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Abstract

A reduced mathematical model for the transport of high current relativistic electron beams in a dense collisional plasma is
developed. Based on the hypothesis that the density of relativistic electrons is much less than the plasma density and their
energy is much higher than the plasma temperature, a model with two energy scales is proposed, where the beam and
plasma electrons are considered as two coupled sub-systems, which exchange the energy and particles due to
collisions. The process of energy exchange is described in the Fokker-Planck approximation, where the pitch angle
electron-ion and electron-electron collisions dominate. The process of particle exchange between populations, leading
to the production of secondary energetic electrons, is described with a Boltzmann term. The electron-electron collisions
with small impact parameters make an important contribution in the overall dynamics of the beam electrons.

Keywords: Collision invariant preserving; Electron-electron collisions; Multi-scale scattering; Reduced model;
Relativistic electron transport; Secondary electron production

1. INTRODUCTION

Large-scale, high intensity laser installations (Cook et al.,
2008; Blanchot et al., 2006; Delettrez et al., 2005; Danson
et al., 2005; Dunne, 2006; Miyanaga et al., 2003;
Neumayer et al., 2005) can achieve highly relativistic inten-
sities and generate extremely high currents of relativistic
electrons in interaction with solid targets. An accurate
description of the transport of such high currents of relativis-
tic electrons in dense matter is an important issue for many
applications including the fast ignition of thermonuclear
fusion targets, radiography of dense opaque objects, cancer
therapy, lithography, etc. (Borghesi et al., 2002; Glezos &
Raptis, 1996; Mangles et al., 2006). Recent proposed
schemes for ignition also rely on pre-assembled overdense
targets (Holmlid et al., 2009) and might face such regimes.

The complexity of this problem comes from the fact that
the collective and collisional processes are operating in the
same time and spatial scales and they require a kinetic
description of particles in a very broad energy domain

ranging from thermal electrons of a few tens or hundred eV
of the main plasma to several tens of MeV of the beam elec-
trons. The dominant physical processes include the collisions
of beam electrons with the electrons and ions of plasma, the
electron-ion and electron-electron collisions of plasma
particles, production of secondary energetic electrons in
head-on electron-electron collisions, generation of self-
consistent electric and magnetic fields, return currents, and
plasma heating. There is a necessity to describe correctly
both the energy deposition of beam electrons and their trans-
port from the injection to the energy deposition region.

A very large difference in energies and densities between
the electron beam and the plasma electrons are revealed in
the time and spatial scales of the collective and collisional
processes, that makes it difficult to describe all physical pro-
cesses within the same kinetic equation. It was suggested to
separate the plasma and beam electrons and to consider
them as two different populations. A theoretical approach
that is currently implemented is based on the hybrid
model where the plasma electrons are described in the
fluid approximation, while the beam electrons are treated
kinetically (Bell et al., 1997; Davies, 2003; Honrubia
et al., 2004). While this approach has shown its capability

165

Address correspondence and reprint requests to: R. Duclous, Centre
Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS,
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to describe the major effects such as the collisional slowing
down of beam electrons and the return current generation
along with the self-consistent electric and magnetic fields,
certain physical effects are left out of the frames of this
model. In particular, the plasma electron distribution func-
tion is supposed to be close to the Maxwellian function and
therefore the nonlocal effects in the plasma electric and
thermal conductivities are neglected. Moreover, production
of secondary fast electrons created in the head-on collisions
of the beam and plasma electrons is discarded. A more
advanced model of the fast electron transport would be
necessary in order to evaluate the domain of validity
of the hybrid model and to extend it to higher current den-
sities, higher beam electron energies, and higher plasma
densities.

The relativistic extension of the integro-differential
Fokker-Planck-Landau kinetic equation (Beliaev & Budker,
1956) or simplified techniques (Braams & Karney, 1987;
Robiche & Rax, 2004; Karney & Fisch, 1985; Bell et al.,
2006), have been proposed to incorporate the relativistic
effects in the collisional process in the pitch-angle description.
Several studies (Robinson et al., 2008; Sherlock et al., 2007)
have been undertaken recently based on an electron kinetic
code KALOS (Bell et al., 2006) to investigate issues related
to the fast electron beam energy deposition in fusion targets.
There the pitch-angle electron collisions and the self-consistent
fields are described relativistically, however the effect of sec-
ondary electron production, including both relativistic effects
and large momentum transfers, was neglected. The objective
of this paper is to consider in detail this latter process and
to evaluate its importance, from a theoretical point of view,
and from the point of view of numerical treatment of the
kinetic equation.

The problem of secondary electron production has been
addressed (Gurevich et al., 1998a, 1998b) that consider the
effect of cosmic rays on the thunderstorm discharges in the
Earth atmosphere. A kinetic modeling technique based on
the relativistic Boltzmann equation, have been setup to
describe large angle scattering processes and production of
secondary electrons, that is often called the ionization
process. Such specific models have also been derived for
gas discharges, runaway breakdown (Gurevich et al.,
1998a), and Tokamak disruptions (Eriksson & Helander,
2003; Eriksson et al., 2004). However, these models describe
the background electrons as a cold (Gurevich et al., 1998a) or
a warm fluid (Eriksson & Helander, 2003), and consider
them as a potential source of secondary electrons. The
effect of the energy deposition in plasma was not considered
there, whereas it is an important issue for the transport
problem. A non-Maxwellian distribution function of
plasma electrons could be responsible for the modification
of the electric conductivity, return current, and other impor-
tant effects (Sherlock et al., 2007).

The numerical realization of the relativistic collisional
operator has been developed for the collisional particle-in-
cell (PIC) or Monte Carlo (MC) codes (Sentoku & Kemp,

2008; Eriksson & Helander, 2003). However, independently
of the domain of application, laser interaction with dense
matter or a Tokamak plasma, the implementation cost of
probabilistic methods into the kinetic models may be too
high due to a large number of particles/macroparticles
needed to maintain an acceptable low level of statistical
fluctuations. Even PIC codes using weighted macroparticules
(Sentoku & Kemp, 2008) heavily rely on the small angle
scattering to do so. This has lead authors (Eriksson &
Helander, 2003) to derive a more specific model that
incorporates specifically the production of secondary
electrons.

