,t|L(t) = 	t),

where L(t), t = 1, ...,T is the BMS level occupied by the insured at time t. We
call this aBMS-panel model. For example, if we suppose that Ni,t|L(t) = 	t, Xi,t
is Poisson distributed, the distribution expressed in (4.1) will be a Poisson-
BMS-panel model (or simply Poisson-BMS) having the following probability
function:

Pr(Ni,t = n|L(t) = 	, Xi,t) = (λi,tr	)ne−λi,tr	

n!
.

For more details about BMS, we refer the reader to Denuit et al. (2007). Fi-
nally, note that because we are no longer working with random effects (or fixed
effects), but instead with a Markov chain that summarizes all the information
on past realizations, we are no longer in the classic subject-specific family of
models. Rather, we can say that the BMS-panel model is rather a member of the
conditional family of models for panel data count.

4.1. Entry level

The past number of claims is thus replaced by the BMS level in the conditioning.
Based on a specific pre-determined L(1) value (BMS level at time 1), the idea
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of the modeling is to recreate the bonus-malus levels for the entire life of an
insured, from the beginning of his experience in the insurance company to the
present. Given the rules of transition from one level to another and the claim
experience of each driver, the recomposition of the BMS levels for all insureds
in the database is not a complex task.

However, it is only possible to obtain a driver’s claim experience from recent
years, not for his entire coverage period. Indeed, insurers do not have informa-
tion on what happened to their insureds from before they were entered in the
database.

Consequently, we will look for the distribution of the BMS level at time t =
1, i.e., the first year an insured appears in the database. Mathematically, we are
looking for Pr(L(1) = 	1|Xi,1).

The computation of the probability function is easy and direct for new
drivers. In this case L(1) corresponds to the entry level of the BMS, which is
selected by the actuary in the construction of the BMS. The complex task is
to find the distribution of L(1) for drivers who have insurance experience be-
fore being entered in the insurance database. In this case, L(1) will be related to
the total number of insured years for each driver and will be calculated using
equations expressed in Section 2.2.

If we suppose a specific structure for the BMS, we know the entry level of all
insureds when they began to drive: it is the entry level selected by the actuary in
the construction of the BMS. The idea is then to recreate all the possible events
of each driver from his first year of driving to his first contract in the database.
This probability is calculated using a small transformation of the transition
probability matrix expressed in (2.6). Indeed, the probabilities of transition are
computed using

Pt(λi,t) =

⎛⎜⎝ p11(λi,tr1) p12(λi,tr1) ... p1s(λi,tr1)
p21(λi,tr2) p22(λi,tr2) ... p2s(λi,tr2)

... ... ... ...

ps1(λi,trs) ps2(λi,trs) ... pss(λi,trs)

⎞⎟⎠ , (4.2)

where r	, 	 = 1, ..., s are the relativities (to be estimated) for the BMS.With this
matrix, we can obtain the distribution of L(1) expressed in the vector as

pNLici (λi ) = p(1)(λi,1)

(
NLici∏
t=1

Pt(λi,t)

)
(4.3)

where NLic is the driving experience (in years) for insured i at his first contract
in the database. The probability vector p(.) was introduced in Section 2.2. Note
that to compute the probability distribution of L(1), we need to calculate the
probability distribution of the number of claims from all the years in which each
insured has been driving. This generates the problem of knowing the precise
average frequency of insureds for all past years of insurance. In other words, to
be perfectly coherent with our method, we must use the average frequencies λi,t
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for all homogeneous classes of insureds for each year between 1950 to 2010. In
this paper, to approximate all these frequencies, we supposed that the average
frequency of all past years of insurance were equal to λ, the average frequency of
our first insured year in the database. In other words, λi,t = λ, for all i = 1, ..., n,
t = 1, ...Ti in (4.2) and (4.3). This is clearly an approximation because the claims
frequency is known to be cyclical.