The deterministic numerical methods (Symbalisty et al.,
1998) could be better suited for description of the large
angle scattering effects, because they are by nature less
dependent on the density, and temperature conditions. As
we will show in this paper, the plasma heating process,
which is due to small angle collisions, is on the same
order, with a logarithmic accuracy, as the production of sec-
ondary electrons, due to large angle collisions. This rather
general result will be illustrated here for simple distribution
functions for the bulk and beam electrons.

A collisional interaction between the electrons in very
different energy scales (from eV to MeV) justifies a need
for two populations of electrons: the beam (fast) and the
bulk (thermal) particles. However, a direct separation of
two populations in the energy or momentum space cannot
be efficient, since the bulk electron distribution function
may have a long tail, and the fast particle distribution func-
tion may have an extension down to the fastest thermal par-
ticles. One has to allow for the particle to be transferred from
one population to another. In this paper, we propose a model
based on the electron kinetic equation, that separates the elec-
trons in two populations operating in two different energy
scales. The model is derived by using a procedure based
on an operator decomposition technique, where the collision
operators are interpreted in a systematic manner. This model
respects the particle number, momentum and energy conser-
vations, and introduces an artificial screening parameter in
the cross sections, depending on the bulk electron tempera-
ture. A reasonable choice for this parameter is fundamental
to maintain an acceptable number of particles in each popu-
lation. Thus, a numerical validation of the present model is
necessary to find a compromise for this parameter, and to
gain confidence in the results.

The present article is structured as follows. In Section 2,
the electron collision processes are described, a two popu-
lation model is proposed, and its design principles are
discussed. In Section 3, the collision invariant preserving
property of the procedure is highlighted. Then, basic pro-
perties of the model are illustrated on a simple
beam-plasma configuration in Section 4. Finally, a reduced
model suitable for numerical computations is presented in
Section 5. A quantitative analysis is performed for the case
of a mono-energetic electron beam propagation in a warm
plasma. The importance of large angle scattering for the
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energy deposition and angular scattering of the beam is
demonstrated.

2. RELATIVISTIC MODEL OF ELECTRON
KINETICS

2.1. Collision Processes of Importance for Plasma
Physics

Let us consider a plasma made of electrons and immobile
ions1 of a charge Ze and a density ni. The electrons are
described by a relativistic kinetic equation

dfe
dt

;
∂fe
∂t

+∇x · (vfe) + qe∇p · (E + v × B)fe

= Cee( fe, fe) + Cei( fe).

(1)

Here, qe ¼ 2e is the charge of electron, the velocity and
momentum v ¼ p/meg are related by the relativistic factor

g(p) =
��������������
1 + p2/m2

ec2
√

, c is the speed of light, and me is
the mass of electron. The electric and magnetic fields are
described by the Maxwell’s equations, where the electric
charge and current densities, r ¼ e(Zni 2 ne) and j are
defined by the electron distribution function: ne(t, x) ¼�

fe(t, x, p)dp and j(t, x) ¼ qe

�
fe(t, x, p)v dp. In what

follows, we concentrate our discussion on the collisional
effects leaving apart the convective terms in the left-hand
side of Eq. (1). Our main objective is to separate this
kinetic equation into the fast and slow components and to
describe the coupling between them.

The standard approach in the physics of Coulomb col-
lisions consists in developing the collision integrals in
series assuming a small momentum transfer in each collision.
That reduces the general Boltzmann-like collision integral in
the Landau-Fokker-Planck differential form containing the
friction and diffusion terms in the phase space:

Cea[ fe] = ∇p · (FDa fe(p)) +∇p · (Da∇p fe(p)). (2)

In the non-relativistic limit and neglecting small ion mass
corrections, me/mi ≪ 1, the electron-ion collision integral
has only a diffusion term, FDi ’ 0, that is

Di =
Z2nie4 lnL

8p12
0

F(v), (3)

where F(u)¼ (|u|2I 2 u ⊗ u)/|u|3 is the tensor describing
the pitch angle scattering, u¼ v 2 v′ is the relative velocity,
I is the unitary matrix, and lnL ¼ ln(Dpmax/Dpmin) is
the Coulomb logarithm, with Dpmax � p being the maxi-
mum momentum transfer in a collision between particles,
Dpmin ’ �/lD is the minimum momentum transfer at the
Debye cut-off, lD, and � is the Planck constant. The

expressions for the electron-electron friction force and the diffu-
sion coefficient, in the relativistic case, are as follows

FDe[fe] = e4 lnL

4p12
0me

∫
v − v′

|v − v′|3
fe(p′)d3p′, (4)

De[fe] = e4 lnL

8p12
0

∫
F(u)fe(p′)d3p′. (5)

In plasmas with highly charged ions, Z ≫ 1, the electron-ion
collisions dominate the diffusion, while the friction is related
to the electron-electron collisions.

An usual approximation of classical plasmas, where ln
L ≫ 1, justifies the possibility to neglect the head-on col-
lisions, which makes usually a small contribution on the
order of 1/ln L. However, this statement of unimportance
of large angle scattering events is not general, and there
are conditions where the hard collisions could produce
qualitatively new effects that do not exist in the
Landau-Fokker-Planck approximation. One well-known
example is the ionization of atoms or molecules by free elec-
trons in partially-ionized plasmas. Another example is the
electron-ion collisions in a strong laser field. The hard col-
lisions dominate the electron heating rate if the electron
quiver velocity is larger than the electron thermal velocity
multiplied by the Coulomb logarithm (Brantov et al., 2003).

In what follows, we are considering a problem of an electron
beam propagation through plasma. The characteristic beam
electron energy, 1b, is supposed to be much larger than the
mean energy, kBTe, of the bulk electron population. In that
case, the hard collisions of the beam and bulk electrons, simi-
larly as in the ionization process, produce energetic electrons,
and thus increase the fast electron population. Moreover, the
collisions of beam and bulk electrons at small angles produce
a fast electron tail in the bulk of electron distribution, which
might affect the transport coefficients in such a plasma.

We develop a system of kinetic equations for the beam
(fast) electrons described by the distribution function fb,
and the bulk (thermal) electrons described by the distribution
function fth, assuming that 1b ≫ kBTe and that density of
beam is small, nb ≪ ne. We just suppose that the beam elec-
trons could be relativistic, while the plasma electrons are
non-relativistic, kBTe ≪ mec

2.

2.2. Kinetic Equations for Two Electron Populations

The master equation that incorporates the hard collision pro-
cesses is the relativistic Boltzmann equation (De Groot et al.,
1980; Stewart 1971; Synge, 1957)

d
dt

f (p) =
∫

R3
d3q

∫
S2

dṼ
′
, [f (p′)f (q′)

− f (p)f (q)]ũ
W̃

2

WpWq
Q( p̃, m̃).

(6)

The notations for the momenta p, q, and energies Wp, Wq are
applied to the outgoing particles, that is, after a collision

1The assumption of immobile ions makes the equations more readable.
The ion motion can be included in the model with a marginal loss of
accuracy.
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event, whereas the momenta p′, q′, and energies Wp′, Wq′

refer to the ingoing particles, that is, before the same collision
event. The conservation of the momentum and the energy in
the collision implies that p + q ¼ p′ + q′ and Wp + Wq ¼

Wp′ + Wq′. The quantities marked with tilde (respectively
without tilde) refer to quantities in the center of mass frame
(respectively, in the laboratory frame) for a collision event,
except for the scattering angle in the center of mass frame,
denoted by u. In particular, W̃ is the energy of colliding par-
ticles in the center of mass, m̃ = cos u is the cosine of the
interaction angle. ũ = 2 p̃c2/W̃ is the relative velocity. vM ;

ũ
W̃

2

WpWq
is the Møller velocity, and Q is the total relativistic

Rutherford cross section (7), that takes into account both rela-
tivistic and spin (including Pauli statistical principle) effects

Q( p̃, m̃) = Q0A( p̃)
1

sin4 (u/2)
+ 1

cos4 (u/2)

( )

+ Q0B( p̃)
1

sin2 (u/2)
+ 1

cos2 (u/2)

( )
+ 2Q0C2( p̃),

(7)

where Q0 = (emec)4/(16p10 p̃2W̃)2 and the momentum-
dependent functions are A( p̃) = (1 + 2C( p̃))2,
B( p̃) = 1 + 4C( p̃), C( p̃) = p̃2/m2

ec2.
The stiffness of the Boltmann operator is due to the long

range Coulomb interaction. The complexity of its tensorial
form, acting on the general distribution function f (gathering
both thermal and fast particules), makes a numerical treat-
ment very difficult. We develop a simplification procedure
of the Boltzmann operator, that captures the essential pro-
cesses and associated collision frequencies with good accu-
racy. This procedure is relying on appropriate assumptions
that respect the original collision invariants.

The first step is folding of the total cross section (7) Q �
Qf. Owing to the fact that electrons have to be considered
identical, the cross section can be folded, that is, the electrons
in the outgoing channel can be exchanged, and the singular-
ities be concentrated at small angles. This step is necessary
for development of the small angle scattering approach,
and for derivation of the Landau type formulation presented
in Eqs. (16)–(18).

As a second step, an intermediate—in momentum
exchange—screening is introduced in the Rutherford cross-
section, that makes it possible to discriminate between the
smaller and larger angles (equivalently energy exchanges)
for scattering, and thus to introduce a cut-off volume in the
momentum space. This strategy is equivalent to the
decomposition, at a finer level though, of the screened
Coulomb potential V(r) (Cohen-Tannoudji et al., 1986)

V(r) = e−r/lD

r
− S(r)

[ ]
‘‘smaller angles′′

+ S(r)[ ]‘‘larger angles′′ ,

where S ≥ 0 is a smoothing function, which introduces an
upper screening, and e−r/lD/r − S(r) ≥ 0.

This Debye-like screening procedure of the Coulomb
singularity allows a re-interpretation of the above bracketed
collisional processes. A rough, but sufficient condition, for
such an interpretation to be safe, reads (Gurevich et al.,
1998a)

nb

nth
≪ 1,

Wth

Wb
≪ 1,

which reduces, for the model, the admissible configurations
of the plasma. Here the subscripts b′ and th′ refer, respect-
ively, to the beam and thermal plasma populations. After a
standard folding procedure of the cross-section of like par-
ticle collisions, it is decomposed, based on the intermediate
screening, in two—or more than two—daughter cross sec-
tions. Each of these sub-cross sections is interpreted as a
specific collisional process—either the smaller or larger
angle scattering—which offers the possibility for a discrimi-
nation between two sets of particles, based on the momentum
cut-off, and leads to the subsequent operators. Such a
decomposition preserves a generality of the description, but
is not unique. The positivity of the daughter cross sections
is preserved during the decomposition. In the limit defined
by the angle ua � uD ; 2h− /lDDpmax ’ 2h− /lD p̃, the
smaller angle scattering processes are selected. The larger
angle ones shall be discarded by a Fokker-Planck-Landau
procedure. On the other hand, the uppper cut-off ua . uD,
above the Debye screening, defines the frontier between the
smaller and larger scattering angles, and could be chosen
such as to respect a robustness criteria, that is, crucial for
the numerical implementation of the model. The possiblity
remains open to select an anisotropic cut-off in the momen-
tum phase space.

The folded, screened cross section, reads Qf ( p̃, m̃) =
Q(sa)

f ( p̃, m̃) + Q(la)
f ( p̃, m̃), where a possible choice for the

daughter cross sections is as follows

Q(sa)
f ( p̃, m̃) = 2Q0A( p̃)

sin2 (u/2) + uD
2

[ ]2
( )2 −

2Q0A( p̃)

sin2 (u/2) + ua
2

[ ]2
( )2 , (8)

Q(la)
f ( p̃, m̃) = 2Q0A( p̃)

sin2 (u/2) + ua
2

[ ]2
( )2

− 2Q0B( p̃)

sin2 (u/2) + ua
2

[ ]2 + Q0C( p̃).

(9)

Both functions are positively defined. The inclusion of
screening terms in the nonlogarithmic terms is allowed
because the relevent range for the parameter ua satisfies the
multi-scale criteria uD ≪ ua ≪ 1, which involves
cos2 ua

2

( )
’ 1. It does not affect the accuracy of the cross

section, since the contributing, singular part remains phys-
ically screened. Rather than the decomposition (8)–(9), we
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prefer the screening and decomposition such as

Q(sa)
f ( p̃, m̃) = 2Q0A( p̃)

sin2 (u/2) + uD
2

[ ]2
( )2

−
2Q0A( p̃) cos2 u

2

( )
1 + ua

2

[ ]2
( )

sin2 (u/2) + ua
2

[ ]2
( )2 ,

(10)

Q(la)
f ( p̃, m̃) =

2Q0A( p̃) cos2 u
2

( )
1 + ua

2

[ ]2
( )

sin2 (u/2) + ua
2

[ ]2
( )2

−
cos2 ua

2

( )
1 + ua

2

[ ]2

[ ]
2Q0B( p̃)

sin2 (u/2) + ua
2

[ ]2
( )+ Q0C( p̃).