Each insuredmust have both a constant premium and a distribution of BMS
levels. Consequently, we must select a BMS level 	1 and not a distribution of
L1. There are many ways to select the BMS level for an insured entering the
database. The method that we propose uses the average of the first relativity, or
formally,

r =
s∑

	=1

Pr(L(1) = 	)r	.

To determine the BMS level 	1 of an insured, we choose the level j such as
r j ≤ r < r j+1.

5. EMPIRICAL ILLUSTRATION

We use this BMS-panel model with a sample of insurance data that comes from
a major Canadian insurance company. Only private use cars have been consid-
ered in this sample. The unbalanced panel data contains information from 2003
to 2008. The sample contains 167,859 insurance contracts, which come from
57,037 policyholders.

We used 11 exogeneous variables, described in Table 4. For every policy we
have the initial information at the beginning of the period. We are interested in
modeling the number of claims for the collision coverage. We divided the claims
into two categories: at-fault (N(1)) and non-at-fault (N(2)) claims. The average
claim frequencies are 2.874% (N(1)) and 3.741% (N(2)). The maximum number
of claims is three for both types of claims.

For some provinces in Canada, insurers can consult the claim files of all their
insureds for the last six years. This means that the insurer is able to obtain the
past number of claims for the last six years for each new insured. Using the
variable indicating the number of years since the insured obtained his licence
(NLic), we used this information in the BMS-panel model. As explained in Sec-
tion 4.1, we wanted to model L(1), the BMS level of an insured in his first year
of coverage in the database. Because we can determine the number of claims for
the last six years, we can model L(−x + 1), with x = min(6,NLic), the BMS
level of an insured six years before the beginning of the database (or when he
started driving).
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TABLE 4

BINARY VARIABLES SUMMARIZING THE INFORMATION AVAILABLE ABOUT EACH POLICYHOLDER.

Variable Description

X1 Equals 1 if the insured is between 16 and 25 years old.
X2 Equals 1 if the insured is between 26 and 60 years old.
X3 Equals 1 if the vehicle is 0 years old.
X4 Equals 1 if the vehicle is 1–3 years old.
X5 Equals 1 if the vehicle is 4–5 years old.
X6 Equals 1 if the insured has a house.
X7 Equals 1 if there is only one driver.
X8 Equals 1 if there are two drivers.
X9 Equals 1 if the insured is single.
X10 Equals 1 if the insured is divorced.
X11 Equals 1 if the insured does not have any minor convictions.

5.1. Form of the BMS-panel model

The BMS-panel model is very flexible and can handle complex ratemaking
structures. Indeed, the construction of the BMS-panel model is similar to what
was described in Section 4, even taking into account dependence between types
of claims. In our empirical illustration, we are interested in at-fault (N(1)) and
non-at-fault (N(2)) claims. Modeling these types of claims using a parametric
model could require special estimation techniques, particularly if the actuary
wants to consider time weight of claims, as the BMS-panel model proposes.
BMS-panel models avoid such situations.

Similarly, BMS-panel models can be used with complex penalty structures,
where each claim can be penalized differently. In such a case, only the transition
probability expressed in equation (4.2) will change. In our example, we have to
deal with legal constraints. Indeed, in Canada, we cannot increase the premium
for non-at-fault claims. To overcome this difficulty, we decided to eliminate the
no-claim bonus at the end of the year if the insured had a non-at-fault claim.
This leaves us with three possibilities:

1. an insured has no claims: his BMS level will be lowered by 1;
2. an insured has at-fault claims: his BMS level will increase by the number of

claims times the decided penalty (XX);
3. an insured has no at-fault claims but has non-at-fault claims: his BMS level

will stay the same.

We called this BMS-panel model structure –1/0/+XX.