(11)

These daughter cross sections are positive. This form allows
us to simplify forthcoming analytical computations and to
postpone crucial hypothesis at the end of the computation.

The distinction between thermal fth
ua and beam fb

ua distri-
bution functions is the consequence of the discrimination
of the collisional processes. As a matter of fact, the two popu-
lations present two different resolutions for the phase-space
discretization. In the remainder of the paper, we drop the
superscripts ua on the distribution functions.

The processes associated with each of the two energy
scales are listed in Table 1. The two electron populations,
thermal and fast, are allowed to share energy ranges, pro-
vided distinct energy exchange scales can be identified
among the collision processes at stake. This leads to a simpli-
fication of the Bolzmann operator to a set of bilinear oper-
ators. The modeling choice for these operators and the
attribution procedure to each of the populations, are also
given in Table 1.

Concerning the thermal population, only pitch angle scat-
tering between the thermal particles is taken into account
(process ST(sa)). The large angle scattering of the thermal
particle (process ST(la)) is neglected assuming 1/ln L as a
small parameter. The collisions of the thermal particles with
the beam particles give raise to three processes. The small
angle scattering (H) increases the energy of the thermal par-
ticle, while leaving it in its own population. The large angle

scattering (IO) has two manifestations: the thermal particle
gains energy and joins the beam population (IO+) — this is
the ionization term — and, at the same time, the thermal
population looses this particle (IO2).

Concerning the beam population, the process SD(sa) is
identified as the small angle scattering on the thermal par-
ticles. It is the standard Fokker-Planck-Landau process pro-
ducing the diffusion and friction of the beam in the phase
space. The process SD(la) can be interpreted as large angle
scattering of beam particles on the thermal particles, where
particles of each population are maintained, in the outgoing
channel (at the end of the collision process), in their original
populations. This appears paradoxal, since the large angle
scattering statement should be responsible for a thermal par-
ticle to become member of the beam population. We solve
this by choosing a Fokker-Planck approach (see Section 3)
for the process SD(la), that maintains the collision invariants
of the bilinear Boltzmann form. Doing so, makes the large
energy exchanges discarded for thermal particles, as non-
physical in this process. This is possible because we con-
sidered folded cross sections around small angles, and thus
all scattering angles are gathered (considering the forward
peakness of the Coulomb cross section) around zero. This
Fokker-Planck treatment is valid for the beam particles as
well, since the large energy exchanges can still be considered
small with respect to the variation of the beam distribution
function. Finally, all collisions between the beam particles
are neglected because of a relatively small number of beam
electrons.

The final model, that presents two energy exchange scales,
reduces to

d
dt

fb(p) = CIO+ [ fth, fb] + (CSD(sa) [ fb, fth] + CSD(la) [ fb, fth]), (12)

d
dt

fth(p) = CIO− [ fth, fb] + CH[fth, fb] + CST (sa) [ fth, fth], (13)

where the explicit forms of the collision operators are pre-
sented in Eqs. (14)–(18). In particular, the operators that
describe hard collisions, where the two populations exchange

Table 1. List of collisional processes considered for the beam and plasma electrons

Entering particle Collisional process (sa)/(la) scattering Target particle Exiting particle Collision model

Self Thermalisation: ST(sa) thermal small angle scattering (sa) thermal thermal Fokker-Planck-Landau
Self Thermalisation: ST(la) thermal large angle scattering (la) thermal thermal neglected
Heating: H thermal small angle scattering (sa) beam thermal Fokker-Planck
Ionization gain: IO+ thermal large angle scattering (la) beam beam Boltzmann gain term
Ionization loss: IO2 thermal large angle scattering (la) beam thermal Boltzmann loss term
Slowing Down: SD(sa) beam small angle scattering (sa) thermal beam Fokker-Planck
Slowing Down: SD(la) beam large angle scattering (la) thermal beam Fokker-Planck
Self Thermalisation beam any scattering angle beam beam neglected
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particles, read

CIO+ [ fth, fb] =
∫

R3
d3q

∫
S2

dṼ
′
fth(p′)fb(q′)ũ

W̃
2

WpWq
Q(la)

f ( p̃, m̃)

=
∫

R3 ×R3
fth(p′)fb(q′)

2c4W̃
′2

WpW p′Wq′

× d(W̃
′ − W̃)Q(la)

f ( p̃, m̃)d3q′d3p′, (14)

CIO− [ fth, fb] = −fth(p)
∫

R3
d3q

∫
S2

dṼ
′
fb(q)ũ

W̃
2

WpWq
Q(la)

f ( p̃, m̃)

= −fth(p)
∫

R3×R3
fb(q)

2c4W̃
2

WpWqW p′

× d(W̃
′ − W̃)Q(la)

f ( p̃, m̃)d3p′d3q

= −2pfth(p)
∫

R3
d3q fb(q)ũ

W̃
2

WpWq

∫1

−1
Q(la)

f ( p̃, m̃)dm̃,

(15)

where the delta function accounts for the property of energy
conservation for a collision between a fast and a thermal par-
ticle, in the center of mass frame. The last two forms on the
right-hand side of Eq. (12) are merged in CSD[ fb, fth] ¼
CSD(sa) [ fb, fth] + CSD(la) [ fb, fth]. The other processes can be
described in the pitch angle limit

CSD[fb, fth] = ∇p · (FD[ fth] fb(p)) +∇p · (D[ fth]∇p fb(p)), (16)

CH[ fth, fb] = ∇p · FD
(sa)[ fb] fth(p)

( )
+∇p · D(sa)[ fb]∇p fth(p)

( )
,

(17)

CST (sa) [ fth, fth] = ∇p · (FDe[ fth] fth(p))

+∇p · (De[ fth]∇p fth(p)).
(18)

The friction force FDe and diffusion coefficient De are given
in Eqs. (4) and (5), because only small angle deviations in the
non-relativistic regime are considered, with a logarithmic
accuracy, for the scattering of thermal particles.