5.2. Parametric relativities

We have to compute s relativities, i.e., r	 for 	 = 1, ..., s. To avoid unwanted
situations, where ri > r j for i < j , we used linear relativities (Gilde and Sundt,
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1989) for the BMS. More precisely, we used two forms of linear relativities:

rBMS1
l = 1 + τ(l − 1), (5.1)

rBMS2
l =

{
1 for l = 1
δ + τ(l − 1) otherwise

, (5.2)

where l = 1, . . . , s represents the BMS level. These two linear forms imply that
r1 = 1, meaning that the BMS relativities can be seen as the premium ratio with
an insured at level 1.

To use the joint distribution (4.1), we also have to choose the conditional
distribution for N(1) and N(2). We chose two distributions: the Poisson and the
NB2 distributions. Many count distributions can be used; see Boucher et al.
(2007) for a list of possible distributions for claim counts.

The choice of the count distribution specifies the joint distribution of Ni,t =
{N(1)

i,t , N(2)
i,t } for t = 1, ...,Ti :

Pr(Ni,1, Ni,2, ..., Ni,Ti |L(1) = 	1, Xi,T) =
Ti∏
t=1

Pr(Ni,t|L(t) = 	t, Xi,t)

=
Ti∏
t=1

Pr(N(1)
i,t |L(t) = 	t, Xi,t) ×

Ti∏
t=1

Pr(N(2)
i,t |L(t) = 	t, Xi,t).

Note that the chosen count distribution is also related to the distribution of
pNLici (λ) (see equation 4.3).

5.3. Selecting the best BMS structure

As mentioned in Section 2.2, in the classic theory of calibrating BMS, the ac-
tuaries have to use many techniques to find the best BMS among all possible
penalty structures, number of levels, entry levels, etc. With the BMS-panel mod-
els proposed here, all the characteristics of the BMS are selected using classic
statistical fitting. Indeed, by using standard statistical tests, or simply by using
profile loglikelihoods, the actuary can then determine

• the entry level;
• the penalty structure;
• the number of levels;
• the form of the relativities;
• the conditional distributions.

Therefore we rely onwell-defined statistical theory to find the structure of the
BMS instead of creating completely newmetrics that were used only in actuarial
sciences.
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FIGURE 1: Loglikelihood for different entry levels, with penalties XX = 1 and XX = 2. (Color online)

FIGURE 2: Loglikelihood for different penalties, with entry levels 10 and 9. (Color online)

It would have been possible to extend the choice of the best BMS by using
loglikelihood analysis with a different number of levels. However, for simplicity,
we restrict ourselves to BMSwith 10 levels. Figure 1 illustrates the loglikelihoods
obtained for different entry levels for penalty structures XX = 1 and XX = 2
(levels of penalty for each claim). Figure 2 illustrates the loglikelihoods obtained
for different values of penalties XX, with entry levels 10 and 9.

Our analysis of loglikelihoods shows that for the linear form BMS1, the best
system with 10 levels is a –1/0/+3 with an entry level at 10 for the Poisson distri-
bution (P.-BMS1), and a –1/0/+3 with an entry level at 10 for the NB2 distribu-
tion (NB2-BMS1). For the other linear form (BMS2), the best systems with 10
levels have been shown to be a –1/0/+2 with an entry level of 10 for the Poisson
distribution (P.-BMS2), and also a –1/0/+2 with an entry level of 10 for the NB2
distribution (NB2-BMS2).

Loglikelihood analysis also helps us select the best relativity structure. BMS2
of (5.2) converges to BMS1 of (5.1) for δ → 1. The value of δ̂ can be tested to
compare BMS1 and BMS2, for BMS with the same structure. In our exam-
ple, for each specific count distribution, to compare the best BMS1 model with
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the best BMS2 model, we compare two BMS structures: a BMS1 with –1/0/+3
versus a BMS2 with –1/0/+2. In this case, we can compare their loglikelihood
and choose the best models (both BMS-panel models have the same number
of parameters). The BMS2 seems to offer a better fit for Poisson and NB2
distributions.