Finally, the bilinear forms CH[ fth, fb] (Heating, with the
cross section Qf

(sa)), and CSD[ fb, fth] (slowing down, with
the cross section Qf), of the Bethe type, are derived following
the Landau method. The resulting expressions for the coeffi-
cients FD[ f ] and D[ f ] are given in Eqs. (20)–(21) and (27)–
(29). They are respecting the collision invariants — the con-
servation of the total mass, momentum, and energy — for the
complete distribution function fth + fb, for the model (12)–
(13). The derivation presented in the next section is based
on a decomposition of the collision operator in moments of
the cross section. Compared to the original Landau deri-
vation, the present approach differs only in non-logarithmic
terms, but has the advantage of exactly preserving the col-
lision invariants of the model, thus contributing to gain a
confidence into it.

3. AN INVARIANT PRESERVING
FOKKER-PLANCK PROCEDURE

We propose here a Fokker-Planck procedure of derivation of
the model (12) – (13) from the original Boltzmann operator
(7). Its particularity lies in the preservation of the collision
invariants — total mass, momentum and energy — for each
process of the model, independently. The derivation of
Fokker-Planck type operators starts from the weak form of
the Boltzmann operator, operating on a arbitrary, forward-
peaked folded cross section Qf. Let us consider an arbitrary
smooth test function F (p), and calculate the following integral

k
d
dt

f (p), F l =
∫

S2×R3×2
F (p)( f (p′)f (q′)

− f (p) f (q))ũQf ( p̃, m̃)
W̃

2

WpWq
dṼ

′
d3qd3p.

The right-hand side of this equation can be rewritten, exchan-
ging the incoming {p′, q′} and outgoing particles {p, q}, as

1
2

∫
S2×R3×2

(F (p) −F (p′))( f (p′)f (q′)

− f (p)f (q))ũQf ( p̃, m̃)
W̃

2

WpWq
dṼ

′
d3qd3p.

Then a Taylor expansion is performed on the functions F and
f, assuming small angle deviations, Dp ≪ p (small energy
exchanges), and using the momentum conservation p′ +
q′ ¼ p + q

F (p′) = F (p) − Dp · ∂F
∂p

(p) + (−1)n (Dpi)n

n!

∂nF
∂pn

i

(p) n . 1,

f (p′) = f (p) − Dp · ∂f

∂p
(p) + (−1)n (Dpi)n

n!

∂nf

∂pn
i

(p) n . 1,

f (q′) = f (q) + Dp · ∂f

∂q
(q) + (Dpi)n

n!

∂nf

∂qn
i

(q) n . 1,

Dp = p − p′,

Only the terms being less than first order are retained, in these
developments. Then we obtain the differential Landau form of
the operator

CL[ f , f ] = ∇p · (FD[ f ] f (p)) +∇p · (D[ f ]∇ p f (p)), (19)

where the drag force FD and the matrix D are

FD[ f ] = 1
2

∫
R3

∇q · kDpDpl f (q)d3q, (20)

D[ f ] = 1
2

∫
R3

kDpDplf (q)d3q. (21)
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These coefficients only depend on the matrix kDpDpl, whose
components are defined by

kDpiDpjl ;
∫

S2

DpiDpjũQf ( p̃, m̃)
W̃

2

WpWq
dm̃dw̃, (22)

where the integration is conducted in the center of mass frame
over the polar and azimuthal angles m̃ and w̃. If two distinct
populations, fl and fm are introduced (l and m referring either
to the thermal or beam population), the following
Boltzmann bilinear form is considered,

CB[ fl, fm] =
∫

R3
d3q

∫
S2

dṼ
′
[ fm(p′) fl(q′)

− fm(p) fl(q)]ũ
W̃

2

WpWq
Qf ( p̃, m̃).

(23)

A first order Taylor expansion leads to the corresponding
Landau bilinear form

CL[ fl, fm] = ∇p · FD[ fm] fl(p)
( )

+∇p · D[ fm]∇p fl(p)
( )

. (24)

The coefficients of this operator are written explicitly by
using a decomposition with moments of the cross section.
This avoids logarithmic approximations of this cross
section Qf, which remains the same for the Fokker-Planck
and the Boltzmann operators. In the next section, we
develop this procedure and justify formally that the Landau
operator (19) (respectively the Landau bilinear form (24))
reproduces the conservation properties of the initial
Boltzmann equation (6) (respectively the Boltzmann bilinear
forms (23)).

3.1. A Fokker-Planck Procedure Based on Moment
Decomposition

Let the cross section Qf be arbitrary in this section, though
forward-peaked. The analysis we propose here is based on
the decomposition of the momentum exchange Dp ¼
Dp||n + Dp⊥ in one parallel and two perpendicular com-
ponents, with respect to the velocity V ¼ Vn of the center
of mass frame in the laboratory frame. If a Taylor expansion
is performed on the weak form of Botzmann Eq. (6), with
infinite order, the so-obtained operator C[ f, f ](Qf) involves
the coefficients

k Dp||
( )j

Dp⊥1

( )k
Dp⊥2

( )ll,

where the subscripts ⊥1 and ⊥2 refer to each
perpendicular directions, and the brackets are defined by
the Eq. (22).

The parallel component does not depend on the azimuthal
angle w̃. Then if k + l is odd, the coefficient

k Dp||
( )j

Dp⊥1

( )k
Dp⊥2

( )ll is equal to zero, after integration

in w̃. In the case where k + l is even, we obtain

k Dp‖
( ) j

Dp⊥1

( )k
Dp⊥2

( )ll =
∫1

−1
(1− m̃) j(1− m̃2)

l+k
2 Kj,k,lQf ( p̃, m̃)dm̃

’ 2
l+k

2

∫1

−1
(1− m̃) j+ l+k

2 Kj,k,lQf ( p̃, m̃)dm̃,

where the coefficients Kj,k,l only depend on the variables p̃,
V, Wp, Wq, but not on the variable m̃. At this point we
have made the logarithmic approximation (1 + m̃)(l+k)/2 ’
2(l+k)/2 for the coefficient k Dp‖

( )j
Dp⊥1

( )k
Dp⊥2

( )ll, in the
case k + l is even, assuming that the dominant contribution
comes from the small angles, because of the divergence of
the cross section. This allows to rearrange formally the oper-
ator as the infinite sum

C[ f , f ](Qf ) =
∑

m[N∗
C(m)[ f , f ](Qf ),

C(m)[ f , f ](Qf )/
∫1

−1
(1 − m̃)mQf ( p̃, m̃)dm̃,

whatever the expression of the cross section is. In this
decomposition, the contribution of the mth moment of the
cross section