5.4. Covariates and a priori ratemaking

The classic ratemaking technique in insurance separates the estimation of the
premiums into two components: a priori ratemaking and a posteriori ratemak-
ing. It is well known that this two-step process ratemaking has the consequence
of penalizing bad drivers’ profiles twice (see Denuit et al., 2007 for details). In-
deed, because of their characteristics, their a priori premiums are higher than
the premiums of other profiles. Also, because they claim more than other pro-
files, they will be more affected by merit ratings and BMS. Young and DeVylder
(2000) propose linear credibility models to correct this problem.

The BMS-panel model proposed here does not split ratemaking into two
components. BMS relativities and β parameters for the risk classification are
estimated together. This is another advantage of this method. The estimated
premiums for all profiles and for all levels of the BMS are coherent. However,
it does not mean that some profiles will not pay more than they need to. It only
means that the proposed BMS-panel model is sufficiently flexible to find ways
to minimize this error.

We use the –1/0/+3 BMS-panel model with 10 levels for Poisson and NB2
distributions. Table 5 shows the estimated β parameters for Poisson-BMSmod-
els and for independent Poisson. Table 6 shows the same parameters for NB2
distributions. We can see that the parameters β1 and β2 of BMS-panel models
change compared to independent Poisson andNB2 distributions. These param-
eters are used for young drivers. Because we select the BMS-panel model with
an entry level at 10, young drivers need 10 years without claim to reach the best
level of the BMS. Consequently, this is the reason why parameters for the age
are directly affected.

Parameter β9, which is used to identify the marital status of the insured,
is also affected by the model. Compared with the independent Poisson distri-
bution, we can observe a difference of about 15% to 20% for both N(1) and
N(2). Because the BMS panel-model proposed here seems to primarily affect
the premium of young drivers, we think that the value of the β9 parameter is
also related to the age of driver. Further, young drivers are not often married.
The value of the parameter β11 increases relative to the independent Poisson
distribution. Because it is used to identify drivers without convictions, we also
think that the increasing value of β11 is also caused by the way the BMS-panel
model deals with young drivers.

Other β parameters are also modified by the BMS-panel model, but the
change is less important.

https://doi.org/10.1017/asb.2014.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.11


A
P
O
ST

E
R
IO

R
I
R
A
T
E
M
A
K
IN

G
W
IT

H
PA

N
E
L
D
A
T
A

605

TABLE 5

ESTIMATED PARAMETERS FOR INDEPENDENT POISSON, POISSON-BMS1, AND POISSON-BMS2 MODELS.

N(1) N(2)

Independent Poisson P.-BMS1 P.-BMS2 Independent Poisson P.-BMS1 P.-BMS2

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β0 −3.3532 (0.086) −3.4152 (0.091) −3.3984 (0.090) −3.3488 (0.092) −3.4127 (0.084) −3.3964 (0.087)
β1 0.4672 (0.082) 0.0929 (0.080) 0.0545 (0.081) 0.5329 (0.080) 0.1590 (0.079) 0.1207 (0.079)
β2 0.0500 (0.056) −0.0064 (0.050) −0.0137 (0.051) 0.3136 (0.051) 0.2579 (0.049) 0.2508 (0.049)
β3 0.3657 (0.045) 0.3471 (0.044) 0.3473 (0.044) 0.2231 (0.039) 0.2051 (0.039) 0.2051 (0.038)
β4 0.3118 (0.043) 0.3046 (0.042) 0.3047 (0.042) 0.1476 (0.038) 0.1404 (0.038) 0.1405 (0.037)
β5 0.2653 (0.045) 0.2517 (0.043) 0.2519 (0.044) 0.1184 (0.038) 0.1049 (0.038) 0.1050 (0.038)
β6 0.1998 (0.035) 0.1743 (0.035) 0.1715 (0.035) 0.0729 (0.031) 0.0467 (0.031) 0.0438 (0.031)
β7 −0.4639 (0.056) −0.4453 (0.057) −0.4548 (0.056) −0.2690 (0.050) −0.2499 (0.053) −0.2591 (0.049)
β8 −0.3809 (0.059) −0.3866 (0.059) −0.3945 (0.056) −0.1828 (0.049) −0.1891 (0.054) −0.1967 (0.050)
β9 0.1040 (0.044) 0.0845 (0.042) 0.0812 (0.043) 0.0842 (0.039) 0.0645 (0.037) 0.0611 (0.037)
β10 0.3189 (0.064) 0.3264 (0.064) 0.3299 (0.064) 0.2321 (0.056) 0.2394 (0.057) 0.2429 (0.057)
β11 −0.1880 (0.059) −0.1448 (0.059) −0.1457 (0.062) −0.1758 (0.056) −0.1312 (0.051) −0.1319 (0.051)
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TABLE 6

ESTIMATED PARAMETERS FOR INDEPENDENT NB2, NB2-BMS1, AND NB2-BMS2 MODELS.

N(1) N(2)

Independent NB2 NB2-BMS1 NB2-BMS2 Independent NB2 NB2-BMS1 NB2-BMS2

Estimate Std Err. Estimate Std Err. Estimate Std Err. Estimate Std Err. Estimate Std Err. Estimate Std Err.

β0 −3.3520 (0.092) −3.4138 (0.093) −3.3971 (0.093) −3.3478 (0.081) −3.4120 (0.084) −3.3954 (0.080)
β1 0.4684 (0.081) 0.0934 (0.082) 0.0551 (0.087) 0.5331 (0.076) 0.1590 (0.081) 0.1206 (0.082)
β2 0.0498 (0.050) −0.0064 (0.051) −0.0136 (0.052) 0.3135 (0.045) 0.2579 (0.049) 0.2508 (0.047)
β3 0.3652 (0.044) 0.3468 (0.044) 0.3470 (0.044) 0.2227 (0.038) 0.2047 (0.039) 0.2047 (0.039)
β4 0.3117 (0.042) 0.3047 (0.043) 0.3049 (0.043) 0.1475 (0.037) 0.1404 (0.038) 0.1406 (0.037)
β5 0.2650 (0.044) 0.2515 (0.044) 0.2518 (0.044) 0.1181 (0.038) 0.1047 (0.039) 0.1049 (0.039)
β6 0.2000 (0.036) 0.1744 (0.035) 0.1716 (0.034) 0.0729 (0.031) 0.0466 (0.031) 0.0437 (0.031)
β7 −0.4643 (0.056) −0.4461 (0.055) −0.4556 (0.053) −0.2692 (0.047) −0.2499 (0.052) −0.2592 (0.050)
β8 −0.3813 (0.058) −0.3874 (0.056) −0.3951 (0.055) −0.1829 (0.046) −0.1890 (0.052) −0.1967 (0.051)
β9 0.1039 (0.043) 0.0843 (0.043) 0.0810 (0.043) 0.0842 (0.039) 0.0643 (0.038) 0.0610 (0.038)
β10 0.3191 (0.064) 0.3266 (0.064) 0.3301 (0.063) 0.2321 (0.056) 0.2392 (0.057) 0.2428 (0.057)
β11 −0.1883 (0.058) −0.1452 (0.059) −0.1461 (0.056) −0.1763 (0.049) −0.1317 (0.050) −0.1326 (0.048)
α 0.3326 (0.180) 0.2985 (0.167) 0.2967 (0.182) 0.3646 (0.125) 0.3121 (0.149) 0.3110 (0.115)
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FIGURE 3: Relativities for the BMS1 (linear) and BMS2 (linear with intercept). (Color online)

With the selected models, the estimated relativities for the BMS are illus-
trated in Figure 3. Poisson-BMS and NB2-BMS models generate the same rel-
ativities for each of the BMS1/BMS2 levels.