�1
−1 (1 − m̃)mQf ( p̃, m̃)dm̃ is assigned to the

formal operator C(m)(Qf). Since this decomposition does
not assume the explicit knowledge of the cross section, all
the properties of the operator C(Qf) hold for each operator
C(m)(Qf). In particular, dropping terms with m . 1, the col-
lision invariants are preserved for the operator C(1)(Qf).
This procedure remains valid when bilinear forms are con-
sidered for two distinct populations. Then we obtain the con-
servation properties on these bilinear forms

∫
R3

CL[ fl, fm]d3p =
∫

R3
CB[ fl, fm]d3p = 0 (25)

∫
R3

F (p)CL[ fl, fm]d3p =
∫

R3
F (p)CB[ fl, fm]d3p

= −
∫

R3
F (p)CB[ fm, fl]d

3p,

(26)

where F (p) can be either p, or Wp. Moreover the only equi-
librium states of this operator are the Maxwellian distribution
functions fl and fm whose temperature and mean velocity are
the same. These conservation properties can be rigourously
proved for the operators (16)–(17), with the explicit
expressions of the Fokker-Planck components (27)–(29),
given in the next section. The energy conservation will be
illustrated in the case of a model issued from (Gurevich
et al., 1998a), that has been modified following this pro-
cedure, in Section 4.1.

This approach only differs from the original
Landau-Fokker-Planck development in non-logarithmic
terms. However, these additional non-logarithmic contri-
bution prove to be essential to maintain the correct conserva-
tion properties (26) all through the model derivation.
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3.2. Explicit expression of the Fokker-Planck coefficients

In this section, we choose the cross section Qf, defined by the
sum of Eqs. (10) and (11), and derive the Fokker-Planck
coefficients from the above presented Fokker-Planck pro-
cedure. The cross section shows a singularity at m̃ � 1,
that corresponds to small angle scattering. Then the operator
C(1)(Qf) contains both logarithmic and non-logarithmic
terms; the non-logarithmic contribution being located
inside the cross section. The other operators C(m)(Qf), m .

1, only contain non-logarithmic terms, and are dropped in
the rest of the paper.

The coefficient kDpDpl is no more a pure diffusion
matrix if the Landau derivation of Section 3.1 is applied.
In this context, the quantities kDpDpl and ∇q . kDpDpl are
written as

kDpDpl = Mũ2p
W̃

2

WpWq

∫1

−1
(1 − m̃)Qf ( p̃, m̃) dm̃, (27)

where the matrix M is defined as

M = I p̃2 + p̃2c2

4W̃
2 (p + q) ⊗ (p + q) − 1

4
(p − q) ⊗ (p − q)

( )
,

(28)

and thus

∇q · kDpDpl = ũp
p(WpWq − p · qc2) − qm2

ec4

WpWq

×
∫1

−1
(1 − m̃)Qf ( p̃, m̃) dm̃. (29)

With this approximation, the coefficients satisfy the relation
2∇q

.kDpDpl ¼ 2kDpl 2 ∇p.kDpDpl. Therefore, we obtain
the equivalence between the Landau operator of Eq. (19)
and the Fokker-Planck form

CL[ f , f ] = −∇p · f (p)
∫

R3
f (q)kDpld3q

( )

+ 1
2
∇2

p · f (p)
∫

R3
f (q)kDpDpld3q

( )
.

The equivalence between the Landau and Fokker-Planck
forms remains true for the bilinear operators.

3.3. Coulomb Logarithms and Cross Sections

The collision integral CSD describes the scattering of beam on
plasma electrons. Its Coulomb logarithm is defined with the
Debye cut-off parameter uD. It is contained in the coefficient�1
−1 (1 − m̃)Qf ( p̃, m̃) dm̃. The contribution of the collisions

between beam electrons and ions can be directly incorpor-
ated, substituting Z � Z + 1.

The plasma heating (process H in Table 1) is defined by
the energy deposition of fast particles, while they are

scattered on small angles on the plasma electrons. The
Coulomb logarithm is contained in the coefficient�1
−1 (1 − m̃)Q(sa)

f ( p̃, m̃)dm̃.
The Boltzmann operators that exchange particles (pro-

cesses IO+ in Table 1), have an integral form that presents
a logarithmic singularity. The analogy with the Coulomb
logarithm will be illustrated in the case of a beam electron
population in Section 4.

4. ENERGY EXCHANGE OF BEAM ELECTRONS IN
A COLD PLASMA

4.1. Kinetic Equation for Beam Electrons

Relativistic electron-ion and electron-electron collision oper-
ators for a low density electron beam propagating through a
cold and dense plasma were derived in (Gurevich et al.,
1998a). It was shown that under the conditions nb ≪ ne

and eb ≫ kBTe, they can be presented as a sum of three
terms. The first two terms correspond to the small angle col-
lisions (process E in Table 1), and they have a Fokker-Planck
differential form (2):

Ct[ fb(p)] = ∇p · FD
p
p

fb(p)

( )
+∇p · D Id −

p ⊗ p
p2

( )
∇pfb(p)

[ ]
.

(30)

The drag force FD is due to the electron-electron collisions,
while the diffusion term D describes the elastic scattering
accounts for the electron-electron and electron-ion collisions.
If only logarithmic terms are retained

FD = Ze4ni lnL

4p12
0mev2

, D = FD(Z + 1)
p

2g
. (31)

These expressions are similar to Eqs. (4) and (5) in the non-
relativistic case, with the same expression for the Coulomb
logarithm. In addition, the large angle collisions (process F
in Table 1) are responsible for production of secondary
high energy electrons. This term, so-called, ionization inte-
gral (Gurevich et al., 1998a), reads

CI[ fb(1, m, w)] = a(1)
∫+1

1min

∫
S2

fb(1′, m′, w′)

× (1′ + mec2)2

1(1+ 2mec2)
K(1′, 1)dEd1′

dV p′

2p
. (32)

Here, the collision rate, a, the kernel, K, and the Delta func-
tion accounting for the energy conservation dE, are defined as

a(1) = Znie4

8p12
0mec

���������������
1(1+ 2mec2)

√
1+ mec2

, (33)

K(1′, 1) = 1
12

+ 1
1′ + mec2

( )
, (34)
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dE = d(Vp ·Vp′ − m0(1′, 1)), (35)

m0(1′, 1) =

���������������
1(1′ + 2mec2)
1′(1+ 2mec2)

√
, (36)

where 1′ ¼ mec
2(g′ 2 1) and 1 ¼ mec

2(g 2 1) are the
kinetic energies of the incoming and outgoing particles,
associated to the Lorentz factors g′ and g. The momentum
p is written in spherical coordinates in terms of the variables
(1, m, w). Here the ionization integral (32) involves the cross
section Q∗

f (| p̃|, m̃) folded around the large angles. It is
defined as Qf (| p̃|, m̃) = Q∗

f (| p̃|, − m̃).
The integral (32) does not contain the Coulomb logarithm,

contrary to the friction and diffusion terms. However it con-
tains a logarithmic dependence on the low energy limit, and
that makes it on the same order as the diffusion and friction
terms. This is illustrated in the next section for the case of a
mono-energetic electron beam.