Finally, as explained in Section 4.1, even if new drivers enter the BMS at
level 10, an entry level must be assigned to all insureds entering the database.
In the model we propose, the entry level is selected depending only on driving
experience (NLic), but covariates (such as the sex) can also be used to select
different entry levels. Figure 4 shows the selected level depending on NLic.

For example, the insurer will assign a BMS level of 3 to a new insured with 30
years of driving experience. However, in our application, the insurer can consult
the last six years of driving experience for each insured entering the database.
Consequently, to obtain the current BMS level for a first insurance contract
in the company, the insurer will calculate the BMS level by supposing that the
insured was on the third level six years ago, and will update the BMS level de-
pending on the claim experience.

5.5. Selecting the conditional distribution

The conditional distribution for the BMS-panel model should be selected pru-
dently. Somemodels, such as theNB2-BMS and the Poisson-BMSmodels, seem
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FIGURE 4: Entry Level for different years with driving licence. (Color online)

to be nested, because an NB2 distribution converges to a Poisson distribution
when α → 0. However, these two BMS-panel models are only nested when
they have the same number of levels, the same entry level, and the same penalty
structure. For different forms of BMS, the NB2-BMS and the Poisson-BMS are
no longer nested, and information criteria such as the AIC or the BIC should
be used.

For similar forms of the BMS, the Poisson-BMS and the NB2-BMS are
nested models because in this case, the NB2-BMS will converge to a Poisson-
BMS when α → 0. This corresponds to the border of the parameter space of
the NB2-BMS. It is well known that a problem with standard specification tests
(theWald or the log-likelihood ratio tests) happens when, as in our case, the null
hypothesis is on the boundary of the parameter space (see Boucher et al., 2007).
When testing at a level δ, one must reject the H0 hypothesis if the test statistic
exceeds χ2

1−2δ(1), rather than χ2
1−δ(1), meaning that in this situation, a one-sided

test must be used. Analogous results hold for theWald test given that parameter
distribution consists of a mass of one half at zero and a normal distribution for
the positive values. Again in this case, the usual one-sided test critical value of
z1−δ should be used.
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In our example, comparing the p-value of α means that the Poisson–BMS2
is rejected against the NB2-BMS2. Therefore, of all the models we tested, the
NB2-BMS2 is the best.

6. DISCUSSION

The BMS-panel models presented in this paper allow the construction of premi-
ums that are realistic and are directly applicable. Using an insurance database,
the BMS-panel models allow us to directly calculate the premiums charged to
insureds, which depends not only on their characteristics but also on their claim
experience. We are clearly aware that the BMS-panel models are not the best
models for adjusting the data. More sophisticated models such as the count dis-
tributions proposed in Boucher and Guillén (2009), the Tweedie model for the
modeling of the pure premium of Smyth and Jorgensen (2002), the hierarchical
model for the cost of the claims, and the number of claims for various coverages
of Frees and Valdez (2008), or the Harvey-Fernandes model from Bolancé et al.
(2007) would certainly fit the data better.

However, we think that the purpose of these models could serve to clarify the
claims process (for example, Boucher et al. (2010) proposed a hunger for bonus
interpretation for the zero-inflated count distribution) rather than account for
ratemaking. The main purpose of ratemaking models should be to compute the
most accurate premiums under practical constraints. In the complexmodels, the
predictive premiums proposed (which are more precise than those of the BMS-
panel models) cannot really be applied for practical reasons. We showed at the
end of Section 3 that if an insurer cannot use the exact predictive expected value
for premiums, it makes no sense to suppose other premium forms in the fitting
of the model and in the inference step without including this premium form in
the distribution.

We can refer to our empirical illustration of Section 5 to explain the situation.
Indeed, even if it was shown by advanced statistical methods that there is time
dependence between the number of claims of successive insurance contracts for
non-at-fault accidents (justifying experience rating for this insurance coverage),
the law does allow the insurers to increase premiums if an insured claims this
kind of accident. However, if positive dependence between at-fault and non-
at-fault claims exists, it is possible, at least partially, to correct this situation by
increasing the penalties of at-fault claims. Only amodel designed to compute the
most accurate premiums can calculate this correction, while advanced statistical
models (designed to find the best fit) will only find an accurate measure of time
dependence between non-at-fault claims.

Finally, compared to the BMS that comes from cross-section data, the BMS-
panel models avoid a part of the philosophical controversy regarding the induc-
tion problem. Although the subject was more controversial in the second half
of the 20th century, this problem is still under discussion (for example, see Gel-
man and Shalizi, 2013, or Gelman and Robert, 2013 who discuss this problem
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FIGURE 5: Observed relative claim frequency for at-fault and not-at-fault claims, depending for different
BMS levels. (Color online)

for Bayesian inference purposes). In the old BMS application, the controversy
comes from the prediction part of the model. Using distribution (2.1), the ac-
tuary can use any prior distribution for �, and by a correct application of the
Bayes theorem, he will be able to compute predictive premiums. The choice of
the prior andwhat it represents (ignorance, degree of belief, etc.) is controversial.
However, more controversial is the use of inductive probability to calculate the
premium. Note that the inductive probability was called probability1 by Rudolf
Carnap and credibility by the great philosopher Bertrand Russell. See Ryder
(1976) who describes this controversy in an actuarial science context.

The purpose of this paper is not to solve this controversy or even discuss it,
but rather to propose a model that partly avoids this problem in the calcula-
tion of premiums. One obvious reason for this is that the BMS-panel models no
longer use unobserved random effects, nor Bayesian probability structures that
need the subjective selection of a prior. However, we think that the real advan-
tage of the BMS-panel models is the direct link between the observed statistics
(from the database) and the proposed premiums.

In the BMS-panel models, the premiums that will be charged to insureds do
not represent a projection of past data into the future, but a direct (but modeled)
observation of claim experience. In other words, in the BMS-panel models the
actuary will choose to charge a specific value for a premium because he can
observe a claim experience in his database that is close to this value. For example,
Figure 5 shows the relative observed average claim frequency for each BMS
level. The frequency is calculated as

∑
t

∑
i ni,t/

∑
t

∑
i λi,t. This was computed

using the entry levels of Figure 4, meaning that the relativity forms BMS1 and
BMS2 are partly used in the procedure. It would have been possible to obtain
the same figure for unconstrained relativities. However, the purpose of Figure
5 is only to illustrate the difference between the use of the BMS-panel models
compared with inductive probabilities.

FromFigure 5, we can see that the estimated values of the BMS relativity can
be justified by empirical considerations and not only by a Bayesian projection of

https://doi.org/10.1017/asb.2014.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.11


A POSTERIORI RATEMAKING WITH PANEL DATA 611

past values into the future. Consequently, comparedwith classic BMSof Section
2.2, we think that the link between the insurance dataset and the premiums is
easier to explain with BMS-panel models.

7. CONCLUSION

The traditional approach of calculating a priori premiums and BMS premiums
(or linear credibility premiums) has been shown to be inconsistent for panel
data. We demonstrate that BMS-panel models are more appropriate to com-
pute the premiums than other complex models because they represent the real
rating structure of an insurer. Consequently, the estimated premiums obtained
with BMS-panel models can be used without other approximations. BMS-panel
models have been shown to be very flexible: where any penalty structures can be
proposed, and any count distributions can be used without complex numerical
procedures. Using statistical theory, the BMS-panel model allows one to choose
between all possible BMS structures without using new metrics that are only
known in actuarial sciences. We also showed that the BMS-panel models are
easier to understand. Finally, even if we applied the model for car insurance, as
long as another line of business uses past claim experience to set the premiums,
we think that a similar approach to the model proposed should be used.
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