4.2. Energy Losses of a Mono-Energetic Electron Beam
on a Cold Plasma

Let us consider a mono-energetic electron beam with energy
1b ¼ mec

2(gb 2 1) propagating in a direction defined by the
polar axis z. The beam distribution function writes

fb(g, m) = nb

2pm3
ec3

1

gb

��������
g2

b − 1
√ d(g− gb)d(m− 1). (37)

The beam energy loss is defined as

− dWb

dt
= −mec2 d

dt

∫
R3

(g− 1)fb(p) d3p.

The beam energy loss due to pitch-angle collisions with
plasma electrons is described by the friction term in Eq.
(30), which gives

− dWbt

dt
= nbvbFD = ln

pb

h− /lD

( )
Ze4ninb

4p12
0mec

gb��������
g2

b − 1
√ . (38)

Here, for a background plasma of 0.1 keV, with a density of
1021 cm23, the minimum kinetic energy 1min, related to the
momentum h− /lD, is of the order of 10 meV.

The energy loss due to hard collisions with plasma elec-
trons is obtained from the ionization integral in Eq. (32)

− dWbi

dt
= −nb

∫gb

gmin

a(g)
gbg

(g+ 1)
1

(g− 1)2 +
1

g2
b

( ) ��������
g2 − 1

g2
b − 1

√
dg.

(39)

The integral over the energy has a logarithmic divergence at
the lower limit gmin ’ 1, corresponding to small angle
collisions.

Further, turning to the Fokker-Planck procedure described
in Section 3, we demonstrate an energy conservation

property (40), similar to Eq. (26), in the model (with cold
plasma) of Gurevich et al. (1998a). This model is modified
here in two aspects: first, the complete cross sections are
retained, and second, the Fokker-Planck derivation procedure
described in Section 3 is applied. These modifications lead to
the following expression for the energy loss in Eq. (38)

− dWbi

dt
= −Zninbc2pmec

(gb − 1)
��������
g2

b − 1
√
gb

×
∫1

−1
(1 − m̃)Qf ( p̃, m̃) dm̃ = dWbt

dt
. (40)

5. REDUCED MODEL FOR FAST ELECTRON
DISTRIBUTION FUNCTIONS

5.1. Assumptions Concerning the Electron Distribution
Function

In order to simplify the ionization operator (IO), we assume
that the thermal electron population, with the density nth, has
an isotropic energy distribution

fth(p) = nth

4pm3
ec3

Fth(gp), (41)

with the normalization
�

1
1 g(g2 2 1)1/2Fth(g)dg ¼ 1. Also,

in order to simplify the calculations, we only retain the domi-
nant part of the cross sections, that contains the Coulomb log-
arithm. The cross sections in the IO can be further simplified,
owing to the fact that all the quantities that do not contribute
to the logarithmic divergence can be approximated with the
assumption of weak dependence with respect to the tempera-
ture of the thermal population.

We describe the beam distribution function within the M1
model (Berthon et al., 2007; Dubroca & Feugeas 1998;
Turpault et al., 2002), that relies on the angular moment
closure in the phase space. Its angular dependence is
defined from the minimum entropy principle (Levermore,
1996; Minerbo et al., 1978)

fb(p) = r0(gp) exp (−Vp · a1(gp)), (42)

where Vp is the unit vector in the p momentum direction, r0

is a non-negative scalar (r0 ≥ 0), and a1 is a three component
real valued vector. The functions a1 and r0 only depend on
the fast electron energy. An important parameter is the aniso-
tropy of beam distribution A = f1/f0, where

f0(p) =
∫

S2

f (p) dVp, f1(p) =
∫

S2

Vp f (p) dVp,

f2(p) =
∫

S2

Vp ⊗Vpf (p)dVp.

The anisotropy parameter is by construction less or equal
than one (‖A‖ ≤ 1). The ansatz (42) ensures the analytical
computation of moment f2 as a function of f0 and f1, based
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on a tabulated Eddington factor (Duclous et al., 2010), which
defines the relation between A and a1.

An important feature of the M1 model, consists of the fact
that it reproduces exactly both beam-like and isotropic distri-
bution functions. Moreover, the form (42) is convenient for
the calculation of the ionization operator that presents a
very narrow domain of integration over the angular variable.

Under the assumptions formulated above, the IO operator
takes the following form

d
dt

fb,0(p) = nio

∫1

1
dgq′

∫1

1
dg p′Fth(g p′ )

× fb,0(q′)G0(g p′ , gq′ , gp, gc)1L−, L+ , (43)

d
dt

fb,1(p) = nio

∫1

1
dgq′

∫1

1
dg p′Fth(g p′ )

× fb,1(q′)G1(g p′ , gq′ , gp, gc)1L−, L+ , (44)

where we have introduced an effective collision frequency
nio ; e4nth/4p10

2me
2c3, the dimensionless kernels G0 and

G1, which are regular kernels, 1L2
, L+ is an indicative func-

tion, valued 1, if L2 , L+, and 0 otherwise, with
L+ = O(‖p′‖). This indicative function can be narrow, as
the energies on the outgoing channel may present a very
narrow divergence in angles. However, a fine energy discre-
tization of the thermal population allows to capture this
feature. This is an imporatnt aspect of the model. The inte-
grals (43) and (44) depend on the parameter gc that separates
the fast and slow electron populations.

5.2 Relaxation of a Mono-Energetic Electron Beam in a
Thermal Maxwellian Plasma

Let us consider a mono-energetic beam with the distribution
function (37) propagating through a homogeneous
Maxwellian plasma with a non-relativistic temperature Qth¼

kBTth/mec
2 ≪ 1. The finite value of Qth is needed for the cal-

culation of the ionization integral. However, it may be set to
zero in the calculations of the slowing down operator (SD),
as the particles affected by this process do not move from
one population to another. This choice makes it appear an
explicit logarithmic divergence of the singularity.

First, we analyse the value of the ionization integral by
evaluating the ionization rate, that is, the evolution of the
number of beam electrons with time. This provides also
with a hint for choosing the separation parameter gc, as
it should not lead to a significant leakage of the thermal
population.

dnb

dt
= d

dt

∫
R3

fb(p) d3p

= nbnio

∫1

1
dgp

∫1

1
dg p′

gp(g2
p − 1)1/2

gb(g2
b − 1)1/2

× Fth(g p′ )G0(g p′ , gq′ , gp, gc)1L−, L+ .

The dependence of the secondary electron production rate on
the beam electron energy and on the cut-off parameter is
shown in Figure 1 for the representative case of a 5 keV
thermal plasma. The ionization rate presents a strong depen-
dence with respect to gc if the cut-off energy is chosen very
close to the thermal energy of plasma electrons. This depen-
dence becomes weaker as soon as the cut-off energy goes far
in the tail of the plasma distribution function. The production
of secondary electrons increases also with the energy of fast
electrons. Both these effects can be easily understood if one
accounts for the fact that, even in the pitch angle scattering
event, the secondary electron gains a significant energy.
Indeed, assuming the scattering angle u≪ 1 and the large
energy of the beam electrons, gb ≫ 1, one finds from the
energy and momentum conservation relations that the
energy of secondary electron is

1′ ’ 1
2

mec2g2
bu

2.

The secondary electron energy would be 700 keV if the
5 MeV is scattered to a small angle of 108. Therefore too
small energy cut-off corresponds to accounting for the
pitch angle scattered electrons as the secondary beam elec-
trons. For this reason, the choice of the cut-off energy is
problem dependent. It must be chosen in such a domain
where the dependence of the secondary electron production
with respect to the cut-off energy is weak. Figure 1 proves
the existence of such a domain for the beam-plasma configur-
ation. Moreover, this figure illustrates two more points: first,
the model respects the positivity of G0, second, the ionization
rate profile is peaked for a low energy cut-off.

One can also analyse the relative contribution of the ioniz-
ation and slowing down mechanisms to the total momentum.
In the limit of low plasma temperature and retaining only the

Fig. 1. (Color online) Production rate (nionb)21dnb/dt of secondary elec-
trons by a beam electrons propagating in a 5 keV Maxwellian thermal
plasma as a function of the beam energy and the energy cut-off parameter.
Isolines 1, 100, 500, 1000, 5000 for the production rates are labelled with
respective letters (a)–(e).
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logarithmic terms, one finds the following expression for the
slowing down rate of the fast electron momentum:

nb
dkplt

dt
· ez ;

∫
R3

Ct[ fb](p · ez) d3p

= −nbniomec ln
pb

h− /lD

( )
g2

b + (Z + 1)gb

g2
b − 1

, (45)

where the Bethe operator (30), with friction and diffusion
coefficients (31) was taken into account. The averaged contri-
bution of this process to the total beam momentum is
negative.

The contribution to the total beam momentum due to the
ionization operator is

nb
dkplio

dt
· ez ;

d
dt

∫
R3

fb(p)p · ez d3p

= mecnbnio

∫1

1
dgp

∫1

1
dg p′

gp(g2
p − 1)1/2

gb(g2
b − 1)1/2

× Fth(g p′ )G1(g p′ , gb, gp, gc)1L−, L+ . (46)

The ratio of the momentum evolution rates (46) over (45) is
shown Figure 2. The dependence with respect to the energy
cut-off parameter is found to be strong as well, even if the
momentum tends to weaken the singularity, compared to
Figure 1. Moreover, this ratio exhibits a negative sign,
which implies a positive contribution of the secondary elec-
trons into the beam momentum. Large values of this ratio is
the signature of the importance of the secondary electron pro-
duction, under these conditions.

The conservation of the total momentum in the plasma-
beam system implies that the fast electron beam cannot
gain energy from plasma. This fact provides another hint
for the choice of the cut-off parameter. We are now in pos-
ition to prescribe a choice for the energy cut-off parameter,

that could be defined at an apropriate isosurface in
Figure 2, that is, where we can ensure a weak dependence
with respect to that parameter.

5.3. Influence of the Energy-Scale Cut-Off Parameter on
the Propagation of Oscillations

In Alexandre and Villani (2002), the authors are proposing a
sophisticated renormalization procedure upon the non-
homogeneous, non-relativistic Boltzmann equation. They
show that oscillations are immediately damped by a singular
cross section. Conversely, the oscillations, if a cut-off is
applied, propagate. The question that arises is: what is the
effect of the energy exchange cut-off parameter on the propa-
gation of these oscillations? For instance, one may expect a
transfer of these oscillations, at fixed energy, from one popu-
lation to another. This could be possible because the two
populations are allowed to share energy ranges, and also
because the Boltzmann gain and loss terms are split
between the populations.

6. CONCLUSION

We have shown that the large angle scattering in
electron-electron collisions (Shoub 1987), and resulting pro-
duction of secondary fast electrons (Gurevich et al., 1998a),
is of great importance for the overall dynamics of the electron
beam and plasma populations, at relativistic energies. We
proposed a robust reduced model to deal with such a mech-
anism. This model is based on a decomposition of the relati-
vistic Boltzmann collision operator, relying itself on a
decomposition over the relativistic Rutherford cross
section, instead of a partition of the phase-space between
populations, as done usually. This model proposes a
natural definition for the thermal and beam populations,
according to the collision process they are issued from. The
two populations are allowed to share energy ranges in the
model. Further quantitative evaluation are foreseen to
check the accuracy of the model and quantify the influence
of the large angle scattering on the fast electron transport.
This can be achieved using Monte-Carlo codes, such as
Geant or Penelope. Such comparison could also be profitable
contribution for specifications to the HiPER project (J.R.
Davies. Fast Electron Transport Calculation for HiPER
Benchmarking Collision Routines, Unpublished manuscript).
Beyond 10 – 20 MeV beam energies, Bremsstrahlung,
density effects, photon production, and creation of electron-
positron pairs, should complete this model (Landau &
Lifshitz, 1973; Lefebvre et al., 1996).
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